WO2021125327A1 - パターン化された液晶表示素子の製造方法 - Google Patents

パターン化された液晶表示素子の製造方法 Download PDF

Info

Publication number
WO2021125327A1
WO2021125327A1 PCT/JP2020/047456 JP2020047456W WO2021125327A1 WO 2021125327 A1 WO2021125327 A1 WO 2021125327A1 JP 2020047456 W JP2020047456 W JP 2020047456W WO 2021125327 A1 WO2021125327 A1 WO 2021125327A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal display
display element
radical
Prior art date
Application number
PCT/JP2020/047456
Other languages
English (en)
French (fr)
Inventor
一世 三宅
尚宏 野田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080088920.7A priority Critical patent/CN114846397A/zh
Priority to JP2021565681A priority patent/JPWO2021125327A1/ja
Priority to KR1020227023630A priority patent/KR20220116219A/ko
Publication of WO2021125327A1 publication Critical patent/WO2021125327A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F24/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/3243Polyamines aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Definitions

  • the present invention is a liquid crystal display element for producing a liquid crystal display element in which at least two regions of an in-plane alignment region, an out-of-plane orientation region, and a tilt orientation region are patterned by an inexpensive and complicated process-free method. Regarding the manufacturing method.
  • liquid crystal display elements have been widely used in mobile phones, computers, television displays, and the like.
  • Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR (Virtual Reality) and ultra-high-definition displays in the future.
  • Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Indicator) have been proposed as the display method of the liquid crystal display, and the liquid crystal is oriented in a desired orientation state in all modes.
  • a film liquid crystal alignment film that induces to the surface is used.
  • FFS has a higher substrate manufacturing cost than IPS, and there is a problem that a display defect peculiar to FFS mode called Vcom shift occurs.
  • photo-orientation compared to the rubbing method, there are merits that the size of the element that can be manufactured can be increased and the display characteristics can be greatly improved. If it is an isomerized type, it may be burned in due to insufficient orientation.
  • liquid crystal display element manufacturers and liquid crystal alignment film manufacturers are making various efforts to solve these problems.
  • a liquid crystal alignment film having strong anchoring energy is used for the substrate on one side, and the substrate side provided with the electrode that generates the transverse electric field on the other side has no liquid crystal orientation regulating force.
  • Japanese Patent No. 40553530 Japanese Unexamined Patent Publication No. 2013-231757 Japanese Unexamined Patent Publication No. 2017-21166
  • an in-plane uniaxial orientation can be obtained by using an alignment film having an anchoring force in the in-plane uniaxial direction
  • an out-of-plane orientation can be obtained by using an alignment film having an anchoring force in the out-of-plane direction.
  • the present invention has been made to solve the above-mentioned problems, and induces a chemical reaction at the contact interface between the alignment film and the liquid crystal, and induces this in an arbitrary region in the in-plane direction of the alignment film.
  • By controlling the surface energy and anchoring energy of the interfacial reaction region to an arbitrary state two or three different orientation regions (in-plane (uniaxial) orientation region, out-of-plane) in the same element can be easily and inexpensively used. It is an object of the present invention to provide a method for manufacturing a liquid crystal display element for manufacturing a liquid crystal display element having an alignment region and a tilted alignment region).
  • the step of irradiating the liquid crystal composition with light having a peak is included.
  • the radically polymerizable compound has a function of vertically orienting the liquid crystal by polymerizing.
  • a liquid crystal display device that includes at least one of the following requirements (Z1) and (Z2) and in which at least two of the in-plane alignment region, the out-of-plane orientation region, and the tilt orientation region are patterned is manufactured.
  • Requirement (Z2) The step of irradiating the liquid crystal composition with light having a peak at 240 to 400 nm in the step (B) is performed through a photomask.
  • [2] The method for manufacturing a liquid crystal display element according to [1], wherein the radical generation film is a film that has been subjected to uniaxial orientation treatment.
  • [3] The method for manufacturing a liquid crystal display element according to [1] or [2], wherein the step of irradiating the liquid crystal composition with light having a peak at 240 to 400 nm in the step (B) is performed without an electric field.
  • the method for manufacturing a liquid crystal display element according to. [7] The method for producing a liquid crystal display device according to [5], wherein the organic group that induces radical polymerization is a group represented by the following formula (3).
  • the broken line represents the bond with the benzene ring, and R 6 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH.
  • R 8 represents an organic group that induces radical polymerization represented by a formula selected from the formulas [X-1] to [X-18], [W], [Y] and [Z].
  • * indicates the connection point with R 7, and S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively.
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and R 1 and R 2 are independently hydrogen atoms, halogen atoms, or 1 to 10 carbon atoms, respectively.
  • R 9 and R 10 are independently alkyl groups having 1 to 10 carbon atoms, respectively.
  • An alkoxy group, a benzyl group, or a phenethyl group, and in the case of an alkyl group or an alkoxy group, a ring may be formed by R 9 and R 10.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • a 1 and A 2 represent hydrogen atoms or groups represented by the following formula (3), respectively, except that at least one of A 1 and A 2 is represented by the following formula (3).
  • Represents the group to be E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , -SO 2- , or theirs.
  • p represents an integer of 0 to 2. When p is 2, the plurality of A 2 and E have the above definitions independently.
  • a 1 is composed of a group represented by the following formula (3).
  • the broken line represents the bond with the benzene ring, and R 6 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH.
  • R 8 represents an organic group that induces radical polymerization represented by a formula selected from the formulas [X-1] to [X-18], [W], [Y] and [Z].
  • * indicates the connection point with R 7, and S 1 and S 2 independently represent -O-, -NR-, and -S-, respectively, and R.
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, and an alkyl group having 1 to 4 carbon atoms.
  • R 9 and R 10 An alkoxy group, a benzyl group, or a phenethyl group, and in the case of an alkyl group or an alkoxy group, a ring may be formed by R 9 and R 10.
  • Q represents one of the following structures In the formula, R 11 represents -CH 2- , -NR-, -O-, or -S-, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • R c represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and the alkyl group of R b is a linear, branched or cyclic group. Indicates an alkyl group of.) [11] In the liquid crystal composition containing the liquid crystal and the radically polymerizable compound, [1] to [1] to [1] to [1] to [1] to [1] to [1] to [1] to [1] to [1] 10] The method for manufacturing a liquid crystal display element according to any one of.
  • [12] Prepare a first substrate and a second substrate having a radical generation film, The radical generation film on the first substrate is arranged so as to face the second substrate. Further comprising a step of producing a liquid crystal cell by filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between the first substrate and the second substrate.
  • [13] The method for manufacturing a liquid crystal display element according to [12], wherein the second substrate has a radical generating film.
  • the method for manufacturing a liquid crystal display element according to [12], wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial orientation.
  • a liquid crystal display device having two or three different orientation regions (in-plane (uniaxial) orientation region, out-of-plane orientation region, and tilt orientation region) in the same element by a simple and inexpensive method.
  • FIG. 1A is a photograph of the liquid crystal display element obtained in Example 5.
  • FIG. 1B is a diagram schematically showing a photograph of the liquid crystal display element of FIG. 1A.
  • FIG. 2A is a photograph of the liquid crystal display element obtained in Comparative Example 4.
  • FIG. 2B is a diagram schematically showing a photograph of the liquid crystal display element of FIG. 2A.
  • FIG. 3A is a photograph of the liquid crystal display element obtained in Example 1.
  • FIG. 3B is a diagram schematically showing a photograph of the liquid crystal display element of FIG. 3A.
  • FIG. 4A is a photograph of the liquid crystal display element obtained in Example 23.
  • FIG. 4B is a diagram schematically showing a photograph of the liquid crystal display element of FIG. 4A.
  • FIG. 5A is a photograph of the liquid crystal display element obtained in Example 24.
  • FIG. 5B is a diagram schematically showing a photograph of the liquid crystal display element of FIG. 5A.
  • FIG. 6 is a photograph of the liquid crystal display element obtained in Example 25 and Example 26.
  • FIG. 7 is a photograph of the liquid crystal display element obtained in Example 27.
  • FIG. 8 is a photograph of the liquid crystal display element obtained in Example 30.
  • FIG. 9A is a photograph of the liquid crystal display element obtained in Example 32.
  • FIG. 9B is a diagram schematically showing a photograph of the liquid crystal display element of FIG. 9A. It is the schematic sectional drawing which shows an example of the liquid crystal display element which concerns on this invention. It is the schematic sectional drawing which shows the other example of the liquid crystal display element which concerns on this invention.
  • the method for manufacturing a liquid crystal display element of the present invention includes the following step (A) and the following step (B).
  • the radically polymerizable compound in the above step (B) is a compound having a function of vertically orienting the liquid crystal by polymerizing.
  • the method for manufacturing a liquid crystal display element of the present invention includes at least one of the following requirements (Z1) and (Z2). Requirement (Z1): Between the step (A) and the step (B), the radical generation film obtained in the step (A) is irradiated with light having a peak at 240 to 400 nm to generate radicals in the radical generation film. It further has a step (C) of inactivating the ability.
  • Requirement (Z2) The step of irradiating the liquid crystal composition with light having a peak at 240 to 400 nm in the step (B) is performed through a photomask.
  • the present invention includes the above-mentioned steps (A) and (B) and further satisfies at least one of the requirements (Z1) and (Z2).
  • a liquid crystal display element in which at least two regions are patterned can be manufactured.
  • a radical generation film is formed on the substrate.
  • the radical generating film means a film capable of generating radicals.
  • the radical generation film is formed by, for example, a radical generation film forming composition.
  • the components of the radical-generating film-forming composition include a polymer and a group capable of generating radicals.
  • the radical-generating film-forming composition may be a composition containing a polymer to which a group capable of generating radicals is bonded, or may be a compound having a group capable of generating radicals and a base resin. It may be a composition with a polymer.
  • the group capable of generating radicals is preferably an organic group that induces radical polymerization.
  • the radical generation film is composed of a polymer containing an organic group that induces radical polymerization
  • the polymer containing an organic group that induces radical polymerization is, for example, a structural unit represented by the following formula (1). Examples thereof include polymers having a radical of.
  • A represents an organic group that induces radical polymerization.
  • the monomer components include a methacryl group, an acrylic group, a vinyl group, an allyl group, and a coumarin group. It is preferable to use a monomer having a photoreactive side chain containing at least one selected from a styryl group and a cinnamoyl group, or a monomer having a site that is decomposed by light irradiation and generates a radical in the side chain.
  • the monomer that generates radicals has a problem that it spontaneously polymerizes, and may become an unstable compound.
  • a polymer derived from a diamine having a radical generation site is preferable, and a polyimide precursor such as a polyamic acid or a polyamic acid ester, a polyimide, a polyurea, a polyamide, or the like is more preferable. preferable.
  • Examples of the organic group that induces radical polymerization include a group represented by the following formula (3).
  • the broken line represents the bond with the benzene ring, and R 6 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-.
  • R 7 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other.
  • R 8 represents an organic group that induces radical polymerization represented by a formula selected from the formulas [X-1] to [X-18], [W], [Y] and [Z].
  • * indicates the connection point with R 7, and S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively.
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms
  • R 1 and R 2 are independently hydrogen atoms, halogen atoms, or 1 to 10 carbon atoms, respectively.
  • R 9 and R 10 An alkoxy group, a benzyl group, or a phenethyl group, and in the case of an alkyl group or an alkoxy group, a ring may be formed by R 9 and R 10.
  • Q represents one of the following structures In the formula, R 11 represents -CH 2- , -NR-, -O-, or -S-, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • the following are preferable as the organic group represented by the formula selected from the above [W], [Y] and [Z].
  • (b) and (c) are more preferable from the viewpoint of reliability of the obtained liquid crystal display element.
  • a preferred embodiment of a polymer containing an organic group that induces radical polymerization includes a diamine having an organic group that induces radical polymerization.
  • the diamine containing such a radical generation site is specifically a diamine having a side chain capable of generating a radical and being polymerized, and examples thereof include a diamine represented by the following formula (2). It should be noted that the present invention is not limited to this.
  • a 1 and A 2 represent hydrogen atoms or groups represented by the above formula (3), respectively, except that at least one of A 1 and A 2 is represented by the above formula (3).
  • Represents a group E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , -SO 2- , or theirs.
  • Any combination thereof includes -O- (CH 2 ) m- O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m- , and -NH- (CH 2 ).
  • p represents an integer of 0 to 2. When p is 2, the plurality of A 2 and E have the above definitions independently. When p is 0, A 1 is composed of a group represented by the following formula (3).
  • the position of 5 is mentioned. Of these, the 2,4 position, the 2,5 position, or the 3,5 position is preferable from the viewpoint of reactivity in synthesizing the polyamic acid. Considering the ease of synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • diamine having a photoreactive group containing at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group and a cinnamoyl group are as follows. Examples include, but are not limited to, compounds.
  • J 1 is a single bond, -O-, -COO-, -NHCO-, or -NH- bond group
  • J 2 is a single bond, or unsubstituted or substituted with a fluorine atom. Represents 1 to 20 alkylene groups.
  • the diamine having an organic group represented by the formula selected from the above [W], [Y] and [Z] has the following formula in consideration of ease of synthesis, high versatility, characteristics and the like.
  • the structures represented are most preferred, but not limited to these.
  • n is an integer of 2 to 8
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,- (CH 2 ) m- , -SO 2- , -O- (CH 2 ) m- O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m-, -NH- (CH 2) 2 ) m- , -SO 2- (CH 2 ) m- , -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO- or -COO- (CH 2 ) m- OCO- Yes
  • the above diamine may be used alone or in combination of two or more, depending on the liquid crystal orientation when the radical generating film is formed, the sensitivity in the polymerization reaction, the voltage holding characteristic, the accumulated charge, and the like.
  • the diamine having a site where such radical polymerization occurs it is preferable to use an amount of 5 to 50 mol% of the total diamine component used for synthesizing the polymer contained in the radical generation film forming composition, and more preferably. It is 10 to 40 mol%, particularly preferably 15 to 30 mol%.
  • a diamine other than the diamine having a site where the radical is generated can be used in combination as a diamine component.
  • Alicyclic diamines such as methylcyclohexyl) methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8 Aliphatic diamines such as -diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane; 1,3-bis [2- (p-aminophenyl) Diamines having a urea structure such as ethyl] urea and 1,3-bis [2- (p-aminophenyl) ethyl] -1-tert-butoxycarbonyl urea; Np-aminophenyl-4-p-aminophenyl ( Diamine having
  • the other diamines may be used alone or in combination of two or more depending on the liquid crystal orientation when the radical generating film is formed, the sensitivity in the polymerization reaction, the voltage holding property, the accumulated charge, and the like. ..
  • the tetracarboxylic dianhydride to be reacted with the above diamine component in the synthesis when the polymer is a polyamic acid is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-
  • one or two or more types of tetracarboxylic dianhydride may be used in combination depending on the liquid crystal orientation when the radical generating film is formed, the sensitivity in the polymerization reaction, the voltage holding property, the accumulated charge, and the like. ..
  • the structure of the tetracarboxylic acid dialkyl ester to be reacted with the above diamine component is not particularly limited, and specific examples thereof will be given below.
  • Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-Cyclopentane tetracarboxylic acid dialkyl ester, 2,3,4,5-tetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracar
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3', 4,4'-biphenyltetracarboxylic acid dialkyl ester, 2,2', 3,3'-biphenyltetracarboxylic acid dialkyl ester, and the like.
  • the diisocyanate to be reacted with the above diamine component in the synthesis when the polymer is polyurea is not particularly limited and can be used depending on availability and the like.
  • the specific structure of the diisocyanate is shown below.
  • R 2 and R 3 represent aliphatic hydrocarbons having 1 to 10 carbon atoms.
  • K-1 to K-5 are inferior in reactivity but have the advantage of improving solvent solubility
  • aromatic diisocyanates shown in K-6 to K-7 are highly reactive and heat resistant.
  • K-1, K-7, K-8, K-9, and K-10 are preferable in terms of versatility and characteristics
  • K-12 is preferable from the viewpoint of electrical characteristics
  • K-13 is preferable from the viewpoint of liquid crystal orientation.
  • One or more types of diisocyanate can be used in combination, and it is preferable to apply various diisocyanates according to the desired characteristics.
  • diisocyanates can be replaced with the tetracarboxylic acid dianhydride described above, and may be used in the form of a copolymer of polyamic acid and polyurea, and the polyimide and polyurea can be chemically imidized. It may be used in the form of a copolymer.
  • the structure of the dicarboxylic acid to be reacted in the synthesis when the polymer is polyamide is not particularly limited, but specific examples are as follows.
  • Specific examples of aliphatic dicarboxylic acids include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladic acid, pimelic acid, 2,2-.
  • Dicarboxylic acids such as dimethylglutaric acid, 3,3-diethylsuccinic acid, adipic acid, sebacic acid, and pimelic acid can be mentioned.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids examples include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid.
  • dicarboxylic acid containing a heterocycle examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, and the like.
  • various dicarboxylic acids may have an acid dihalide or an anhydride structure. It is particularly preferable that these dicarboxylic acids are dicarboxylic acids capable of giving a polyamide having a linear structure from the viewpoint of maintaining the orientation of the liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropandicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propandicarboxylic acid, 4,4 "-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-Pyridoxydicarboxylic acid, acid dihalide thereof, etc.
  • dicarboxylic acids used in the present invention may be used in combination, and the dicarboxylic acids are not limited to the above-mentioned exemplified compounds.
  • raw material diamine also referred to as “diamine component”
  • raw material tetracarboxylic dianhydride also referred to as “tetracarboxylic dianhydride component”
  • tetracarboxylic acid diester tetracarboxylic acid diester
  • diisocyanate dicarboxylic acid.
  • a known synthetic method can be used to obtain a polyamic acid, a polyamic acid ester, a polyurea, or a polyamide by the reaction with the components.
  • a diamine component is a method of reacting a diamine component with one or more components selected from a tetracarboxylic dianhydride component, a tetracarboxylic dianester, a diisocyanate, and a dicarboxylic acid in an organic solvent.
  • the reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as the produced polymer dissolves. Further, even if the organic solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate. Since the water content in the organic solvent inhibits the polymerization reaction and further causes the produced polymer to be hydrolyzed, it is preferable to use a dehydrated and dried organic solvent.
  • organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphate triamide, ⁇ -Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cell solve, ethyl cell solve, methyl cell solve
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or is organic.
  • a method of adding by dispersing or dissolving in a solvent conversely, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, a method of adding a tetracarboxylic dianhydride component and a diamine component. Examples thereof include a method of adding alternately, and any of these methods may be used.
  • the diamine component or the tetracarboxylic dianhydride component When the diamine component or the tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be reacted individually in sequence, or may be reacted individually and have a low molecular weight. The bodies may be mixed and reacted to form a high molecular weight compound.
