WO2021125319A1 - 液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法 - Google Patents

液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法 Download PDF

Info

Publication number
WO2021125319A1
WO2021125319A1 PCT/JP2020/047411 JP2020047411W WO2021125319A1 WO 2021125319 A1 WO2021125319 A1 WO 2021125319A1 JP 2020047411 W JP2020047411 W JP 2020047411W WO 2021125319 A1 WO2021125319 A1 WO 2021125319A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
acid
group
substrate
film
Prior art date
Application number
PCT/JP2020/047411
Other languages
English (en)
French (fr)
Inventor
尚宏 野田
雄介 山本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021565676A priority Critical patent/JPWO2021125319A1/ja
Priority to CN202080088138.5A priority patent/CN114830024A/zh
Priority to KR1020227022843A priority patent/KR20220116205A/ko
Publication of WO2021125319A1 publication Critical patent/WO2021125319A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/3243Polyamines aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • the present invention provides a liquid crystal aligning agent that can be suitably used for a PSA type liquid crystal display element manufactured by irradiating a liquid crystal molecule with ultraviolet rays while applying a voltage, a weak anchoring liquid crystal display element, and the like, and radical generation. Regarding the membrane.
  • the present invention also relates to a method for manufacturing a transverse electric field liquid crystal cell using the liquid crystal alignment agent and a radical generating film.
  • liquid crystal display elements have been widely used in mobile phones, computers, television displays, and the like.
  • Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR (Virtual Reality) and ultra-high-definition displays in the future.
  • Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Indicator) have been proposed as the display method of the liquid crystal display, and the liquid crystal is oriented in a desired orientation state in all modes.
  • a film liquid crystal alignment film that induces to the surface is used.
  • the liquid crystal display element is also aimed at improving the transmittance and lowering the drive voltage.
  • the FFS mode is used not only for TV applications but also for tablets and smartphones, the transmittance and drive voltage are improved. The reduction of is a very big issue.
  • this technology has problems that occur in principle, and the first is that it is necessary to perform under very delicate conditions in order to stably generate a polymer brush on a substrate, which is not realistic considering mass production. There is no such thing.
  • the alignment film plays an important role such as suppressing seizure, but it is difficult to control the electrical characteristics required when using a polymer brush or the like.
  • the response speed when the voltage is turned off becomes very slow. It is expected that the threshold voltage will be significantly reduced by eliminating the resistance during driving applied to the liquid crystal by setting the orientation regulating force to zero, and the brightness will be improved by reducing the misaligned region during driving, but the liquid crystal will return. As for, since the power when the liquid crystal returns depends on the elastic force of the liquid crystal, it is considered that the speed is significantly reduced as compared with the case where the alignment film is present.
  • the present invention has been made to solve the above-mentioned problems, and applies a polymer stabilization technology capable of producing a weak anchoring film, and does not contact at room temperature by a simple and inexpensive method. It is an object of the present invention to provide a transverse electric field liquid crystal display element capable of simultaneously realizing orientation, lowering the drive voltage, and increasing the response speed when the voltage is off.
  • transverse electric field liquid crystal display element having excellent black display quality, high transmittance, and suppressed response time delay, which is a problem of a weak anchoring display element. Then, in order to obtain such an excellent transverse electric field liquid crystal display element, it is an object of the present invention to provide a liquid crystal alignment agent used for the transverse electric field liquid crystal display element.
  • the present invention includes the following.
  • A represents an organic group that induces radical polymerization.
  • the polymer is at least one polymer selected from a polyimide precursor, a polyimide, a polyurea, and a polyamide obtained by using a diamine component containing a diamine containing an organic group that induces radical polymerization [1].
  • the liquid crystal aligning agent according to.
  • a 1 and A 2 each represent a hydrogen atom or an organic group that induces the radical polymerization, except that at least one of A 1 and A 2 represents the organic group that induces the radical polymerization.
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , -SO 2- , or theirs.
  • p represents an integer of 0 to 2. when p is 2, having a plurality of A 2 is defined independently. When p is 0, A 1 is composed of an organic group that induces radical polymerization.
  • the liquid crystal alignment agent according to any one of [1] to [3], wherein the organic group that induces radical polymerization is a group represented by the formula (3).
  • the broken line represents the bond with the benzene ring, and R 6 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH.
  • R 8 represents an organic group that induces radical polymerization represented by a formula selected from the formulas [X-1] to [X-18], [W], [Y] and [Z].
  • * indicates the connection point with R 7, and S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively.
  • R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and R 1 and R 2 are independently hydrogen atoms, halogen atoms, or 1 to 10 carbon atoms, respectively.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • a step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between the first substrate and the second substrate is included, and either one of the first substrate and the second substrate is a comb tooth electrode.
  • a method for manufacturing a transverse electric field liquid crystal cell, which is a substrate and the other is a facing substrate.
  • the transverse electric field liquid crystal display in order to obtain a transverse electric field liquid crystal display element having excellent black display quality, high transmittance, and suppressed response time delay, which is a problem of a weak anchoring display element, the transverse electric field liquid crystal display. It is possible to provide a liquid crystal aligning agent that can be effectively used for an element.
  • the present invention is a liquid crystal alignment agent containing a polymer having a structural unit represented by the above formula (1) in the main chain.
  • the liquid crystal alignment agent of the present invention contains an organic group that induces radical polymerization.
  • Examples of such an organic group that induces radical polymerization include a group represented by the above formula (3).
  • the following are preferable as the organic group represented by the formula selected from the above [W], [Y] and [Z].
  • (b) and (c) are preferable from the viewpoint of reliability of the obtained liquid crystal display element.
  • the polymer having an organic group that induces radical polymerization used in the present invention in order to obtain a polymer having a group capable of generating a radical, a methacryl group, an acrylic group, a vinyl group, and an allyl group are used as monomer components.
  • the monomer that generates radicals has a problem that it spontaneously polymerizes, and becomes an unstable compound.
  • a polymer derived from a diamine is preferable, and a polyimide precursor such as a polyamic acid or a polyamic acid ester, a polyimide, a polyurea, a polyamide, or the like is more preferable.
  • Such a radical-generating site-containing diamine are diamines having a side chain capable of generating radicals and being polymerized, and examples thereof include diamines represented by the above formula (2).
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , It represents a divalent organic group consisting of -SO 2- or any combination thereof, and here, "any combination thereof” refers to -O- (CH 2 ) m-O-, -O-.
  • diamine having a photoreactive group containing at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group and a cinnamoyl group are as follows. Examples include, but are not limited to, compounds. (In the formula, J 1 represents a single bond, -O-, -COO-, -NHCO-, or -NH-, and J 2 is a single bond, or unsubstituted or substituted with a fluorine atom and has 1 to 1 to carbon atoms. Represents 20 alkylene groups.)
  • the diamine having an organic group represented by the formula selected from the above [W], [Y] and [Z] has the following formula in consideration of ease of synthesis, high versatility, characteristics and the like.
  • the structures represented are most preferred, but not limited to these.
  • n is an integer of 2 to 8
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,- (CH 2 ) m- , -SO 2- , -O- (CH 2 ) m- O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m-, -NH- (CH 2) 2 ) m- , -SO 2- (CH 2 ) m- , -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO- or -COO- (CH 2 ) m- OCO- Yes
  • the diamine can be synthesized by selecting an appropriate synthesis method or the like.
  • the main synthetic methods of the diamine of the present invention will be described below.
  • the method described below is a synthesis example and is not limited to this. Basically, it can be synthesized according to the following scheme.
  • the precursor compound [A] can be produced by a method of introducing a radical generating group by reacting compound [C] with compound A'as described below.
  • the compound [D] and the compound [E] are reacted so that X 1 and X 2 are the same and V 1 and V 2 are the same [ Examples thereof include a method of obtaining C1] and a method of reacting compound [D] with compound [F].
  • the compound [A] can also be obtained by synthesizing a compound [G] in which a radical generating group is introduced into the compound [D] in advance and reacting the compound [E] with the compound [E] as described below.
  • X 1 , X 2 , X 3 , X 4 and X 5 each independently represent a leaving group or a reactive group that causes an addition reaction, a substitution reaction, or a condensation reaction, and R 7 and R 8 are described above. Represents the same meaning as. Further, A 1 and A 2 in the above formula have the same meaning as the description of the formula (2) shown in the claims. In the formula, V 1 and V 2 represent an amino group or an organic group that can be independently converted into an amino group, respectively.