  • the temperature at which the diamine component and the tetracarboxylic dianhydride component are reacted can be selected from any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C.
  • the reaction can be carried out at any concentration, for example, the total amount of the diamine component and the tetracarboxylic dianhydride component is 1 to 50% by mass, preferably 5 to 30% by mass with respect to the reaction solution. ..
  • the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component in the above polymerization reaction can be arbitrarily selected according to the molecular weight of the polyamic acid to be obtained. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced. The preferred range is 0.8 to 1.2.
  • the method for synthesizing the polymer used in the present invention is not limited to the above method, and when synthesizing a polyamic acid, the above tetracarboxylic dianhydride is used in the same manner as a general method for synthesizing a polyamic acid.
  • the corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid having a corresponding structure or a tetracarboxylic acid derivative such as a tetracarboxylic acid dihalide. Further, when synthesizing polyurea, diamine and diisocyanate may be reacted.
  • a component selected from a diamine, a tetracarboxylic acid diester, and a dicarboxylic acid is induced into an acid halide in the presence of a known condensing agent or by a known method. In addition, it may be reacted with diamine.
  • Examples of the method of imidizing the above-mentioned polyamic acid to form polyimide include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the imidization rate from the polyamic acid to the polyimide is preferably 30% or more, more preferably 30 to 99%, because the voltage holding rate can be increased.
  • 70% or less is preferable from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish. Considering both characteristics, 40-80% is more preferable.
  • the temperature at which the polyamic acid is thermally imidized in the solution is usually 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
  • Catalytic imidization of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring at -20 to 250 ° C., preferably 0 to 180 ° C.
  • the amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is usually 1 to 50 mol times, preferably 1 to 50 mol times that of the amic acid group. It is 3 to 30 mol times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferable because it facilitates purification after completion of the reaction.
  • the imidization rate due to catalyst imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, the reaction time, and the like.
  • the reaction solution When recovering the produced polymer from the reaction solution of the polymer, the reaction solution may be put into a poor solvent and precipitated.
  • the poor solvent used for precipitation formation include methanol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, when the operation of redistributing the polymer recovered by precipitation in an organic solvent and repeating the operation of recovering the precipitation 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these, because the purification efficiency is further improved.
  • the radical generation film-forming composition used in the present invention is other than a polymer containing an organic group that induces radical polymerization. It may contain other polymers. At that time, the content of the other polymer in all the components of the polymer is preferably 5 to 95% by mass, more preferably 30 to 70% by mass.
  • the molecular weight of the polymer contained in the radical generation film forming composition is when the strength of the radical generation film obtained by applying the radical generation film forming composition, workability at the time of coating film formation, uniformity of the coating film, etc. are taken into consideration.
  • the weight average molecular weight measured by the GPC (Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • At least one polymer obtained by using the diamine component which is 0 mol% of the total diamine component used for synthesizing the polymer contained in the radical generation film forming composition may be used.
  • Examples of the compound having a group that generates a radical to be added at that time include the following.
  • the compound that generates radicals with light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy.
  • the radical generation film is composed of a polymer containing an organic group that induces radical polymerization, it has a group that generates the above radicals for the purpose of promoting radical polymerization when irradiated with light. It may contain a compound.
  • the radical generating film-forming composition can contain a polymer component, and if necessary, an organic solvent that dissolves or disperses a radical generating agent or other contained components.
  • an organic solvent is not particularly limited, and examples thereof include organic solvents as exemplified in the above-mentioned synthesis of polyamic acid.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of.
  • N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.
  • a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent having high solubility of the components contained in the radical generation film forming composition.
  • Examples of the solvent for improving the uniformity and smoothness of the coating film include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, and ethyl carbi.
  • ethyl carbitol acetate ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether , Dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol Monoacetate, dipropylene glycol monoethyl ether, dipropylene glycol Monoacetate monoethyl ether, dipropylene glycol Monoacetate monoethyl
  • the radical generation film forming composition may contain components other than the above. Examples thereof include a compound that improves the film thickness uniformity and surface smoothness when the radical generation film forming composition is applied, a compound that improves the adhesion between the radical generation film forming composition and a substrate, and a radical generation film formation. Examples thereof include compounds that further improve the film strength of the composition.
  • Examples of compounds that improve the uniformity of film thickness and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Co., Ltd.), Megafuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by 3M), Asahi. Examples thereof include Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Corporation) and the like. When these surfactants are used, the ratio of their use is preferably 0.01 to 2 parts by mass, more preferably 0, with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. It is 0.01 to 1 part by mass.
  • the compound that improves the adhesion between the radical generation film forming composition and the substrate include a functional silane-containing compound and an epoxy group-containing compound.
  • a functional silane-containing compound and an epoxy group-containing compound For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.
  • a phenol compound such as 2,2'-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. May be good.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. Is.
  • the radical generating film forming composition includes a dielectric or a conductive material for changing the electrical characteristics such as the dielectric constant and the conductivity of the radical generating film as long as the effect of the present invention is not impaired.
  • the substance may be added.
  • the radical generation film according to the present invention can be obtained by using the above radical generation film forming composition.
  • a cured film obtained by applying the radical generation film forming composition used in the present invention to a substrate and then drying and firing it can be used as it is as a radical generation film.
  • the irradiation light used when producing the radical generation film is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include light having a peak at 240 to 400 nm. Light having a peak at 250 to 365 nm is more preferable, and light having a peak at 250 to 360 nm is even more preferable. More specifically, for example, it is possible to use light having a peak in the vicinity of 254 nm or 313 nm. Further, if necessary, a known cut filter may be used to cut light having a specific wavelength or a specific wavelength or more or less.
  • the substrate on which the radical generation film forming composition is applied is not particularly limited as long as it is a highly transparent substrate, and is not limited to the electrodes.
  • a substrate in which a transparent electrode for driving a liquid crystal is formed on the substrate can be mentioned.
  • Specific examples include glass plates, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, and tri.
  • Examples thereof include a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, or acetate butylate cellulose.
  • an electrode pattern such as a standard IPS comb tooth electrode or a PSA fishbone electrode or a protrusion pattern such as MVA can also be used.
  • a high-performance element such as a TFT type element, an element such as a transistor is used between an electrode for driving a liquid crystal and a substrate.
  • a transmissive liquid crystal display element it is common to use a substrate as described above, but when a reflective liquid crystal display element is intended, silicon is used only for one side of the substrate.
  • An opaque substrate such as a wafer can also be used. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
  • Examples of the method for applying the radical-generating film-forming composition include a spin coating method, a printing method, an inkjet method, a spray method, and a roll coating method. From the viewpoint of productivity, the transfer printing method is widely used industrially. It is also suitably used in the present invention.
  • the step of drying after applying the radical generation film forming composition is not always necessary, but if the time from application to firing is not constant for each substrate or if it is not fired immediately after coating, it is dried. It is preferable to include the process.
  • the drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by the transportation of the substrate or the like, and the drying means thereof is not particularly limited.
  • a method of drying on a hot plate at a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the film formed by applying the radical generation film forming composition by the above method can be fired to obtain a cured film.
  • the firing temperature can be usually any temperature of 100 to 350 ° C., but is preferably 140 to 300 ° C., more preferably 150 to 230 ° C., and even more preferably 160 to 220 ° C.
  • the firing time is usually any time of 5 to 240 minutes. It is preferably 10 to 90 minutes, more preferably 20 to 90 minutes.
  • a generally known method for example, a hot plate, a hot air circulation type oven, an IR (infrared) type oven, a belt furnace, or the like can be used.
  • the thickness of the radical generation film after curing can be selected as needed, but preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element can be easily obtained. Further, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is preferable.
  • the first substrate having a radical generating film can be obtained as described above, and the radical generating film can be subjected to a uniaxial orientation treatment.
  • the method for performing the uniaxial alignment treatment include a photoalignment method, an orthorhombic vapor deposition method, rubbing, and a uniaxial orientation treatment using a magnetic field.
  • the substrate When the orientation process is performed by the rubbing process in one direction, for example, the substrate is moved so that the rubbing cloth and the film come into contact with each other while rotating the rubbing roller around which the rubbing cloth is wound.
  • the direction is selected by the electrical properties of the liquid crystal, but when a liquid crystal having positive dielectric anisotropy is used, the rubbing direction is comb tooth. It is preferable that the direction is substantially the same as the direction in which the electrode extends.
  • the liquid crystal display device is produced by using a liquid crystal composition containing a liquid crystal and a radically polymerizable compound.
  • the polymerizable compound used together with the liquid crystal is not particularly limited as long as it is a radically polymerizable compound, but for example, it may be a compound having one or two or more polymerizable unsaturated bonds in one molecule. It is preferably a compound having one polymerizable unsaturated bond in one molecule (hereinafter, referred to as "a compound having a monofunctional polymerization reactive group", "a compound having a monofunctional polymerization reactive group", or the like. There is).
  • the polymerizable unsaturated bond is preferably a radically polymerizable unsaturated bond, for example a vinyl bond.
  • At least one of the radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable unsaturated bond in one molecule, that is, a compound having a monofunctional radically polymerizable group.
  • a polymerizable group selected from the following structures is preferable.
  • * indicates a binding site with a portion of the compound molecule other than the polymerizable unsaturated bond.
  • R b represents an alkyl group having 3 to 20 carbon atoms
  • E represents a single bond, -O-, -NR c.
  • R c represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and the alkyl group of R b is a linear, branched or cyclic group. Indicates an alkyl group of.
  • liquid crystal composition containing a liquid crystal and a radically polymerizable compound it is preferable to contain a radically polymerizable compound in which the Tg of the polymer obtained by polymerizing the radically polymerizable compound is 100 ° C. or less.
  • a compound having a monofunctional radical polymerization reactive group has an unsaturated bond capable of performing radical polymerization in the presence of an organic radical, and is, for example, tert-butyl methacrylate, hexyl methacrylate, or 2-ethylhexyl methacrylate.
  • Methacrylate-based monomers such as nonyl methacrylate, lauryl methacrylate, n-octyl methacrylate; acrylate-based monomers such as tert-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, lauryl acrylate, n-octyl acrylate; , Styrene derivatives (eg, o-, m-, p-methoxystyrene, o-, m-, p-tert-butoxystyrene, o-, m-, p-chloromethylstyrene, etc.), vinyl esters (eg, Vinyl acetate, vinyl propionate, vinyl benzoate, vinyl acetate, etc.), vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropen
  • Ra and R b each independently represent an alkyl group having 3 to 20 carbon atoms
  • E is from a single bond, -O-, -NR c- , -S-, an ester bond, or an amide bond.
  • R c represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms
  • the alkyl group of Ra or R b represents a linear, branched, or cyclic alkyl group.
  • R b each independently represent an alkyl group having 3 to 20 carbon atoms, and the alkyl groups of Ra and R b are independently linear, respectively. Indicates a branched or cyclic alkyl group.
  • the radically polymerizable compound according to the present invention may have a vertically oriented group.
  • Examples of the vertically oriented group contained in the radically polymerizable compound used in the present invention include a group represented by the following formula [S1].
  • X 1 and X 2 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH). 3 )-, -NH-, -O-, -COO-, -OCO-, or-((CH 2 ) a1- A 1 ) m1- (Multiple a1s independently indicate integers from 1 to 15).
  • a plurality of a 1 is each independently an oxygen atom or -COO-, m 1 represents a 1 or 2.).
  • a plurality of a 1 is each independently an oxygen atom or -COO-, m 1 represents a 1 or 2.
  • a 1 represents a 1 or 2.
  • single bond -(CH 2 ) a- (a is an integer of 1 to 15), -O-, -CH 2 O- or -COO- is preferred. More preferred are single bonds,-(CH 2 ) a- (a is an integer of 1-10), -O-, -CH 2 O- or -COO-.
  • G 1 and G 2 are divalent cyclic groups independently selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms, and are on the cyclic group.
  • Any hydrogen atom can be an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • m and n are independently integers of 0 to 3, the sum of these is 0 to 4, and R 1 is an alkyl having 1 to 20 carbon atoms and 1 to 20 carbon atoms. Alkoxy, or alkoxyalkyls having 2 to 20 carbon atoms, any hydrogen in these groups may be replaced with fluorine, where R 1 forms a steroid skeleton where the sum of m and n is 0. It may be a group having. Examples of the divalent aromatic group having 6 to 12 carbon atoms include phenylene, biphenylene, naphthalene and the like. Examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
  • R 1 is an alkyl group having 1 to 20 carbon atoms
  • X p is ⁇ (CH 2 ) a ⁇ (a is an integer of 1 to 15).
  • a 1 is an oxygen atom or -COO- * (however, the bond with "*" binds to (CH 2 ) a2 )
  • a 2 is an oxygen atom or * -COO- (however, however.
  • an "*" is a bond marked with (CH 2) binds to a2), a 1, a 3 are each independently an integer of 0 or 1, a 2 is 2 to 10 integer Yes, Cy is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • the content of the radically polymerizable compound in the liquid crystal composition is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 50% by mass with respect to the total mass of the liquid crystal and the radically polymerizable compound. Hereinafter, it is more preferably 20% by mass or less.
  • the liquid crystal generally refers to a substance exhibiting both solid and liquid properties, and typical liquid crystal phases include nematic liquid crystal and smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited.
  • One example is 4-pentyl-4'-cyanobiphenyl.
  • the liquid crystal display element according to the present invention may have, for example, the cell structure described below. After forming the radical generation film on the substrate by the method described above, the first substrate having the radical generation film and the second substrate are formed so that the radical generation film on the first substrate faces the second substrate. A liquid crystal cell is produced by filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between the first substrate and the second substrate. As the liquid crystal display element manufactured by the present invention, the liquid crystal cell thus obtained can be used.
  • a liquid crystal cell is obtained by injecting and sealing a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between the second substrate and the second substrate.
  • the size of the spacer used is usually 1 to 30 ⁇ m, but preferably 2 to 10 ⁇ m.
  • the method for injecting the liquid crystal and the liquid crystal composition containing the radically polymerizable compound is not particularly limited, and is a vacuum method in which the inside of the produced liquid crystal cell is depressurized and then a mixture containing the liquid crystal and the polymerizable compound is injected.
  • Examples thereof include a dropping method in which a mixture containing and a polymerizable compound is dropped and then sealed.
  • an alignment film for orienting the liquid crystal is formed on the second substrate.
  • the alignment film may be a known liquid crystal alignment film or a radical generation film according to the present invention, and can be appropriately selected depending on the intended purpose.
  • the alignment film formed on the second substrate can be subjected to a uniaxial alignment treatment. As will be described later, for example, when forming an out-of-plane orientation region on the liquid crystal display element, it is preferable to form a radical generation film on the second substrate. Further, for example, when forming an in-plane alignment region or a tilt orientation region on a liquid crystal display element, it is preferable to form a uniaxially oriented liquid crystal alignment film for horizontal alignment on a second substrate.
  • ⁇ Formation of in-plane orientation, out-of-plane orientation, and inclined orientation region> Sufficient to polymerize a radical-polymerizable compound in a liquid crystal cell in which a mixture (liquid crystal composition) containing a liquid crystal and a radical-polymerizable compound is arranged between the substrates using a substrate on which a radical-generating film is formed. Irradiate light.
  • the liquid crystal is vertically oriented, and as a result, an out-of-plane orientation (vertical orientation) region is formed in the light-irradiated region.
  • examples of the light to be irradiated include light having a peak at 240 to 400 nm. Further, it is preferable to irradiate light having a wavelength at which the absorbance of the portion corresponding to the photoradical generation site is high, and it is more preferable that the light has a peak at 250 to 365 nm, and the light has a peak at 250 to 360 nm. Light is even more preferred. More specifically, for example, light having a peak near 313 nm can be used. If necessary, a known cut filter may be used to cut light having a specific wavelength or a specific wavelength or more or less.
  • the irradiation amount of light is usually 0.01 to 30 J, but is preferably 10 J or less. It is preferable that the amount of light irradiation is small because the decrease in reliability due to the destruction of the members constituting the liquid crystal display element can be suppressed and the light irradiation time can be reduced to improve the tact in manufacturing.
  • heating may be performed when irradiating with light.
  • the heating temperature at the time of irradiating light is preferably in a temperature range in which the introduced liquid crystal exhibits liquid crystal properties, and is usually 40 ° C. or higher, preferably below a temperature at which the liquid crystal changes to an isotropic phase.
  • the pattern shape and pattern size of the photomask to be used are not particularly limited and can be appropriately selected according to the purpose. Examples of the pattern shape include a line pattern shape, a line / space (L / S) pattern shape, a dot shape, and the like.
  • the pattern size can be a micrometer size pattern. For example, if a photomask having an L / S pattern shape with a 5 ⁇ m pitch is used, an orientation pattern with a 5 ⁇ m pitch can be formed.
  • An in-plane orientation (horizontal orientation) region can also be formed by irradiating the radical generation film with light to inactivate the radical generation ability of the radical generation film before assembling the cells of the liquid crystal cell.
  • the radical generating film with light By irradiating the radical generating film with light in advance, the radical generating ability can be eliminated and the anchoring intensity in the in-plane direction can be maintained from beginning to end. That is, even if a liquid crystal cell is produced using a radical generating film in which the radical generating ability is deactivated and the liquid crystal cell is irradiated with light, in-plane orientation (horizontal orientation) is performed in the region where the radical generating ability is deactivated. ) Region is formed.
  • Examples of the light used for inactivating the radical generating ability of the radical generating film include light having a peak at 240 to 400 nm. Further, the light is more preferably light having a peak at 250 to 365 nm, and further preferably light having a peak at 250 to 360 nm. More specifically, for example, light having a peak near 313 nm can be used. If necessary, a known cut filter may be used to cut light having a specific wavelength or a specific wavelength or more or less. The irradiation amount of light is usually 0.01 to 30 J, but is preferably 10 J or less.