  • Examples of the organic group that can be converted into an amino group include, but are not limited to, an amino group having a nitro group or a protective group, an isocyanate group, a blocked isocyanate group, a carboxy group, an amide group and the like.
  • Amino groups with nitro groups and some protecting groups, benzophenoneimines, and phthalimides can be converted to amino groups by hydrogenation reduction using palladium carbon or iron, and for protected amino groups, amino can be selected by appropriately selecting deprotection conditions. Can be derived to the base.
  • Examples of the protected amino group include Boc (tert-butoxycarbonyl) protected amine, Fmoc (9-fluorenylmethyloxycarbonyl) protected amine, benzyl protected amine, benzyloxycarbonyl protected amine and the like.
  • isocyanates, blocked isocyanates, etc. can be induced into amino groups by heating in the presence of water, and carboxylic acids and amides can be converted to amino groups via isocyanates using the Curtius rearrangement or Hoffmann transition.
  • a 1 the A 2 is also present which varies in the process of converting to an amino group by, it is important to select these techniques as appropriate.
  • the diamine according to the present invention can be obtained by synthesizing according to the above method, but this is an example and is not limited thereto.
  • the diamine used in the present invention is 1 according to the characteristics such as the liquid crystal orientation when the liquid crystal alignment film is formed, the sensitivity in the polymerization reaction when energy is applied, the liquid crystal orientation, the voltage holding characteristic, and the accumulated charge. It is also possible to use the type or a mixture of two or more types.
  • the amount of the diamine having a site where such radical polymerization occurs is not particularly limited, and it is possible to use all the diamines having a site where the radical is generated, but for the synthesis of the polymer to be contained in the liquid crystal aligning agent. It is preferable to use an amount of 5 to 80 mol% of the total diamine component to be used, and more preferably 10 to 50 mol%.
  • a diamine other than the diamine having a site where the radical is generated can be used in combination as a diamine component.
  • Alicyclic diamines such as methylcyclohexyl) methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8 Aliphatic diamines such as -diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane; 1,3-bis [2- (p-aminophenyl) Diamines having a urea structure such as ethyl] urea and 1,3-bis [2- (p-aminophenyl) ethyl] -1-tert-butoxycarbonyl urea; Np-aminophenyl-4-p-aminophenyl ( Diamine having
  • the other diamines may be used alone or in combination of two or more depending on the characteristics such as the liquid crystal orientation when the liquid crystal alignment film is formed, the sensitivity in the polymerization reaction, the voltage holding characteristic, and the accumulated charge. ..
  • the tetracarboxylic dianhydride to be reacted with the above diamine component in the synthesis when the polymer is a polyamic acid is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-
  • one or two or more types of tetracarboxylic dianhydride may be used in combination depending on the liquid crystal orientation when the radical generating film is formed, the sensitivity in the polymerization reaction, the voltage holding property, the accumulated charge, and the like. ..
  • the structure of the tetracarboxylic diandialkyl ester to be reacted with the above diamine component in the synthesis when the polymer is a polyamic acid ester is not particularly limited, and specific examples thereof are given below.
  • aliphatic tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-Cyclopentane tetracarboxylic acid dialkyl ester, 2,3,4,5-tetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexylsuccinic acid dialkyl ester, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthal
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3', 4,4'-biphenyltetracarboxylic acid dialkyl ester, 2,2', 3,3'-biphenyltetracarboxylic acid dialkyl ester, and the like.
  • the diisocyanate to be reacted with the above diamine component in the synthesis when the polymer is polyurea is not particularly limited and can be used depending on availability and the like.
  • the specific structure of the diisocyanate is shown below.
  • R 22 and R 23 represent aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
  • K-1 to K-5 are inferior in reactivity but have the advantage of improving solvent solubility
  • aromatic diisocyanates shown in K-6 to K-7 are highly reactive and heat resistant.
  • K-1, K-7, K-8, K-9, and K-10 are preferable in terms of versatility and characteristics
  • K-12 is preferable from the viewpoint of electrical characteristics
  • K-13 is preferable from the viewpoint of liquid crystal orientation.