  • the radical generating film is subjected to a uniaxial orientation treatment. Further, in order for the liquid crystal to be well in-plane oriented in the unexposed portion and the region where the radical generating ability is deactivated, the polymer contained in the radical generating film forming composition in the radical generating film is vertical. It is preferable that the site does not include a site having an orientation function.
  • an out-of-plane orientation region is formed using a radical generating film
  • a cell is prepared using both the first and second substrates on which the radical generating film is formed, and a predetermined radical polymerization property is obtained.
  • the polymerizable compound may be polymerized by irradiating light from the outside of the cell to vertically orient the liquid crystal.
  • the in-plane orientation region is formed by using the radical generation film
  • the first and second substrates on which the radical generation film is formed are irradiated with light in advance before the cell assembly, and the radical generation ability is achieved.
  • the cells are assembled so that the interfacial reaction is suppressed even if the produced liquid crystal cell is irradiated with light.
  • a photomask is placed on the outside of the liquid crystal cell of the liquid crystal cell produced without deactivating the radical generation ability, and light is irradiated through the photomask to generate radicals in the unexposed portion. It is also possible not to induce an interfacial reaction.
  • a tilt orientation region can be formed by forming the liquid crystal cell so that the in-plane orientation region and the out-plane orientation region face each other.
  • the inclined alignment region can be formed by appropriately combining the method for forming the out-of-plane orientation region and the method for forming the in-plane orientation region.
  • a radical generation film is used on one of the first substrate and the second substrate to form an out-of-plane orientation region, and the other substrate is used to generate radicals in which the radical generation ability is deactivated.
  • a radical generation film may be used for one of the first substrate and the second substrate, and a liquid crystal alignment film having no radical generation ability may be used for the other substrate.
  • a liquid crystal alignment film having no radical generating ability when a liquid crystal alignment film having no radical generating ability is used, an in-plane alignment film or an out-of-plane alignment film may be used as the liquid crystal alignment film.
  • the liquid crystal in the method for producing a liquid crystal display element of the present invention, can be vertically arranged by adjusting the content of the radically polymerizable compound contained in the liquid crystal composition and the irradiation amount when irradiating the liquid crystal cell with light. It is also possible to form a tilted orientation region by tilting the orientation without any.
  • a liquid crystal display element having a radical generating film in a liquid crystal display element having a radical generating film, at least two regions of an in-plane alignment region, an out-of-plane orientation region, and a tilt orientation region are patterned.
  • the liquid crystal display element can be manufactured.
  • a liquid crystal display element in which at least two regions of an in-plane orientation region, an out-of-plane orientation region, and a tilt orientation region are patterned can be industrially produced with a high yield. Therefore, the liquid crystal display element manufactured by using the manufacturing method of the present invention can be widely used in practical use. For example, it can be used as a reflective liquid crystal display element by providing a reflective electrode, a transparent electrode, a ⁇ / 4 plate, a polarizing film, a color filter layer, or the like in the liquid crystal cell according to a conventional method.
  • the liquid crystal cell can be used as a transmissive liquid crystal display element by providing a backlight, a polarizing plate, a ⁇ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method, if necessary.
  • FIG. 10 is a schematic cross-sectional view showing an example of the liquid crystal display element according to the present invention, and is an example of an IPS mode liquid crystal display element.
  • the liquid crystal composition 103 is sandwiched between the comb tooth electrode substrate 102 having the radical generating film 102c and the opposing substrate 104 having the liquid crystal alignment film 104a.
  • the comb-tooth electrode substrate 102 is formed on the base material 102a and the base material 102a so as to cover the plurality of linear electrodes 102b arranged in a comb-teeth shape and the linear electrodes 102b on the base material 102a. It has a radical generation film 102c.
  • the facing substrate 104 has a base material 104b and a liquid crystal alignment film 104a formed on the base material 104b. In the liquid crystal display element 101, when a voltage is applied to the linear electrodes 102b, an electric field is generated between the linear electrodes 102b as shown by the lines of electric force L.
  • FIG. 11 is a schematic cross-sectional view showing another example of the liquid crystal display element according to the present invention, and is an example of the FFS mode liquid crystal display element.
  • the liquid crystal composition 103 is sandwiched between the comb tooth electrode substrate 102 having the radical generating film 102h and the opposing substrate 104 having the liquid crystal alignment film 104a.
  • the comb-tooth electrode substrate 102 is formed on the base material 102d, the surface electrode 102e formed on the base material 102d, the insulating film 102f formed on the surface electrode 102e, and the insulating film 102f, and has a comb-tooth shape.
  • the facing substrate 104 has a base material 104b and a liquid crystal alignment film 104a formed on the base material 104b.
  • an electric field is generated between the surface electrode 102e and the linear electrode 102g as shown by the lines of electric force L.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • ⁇ Viscosity measurement> The viscosity of the polyamic acid solution was measured at 25 ° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1 ° 34', R24). ..
  • the molecular weight was measured by a room temperature GPC (gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC device GPC-101 (manufactured by Showa Denko), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N, N-dimethylformamide (addition)
  • lithium bromide monohydrate LiBr ⁇ H2O
  • phosphoric acid / anhydrous crystal o-phosphate
  • THF tetrahydrofuran
  • Standard sample for preparing calibration lines TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Toso Co., Ltd.) and polyethylene glycol (molecular weight: about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
  • Synthesis of TC-1 (50) TC-2 (50) / DA-2 (100) Polyimide The same method as in Synthesis Example 1 except that the amount of the monomer used was changed as shown in Table 1. To obtain a polyimide powder (PI-3). The Mn of this polyimide powder was 21,959, the Mw was 67,088, and the imidization rate was 72.0%.
  • the polymerization viscosity was confirmed, and TC-3 was further added so that the polymerization viscosity became 400 mPa ⁇ s to obtain a polymerization solution (PAA-1) having a polyamic acid concentration of 15% by mass.
  • PAA-1 polymerization solution having a polyamic acid concentration of 15% by mass.
  • the Mn of this polyamic acid was 16,331 and the Mw was 42,999.
  • ⁇ Radical generation film forming composition Preparation of AL-1>
  • 0.90 g of the polyimide powder (PI-1) obtained in Synthesis Example 1 was weighed, 5.10 g of NMP was added, and the mixture was heated and stirred at 50 ° C. to have a solid content concentration of 15. A mass% polymer solution was obtained.
  • 6.00 g of NMP and 3.00 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical generating film-forming composition according to the present invention: AL-1 (solid content: 6.0% by mass, NMP:). 74% by mass, BCS: 20% by mass) was obtained.
  • ⁇ Radical generation film forming composition Preparation of AL-2> Using the polyimide powder (PI-2) obtained in Synthesis Example 2, the radical-generating film-forming composition according to the present invention: AL-2 (solid content: 6.0% by mass) in the same manner as in the preparation of AL-1. , NMP: 74% by mass, BCS: 20% by mass).
  • ⁇ Radical generation film forming composition Preparation of AL-3> Using the polyimide powder (PI-3) obtained in Synthesis Example 3, the radical-generating film-forming composition according to the present invention: AL-3 (solid content: 6.0% by mass) in the same manner as in the preparation of AL-1. , NMP: 74% by mass, BCS: 20% by mass).
  • ⁇ Radical generation film forming composition Preparation of AL-4> In a 15 mL vial equipped with a magnetic stirrer, weigh 6.00 g of the polyamic acid (PAA-1) obtained in Synthesis Example 4, add 6.00 g of NMP and 3.00 g of BCS, and stir for 3 hours.
  • the radical generating film-forming composition according to the present invention AL-4 (solid content: 6.0% by mass, NMP: 74% by mass, BCS: 20% by mass) was obtained.
  • ⁇ Radical generation film forming composition Preparation of AL-5>
  • a 15 mL vial equipped with a magnetic stirrer weigh 0.27 g of the polymethacrylate powder (PMA-1) obtained in Synthesis Example 5 and 0.63 g of the polyimide powder (PI-3) obtained in Synthesis Example 3.
  • PMA-1 polymethacrylate powder
  • PI-3 polyimide powder
  • NMP NMP
  • 6.00 g of NMP and 3.00 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical-generating film-forming composition according to the present invention: AL-5 (solid content: 6.0% by mass, NMP:). 74% by mass, BCS: 20% by mass) was obtained.
  • ⁇ Radical generation film forming composition Preparation of AL-6>
  • PMA-1 polymethacrylate powder obtained in Synthesis Example 5
  • PI-3 polyimide powder obtained in Synthesis Example 3.
  • 5 5.10 g of NMP was added, and the mixture was heated and stirred at 60 ° C. to obtain a polymer solution having a solid content concentration of 15% by mass.
  • 6.00 g of NMP and 3.00 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical-generating film-forming composition according to the present invention: AL-6 (solid content: 6.0% by mass, NMP:). 74% by mass, BCS: 20% by mass) was obtained.
  • Non-radical generation film forming composition Preparation of AL-7> Using the polymethacrylate powder (PMA-1) obtained in Synthesis Example 5, the non-radical generation film-forming composition according to the comparative object of the present invention: AL-7 (solid content:) in the same manner as in the preparation of AL-1. 6.0% by mass, NMP: 74% by mass, BCS: 20% by mass) were obtained.
  • compositions of the polyamic acid and the polyimide are shown in Table 1 below.
  • composition of polymethacrylate is shown in Table 2 below.
  • compositions of the radical-generating film-forming composition and the non-radical-generating film-forming composition are shown in Table 3 below.
  • composition of the liquid crystal species is shown in Table 4 below.
  • ⁇ Purchase of polymerizable compounds As the polymerizable compound DMA, the one purchased from Tokyo Chemical Industry Co., Ltd. (TCI) was used as it was.
  • a liquid crystal cell was prepared using AL-1 to AL-7 obtained above, and SE-6414 and NRB-U438 (manufactured by Nissan Chemical Industries, Ltd.), which are liquid crystal alignment agents for horizontal alignment, and the configurations shown in Table 5 below were used.
  • the liquid crystal display element of the above was manufactured.
  • the configuration of the liquid crystal cell is shown in Table 5 below.
  • the first and second substrates are non-alkali glass substrates having a size of 30 mm ⁇ 40 mm and a thickness of 1.1 mm.
  • An ITO (Indium-Tin-Oxide) electrode having a thickness of 10 ⁇ m is formed on the substrate.
  • the first substrate and the second substrate are the same substrate, and the names are separated for convenience.
  • AL-1, AL-2, AL-3, SE-6414 are filtered through a filter having a pore size of 1.0 ⁇ m, and then applied to the electrode-forming surfaces of the first and second substrates by a spin coating method at 80 ° C. It was dried on a hot plate for 2 minutes. Then, it was fired in a heat circulation heating furnace having an internal temperature of 230 ° C. for 30 minutes to obtain a coating film having a film thickness of 100 nm. The first and second substrates with a coating film obtained above were rubbed.
  • the first substrate was rubbed from the longitudinal direction and the second substrate was rubbed from the short side in the rubbing direction so that the rubbing direction would be antiparallel after bonding.
  • a rayon cloth manufactured by Yoshikawa Kako: YA-20R and a roll diameter of 120 mm was used as the rubbing cloth type.
  • the rubbing treatment of AL-1, AL-2, and AL-3 was performed under the conditions of a rotation speed of 500 rpm, a moving speed of 30 mm / sec, and a pushing amount of 0.3 mm.
  • the rubbing treatment of SE-6414 was performed under the conditions of a rotation speed of 1000 rpm, a moving speed of 20 mm / sec, and a pushing amount of 0.4 mm. After the rubbing treatment, ultrasonic cleaning was performed in pure water for 1 minute, and the mixture was dried at 80 ° C. for 15 minutes.
  • AL-5, AL-6, and AL-7 are filtered through a filter having a pore size of 1.0 ⁇ m, then applied to the electrode forming surfaces of the first and second substrates by a spin coating method, and placed on a hot plate at 70 ° C. It was dried for 90 seconds. Then, using a high-pressure mercury lamp (313 nm bandpass filter manufactured by Therma Precision Co., Ltd.), linearly polarized light having a wavelength of 313 nm was exposed to 0.005 J / cm 2 and fired on a hot plate at 150 ° C. for 30 minutes.
  • a high-pressure mercury lamp 313 nm bandpass filter manufactured by Therma Precision Co., Ltd.
  • AL-4 and NRB-U438 are filtered through a filter having a pore size of 1.0 ⁇ m, then applied to the electrode forming surfaces of the first and second substrates by a spin coating method, and dried on a hot plate at 80 ° C. for 2 minutes. , It was fired for 30 minutes in a heat circulation heating furnace having an internal temperature of 230 ° C. After that, using a low-pressure mercury lamp (a short wavelength cut filter of 240 nm or less manufactured by Ushio Denki Co., Ltd.), linearly polarized light with a wavelength of 254 nm was exposed to 0.3 J / cm 2 and fired in a heat circulation heating furnace at an internal temperature of 230 ° C. for 30 minutes. did.
  • a low-pressure mercury lamp a short wavelength cut filter of 240 nm or less manufactured by Ushio Denki Co., Ltd.
  • a high-pressure mercury lamp (therma-precision 300 nm or less short wavelength cut filter) is used on two types of substrates (first and second substrates) with a liquid crystal alignment film that have completed the surface treatment process, and light with a wavelength of 313 nm is emitted at 10 J / cm. Two exposures were made. When it was desired to selectively irradiate light, a photomask (100, 50, 30, 5 ⁇ m L / S with chrome wiring manufactured by Kus Co., Ltd. on Mitani Micro) was placed on the substrate and pattern exposure was performed. Hereinafter, this operation will be referred to as primary exposure. The primary exposure was intended to intentionally inactivate the radical-generating groups contained in the alignment film, and was applied only to Examples 23, 24, 27, 28, 29, 30 and 32.
  • a liquid crystal (as shown in Table 4, a specified amount of each additive added to the liquid crystal of the positive liquid crystal MLC-3019 for IPS manufactured by Merck or the negative liquid crystal MLC-7026 for IPS manufactured by Merck) was vacuum-injected at room temperature, and then the injection port was sealed to form a liquid crystal cell.
  • the obtained liquid crystal cell constitutes an IPS mode liquid crystal display element. Then, the obtained liquid crystal cell was heat-treated at 120 ° C. for 10 minutes.
  • the produced liquid crystal cell was irradiated with light having a wavelength of 313 nm using a high-pressure mercury lamp (a short wavelength cut filter of 300 nm or less manufactured by Therma Precision).
  • the irradiation amount is as shown in Table 5.
  • a photomask 100, 50, 30, 5 ⁇ m L / S with chrome wiring manufactured by Mitani Micronics Co., Ltd.
  • This operation will be referred to as secondary exposure.
  • the purpose of the secondary exposure is to promote the reaction between the radical-generating groups contained in the alignment film and the polymerizable compound (additive) in the liquid crystal.
  • FIG. 1 (hereinafter, similarly, the liquid crystal display is also shown in FIGS. 2 to 5 and 9).
  • a photograph of the element is shown in FIG. A, and a schematic representation of the photograph is shown in FIG. B).
  • FIG. 1 (FIGS. 1A and 1B are collectively referred to as FIG. 1), the exposed portion of reference numeral 1 shows a dark field (black), and the unexposed portion of reference numeral 2 shows a bright field (white). Since the out-of-plane orientation of the cell 27 (Comparative Example 4) cannot be controlled, the exposed portion has a bright field (FIGS. 2A and 2B).
  • FIG. 2 (FIGS. 2A and 2B are collectively referred to as FIG.
  • both the exposed portion and the non-exposed portion showed a bright field (white). Since the cell 1 (Example 1) is tilted (tilted) oriented (partially out-of-plane orientation), the exposed portion is less colored (partially dark field) and shows a neutral gray color (FIGS. 3A and 3A). 3B).
  • FIG. 3 FIG. 3 (FIGS. 3A and 3B are collectively referred to as FIG. 3), the exposed portion of reference numeral 1 is a mixture of a portion b of a dark field (black) and a portion a of a light-dark intermediate color (gray).
  • the unexposed portion of reference numeral 2 showed a bright field (white).
  • the liquid crystal display elements in the Examples and Comparative Examples shown in Tables 6 to 8 below were also evaluated in the same manner as shown in FIGS. 1 to 3.
  • the secondary exposed part showed a dark field (black) and the out-of-plane orientation could be controlled, ⁇ , the bright field (white) and the out-of-plane orientation could not be controlled, ⁇ , and an intermediate color (gray)
  • the uniaxial orientation and non-uniform orientation with a tilt angle are marked with ⁇ .
  • the results of visual evaluation of the liquid crystal orientation after the secondary exposure are shown in Table 7 below.
  • the polymerizable compound (additive) required for controlling the out-of-plane orientation is not limited to DMA. Out-of-plane orientation can be controlled if the additive has an appropriate structure.
  • the liquid crystal type is not limited to MLC-7026, which is a liquid crystal having a negative dielectric constant, and even MLC-3019, which is a liquid crystal having a positive dielectric constant, can control out-of-plane orientation.
  • FIG. 4 When the entire surface was exposed only to the first substrate as the primary exposure, a tilt orientation was formed (FIGS. 4A and 4B).
  • FIG. 4 FIG. 4 (FIGS. 4A and 4B are collectively referred to as FIG. 4), the portion indicated by reference numeral 3 is a region in which only the first substrate is exposed in the primary exposure and the entire surface is exposed in the secondary exposure. The portion indicated by reference numeral 3 showed a neutral color of gray, and a tilt orientation was formed.
  • the portion indicated by reference numeral 4 is a non-exposed region in which only the first substrate is exposed in the primary exposure and not exposed in the secondary exposure. The portion indicated by reference numeral 4 showed a bright field (white), and an in-plane orientation was formed.
  • FIG. 5 FIG. 5
  • FIG. 5 FIG. 5
  • the portion indicated by reference numeral 6 is a non-exposed region in which the first and second substrates are exposed by the primary exposure and not exposed by the secondary exposure.
  • the portions of reference numerals 5 and 6 also showed a bright field (white), and in-plane orientation was formed.
  • the substrate before cell formation is irradiated with light to inactivate the groups that can generate radicals contained in the alignment film, so that the polymerizable compound (additive) is used during the secondary exposure. It was confirmed that the reaction with was not induced and the out-of-plane orientation was not formed.
  • a liquid crystal display element manufactured using a substrate that has been pattern-exposed as the primary exposure can produce a uniform and clear fine alignment pattern regardless of the L / S width of the photomask.
  • a photograph of the liquid crystal display element obtained in Example 27 is shown in FIG.
  • the intermediate color (gray) portion indicated by reference numeral 7 in FIG. 7 is formed with a tilt orientation state.
  • An out-of-plane orientation state is formed in the dark field (black) portion indicated by reference numeral 8 in FIG. 7.
  • FIG. 8 shows the results of Example 30 in which the L / S width of the photomask of Example 27 was changed.
  • FIG. 8 shows the results of Example 30 in which the L / S width of the photomask of Example 27 was changed.
  • the difference between the intermediate color (gray) portion and the dark field (black) portion is as described in FIG. If you want to make the intermediate color (gray) part in-plane uniaxial orientation, you can expose the second substrate to the same pattern as the first substrate, and then perform secondary exposure after laminating the exposed parts to form a liquid crystal cell. Good. As shown in Example 31, it was confirmed that the liquid crystal display element that was pattern-exposed as the secondary exposure without the primary exposure was capable of orientation patterning under the condition that the L / S width of the photomask was 100 ⁇ m. In the liquid crystal display element of Example 31, the in-plane orientation region of the bright field (white) and the out-of-plane orientation region of the dark field (black) could be clearly patterned.
  • Example 32 the pattern is exposed on both the first and second substrates, the pattern directions are vertically bonded to form a liquid crystal cell, and then the secondary exposure is performed to achieve in-plane uniaxial orientation and out-of-plane orientation. It was confirmed that three types of orientation states of tilt orientation can be produced in one liquid crystal display element.
  • the results of the liquid crystal display element obtained in Example 32 are shown (FIGS. 9A and 9B).
  • a photograph of the liquid crystal display element is shown in FIG. 9A, and a diagram schematically showing a photograph of the liquid crystal display element of FIG. 9A is shown in FIG. 9B.
  • FIG. 9 FIG. 9 (FIGS. 9A and 9B are collectively referred to as FIG.
  • an out-of-plane orientation state is formed in the dark field (black) portion indicated by reference numeral 9.
  • In-plane orientation is formed in the bright field (white) portion indicated by reference numeral 10.
  • An inclined (tilt) oriented state is formed in the intermediate color (gray) portion (the portion represented by the diagonal line pattern in FIG. 9B) indicated by reference numeral 11.
  • a liquid crystal display element in which at least two regions of an in-plane orientation region, an out-of-plane orientation region, and a tilt orientation region are patterned with a high yield.
  • Liquid crystal display element 102 Comb tooth electrode substrate 102a Base material 102b Linear electrode 102c Radical generating film 102d Base material 102e Surface electrode 102f Insulating film 102g Linear electrode 102h Radical generating film 103 Liquid crystal composition 104 Opposing substrate 104a Liquid crystal alignment film 104b group Material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

簡便且つ安価な方法で、同一素子内において2つまたは3つの異なる配向領域(面内(一軸)配向領域、面外配向領域、及び傾斜配向領域)を備えた液晶表示素子の製造方法を提供する。 工程(A):光の照射によりラジカルを発生しうるラジカル発生膜を基板上に形成する工程、及び、工程(B):液晶及びラジカル重合性化合物を含有する液晶組成物を前記ラジカル発生膜に接触させ、その状態を保持しつつ、前記ラジカル重合性化合物を重合反応させるのに十分な240~400nmにピークを有する光を前記液晶組成物に照射する工程を含み、前記ラジカル重合性化合物は、重合することにより、前記液晶を垂直に配向させる機能を有し、さらに、下記要件(Z1)及び(Z2)の少なくとも一つの要件を含み、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を製造する、液晶表示素子の製造方法である。 要件(Z1):前記工程(A)と前記工程(B)との間に、前記工程(A)で得られた前記ラジカル発生膜に240~400nmにピークを有する光を照射して、前記ラジカル発生膜のラジカル発生能を失活させる工程(C)をさらに有する。 要件(Z2):前記工程(B)の240~400nmにピークを有する光を前記液晶組成物に照射する工程がフォトマスクを介して行われる。

Description

パターン化された液晶表示素子の製造方法
 本発明は、安価かつ複雑な工程を含まない手法にて、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を製造する液晶表示素子の製造方法に関する。
 近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In-Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。
 しかしながら、FFSはIPSに比べ基板の製造コストが大きく、Vcomシフトと呼ばれるFFSモード特有の表示不良が発生する課題がある。また光配向に関しては、ラビング法に比べ、製造できる素子の大きさを大きくできる点や表示特性を大きく向上できるというメリットがあるが、光配向の原理上の課題(分解型であれば分解物由来の表示不良、異性化型であれば配向力不足による焼き付き等)が挙げられる。それらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。
 一方で、近年ゼロ面アンカリング(弱アンカリングともいう)というものを利用したIPSモードが提案されており、この手法を用いることで従来のIPSモードに比べてコントラスト向上や大幅な低電圧駆動が可能になるという報告がされている(例えば、特許文献1参照)。
 具体的には、片側の基板には強いアンカリングエネルギーを有する液晶配向膜を用い、一方の横電界を発生させる方の電極を具備した基板側には一切液晶の配向規制力を有さなくなるような処理を施し、それらを用いてIPSモードの液晶表示素子を作製する方法である。
 近年では、濃厚ポリマーブラシ等を用いてゼロ面状態を作り出し、ゼロ面アンカリングIPSモードの技術提案がなされている(例えば、特許文献2参照)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。
 一方で、応答速度特に電圧OFF時の応答速度が著しく低下する課題がある。これは駆動電圧が低くなるため、通常の駆動方式に比べ弱い電界で応答させることによる影響と、配向膜のアンカリング力が極めて小さいが故に、液晶の復元に時間がかかってしまうことに起因する。
 これを解決する方法として、画素電極上のみゼロアンカリングにする手法が提案されている(例えば、特許文献3参照)。これにより輝度の向上と応答速度の両立が可能になることが報告されている。
特許第4053530号公報 特開2013-231757号公報 特開2017-211566号公報
 用途に応じて適切に設計された配向膜を用いると様々な液晶の配向状態を制御することが可能である。特に、面内一軸方向にアンカリング力を有する配向膜を用いると面内一軸配向が、面外方向へアンカリング力を有する配向膜を用いると面外配向が得られる。
 一方で、同一素子内に面内一軸配向領域と面外配向領域を同時に備えた液晶素子を作製するのは非常に困難である。これは、同一素子内にアンカリング力の大きく異なる領域を作り出す必要があるためであり、実現には液晶素子作製後に任意の領域のアンカリング力を変化させる若しくは予め素子を構成する基板に異なるアンカリング力を有する配向膜を塗り分けなければならない。前者についてはこれまで報告例がなく、後者についても非常に細かな領域に正確に塗り分け、配向処理を施す技術を用意する必要があるため、工業化には大きな課題となる。
 このような技術的課題を解決できれば、任意の領域に任意の配向状態を有した液晶素子を形成することが可能となり、光学フィルムや光学特性変調素子等への応用が期待される。
 本発明は、上記のような課題を解決するためになされたものであり、配向膜と液晶の接触界面で化学反応を誘起すること、これを配向膜面内方向の任意の領域で誘起することにより、界面反応領域の表面エネルギーやアンカリングエネルギーを任意の状態にコントロールし、簡便且つ安価な方法で、同一素子内において2つまたは3つの異なる配向領域(面内(一軸)配向領域、面外配向領域、及び傾斜配向領域)を備えた液晶表示素子を製造する液晶表示素子の製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
 本発明は、以下の態様を包含するものである。
[1]
 工程(A):光の照射によりラジカルを発生しうるラジカル発生膜を基板上に形成する工程、及び、
 工程(B):液晶及びラジカル重合性化合物を含有する液晶組成物を前記ラジカル発生膜に接触させ、その状態を保持しつつ、前記ラジカル重合性化合物を重合反応させるのに十分な240~400nmにピークを有する光を前記液晶組成物に照射する工程を含み、
 前記ラジカル重合性化合物は、重合することにより、前記液晶を垂直に配向させる機能を有し、
 さらに、下記要件(Z1)及び(Z2)の少なくとも一つの要件を含み、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を製造することを特徴とする、液晶表示素子の製造方法。
  要件(Z1):前記工程(A)と前記工程(B)との間に、前記工程(A)で得られた前記ラジカル発生膜に240~400nmにピークを有する光を照射して、前記ラジカル発生膜のラジカル発生能を失活させる工程(C)をさらに有する。
  要件(Z2):前記工程(B)の240~400nmにピークを有する光を前記液晶組成物に照射する工程がフォトマスクを介して行われる。
[2]
 前記ラジカル発生膜が、一軸配向処理された被膜である、[1]に記載の液晶表示素子の製造方法。
[3]
 前記工程(B)の240~400nmにピークを有する光を前記液晶組成物に照射する工程を無電界で行う、[1]又は[2]に記載の液晶表示素子の製造方法。
[4]
 前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体を有する、[1]~[3]のいずれかに記載の液晶表示素子の製造方法。
[5]
 前記ラジカル重合を誘発する有機基を含有する重合体が、下記式(1)で表される構造単位を主鎖に有する、[4]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000012
 (式(1)中、Aはラジカル重合を誘発する有機基を表す。)
[6]
 前記重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレア、及びポリアミドから選ばれる少なくとも一種である、[4]又は[5]に記載の液晶表示素子の製造方法。
[7]
 前記ラジカル重合を誘発する有機基が、下記式(3)で表される基である、[5]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000013
 (式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
 Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
Figure JPOXMLDOC01-appb-C000014
 式[X-1]~[X-18]中、*はRとの結合箇所を示し、S及びSはそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R及びRはそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
Figure JPOXMLDOC01-appb-C000015
 式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有してもよいフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していてもよく、
 Qは下記のいずれかの構造を表し、
Figure JPOXMLDOC01-appb-C000016
 式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
 R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
[8]
 前記ラジカル重合を誘発する有機基を含有するジアミンが、下記式(2)で表される構造を有するジアミンである、[6]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000017
 (式(2)中、A及びAはそれぞれ水素原子又は下記式(3)で表される基を表し、但し、A及びAのうち少なくとも1つは下記式(3)で表される基を表し、
 Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
 pは0~2の整数を表す。pが2の場合、複数のA及びEはそれぞれ独立して前記定義を有する。また、pが0の場合、Aは下記式(3)で表される基からなる。)
Figure JPOXMLDOC01-appb-C000018
 (式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
 Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
Figure JPOXMLDOC01-appb-C000019
 式[X-1]~[X-18]中、*はRとの結合箇所を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表し、
Figure JPOXMLDOC01-appb-C000020
 式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有してもよいフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していてもよく、
 Qは下記のいずれかの構造を表し、
Figure JPOXMLDOC01-appb-C000021
 式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
 R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
[9]
 前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物である、[1]~[8]のいずれかに記載の液晶表示素子の製造方法。
[10]
 前記ラジカル重合性化合物が有する重合反応性基が、以下の構造から選ばれる、[9]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000022
 (式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数3~20のアルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示し、Rのアルキル基は、直鎖、分岐、又は環状のアルキル基を示す。)
[11]
 前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有する、[1]~[10]のいずれかに記載の液晶表示素子の製造方法。
[12]
 ラジカル発生膜を有する第一基板と、第二基板とを用意し、
 前記第一基板上のラジカル発生膜が、前記第二基板に対向するように配置し、
 前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填することにより液晶セルを作製する工程をさらに有する、
 [1]~[11]のいずれかに記載の液晶表示素子の製造方法。
[13]
 前記第二基板がラジカル発生膜を有する、[12]に記載の液晶表示素子の製造方法。
[14]
 前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である、[12]に記載の液晶表示素子の製造方法。
[15]
 前記一軸配向性を有する液晶配向膜が、水平配向用の液晶配向膜である[14]に記載の液晶表示素子の製造方法。
[16]
 前記ラジカル発生膜を有する第一基板が、櫛歯電極を有する基板である、[12]~[15]のいずれかに記載の液晶表示素子の製造方法。
 本発明によれば、簡便且つ安価な方法で、同一素子内において2つまたは3つの異なる配向領域(面内(一軸)配向領域、面外配向領域、及び傾斜配向領域)を備えた液晶表示素子を製造する液晶表示素子の製造方法を提供することができる。
図1Aは、実施例5で得られた液晶表示素子の写真である。 図1Bは、図1Aの液晶表示素子の写真を模式的に表した図である。 図2Aは、比較例4で得られた液晶表示素子の写真である。 図2Bは、図2Aの液晶表示素子の写真を模式的に表した図である。 図3Aは、実施例1で得られた液晶表示素子の写真である。 図3Bは、図3Aの液晶表示素子の写真を模式的に表した図である。 図4Aは、実施例23で得られた液晶表示素子の写真である。 図4Bは、図4Aの液晶表示素子の写真を模式的に表した図である。 図5Aは、実施例24で得られた液晶表示素子の写真である。 図5Bは、図5Aの液晶表示素子の写真を模式的に表した図である。 図6は、実施例25、及び実施例26で得られた液晶表示素子の写真である。 図7は、実施例27で得られた液晶表示素子の写真である。 図8は、実施例30で得られた液晶表示素子の写真である。 図9Aは、実施例32で得られた液晶表示素子の写真である。 図9Bは、図9Aの液晶表示素子の写真を模式的に表した図である。 本発明に係る液晶表示素子の一例を示す概略断面図である。 本発明に係る液晶表示素子の他の例を示す概略断面図である。
 以下、本発明の液晶表示素子の製造方法について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。
(液晶表示素子の製造方法)
 本発明の液晶表示素子の製造方法は、下記工程(A)及び下記工程(B)を含む。
 工程(A):光の照射によりラジカルを発生しうるラジカル発生膜を基板上に形成する工程。
 工程(B):液晶及びラジカル重合性化合物を含有する液晶組成物をラジカル発生膜に接触させ、その状態を保持しつつ、ラジカル重合性化合物を重合反応させるのに十分な240~400nmにピークを有する光を液晶組成物に照射する工程。
 上記工程(B)におけるラジカル重合性化合物は、重合することにより、液晶を垂直に配向させる機能を有する化合物である。
 さらに、本発明の液晶表示素子の製造方法は、下記要件(Z1)及び(Z2)の少なくとも一つの要件を含む。
 要件(Z1):工程(A)と工程(B)との間に、工程(A)で得られたラジカル発生膜に240~400nmにピークを有する光を照射して、ラジカル発生膜のラジカル発生能を失活させる工程(C)をさらに有する。
 要件(Z2):工程(B)の240~400nmにピークを有する光を液晶組成物に照射する工程がフォトマスクを介して行われる。
 上述した工程(A)及び工程(B)を含み、さらに要件(Z1)及び(Z2)の少なくとも一つの要件を満足する本発明は、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を製造することができる。
<ラジカル発生膜>
 本発明では、基板上にラジカル発生膜を形成する。
 ここで、ラジカル発生膜とはラジカルを発生しうる被膜をいう。
 ラジカル発生膜は、例えば、ラジカル発生膜形成組成物により形成される。
<<ラジカル発生膜形成組成物>>
 ラジカル発生膜形成組成物の成分としては、重合体、及びラジカルを発生しうる基を含有する。その際、該ラジカル発生膜形成組成物は、ラジカルを発生しうる基が結合した重合体を含有する組成物であってもよいし、ラジカルを発生しうる基を有する化合物と、ベース樹脂となる重合体との組成物であってもよい。
 このようなラジカル発生膜形成組成物を基板上に塗布し、係る塗布膜を硬化することにより、ラジカルを発生しうる基が膜中に固定化されたラジカル発生膜を得ることができる。ラジカルを発生しうる基は、ラジカル重合を誘発する有機基であることが好ましい。
 ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体からなる場合、係るラジカル重合を誘発する有機基を含有する重合体としては、例えば、下記式(1)で表される構造単位を主鎖に有する重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 式(1)中、Aはラジカル重合を誘発する有機基を表す。
 ラジカル重合を誘発する有機基を含有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、光照射により分解し、ラジカルを発生する部位を側鎖に有するモノマーを用いて製造することが好ましい。一方で、ラジカルを発生するモノマーはそれ自体が自発的に重合をしてしまうなどの問題があり、不安定な化合物となってしまうおそれがある。
 このため、合成のしやすさの点からは、ラジカル発生部位を有するジアミンから誘導される重合体が好ましく、より好ましくはポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミドなどが好ましい。
 ラジカル重合を誘発する有機基としては、例えば、下記式(3)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
 Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
Figure JPOXMLDOC01-appb-C000025
 式[X-1]~[X-18]中、*はRとの結合箇所を示し、S及びSはそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R及びRはそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
Figure JPOXMLDOC01-appb-C000026
 式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有してもよいフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していてもよく、
 Qは下記のいずれかの構造を表し、
Figure JPOXMLDOC01-appb-C000027
 式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
 R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。
 上記[W]、[Y]及び[Z]から選ばれる式で表される有機基としては、具体的には、以下が好ましい。特に、得られる液晶表示素子の信頼性の点から、(b)及び(c)がより好ましい。
Figure JPOXMLDOC01-appb-C000028
 ラジカル重合を誘発する有機基を含有する重合体の好ましい実施態様として、ラジカル重合を誘発する有機基を有するジアミンが挙げられる。
 そのようなラジカル発生部位含有ジアミンは、具体的には、ラジカルを発生し重合可能な側鎖を有するジアミンであり、例えば、下記式(2)で表されるジアミンが挙げられる。尚、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
 式(2)中、A及びAはそれぞれ水素原子又は上記式(3)で表される基を表し、但し、A及びAのうち少なくとも1つは上記式(3)で表される基を表し、
 Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
 「それらの任意の組み合わせ」としては、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-などを挙げることができるが、これらに限定されるものではない。
 pは0~2の整数を表す。pが2の場合、複数のA及びEはそれぞれ独立して前記定義を有する。また、pが0の場合、Aは下記式(3)で表される基からなる。
 上記式(2)においてp=0の場合における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 (式中、Jは単結合、-O-、-COO-、-NHCO-、又は-NH-結合基であり、Jは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
 上記[W]、[Y]及び[Z]から選ばれる式で表される有機基を有するジアミンとしては、合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000032
(式中、nは2~8の整数であり、Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-又は-COO-(CH-OCO-であり、mは1~8の整数である。)
Figure JPOXMLDOC01-appb-C000033
(式中、nは2~8の整数である。)
 上記のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 このようなラジカル重合が発生する部位を有するジアミンは、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の5~50モル%となる量を用いることが好ましく、より好ましくは10~40モル%であり、特に好ましくは15~30モル%である。
 なお、本発明のラジカル発生膜に用いる重合体をジアミンから得る場合、上記ラジカルが発生する部位を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、トランス-1,4-ビス(4-アミノフェニル)シクロヘキサン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;1,3-ビス[2-(p-アミノフェニル)エチル]ウレア、1,3-ビス[2-(p-アミノフェニル)エチル]-1-tert-ブトキシカルボニルウレア等のウレア構造を有するジアミン;N-p-アミノフェニル-4-p-アミノフェニル(tert-ブトキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン等のN-Boc基(Bocはtert-ブトキシカルボニル基を表す)を有するジアミン等が挙げられる。
 上記その他のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 重合体がポリアミック酸である場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4.3.0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6.2.1.1<3,6>.0<2,7>]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。
 勿論、テトラカルボン酸二無水物も、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
 重合体がポリアミック酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸ジアルキルエステルなどが挙げられる。
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
 重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000034
式中R、Rは炭素数1~10の脂肪族炭化水素を表す。
 K-1~K-5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K-6~K-7に示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面においてK-1、K-7、K-8、K-9、K-10が好ましく、電気特性の観点ではK-12、液晶配向性の観点ではK-13が好ましい。ジイソシアネートは1種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。
 また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用してもよく、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用してもよい。
 重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸、及びスベリン酸等のジカルボン酸を挙げることができる。
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4”-ターフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
 上記の各種ジカルボン酸は酸ジハライドあるいは無水物の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4,4”-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。