  • One or more types of diisocyanate can be used in combination, and it is preferable to apply various diisocyanates according to the desired characteristics.
  • diisocyanates can be replaced with the tetracarboxylic acid dianhydride described above, and they may be used in the form of a copolymer of polyamic acid and polyurea, and the polyimide and polyurea can be chemically imidized. It may be used in the form of a copolymer.
  • the structure of the dicarboxylic acid to be reacted in the synthesis when the polymer is polyamide is not particularly limited, but specific examples are as follows.
  • Specific examples of aliphatic dicarboxylic acids include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladic acid, pimelic acid, 2,2-.
  • Dicarboxylic acids such as dimethylglutaric acid, 3,3-diethylsuccinic acid, adipic acid, sebacic acid and pimelic acid can be mentioned.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids examples include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid.
  • dicarboxylic acid containing a heterocycle examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, and the like.
  • various dicarboxylic acids may have an acid dihalide or an anhydride structure. It is particularly preferable that these dicarboxylic acids are dicarboxylic acids capable of giving a polyamide having a linear structure from the viewpoint of maintaining the orientation of the liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropandicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propandicarboxylic acid, 4,4 "-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-Pyridoxydicarboxylic acid, acid dihalide thereof, etc.
  • dicarboxylic acids used in the present invention may be used in combination, and the dicarboxylic acids are not limited to the above-mentioned exemplified compounds.
  • tetracarboxylic acid diester diisocyanate and dicarboxylic acid.
  • a known synthetic method can be used to obtain a polyamic acid, a polyamic acid ester, a polyurea, or a polyamide by reaction with a component.
  • a diamine component with one or more components selected from a tetracarboxylic dianhydride component, a tetracarboxylic dianester, a diisocyanate and a dicarboxylic acid in an organic solvent.
  • the reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as the produced polymer dissolves. Further, even if the organic solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate. Since the water content in the organic solvent inhibits the polymerization reaction and further causes the produced polymer to be hydrolyzed, it is preferable to use a dehydrated and dried organic solvent.
  • organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphate triamide, ⁇ -Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cell solve, ethyl cell solve, methyl cell solve
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or is organic.
  • a method of adding by dispersing or dissolving in a solvent conversely, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, a method of adding a tetracarboxylic dianhydride component and a diamine component. Examples thereof include a method of adding alternately, and any of these methods may be used.
  • the diamine component or the tetracarboxylic dianhydride component When the diamine component or the tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be reacted individually in sequence, or may be reacted individually and have a low molecular weight. The bodies may be mixed and reacted to form a high molecular weight compound.
  • the temperature at which the diamine component and the tetracarboxylic dianhydride component are reacted can be selected from any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C.
  • the reaction can be carried out at any concentration, for example, the total amount of the diamine component and the tetracarboxylic dianhydride component is 1 to 50% by mass, preferably 5 to 30% by mass with respect to the reaction solution. ..
  • the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component in the above polymerization reaction can be arbitrarily selected according to the molecular weight of the polyamic acid to be obtained. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced. The preferred range is 0.8 to 1.2.
  • the method for synthesizing the polymer used in the present invention is not limited to the above method, and when synthesizing a polyamic acid, the above tetracarboxylic dianhydride is used in the same manner as a general method for synthesizing a polyamic acid.
  • the corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid having a corresponding structure or a tetracarboxylic acid derivative such as a tetracarboxylic acid dihalide. Further, when synthesizing polyurea, diamine and diisocyanate may be reacted.
  • a diamine and a component selected from a tetracarboxylic acid diester and a dicarboxylic acid are induced into acid halide in the presence of a known condensing agent or by a known method. , Diamine may be reacted.
  • Examples of the method of imidizing the above-mentioned polyamic acid to form polyimide include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the imidization rate from the polyamic acid to the polyimide is preferably 30% or more, more preferably 30 to 99%, because the voltage holding rate can be increased.
  • 70% or less is preferable from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish. Considering both characteristics, 40-80% is more preferable.
  • the temperature at which the polyamic acid is thermally imidized in the solution is usually 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
  • Catalytic imidization of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring at -20 to 250 ° C., preferably 0 to 180 ° C.