 原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート、及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート、及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。
 ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を撹拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~100℃、好ましくは-5~80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。
 本発明に用いられる重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。また、ポリウレアを合成する場合は、ジアミンとジイソシアネートとを反応させればよい。ポリアミック酸エステルまたはポリアミドを製造する際には、ジアミンと、テトラカルボン酸ジエステル、及びジカルボン酸から選ばれる成分を、公知の縮合剤の存在下で、又は、公知の方法で酸ハライドに誘導したのちに、ジアミンと反応させればよい。
 上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、30~99%であることがより好ましい。一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、70%以下が好ましい。両方の特性を加味すると、40~80%がより好ましい。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量は、アミック酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。
 重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 また、上記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合、本発明に用いるラジカル発生膜形成組成物は、ラジカル重合を誘発する有機基を含有する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は5~95質量%が好ましく、より好ましくは30~70質量%である。
 ラジカル発生膜形成組成物が有する重合体の分子量は、ラジカル発生膜形成組成物を塗布して得られるラジカル発生膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。
 本発明に用いるラジカル発生膜を、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得る場合の重合体としては、上記の製造方法に準じて製造されるポリイミド前駆体、及びポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレートなどからなる群から選ばれる重合体であって、ラジカル重合が発生する部位を有するジアミンが、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の0モル%であるジアミン成分を用いて得られる少なくとも1種の重合体を用いてもよい。その際に添加するラジカルを発生する基を有する化合物としては、例えば、以下のものが挙げられる。
 光でラジカルを発生する化合物としては、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
 なお、上記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合であっても、光照射した際にラジカル重合を促進する目的で、上記のラジカルを発生する基を有する化合物を含有させてもよい。
 ラジカル発生膜形成組成物は、重合体成分、必要に応じてラジカル発生剤その他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒に特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。
 また、塗膜の均一性や平滑性を向上させる溶媒を、ラジカル発生膜形成組成物の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 ラジカル発生膜形成組成物には、上記以外の成分を含有させてもよい。その例としては、ラジカル発生膜形成組成物を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、ラジカル発生膜形成組成物と基板との密着性を向上させる化合物、ラジカル発生膜形成組成物の膜強度をさらに向上させる化合物などが挙げられる。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(三菱マテリアル電子化成社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGC社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 ラジカル発生膜形成組成物と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。
 また、ラジカル発生膜の膜強度をさらに上げるためには、2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。
 さらに、ラジカル発生膜形成組成物には、上記の他、本発明の効果が損なわれない範囲であれば、ラジカル発生膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
<<ラジカル発生膜の作製方法>>
 本発明に係るラジカル発生膜は、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子にUVを照射することも可能である。
 ラジカル発生膜を作製する際に、用いる照射光としては、特に制限はなく目的に応じて適宜選択できるが、例えば、240~400nmにピークを有する光が挙げられる。250~365nmにピークを有する光であるとより好ましく、250~360nmにピークを有する光であるとさらに好ましい。より具体的には、例えば、254nm近傍や313nm近傍にピークを有する光を用いることが挙げられる。
 また、必要により公知のカットフィルターで特定の波長や特定の波長以上又は以下の光をカットしてもよい。
 ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されず、また、電極に限定されない。
 例えば、好ましい態様として、基板上に液晶を駆動するための透明電極が形成された基板を挙げることができる。
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。
 IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
 ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
 ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
 上記の方法でラジカル発生膜形成組成物を塗布して形成される被膜、いわゆるラジカル発生膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100~350℃の任意の温度で行うことができるが、好ましくは140~300℃であり、より好ましくは150~230℃、更に好ましくは160~220℃である。焼成時間は通常5~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン、ベルト炉などを用いることができる。
 硬化後のラジカル発生膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
 以上のようにしてラジカル発生膜を有する第一基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。櫛歯電極が形成されている本発明の第一基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合においては、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。
<液晶及びラジカル重合性化合物を含有する液晶組成物>
 本発明に係る液晶表示素子は、液晶及びラジカル重合性化合物を含有する液晶組成物を用いて作製する。
 液晶とともに用いる重合性化合物としては、ラジカル重合性化合物であれば特に限定されないが、例えば、一分子中に一個又は二個以上の重合性不飽和結合を有する化合物であるとよい。好ましくは一分子中に一個の重合性不飽和結合を有する化合物である(以下、「一官能の重合反応性基を有する化合物」、「単官能の重合反応性基を有する化合物」等と称する場合がある)。重合性不飽和結合は、好ましくはラジカル重合性不飽和結合であり、例えばビニル結合である。
 ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。
 そして、ラジカル重合性化合物の重合反応性基としては、以下の構造から選ばれる重合性基が好ましい。
Figure JPOXMLDOC01-appb-C000035
(式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数3~20のアルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示し、Rのアルキル基は、直鎖、分岐、又は環状のアルキル基を示す。)
 また、液晶及びラジカル重合性化合物を含有する液晶組成物において、ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有することが好ましい。
 単官能のラジカル重合反応性基を有する化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な不飽和結合を有するものであり、例えば、tert-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレートなどのメタクリレート系モノマー;tert-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ベンジルアクリレート、ラウリルアクリレート、n-オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o-、m-、p-メトキシスチレン、o-、m-、p-tert-ブトキシスチレン、o-、m-、p-クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプロペン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。
 また、ラジカル重合性化合物としては、下記式(A)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(A)中、R及びRはそれぞれ独立に炭素数3~20のアルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合、アミド結合から選ばれる結合基を表し、Rは水素原子、炭素数1~4のアルキル基を示し、R又はRのアルキル基は、直鎖、分岐、又は環状のアルキル基を示す。
 そして、式(A)で表されるラジカル重合性化合物としては、式中Eがエステル結合(-C(=O)-O-または-O-C(=O)-で表される結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造を有する化合物が好ましいが、特に限定はしない。
Figure JPOXMLDOC01-appb-C000037
 式(A-1)及び(A-2)中、R及びRはそれぞれ独立に炭素数3~20のアルキル基を表し、R及びRのアルキル基は、それぞれ独立に直鎖、分岐、又は環状のアルキル基を示す。
 本発明に係るラジカル重合性化合物は、垂直配向性基を有していてもよい。
 本発明に用いるラジカル重合性化合物が有する垂直配向性基としては、例えば、下記式[S1]で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 式[S1]中、X及びXは独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-、又は-((CHa1-Am1-(複数のa1はそれぞれ独立して1~15の整数を示し、複数のAはそれぞれ独立して、酸素原子または-COO-を示し、mは1又は2である。)を示す。その中でも原料の入手性や合成の容易さの点からの観点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。
 G及びGは独立して炭素数6~12の2価の芳香族基または炭素数3~8の2価の脂環式基から選ばれる2価の環状基であり、上記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、m及びnは独立して0~3の整数であって、これらの合計は0~4であり、Rは炭素数1~20のアルキル、炭素数1~20のアルコキシ、又は炭素数2~20のアルコキシアルキルであり、これらの基における任意の水素はフッ素で置き換えられてもよく、但し、mおよびnの合計が0である場合において、Rはステロイド骨格を有する基であってもよい。
 炭素数6~12の2価の芳香族基としては、例えば、フェニレン、ビフェニレン、ナフタレン等を挙げることができる。また、炭素数3~8の2価の脂環式基としては、例えば、シクロプロピレン、シクロヘキシレン等を挙げることができる。
 式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000039
 式[S1-x1]~[S1-x7]中、Rは炭素数1~20のアルキル基であり、Xは、-(CH-(aは1~15の整数である)を示し、Aは、酸素原子又は-COO-*(ただし、「*」を付した結合手が(CHa2と結合する)、Aは、酸素原子または*-COO-(ただし、「*」を付した結合手が(CHa2と結合する)であり、a、aは、それぞれ独立して、0又は1の整数であり、aは2~10の整数であり、Cyは1,4-シクロへキシレン基又は1,4-フェニレン基である。
 上記ステロイド骨格を有する基の好ましい具体例としては、下記式[S3-x]が挙られる。
Figure JPOXMLDOC01-appb-C000040
 式[S3-x]中、Colは、上記式[Col1]~[Col4]のいずれかを表し、Gは、上記式[G1]~[G2]のいずれかを表す。*は結合位置を示す。
 本発明に係るラジカル重合性化合物の好ましい態様として、例えば、上記の垂直配向性基[S1]に、上記のラジカル重合性基のいずれかが結合した、垂直配向性基を有するラジカル重合性化合物が挙げられる。
 これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。
 液晶組成物中のラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは3質量%以上、より好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下である。
 なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4-ペンチル-4’-シアノビフェニルである。
<液晶セル>
 本発明に係る液晶表示素子は、例えば、以下に記載のセル構造とすることができる。
 上述した方法により基板にラジカル発生膜を形成した後、該ラジカル発生膜を有する第一の基板と、第二の基板とを、第一基板上のラジカル発生膜が、第二基板に対向するように配置し、第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填することにより液晶セルを作製する。
 本発明で製造する液晶表示素子は、このようにして得られる液晶セルを用いることができる。
 上記液晶セルの作製方法をさらに詳しく説明すると、第一基板上のラジカル発生膜を、第二基板に対向するように配置した後、スペーサーを挟んで、両基板をシール剤で固定し、第一及び第二の基板間に、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより液晶セルを得る。
 その際、用いるスペーサーの大きさは、通常1~30μmであるが、好ましくは2~10μmである。
 液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法としては、特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。
 上記第二の基板には、液晶を配向するための配向膜が形成されていることが好ましい。
 この配向膜としては、公知の液晶配向膜であっても、本発明に係るラジカル発生膜のいずれであってもよく、目的に応じて適宜選択することができる。
 第二の基板に形成される配向膜には、一軸配向処理を施すことができる。
 後述するように、例えば、液晶表示素子に面外配向領域を形成する場合には、第二の基板に、ラジカル発生膜を形成することが好ましい。
 また、例えば、液晶表示素子に面内配向領域や傾斜配向領域を形成する場合には、第二の基板に、一軸配向処理された水平配向用の液晶配向膜を形成することが好ましい。
<面内配向、面外配向、及び傾斜配向領域の形成>
 ラジカル発生膜が形成されている基板を用い、液晶とラジカル重合性化合物とを含む混合物(液晶組成物)を基板間に配した液晶セルに対し、ラジカル重合性化合物を重合反応させるのに十分な光を照射する。
 このように、本発明は、基板上にアンカリング力を有するラジカル発生膜を形成させ、ラジカル発生膜に特定の重合性化合物を含有する液晶を接触させた状態で、アンカリング力を維持したい領域に光をラジカル発生膜に対し照射する。重合性化合物が重合することにより、液晶は垂直に配向され、その結果、光を照射した領域において、面外配向(垂直配向)領域が形成される。
 ここで、照射する光としては、240~400nmにピークを有する光が挙げられる。また、光ラジカル発生部位に該当する部分の吸光度が高くなる波長の光を照射することが好ましく、該光が、250~365nmにピークを有する光であるとより好ましく、250~360nmにピークを有する光であるとさらに好ましい。
 より具体的には、例えば、313nm近傍にピークを有する光を用いることができる。尚、必要により公知のカットフィルターで特定の波長や特定の波長以上又は以下の光をカットして用いてもよい。
 光の照射量としては、通常0.01~30Jであるが、好ましくは、10J以下であるとよい。光の照射量が少ないほうが、液晶表示素子を構成する部材の破壊からなる信頼性低下を抑制でき、かつ光の照射時間を減らせることで製造上のタクトが向上するので好適である。
 尚、光を照射する際、加熱を行ってもよい。光を照射する際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。
 また、ラジカル重合性化合物を重合反応させる際の光の照射時には、電圧を印加しない、無電界状態で行うことが好ましい。
 一方、液晶セルに対して、光を照射する際に、液晶セルの外側にフォトマスクを配し、該フォトマスクを介して光を照射するようにすると、未露光部(=ラジカルが発生しない領域)は、面内配向(水平配向)領域が形成され、露光部は、上述したように、面外配向(垂直配向)領域が形成される。
 使用するフォトマスクのパターン形状やパターンサイズには特に制限はなく、目的に応じて適宜選択することができる。パターン形状としては、例えば、ラインパターン形状、ライン/スペース(L/S)パターン形状、ドット形状等を挙げることができる。パターンサイズとしては、マイクロメーターサイズのパターンとすることができ、例えば、5μmピッチのL/Sパターン形状を有したフォトマスクを用いると、5μmピッチの配向パターンを形成することができる。
 また、液晶セルのセルを組む前に、ラジカル発生膜に光を照射し、ラジカル発生膜のラジカル発生能を失活させることによっても、面内配向(水平配向)領域を形成することができる。予めラジカル発生膜に光を照射することによりラジカル発生能を消失させ、終始面内方向へのアンカリング強度を維持した状態にすることができる。つまり、ラジカル発生能を失活させたラジカル発生膜を用いて液晶セルを作製し、係る液晶セルに光を照射しても、ラジカル発生能を失活させた領域では、面内配向(水平配向)領域が形成される。
 尚、ラジカル発生膜のラジカル発生能を失活させるために用いる光としては、240~400nmにピークを有する光が挙げられる。また、該光が、250~365nmにピークを有する光であるとより好ましく、250~360nmにピークを有する光であるとさらに好ましい。より具体的には、例えば、313nm近傍にピークを有する光を用いることができる。尚、必要により公知のカットフィルターで特定の波長や特定の波長以上又は以下の光をカットして用いてもよい。
 光の照射量としては、通常0.01~30Jであるが、好ましくは、10J以下であるとよい。
 上記未露光部や上記ラジカル発生能が失活した領域において、液晶が良好に面内配向するためには、ラジカル発生膜には、一軸配向処理が施されていることが好ましい。
 また、上記未露光部や上記ラジカル発生能が失活した領域において、液晶が良好に面内配向するためには、ラジカル発生膜におけるラジカル発生膜形成組成物中に含有される重合体は、垂直配向性の機能を有する部位が含まれていないものであることが好ましい。
 上述したように、ラジカル発生膜を用いて、面外配向領域を形成させる場合には、ラジカル発生膜を形成した第一と第二の両基板を用いてセルを作製し、所定のラジカル重合性化合物を含む液晶組成物を注入した後、セルの外側から光を照射して重合性化合物を重合させ、液晶を垂直配向させればよい。
 一方、ラジカル発生膜を用いて、面内配向領域を形成させる場合には、ラジカル発生膜を形成した第一と第二の基板に対し、セル組みの前に予め光を照射し、ラジカル発生能を失活させておき、その後セル組みすることで、作成後の液晶セルに対し光を照射しても界面反応が抑制されるようにすればよい。
 あるいは、ラジカル発生能を失活させることなく作製した液晶セルに対し、液晶セルの外側にフォトマスクを配し、該フォトマスクを介して光を照射することで、未露光部において、ラジカルを発生させず、界面反応を誘起させないようにすることもできる。
 液晶表示素子において、面内配向領域と面外配向領域とが向かい合うように、液晶セルを作製することにより、傾斜配向(チルト配向)領域を形成することができる。
 例えば、第一基板と第二基板の両方にラジカル発生膜を用いる場合は、上記面外配向領域を形成する方法と、面内配向領域を形成する方法とを適宜組み合わせることで、傾斜配向領域を作り出すことができる。
 より具体的には、例えば、第一基板及び第二基板の一方の基板に、ラジカル発生膜を用い、面外配向領域を形成させ、他方の基板に、ラジカル発生能を失活させたラジカル発生膜を用い、面内配向領域を形成させることにより、傾斜配向(チルト配向)領域を形成させることができる。
 また、第一基板及び第二基板の一方にラジカル発生膜を用い、他方の基板にラジカル発生能を有しない液晶配向膜を用いてもよい。他方にラジカル発生能を有しない液晶配向膜を用いる場合、液晶配向膜として、面内配向膜を用いても面外配向膜を用いても構わない。上述したラジカル発生膜による面内配向領域と面外配向領域を作り出す方法と組み合わせることにより、面内配向領域、傾斜配向領域、及び面外配向領域の各種組み合わせからなる様々なパターニングを形成することができる。
 液晶配向膜は、一軸配向処理されていることが好ましい。
 また、本発明の液晶表示素子の製造方法において、液晶組成物中に含有させるラジカル重合性化合物の含有量や、液晶セルに光を照射する際の照射量を調整することにより、液晶を垂直ではなく傾斜配向させ、傾斜配向領域を形成することもできる。
 上述したように、本発明の液晶表示素子の製造方法によれば、ラジカル発生膜を有する液晶表示素子において、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を製造することができる。
<液晶表示素子>
 本発明の製造方法によれば、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を、工業的に、歩留まりよく作り出すことができる。したがって、本発明の製造方法を用いて作製された液晶表示素子は、実用上広く用いられ得る。
 例えば、液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより、反射型液晶表示素子として使用することができる。
 また、液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより、透過型液晶表示素子として使用することができる。
 図10は、本発明に係る液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
 図10に例示する液晶表示素子101においては、ラジカル発生膜102cを具備する櫛歯電極基板102と液晶配向膜104aを具備する対向基板104との間に、液晶組成物103が挟持されている。櫛歯電極基板102は、基材102aと、基材102a上に形成され、櫛歯状に配置された複数の線状電極102bと、基材102a上に線状電極102bを覆うように形成されたラジカル発生膜102cとを有している。対向基板104は、基材104bと、基材104b上に形成された液晶配向膜104aとを有している。
 この液晶表示素子101においては、線状電極102bに電圧が印加されると、電気力線Lで示すように線状電極102b間で電界が発生する。
 図11は、本発明に係る液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
 