  • the amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is usually 1 to 50 mol times, preferably 1 to 50 mol times that of the amic acid group. It is 3 to 30 mol times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferable because it facilitates purification after completion of the reaction.
  • the imidization rate due to catalyst imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, the reaction time, and the like.
  • the reaction solution When recovering the produced polymer from the reaction solution of the polymer, the reaction solution may be put into a poor solvent and precipitated.
  • the poor solvent used for precipitation formation include methanol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, when the operation of redistributing the polymer recovered by precipitation in an organic solvent and repeating the operation of recovering the precipitation 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these, because the purification efficiency is further improved.
  • the polymer of the present invention is at least one selected from a polyimide precursor containing a structural unit represented by the following formula (6) and a polyimide as an imidized product thereof from the viewpoint of use as a liquid crystal aligning agent. And more preferable.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from the diamine of the formula (2)
  • R 4 is a hydrogen atom.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidization by heating.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Further, X 1 in the polyimide precursor is required for solubility of the polymer in the solvent, coating property of the liquid crystal alignment agent, orientation of the liquid crystal when it is used as a liquid crystal alignment film, voltage retention rate, accumulated charge, and the like. It is appropriately selected according to the degree of the characteristics, and one kind may be used in the same polymer, or two or more kinds may be mixed in the same polymer. If a specific example of X 1 is dared to be shown, the structures of the formulas (X-1) to (X-46) published in paragraphs 13 to 14 of International Publication 2015/111968 can be mentioned.
  • X 1 The preferred structure of X 1 is shown below, but the present invention is not limited thereto.
  • (A-1) and (A-2) are particularly preferable from the viewpoint of photoorientity, and (A-4) is particularly preferable from the viewpoint of further improving the relaxation rate of accumulated charges, and (A). -15) to (A-17) are particularly preferable from the viewpoint of further improving the liquid crystal orientation and the relaxation rate of the accumulated charge.
  • the polyimide precursor containing the structural unit represented by the formula (6) is selected from at least the structural unit represented by the following formula (7) and the polyimide compound thereof, as long as the effects of the present invention are not impaired. It may contain one kind.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 2 is a divalent organic group derived from a diamine not containing the structure of the formula (1)
  • R 5 Is the same as the definition of R 4 in the above formula (6), and represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Further, it is preferable that at least one of twofold R 6 is hydrogen atom.
  • Y 2 in the polyimide precursor is a divalent organic group derived from a diamine that does not contain the structure of the formula (1), and its structure is not particularly limited. Further, Y 2 depends on the degree of required characteristics such as the solubility of the polymer in the solvent, the coatability of the liquid crystal alignment agent, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the voltage retention rate, and the accumulated charge. One type may be used in the same polymer, or two or more types may be mixed in the same polymer.
  • Y 2 The preferred structure of Y 2 is shown below, but the present invention is not limited thereto.
  • (B-28), (B-29) and the like are particularly preferable from the viewpoint of further improving the film hardness, and (B-1) to (B-3) and the like are liquid crystal oriented.
  • Particularly preferable from the viewpoint of further improvement (B-14) to (B-18) and (B-27) are particularly preferable from the viewpoint of further improvement of the relaxation rate of the accumulated charge, (B-26).
  • Etc. are preferable from the viewpoint of further improving the voltage holding ratio.
  • the structural unit represented by the formula (6) is the formula (6) and the formula. It is preferably 5 mol% to 100 mol%, more preferably 10 mol% to 50 mol%, based on the total of (7).
  • Examples of the polyimide having a divalent group represented by the formula (1) in the main chain include a polyimide obtained by ring-closing the above-mentioned polyimide precursor.
  • the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the liquid crystal alignment agent used in the present invention has a weight other than the polymer containing an organic group that induces radical polymerization. It may contain coalescence. At that time, the content of the other polymer in all the components of the polymer is preferably 5 to 95% by mass, more preferably 30 to 70% by mass.
  • the molecular weight of the polymer contained in the liquid crystal alignment agent is GPC (Gel Permeation) in consideration of the strength of the liquid crystal alignment film obtained by applying the liquid crystal alignment agent, workability at the time of forming a coating film, uniformity of the coating film, and the like.