 図11に例示する液晶表示素子101においては、ラジカル発生膜102hを具備する櫛歯電極基板102と液晶配向膜104aを具備する対向基板104との間に、液晶組成物103が挟持されている。櫛歯電極基板102は、基材102dと、基材102d上に形成された面電極102eと、面電極102e上に形成された絶縁膜102fと、絶縁膜102f上に形成され、櫛歯状に配置された複数の線状電極102gと、絶縁膜102f上に線状電極102gを覆うように形成されたラジカル発生膜102hとを有している。対向基板104は、基材104bと、基材104b上に形成された液晶配向膜104aとを有している。
 この液晶表示素子101においては、面電極102eおよび線状電極102gに電圧が印加されると、電気力線Lで示すように面電極102eおよび線状電極102g間で電界が発生する。
 以下に実施例を挙げて本発明を更に詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。
 実施例において、ポリマーの重合及びラジカル発生膜形成組成物の調製で使用した化合物の略号及び特性評価の方法は以下のとおりである。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 NMP:N-メチル-2-ピロリドン、
 BCS:ブチルセロソルブ
<粘度測定>
 ポリアミック酸溶液について、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)にて25℃の粘度を測定した。
<分子量の測定>
 分子量は常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
 GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、測定装置(日本電子データム社製、JNW-ECA500)にて測定した。
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド基のNHに由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 式中、xはアミド基のNH由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド基のNHプロトン1個に対する基準プロトンの個数割合である。
(化合物DA-4の合成)
 以下の方法により、化合物DA-4を得た。
Figure JPOXMLDOC01-appb-C000043
<第1工程>
 4,4’-ジニトロ-[1,1’-ビフェニル]-2,2’-ジカルボン酸(20.0g,60.2mmol)に対し、テトラヒドロフラン(120g)、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン(28.4g,126mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(28.0g,181mmol)、及びN,N-ジメチルアミノピリジン(0.735g,6.02mmol)を仕込み、室温で終夜撹拌した。反応終了後、水/クロロホルムで2回分液抽出し、得られた有機相を濃縮し水飴状茶色オイルを得た。これを酢酸エチル/ヘキサン=3/1(体積比)混合溶媒でカラムクロマトグラフィーにより精製した。得られたフラクションを濃縮したところ、黄色透明オイルとなり、静置し続けたところオイルから白色結晶が析出した。析出した結晶を酢酸エチル/ヘキサン=3/1(体積比)混合溶媒でスラリー洗浄し、濾過し、結晶を乾燥させ、化合物(DA-4-1)を得た(収量:29.8g,40.0mmol,収率67%)。
H-NMR(500MHz) in DMSO-d:8.57(d,J=2.5Hz,2H),8.37(dd,J=8.5Hz,2.5Hz,2H),8.18(d,J=9.0Hz,4H),7.55(d,J=8.5Hz,2H),6.85(d,J=9.0Hz,4H),5.631(s,2H),4.39-4.35(m,4H),4.02-3.99(m,2H),3.96-3.94(m,2H),1.40(s,12H).
<第2工程>
 第1工程で得られた化合物(DA-4-1)(29.8g,40.0mmol)に対し、テトラヒドロフラン(240g)を加え、窒素置換した後、3%プラチナカーボン(含水品)(2.38g)を加えさらに窒素置換し、水素テドラーバッグを取り付け室温で約17時間撹拌した。反応終了後、メンブレンフィルターに通しプラチナカーボンを除去後、濃縮・乾燥させ、化合物(DA-4)を得た(収量:27.4g,40.0mmol,収率quant)。
H-NMR(500MHz) in DMSO-d:8.20(dd,J=7.1Hz,1.9Hz,4H),6.99(d,J=2.5Hz,2H),6.92(dd,J=7.3Hz,1.9Hz,4H),6.80(d,J=8.2Hz,2H),6.67(dd,J=8.2Hz,2.5Hz,2H),5.64(s,2H),5.24(s,4H),4.22(t,J=4.5Hz, 4H),4.00(br,4H),1.39(s,12H).
(ポリマーの重合、及びラジカル発生膜形成組成物の調製)
<合成例1>TC-1(50)TC-2(50)/DA-1(70)DA-2(30)ポリイミドの合成
 窒素導入管、空冷管、メカニカルスターラーを備えた100mLの4口フラスコに、DA-1を3.78g(35.0mmol)、及びDA-2を4.96g(15.0mmol)量り取り、NMPを35.0g加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC-2を6.26g(25.0mmol)、及びNMPを25.0g加え窒素雰囲気下60℃で3時間加熱撹拌した。その後、TC-1を4.12g(21.0mmol)、NMPを16.5g加え室温で12時間撹拌した。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC-1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
 マグネティックスターラーを備えた200mLの三角フラスコに、上記で得られたポリアミック酸溶液50.0gを量り取り、NMPを92.9g加え、固形分濃度が7質量%の溶液を調製し、撹拌しながら無水酢酸を10.6g(103mmol)、及びピリジンを3.28g(41.4mmol)加え、室温で30分撹拌後、60℃で3時間加熱撹拌した。その後、溶液を室温に戻し、500mLのメタノール中に撹拌しながら注ぎ、固体を析出させた。この操作を二回繰り返した後、風乾し、60℃設定の真空オーブンにて乾燥を行うことでMnが11,453、Mwが27,655、イミド化率が67.0%のポリイミド粉末(PI-1)を得た。
<合成例2>TC-1(50)TC-2(50)/DA-1(50)DA-2(50)ポリイミドの合成
 用いるモノマーの量を表1に示すように変更した点以外は合成例1と同様の方法を用いて、ポリイミド粉末(PI-2)を得た。このポリイミド粉末のMnは21,959、Mwは67,088、イミド化率は62.2%であった。
<合成例3>TC-1(50)TC-2(50)/DA-2(100)ポリイミドの合成
 用いるモノマーの量を表1に示すように変更した点以外は合成例1と同様の方法を用いて、ポリイミド粉末(PI-3)を得た。このポリイミド粉末のMnは21,959、Mwは67,088、イミド化率は72.0%であった。
<合成例4>TC-3(100)/DA-3(50)DA-4(50)ポリアミック酸の重合
 窒素導入管、空冷管、メカニカルスターラーを備えた100mLの4口フラスコに、DA-3を2.44g(10.00mmol)、及びDA-4を6.85g(10.00mmol)量り取り、NMPを52.6g加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC-3を4.21g(18.80mmol)及びNMPを23.9g加え、窒素雰囲気下40℃で12時間加熱撹拌した。重合粘度を確認し、重合粘度が400mPa・sになるように更にTC-3を添加し、ポリアミック酸濃度が15質量%の重合液(PAA-1)を得た。このポリアミック酸のMnは16,331、Mwは42,999であった。
<合成例5>AC-1(40)AC-2(60)ポリメタクリレートの合成
 窒素導入管、空冷管、メカニカルスターラーを備えた100mLの4口フラスコに、AC-1を5.00g(15.0mmol)、AC-2を6.91g(22.6mmol)、及びAIBNを0.185g(1.13mmol)量り取り、NMPを67.5g加え窒素雰囲気下で撹拌し完全に溶解させた。この溶液を真空脱気した後、窒素雰囲気下60℃で12時間加熱撹拌した。その後、溶液を室温に戻し、300mLのメタノール中に撹拌しながら注ぎ、固体を析出させた。この操作を二回繰り返した後、風乾し、60℃設定の真空オーブンにて乾燥を行うことでMnが37,197、Mwが116,919のポリメタクリレート粉末(PMA-1)を得た。
<ラジカル発生膜形成組成物:AL-1の調製>
 マグネティックスターラーを備えた15mLバイアル瓶に、合成例1で得られたポリイミド粉末(PI-1)を0.90g量り取り、NMPを5.10g加え、50℃で加熱撹拌し、固形分濃度が15質量%の高分子溶液を得た。これに、NMPを6.00g、及びBCSを3.00g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL-1(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
<ラジカル発生膜形成組成物:AL-2の調製>
 合成例2で得られたポリイミド粉末(PI-2)を用い、AL-1の調製と同様の方法で本発明に係るラジカル発生膜形成組成物:AL-2(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
<ラジカル発生膜形成組成物:AL-3の調製>
 合成例3で得られたポリイミド粉末(PI-3)を用い、AL-1の調製と同様の方法で本発明に係るラジカル発生膜形成組成物:AL-3(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
<ラジカル発生膜形成組成物:AL-4の調製>
 マグネティックスターラーを備えた15mLバイアル瓶に、合成例4で得られたポリアミック酸(PAA-1)を6.00g量り取り、NMPを6.00g、及びBCSを3.00g加え、3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL-4(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
<ラジカル発生膜形成組成物:AL-5の調製>
 マグネティックスターラーを備えた15mLバイアル瓶に、合成例5で得られたポリメタクリレート粉末(PMA-1)を0.27g、及び合成例3で得られたポリイミド粉末(PI-3)を0.63g量り取り、NMPを5.10g加え、60℃で加熱撹拌し、固形分濃度が15質量%の高分子溶液を得た。これに、NMPを6.00g、及びBCSを3.00g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL-5(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
<ラジカル発生膜形成組成物:AL-6の調製>
 マグネティックスターラーを備えた15mLバイアル瓶に、合成例5で得られたポリメタクリレート粉末(PMA-1)を0.45g、及び合成例3で得られたポリイミド粉末(PI-3)を0.45g量り取り、NMPを5.10g加え、60℃で加熱撹拌し、固形分濃度が15質量%の高分子溶液を得た。これに、NMPを6.00g、及びBCSを3.00g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL-6(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
<非ラジカル発生膜形成組成物:AL-7の調製>
 合成例5で得られたポリメタクリレート粉末(PMA-1)を用い、AL-1の調製と同様の方法で本発明の比較対象に係る非ラジカル発生膜形成組成物:AL-7(固形分:6.0質量%、NMP:74質量%、BCS:20質量%)を得た。
 ポリアミック酸、及びポリイミドの組成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000044
 ポリメタクリレートの組成を下記表2に示す。
Figure JPOXMLDOC01-appb-T000045
 ラジカル発生膜形成組成物及び非ラジカル発生膜形成組成物の組成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000046
 液晶種の組成を、下記表4に示す。
Figure JPOXMLDOC01-appb-T000047
(重合性化合物)
 表4に記載の重合性化合物(添加剤)は以下のように得た。
<重合性化合物合成例1>
 イタコン酸ジドデシル(IC-12)の合成
Figure JPOXMLDOC01-appb-C000048
 ディーンスターク管を取り付けた4口フラスコに、イタコン酸30.0g(231mmol)、及び1-ドデカノール81.6g(438mmol)を量りとり、シクロヘキサン(700mL)で完全に溶解させた。溶解を確認後、濃硫酸1.13g(11.5mmol)、及びジブチルヒドロキシトルエン(BHT)0.51g(2.31mmol)を加え、窒素雰囲気下、120℃で24時間加熱撹拌した。核磁気共鳴スペクトル(H-NMRスペクトル)を用いて反応の終了を確認した後、反応溶液にn-ヘキサンを100mL加え、10%炭酸ナトリウム水溶液100gで3回、純水100mLにて3回洗浄し、無水硫酸マグネシウムで乾燥させた。濾過・濃縮後、真空乾燥させることで白色固体78.0g(167mmol:収率76.3%)を得た。構造はH-NMRスペクトルにて目的物であることを確認した。測定データを以下に示す。
 H-NMR(400MHz,CDCl)δ:6.30(1H)、5.65(1H)、4.20-4.00(4H)、3.32(2H)、1.64-1.58(4H)、1.40-1.25(36H)、0.96-0.83(6H)
<重合性化合物合成例2>
 ジヘキシルアクリルアミド(AAA-C6C6)の合成
Figure JPOXMLDOC01-appb-C000049
 4口フラスコに、ジヘキシルアミンを33.3g(180mmol)、及びトリエチルアミン27.3g(270mmol)を量りとり、THF500mLを加え室温にて完全に溶解させた。溶解を確認後、反応容器を氷冷し、系内を0℃に保ち、アクリル酸クロリド17.9g(198mmol)を静かに滴下した。核磁気共鳴スペクトル(H-NMRスペクトル)を用いて反応の終了を確認した後、反応溶液に酢酸エチル100mLを加え、10%炭酸ナトリウム水溶液100gで3回、純水100mLにて3回洗浄し、無水硫酸マグネシウムで乾燥させた。濾過・濃縮後、真空乾燥させることで透明オイル状液体33.6g(140mmol:収率78.1%)を得た。構造はH-NMRスペクトルにて目的物であることを確認した。測定データを以下に示す。
 H-NMR(400MHz,DMSO-d)δ:6.62(1H)、6.04(1H)、5.58(1H)、3.20-4.00(4H)、3.35-3.25(4H)、1.64-1.58(4H)、1.30-1.25(12H)、0.96-0.83(6H)
<重合性化合物合成例3>
 4-アミルシクロヘキシルメタクリレート(MACH-C5)の合成
Figure JPOXMLDOC01-appb-C000050