  • the weight average molecular weight measured by the Chromatography method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • the liquid crystal alignment agent can contain a polymer component and, if necessary, an organic solvent that dissolves or disperses other components.
  • an organic solvent is not particularly limited, and examples thereof include organic solvents as exemplified in the above-mentioned synthesis of polyamic acid.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of.
  • N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.
  • a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent having high solubility of the components contained in the liquid crystal alignment agent.
  • Examples of the solvent for improving the uniformity and smoothness of the coating film include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, and ethyl carbi.
  • ethyl carbitol acetate ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether , Dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol Monoacetate, dipropylene glycol monoethyl ether, dipropylene glycol Monoacetate monoethyl ether, dipropylene glycol Monoacetate monoethyl
  • the liquid crystal alignment agent may contain components other than the above. Examples include a compound that improves the film thickness uniformity and surface smoothness when a liquid crystal alignment agent is applied, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and further improves the film strength of the liquid crystal alignment film. Examples include compounds.
  • Examples of compounds that improve the uniformity of film thickness and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Co., Ltd.), Megafuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by 3M), Asahi. Examples thereof include Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Corporation) and the like. When these surfactants are used, the ratio of their use is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of the total amount of the polymer contained in the liquid crystal alignment agent. 1 part by mass.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound.
  • a functional silane-containing compound and an epoxy group-containing compound For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.
  • a phenol compound such as 2,2'-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. May be good.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. Is.
  • a dielectric or a conductive substance for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added to the liquid crystal alignment agent.
  • the liquid crystal alignment agent of the present invention contains an organic group that induces radical polymerization and has a radical generating ability
  • the liquid crystal alignment agent of the present invention is used in the present specification to form a radical generation film. Also called a thing.
  • the film obtained from the liquid crystal alignment agent of the present invention is also referred to as a radical generating film.
  • the radical generation film of the present embodiment is obtained by using the radical generation film forming composition.
  • a cured film obtained by applying the radical generation film forming composition used in the present invention to a substrate and then drying and firing it can be used as it is as a radical generation film.
  • Examples of the method for applying the radical-generating film-forming composition include a spin coating method, a printing method, an inkjet method, a spray method, and a roll coating method. From the viewpoint of productivity, the transfer printing method is widely used industrially. It is also suitably used in the present invention.
  • the substrate on which the radical generation film forming composition is applied is not particularly limited as long as it is a highly transparent substrate.
  • Specific examples include glass plates, polycarbonate, poly (meth) acrylate, polyethersulfone, polyallylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, and tri.
  • plastic plates such as acetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.
  • the step of drying after applying the radical generation film forming composition is not always necessary, but if the time from application to firing is not constant for each substrate or if it is not fired immediately after coating, it is dried. It is preferable to include the process.
  • the drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by the transportation of the substrate or the like, and the drying means thereof is not particularly limited.
  • a method of drying on a hot plate at a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the coating film formed by applying the radical generation film forming composition by the above method can be fired to form a cured film.
  • the firing temperature can be usually any temperature of 100 to 350 ° C., but is preferably 140 to 300 ° C., more preferably 150 to 230 ° C., and even more preferably 160 to 220 ° C.
  • the firing time is usually any time of 5 to 240 minutes. It is preferably 10 to 90 minutes, more preferably 20 to 90 minutes.
  • a generally known method for example, a hot plate, a hot air circulation type oven, an IR (infrared) type oven, a belt furnace, or the like can be used.
  • the thickness of this cured film can be selected as needed, but preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element can be easily obtained. Further, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is preferable.
  • a substrate having a radical generating film can be obtained, and the radical generating film can be subjected to a uniaxial orientation treatment.
  • the method for performing the uniaxial alignment treatment include a photoalignment method, an orthorhombic vapor deposition method, rubbing, and a uniaxial orientation treatment using a magnetic field.
  • the substrate is moved so that the rubbing cloth and the film come into contact with each other while rotating the rubbing roller around which the rubbing cloth is wound.
  • ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used as the radiation to irradiate the coating film.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof.
  • the direction of irradiation is diagonal.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
  • the irradiation amount of radiation is preferably 10 to 2,000 mJ / cm 2 , and more preferably 30 to 1,000 mJ / cm 2 .