 4口フラスコに、4-アミルシクロヘキサノールを25.0g(147mmol)、及びトリエチルアミン22.3g(220mmol)を量りとり、THF400mLを加え室温にて完全に溶解させた。溶解を確認後、氷浴にて系内を0℃に保ち、メタクリル酸クロリド18.4g(176mmol)を静かに滴下した。核磁気共鳴スペクトル(H-NMRスペクトル)を用いて反応の終了を確認した後、反応溶液にヘキサン100mLを加え、10%炭酸ナトリウム水溶液100gで3回、純水100mLにて3回洗浄し、無水硫酸マグネシウムで乾燥させた。濾過・濃縮後真空乾燥させることで透明オイル状液体20.3g(86.2mmol:収率58.0%)を得た。構造はH-NMRスペクトルにて目的物であることを確認した。測定データを以下に示す。
 H-NMR(400 MHz,DMSO-d)δ:6.15-5.95(1H)、5.65-5.60(1H)、4.95-4.90(0.60H)、4.65-4.57(0.40H)、1.89-1.86(3H)、1.79-1.74(2H)、1.56-1.50(2H)、1.36-1.15(11H)、0.87-0.84(3H)
<重合性化合物の購入>
 重合性化合物DMAは東京化成工業株式会社(TCI)から購入したものをそのまま使用した。
(液晶表示素子の作製)
 上記で得たAL-1~AL-7、及び水平配向用の液晶配向剤であるSE-6414、NRB-U438(日産化学社製)を用い、液晶セルを作製し、下記表5に示す構成の液晶表示素子を作製した。
 液晶セルの構成を下記表5に示す。
Figure JPOXMLDOC01-appb-T000051
<第一・第二基板>
 第一・第二基板は、30mm×40mmの大きさで、厚さが1.1mmの無アルカリガラス基板である。基板上には10μmの厚みのITO(Indium-Tin-Oxide)電極が形成されている。第一基板と第二基板は同じ基板であり、便宜上名称を分けている。
<AL-1、AL-2、AL-3、SE-6414の表面処理工程>
 AL-1、AL-2、AL-3、SE-6414は孔径1.0μmのフィルターで濾過した後、上記第一・第二基板の電極形成面にスピンコート法にて塗布し、80℃のホットプレート上で2分間乾燥させた。次いで、内温230℃の熱循環加熱炉で30分間焼成し、膜厚100nmの塗膜を得た。
 上記で得られた塗膜付き第一・第二基板についてラビング処理した。張り合わせ後にラビング方向がアンチパラレルとなるように、第一基板はラビング方向が長手方向から、第二基板はラビング方向が短手方向からラビング処理した。ラビング布種は吉川化工製のレーヨン布:YA-20R、ロール径120mmを用いた。
 AL-1、AL-2、AL-3のラビング処理は、回転数500rpm、移動速度30mm/sec、押し込み量0.3mmの条件にて行った。
 また、SE-6414のラビング処理は、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mmの条件にて行った。
 ラビング処理後は、純水中にて1分間超音波洗浄を行い、80℃で15分間乾燥した。
<AL-4、AL-5、AL-6、AL-7、NRB-U438の表面処理工程>
 AL-5、AL-6、AL-7は孔径1.0μmのフィルターで濾過した後、上記第一・第二基板の電極形成面にスピンコート法にて塗布し、70℃のホットプレート上で90秒間乾燥させた。
 その後、高圧水銀ランプ(サーマプレシジョン社製 313nmバンドパスフィルター)を用い、直線偏光した波長313nmの光を0.005J/cm露光し、150℃のホットプレート上で30分間焼成した。
 AL-4、NRB-U438は孔径1.0μmのフィルターで濾過した後、上記第一・第二基板の電極形成面にスピンコート法にて塗布し、80℃のホットプレート上で2分間乾燥させ、内温230℃の熱循環加熱炉で30分間焼成した。その後、低圧水銀ランプ(ウシオ電機社製 240nm以下短波長カットフィルター)を用い、直線偏光した波長254nmの光を0.3J/cm露光し、内温230℃の熱循環加熱炉で30分間焼成した。
<一次露光>
 表面処理工程を終えた液晶配向膜付きの2種類の基板(第一・第二基板)に、高圧水銀ランプ(サーマプレシジョン性300nm以下短波長カットフィルター)を用い、波長313nmの光を10J/cm露光した。選択的に光を照射したいときは基板上にフォトマスク(ミタニマイクロにクス社製 クロム配線を施した100、50、30、5μmのL/S)を配置し、パターン露光した。以降、この操作を一次露光と表記する。
 尚、一次露光は配向膜に含有されるラジカルを発生しうる基を故意に失活させることを目的としており、実施例23、24、27、28、29、30、32にのみ適応した。
<液晶セルの作製>
 表面処理工程を終え、実施例23、24、27、28、29、30、32についてはさらに一次露光工程を終えた液晶配向膜付きの2種類の基板(第一・第二基板)を用い、液晶注入口を残して周囲をシールし、セルギャップが約4μmの空セルを作製した。なお、表面処理工程にラビング処理を含むものは、第一基板と第二基板のラビング方向がアンチパラレルとなるように空セルを作製した。
 この空セルに、液晶(表4に示すように、メルク社製IPS用ポジ液晶MLC-3019若しくはメルク社製IPS用ネガ液晶MLC-7026に各添加剤を液晶に対して指定量添加したもの)を常温で真空注入した後、注入口を封止して液晶セルとした。得られた液晶セルは、IPSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行った。
<二次露光>
 作製した液晶セルに、高圧水銀ランプ(サーマプレシジョン製 300nm以下短波長カットフィルター)を用い、波長313nmの光を照射した。照射量は表5に示すとおりである。また、選択的に光を照射したいときは液晶セル上にフォトマスク(ミタニマイクロニクス社製 クロム配線を施した100、50、30、5μmのL/S)を配置し、パターン露光した。以降、この操作を二次露光と表記する。なお、二次露光は配向膜に含有されるラジカルを発生しうる基と液晶中の重合性化合物(添加剤)との反応を進行させることを目的としている。
(二次露光後の液晶配向性の目視評価の結果)
 クロスニコルに配置した偏光板を用いて、二次露光後の液晶セルの配向状態を確認した。なお、液晶の一軸配向方向と偏光方向のなす角度は45度とした。この時、液晶が一軸配向している場合は光が透過し、面外配向している場合は光が透過しない。
 実施例として、セル7(実施例5)は面外配向制御できるため、露光部位は暗視野となった(図1A及び図1B)。
 図1Aに液晶表示素子の写真を示し、図1Aの液晶表示素子の写真を模式的に表した図を図1Bに示す(以下、図2~図5、及び図9においても同様に、液晶表示素子の写真を図Aに、該写真の模式的に表した図を図Bに示す)。
 図1(図1A及び図1Bをまとめて図1ともいう)において、符号1の露光部位は、暗視野(黒色)を示し、符号2の非露光部位は、明視野(白色)を示した。
 セル27(比較例4)は面外配向制御できないため、露光部位は明視野となった(図2A及び図2B)。
 図2(図2A及び図2Bをまとめて図2ともいう)において、露光部位も非露光部位も、明視野(白色)を示した。
 セル1(実施例1)は傾斜(チルト)配向(一部で面外配向)するため、露光部位は色づきの低下(一部で暗視野)となり、グレーの中間色を示した(図3A及び図3B)。
 図3(図3A及び図3Bをまとめて図3ともいう)において、符号1の露光部位は、暗視野(黒色)のb部分と明暗の中間色(グレー)のa部分とが混在していた。符号2の非露光部位は、明視野(白色)を示した。
 図1~図3で示したのと同様な方法で、下記表6~8に示す各実施例及び比較例における液晶表示素子についても評価した。
 表6から8において、二次露光部位が暗視野(黒色)を示し面外配向制御できたものに〇、明視野(白色)を示し面外配向制御できなかったものに×、中間色(グレー)を示しチルト角を持った一軸配向や不均一配向したものに△を記した。
 二次露光後の液晶配向性の目視評価の結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000052
 面内一軸配向状態から面外配向を誘起するためには、(i)配向膜中にラジカルを発生しうる基を含有させ、(ii)液晶中に重合性化合物(添加剤)を含有させ、(iii)光照射を行うことが必要である。尚、その際、良好な面外配向状態を形成するためには、ラジカルを発生しうる基の含有量や重合性化合物の含有量や光の照射量等を考慮することが有効である。
 二次露光後の液晶配向性の目視評価の結果を下記表7に示す。
Figure JPOXMLDOC01-appb-T000053
 面外配向制御に必要な重合性化合物(添加剤)はDMAに限定されない。適切な構造を有する添加剤であれば面外配向制御が可能である。また、液晶種も誘電率が負の液晶であるMLC-7026に限定はされず、誘電率が正の液晶であるMLC-3019であっても面外配向制御が可能である。
 二次露光後の液晶配向性の目視評価の結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000054
 光配向処理した光配向膜を用いるときも面外配向制御が可能であり、配向膜を構成する高分子の種類や光配向に必要な露光波長に依存しない。さらに、実施例19、20等で用いた液晶セル22や23等で示すように、ラジカルを発生しうる基を有さない配向膜材料を用いるときは、ラジカルを発生しうる基を有する高分子材料を混合することで面外配向制御が可能となる。このとき、ラジカルを発生しうる基が適当量、導入されていれば面外配向制御が可能である。また、実施例21、22のように第一基板にのみにラジカル発生能を有する光配向膜が塗布してあるときも面外配向制御が可能な場合がある。これは用いる光配向膜の種類に依存し、例えば、液晶の配向規制力が小さいときや光の照射により液晶の配向規制力が低下するときにみられる。
(一次露光を適応したときの液晶配向性の目視評価の結果)
 クロスニコルに配置した偏光板を用いて、二次露光後の液晶セルの配向状態を確認した。なお、液晶セルの一軸配向方向と偏光方向のなす角度は45度とした。結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000055
 一次露光として、第一基板のみに全面露光すると傾斜(チルト)配向が形成された(図4A及び図4B)。
 図4(図4A及び図4Bをまとめて図4ともいう)において、符号3で示される部分は、一次露光で第一基板のみ露光し、二次露光で全面露光された領域である。符号3で示される部分は、グレーの中間色を示し、傾斜(チルト)配向が形成されていた。符号4で示される部分は、一次露光で第一基板のみ露光し、二次露光で露光されなかった非露光領域である。符号4で示される部分は、明視野(白色)を示し、面内配向が形成されていた。
 一次露光で第一基板及び第二基板を全面露光すると、面内配向が形成された(図5A及び図5B)。
 図5(図5A及び図5Bをまとめて図5ともいう)において、符号5で示される部分は、一次露光で第一・第二基板を露光し、二次露光で全面露光された領域である。符号6で示される部分は、一次露光で第一・第二基板を露光し、二次露光で露光されなかった非露光領域である。符号5及び6の部分とも、明視野(白色)を示し、面内配向が形成されていた。このように、セル作成前の基板に対して、光照射をし、配向膜中に含まれるラジカルを発生しうる基を失活させることで、二次露光のときに重合性化合物(添加剤)との反応が誘起されず、面外配向が形成されなくなることが確認できた。
(配向パターニングの評価)
 クロスニコルに配置した偏光板を用いて、パターン露光した液晶表示素子の配向状態を確認した。なお、液晶セルの一軸配向方向と偏光方向のなす角度は45度とした。配向パターンの評価は、光照射による配向制御の可否及び配向の一様さ、配向制御面(面内一軸配向と面外配向との境界面)の鮮明さの観点で目視観察して判断した。結果を下記表10に示す。
Figure JPOXMLDOC01-appb-T000056
 光照射による面内(一軸)配向から面外配向への配向変化は一様に制御可能であり、異なる配向の境界面は鮮明であった(図6)。図6で示されるように、明視野(白色)の面内配向領域と暗視野(黒色)の面外配向領域とできれいにパターニングできることが確認できた。
 尚、これは、配向膜を構成する高分子の種類や配向処理方法によらない。種類の大きく異なる材料を用いて配向パターンが作製可能であったため、表6から表8において面外配向制御可能であった実施例すべてで配向パターニングは可能であると推察できる。
(微細な配向パターニングの評価)
 クロスニコルに配置した偏光板を用いて、パターン露光した液晶表示素子の配向状態を確認した。なお、液晶セルの一軸配向方向と偏光方向のなす角度は45度とした。配向パターンの評価は、光照射による配向制御の可否及び配向の一様さ、配向制御面(面内一軸配向と面外配向との境界面)の鮮明さの観点で目視観察して判断した。結果を下記表11に示す。
Figure JPOXMLDOC01-appb-T000057
 一次露光としてパターン露光した基板を用いて作製した液晶表示素子は、フォトマスクのL/S幅によらず一様かつ明瞭な微細配向パターンが作製可能であった。
 例えば、実施例27で得られた液晶表示素子の写真を図7に示す。このとき、一次露光として第一基板にのみパターン露光しているため、図7の符号7で示される中間色(グレー)部分は、傾斜(チルト)配向状態が形成されている。図7の符号8で示される暗視野(黒色)部分は、面外配向状態が形成されている。
 図8は、実施例27のフォトマスクのL/S幅を変えた実施例30の結果を示す。図8において、中間色(グレー)部分と暗視野(黒色)部分との違いは、図7で説明したとおりである。
 尚、中間色(グレー)部分を面内一軸配向としたいときは、第二基板にも第一基板と同様のパターン露光し、露光部位同士を張り合わせて液晶セルを作製した後に二次露光を行えばよい。
 一次露光せず二次露光としてパターン露光した液晶表示素子は、実施例31で示すとおり、フォトマスクのL/S幅が100μmの条件下で、配向パターニング可能であることが確認できた。実施例31の液晶表示素子も、明視野(白色)の面内配向領域と暗視野(黒色)の面外配向領域とが明瞭にパターニングできていた。
 さらに、実施例32で示すとおり、第一・第二基板の両方にパターン露光し、パターン方向を直行に張り合わせて液晶セルを作製した後に二次露光することで、面内一軸配向、面外配向、傾斜配向の三種類の配向状態を一つの液晶表示素子内に作製できることが確認できた。
 実施例32で得られた液晶表示素子の結果を示す(図9A及び図9B)。図9Aに液晶表示素子の写真を示し、図9Aの液晶表示素子の写真を模式的に表した図を図9Bに示す。
 図9(図9A及び図9Bをまとめて図9ともいう)で示すとおり、符号9で示される暗視野(黒色)部分は、面外配向状態が形成されている。符号10で示される明視野(白色)部分は、面内配向が形成されている。符号11で示される中間色(グレー)部分(図9Bにおいては、斜線模様で表している部分)は、傾斜(チルト)配向状態が形成されている。
 本発明によれば、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を工業的に、歩留まりよく作り出すことができる。
 101  液晶表示素子
 102  櫛歯電極基板
 102a 基材
 102b 線状電極
 102c ラジカル発生膜
 102d 基材
 102e 面電極
 102f 絶縁膜
 102g 線状電極
 102h ラジカル発生膜
 103  液晶組成物
 104  対向基板
 104a 液晶配向膜
 104b 基材

 

Claims (16)

  1.  工程(A):光の照射によりラジカルを発生しうるラジカル発生膜を基板上に形成する工程、及び、
     工程(B):液晶及びラジカル重合性化合物を含有する液晶組成物を前記ラジカル発生膜に接触させ、その状態を保持しつつ、前記ラジカル重合性化合物を重合反応させるのに十分な240~400nmにピークを有する光を前記液晶組成物に照射する工程を含み、
     前記ラジカル重合性化合物は、重合することにより、前記液晶を垂直に配向させる機能を有し、
     さらに、下記要件(Z1)及び(Z2)の少なくとも一つの要件を含み、面内配向領域、面外配向領域、及び傾斜配向領域のうち少なくとも2つの領域がパターニングされた液晶表示素子を製造することを特徴とする、液晶表示素子の製造方法。
      要件(Z1):前記工程(A)と前記工程(B)との間に、前記工程(A)で得られた前記ラジカル発生膜に240~400nmにピークを有する光を照射して、前記ラジカル発生膜のラジカル発生能を失活させる工程(C)をさらに有する。
      要件(Z2):前記工程(B)の240~400nmにピークを有する光を前記液晶組成物に照射する工程がフォトマスクを介して行われる。
  2.  前記ラジカル発生膜が、一軸配向処理された被膜である、請求項1に記載の液晶表示素子の製造方法。
  3.  前記工程(B)の240~400nmにピークを有する光を前記液晶組成物に照射する工程を無電界で行う、請求項1又は2に記載の液晶表示素子の製造方法。
  4.  前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体を有する、請求項1~3のいずれか一項に記載の液晶表示素子の製造方法。
  5.  前記ラジカル重合を誘発する有機基を含有する重合体が、下記式(1)で表される構造単位を主鎖に有する、請求項4に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、Aはラジカル重合を誘発する有機基を表す。)
  6.  前記重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレア、及びポリアミドから選ばれる少なくとも一種である、請求項4又は5に記載の液晶表示素子の製造方法。
  7.  前記ラジカル重合を誘発する有機基が、下記式(3)で表される基である、請求項5に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
     Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
     Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
    Figure JPOXMLDOC01-appb-C000003
     式[X-1]~[X-18]中、*はRとの結合箇所を示し、S及びSはそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R及びRはそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
    Figure JPOXMLDOC01-appb-C000004
     式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有してもよいフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していてもよく、
     Qは下記のいずれかの構造を表し、
    Figure JPOXMLDOC01-appb-C000005
     式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
     R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
  8.  前記ラジカル重合を誘発する有機基を含有するジアミンが、下記式(2)で表されるジアミンである、請求項6に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     (式(2)中、A及びAはそれぞれ水素原子又は下記式(3)で表される基を表し、但し、A及びAのうち少なくとも1つは下記式(3)で表される基を表し、
     Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
     pは0~2の整数を表す。pが2の場合、複数のA及びEはそれぞれ独立して前記定義を有する。また、pが0の場合、Aは下記式(3)で表される基からなる。)
    Figure JPOXMLDOC01-appb-C000007
     (式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
     Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
     Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
    Figure JPOXMLDOC01-appb-C000008
     式[X-1]~[X-18]中、*はRとの結合箇所を示し、S及びSはそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R及びRはそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
    Figure JPOXMLDOC01-appb-C000009
     式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有してもよいフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していてもよく、
     Qは下記のいずれかの構造を表し、
    Figure JPOXMLDOC01-appb-C000010
     式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
     R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
  9.  前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物である、請求項1~8のいずれか一項に記載の液晶表示素子の製造方法。
  10.  前記ラジカル重合性化合物が有する重合反応性基が、以下の構造から選ばれる、請求項9に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000011
     (式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数3~20のアルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示し、Rのアルキル基は、直鎖、分岐、又は環状のアルキル基を示す。)
  11.  前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有する、請求項1~10のいずれか一項に記載の液晶表示素子の製造方法。
  12.  ラジカル発生膜を有する第一基板と、第二基板とを用意し、
     前記第一基板上のラジカル発生膜が、前記第二基板に対向するように配置し、
     前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填することにより液晶セルを作製する工程をさらに有する、
     請求項1~11のいずれか一項に記載の液晶表示素子の製造方法。
  13.  前記第二基板がラジカル発生膜を有する、請求項12に記載の液晶表示素子の製造方法。
  14.  前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である、請求項12に記載の液晶表示素子の製造方法。
  15.  前記一軸配向性を有する液晶配向膜が、水平配向用の液晶配向膜である請求項14に記載の液晶表示素子の製造方法。
  16.  前記ラジカル発生膜を有する第一基板が、櫛歯電極を有する基板である、請求項12~15のいずれか一項に記載の液晶表示素子の製造方法。

     
PCT/JP2020/047456 2019-12-18 2020-12-18 パターン化された液晶表示素子の製造方法 WO2021125327A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080088920.7A CN114846397A (zh) 2019-12-18 2020-12-18 经图案化的液晶显示元件的制造方法
JP2021565681A JPWO2021125327A1 (ja) 2019-12-18 2020-12-18
KR1020227023630A KR20220116219A (ko) 2019-12-18 2020-12-18 패턴화된 액정 표시 소자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019227946 2019-12-18
JP2019-227946 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021125327A1 true WO2021125327A1 (ja) 2021-06-24

Family

ID=76478327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047456 WO2021125327A1 (ja) 2019-12-18 2020-12-18 パターン化された液晶表示素子の製造方法

Country Status (5)

Country Link
JP (1) JPWO2021125327A1 (ja)
KR (1) KR20220116219A (ja)
CN (1) CN114846397A (ja)
TW (1) TW202130703A (ja)
WO (1) WO2021125327A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206834A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 液晶表示装置及びその製造方法
JP2000122099A (ja) * 1998-10-20 2000-04-28 Sharp Corp 液晶ディスプレイデバイスおよびその製造方法、ならびに基板およびその製造方法
WO2018097155A1 (ja) * 2016-11-22 2018-05-31 日産化学工業株式会社 液晶表示素子の製造方法並びに液晶表示素子用基板及び液晶表示素子組立体
WO2019004433A1 (ja) * 2017-06-30 2019-01-03 日産化学株式会社 ゼロ面アンカリング膜の製造方法及び液晶表示素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053530B2 (ja) 2004-09-14 2008-02-27 独立行政法人科学技術振興機構 ゼロ面アンカリング液晶配向法及びその液晶デバイス
JP2013231757A (ja) 2012-04-27 2013-11-14 Lg Display Co Ltd ゼロ面アンカリング液晶配向法及びそれを利用した非接触液晶配向法、並びに液晶表示装置
JP6858495B2 (ja) 2016-05-27 2021-04-14 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置および液晶表示装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206834A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 液晶表示装置及びその製造方法
JP2000122099A (ja) * 1998-10-20 2000-04-28 Sharp Corp 液晶ディスプレイデバイスおよびその製造方法、ならびに基板およびその製造方法
WO2018097155A1 (ja) * 2016-11-22 2018-05-31 日産化学工業株式会社 液晶表示素子の製造方法並びに液晶表示素子用基板及び液晶表示素子組立体
WO2019004433A1 (ja) * 2017-06-30 2019-01-03 日産化学株式会社 ゼロ面アンカリング膜の製造方法及び液晶表示素子

Also Published As

Publication number Publication date
CN114846397A (zh) 2022-08-02
TW202130703A (zh) 2021-08-16
KR20220116219A (ko) 2022-08-22
JPWO2021125327A1 (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
JP7234924B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2021020399A1 (ja) 横電界液晶表示素子、及び横電界液晶セルの製造方法
WO2022030602A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
JP7276149B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2022092088A1 (ja) ラジカル発生膜形成組成物、ラジカル発生膜、液晶表示素子の製造方法、及び液晶表示素子
WO2021125327A1 (ja) パターン化された液晶表示素子の製造方法
JP7367674B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
JP7367673B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2022071286A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
WO2021125319A1 (ja) 液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法
WO2022196565A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
WO2021125329A1 (ja) ラジカル発生膜形成組成物、ラジカル発生膜、及び横電界液晶セルの製造方法
TWI834677B (zh) 零面錨定膜之製造方法及液晶顯示元件
JPWO2019244821A5 (ja)
JPWO2019244820A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565681

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227023630

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902380

Country of ref document: EP

Kind code of ref document: A1