  • the light irradiation on the coating film may be performed while heating the coating film in order to enhance the reactivity.
  • the temperature at the time of heating is usually 30 to 250 ° C, preferably 40 to 200 ° C, and more preferably 50 to 150 ° C.
  • the light irradiation film obtained in the above step can be used as it is as a liquid crystal alignment film. Cleaning with an organic solvent or a combination thereof may be carried out.
  • the firing temperature at this time is preferably 80 to 300 ° C, more preferably 80 to 250 ° C.
  • the firing time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the number of firings may be one or two or more.
  • the photo-alignment treatment here corresponds to the treatment of light irradiation in a state where it is not in contact with the liquid crystal layer.
  • the organic solvent used for the above washing is not particularly limited, but specific examples thereof include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, and 1-methoxy-2-.
  • examples thereof include propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • the liquid crystal cell according to the present invention usually uses the above-mentioned radical generation film of the present invention as the liquid crystal alignment film arranged on one substrate side and is usually used as the liquid crystal alignment film as the liquid crystal alignment film arranged on the other substrate side.
  • a liquid crystal alignment film can be used.
  • the liquid crystal alignment film of the present embodiment to be arranged on the other substrate side the same method as the radical generation film is used except that a liquid crystal alignment agent usually used is used instead of the radical generation film forming composition. can get.
  • a substrate on which a transparent electrode for driving the liquid crystal is formed is formed on either of the above-mentioned substrates.
  • a substrate that can be used for the IPS liquid crystal display element an electrode pattern such as a standard IPS comb tooth electrode or a PSA fishbone electrode or a protrusion pattern such as MVA can also be used.
  • an element such as a transistor is used between an electrode for driving a liquid crystal and a substrate.
  • a transmissive liquid crystal display element When a transmissive liquid crystal display element is intended, it is common to use a substrate as described above, but when a reflective liquid crystal display element is intended, silicon is used only for one side of the substrate. An opaque substrate such as a wafer can also be used. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
  • the rubbing direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal having positive dielectric anisotropy, the rubbing direction is preferably substantially the same as the extending direction of the comb tooth electrode.
  • a substrate having a liquid crystal alignment film (first substrate) and a substrate on which a radical generation film is formed by the above method (second substrate) are formed by a radical generation film and a liquid crystal alignment film. It is obtained by arranging them so as to face each other, sandwiching a spacer, fixing the mixture with a sealant, and injecting and sealing a liquid crystal composition containing a liquid crystal and a radically polymerizable compound.
  • the size of the spacer used is usually 1 to 30 ⁇ m, but preferably 2 to 10 ⁇ m.
  • the orientation direction of the first substrate can be used in the IPS mode and the FFS mode, and if the rubbing directions are arranged so as to be orthogonal to each other, the twist nematic mode can be used. Can be used for. It is preferable that either one of the first substrate and the second substrate is a comb tooth electrode substrate.
  • the alignment film formed on the first substrate may be a known liquid crystal alignment film or a radical generation film according to the present invention, and can be appropriately selected depending on the intended purpose.
  • the alignment film formed on the first substrate can be subjected to a uniaxial alignment treatment. Further, it is preferable to form a uniaxially oriented liquid crystal alignment film for horizontal alignment on the first substrate.
  • the method of injecting the liquid crystal and the liquid crystal composition containing the radically polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing the liquid crystal and the polymerizable compound after depressurizing the inside of the produced liquid crystal cell, and polymerization with the liquid crystal.
  • a dropping method in which a mixture containing a sex compound is dropped and then sealed.
  • the polymerizable compound used together with the liquid crystal is not particularly limited as long as it is a radically polymerizable compound, and is, for example, a compound having one or two or more polymerizable reactive groups in one molecule. is there. It is preferably a compound having one polymerizable reactive group in one molecule (hereinafter, it may be referred to as "a compound having a monofunctional polymerizable group", "a compound having a monofunctional polymerizable group", or the like). ..
  • the polymerizable reactive group is preferably a radically polymerizable reactive group, for example, a vinyl bond.
  • At least one of the above radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable reactive group in one molecule, that is, a compound having a monofunctional radically polymerizable group.
  • a polymerizable group selected from the following structures is preferable.
  • * indicates a binding site with a portion of the compound molecule other than the polymerizable reactive group.
  • R b represents a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond, -O-, -NR.
  • c represents a binding group selected from ⁇ , —S—, ester bond and amide bond.
  • R c represents a hydrogen atom and an alkyl group having 1 to 4 carbon atoms.
  • the liquid crystal composition containing the above liquid crystal and the radically polymerizable compound it is preferable to contain the radically polymerizable compound in which the Tg of the polymer obtained by polymerizing the radically polymerizable compound is 100 ° C. or less.
  • a compound having a monofunctional radically polymerizable group has a reactive group capable of performing radical polymerization in the presence of an organic radical, and is, for example, tert-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, nonyl.
  • Methacrylate monomers such as methacrylate, lauryl methacrylate and n-octyl methacrylate; acrylate monomers such as tert-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, lauryl acrylate and n-octyl acrylate; styrene, styrene Derivatives (eg, o-, m-, p-methoxystyrene, o-, m-, p-tert-butoxystyrene, o-, m-, p-chloromethylstyrene, etc.), vinyl esters (eg, vinyl acetate) , Vinyl propionate, vinyl benzoate, vinyl acetate, etc.), vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, methyl is
  • Ra and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms
  • E is a single bond, -O-, -NR c- , -S-, an ester bond, Represents a bonding group selected from an amide bond.
  • R c indicates a hydrogen atom and an alkyl group having 1 to 4 carbon atoms.
  • At least one of the above radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable reactive group in one molecule, that is, a compound having a monofunctional radically polymerizable group.
  • Those are preferable from the viewpoints of ease of synthesis, compatibility with liquid crystals, and polymerization reactivity, and specifically, compounds having the following structures are preferable, but are not particularly limited.
  • Ra and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms.
  • the content of the radically polymerizable compound in the liquid crystal composition is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 50% by mass with respect to the total mass of the liquid crystal and the radically polymerizable compound. Hereinafter, it is more preferably 20% by mass or less.
  • the polymer obtained by polymerizing the above radically polymerizable compound preferably has a Tg of 100 ° C. or lower.
  • the liquid crystal generally refers to a substance exhibiting both solid and liquid properties, and typical liquid crystal phases include nematic liquid crystal and smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited.
  • One example is 4-pentyl-4'-cyanobiphenyl.
  • the liquid crystal cell into which the mixture (liquid crystal composition) containing the liquid crystal and the radically polymerizable compound is introduced to carry out the polymerization reaction of the radically polymerizable compound.
  • This can be done, for example, by applying heat or UV irradiation, and the radically polymerizable compound is polymerized in-situ to exhibit the desired properties.
  • UV irradiation is preferable because the use of UV enables orientation patterning and the polymerization reaction can be carried out in a shorter time.
  • a chiral dopant may be introduced into the liquid crystal cell, if necessary, in addition to the liquid crystal composition.
  • heating may be performed during UV irradiation.
  • the heating temperature at the time of UV irradiation is preferably in a temperature range in which the introduced liquid crystal exhibits liquid crystal properties, and is usually 40 ° C. or higher, preferably below a temperature at which the liquid crystal changes to an isotropic phase.
  • the UV irradiation wavelength in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the reactive polymerizable compound, and the UV irradiation amount is usually 0.5 to 30 J / cm 2 . However, preferably, it is 1 to 10 J / cm 2 , and the smaller the UV irradiation amount, the more the reliability deterioration due to the destruction of the members constituting the liquid crystal display can be suppressed, and the UV irradiation time can be reduced in manufacturing. It is suitable because it improves the tact of UV rays.
  • the heating in the case of polymerizing only by heating instead of UV irradiation is performed in a temperature range in which the temperature at which the polymerizable compound reacts and is lower than the decomposition temperature of the liquid crystal. Specifically, it is 100 ° C. or higher and 150 ° C. or lower.
  • a liquid crystal display element can be manufactured using the liquid crystal cell thus obtained.
  • a reflective liquid crystal display element can be obtained by providing the liquid crystal cell with a reflective electrode, a transparent electrode, a ⁇ / 4 plate, a polarizing film, a color filter layer, or the like according to a conventional method, if necessary.
  • a transmissive liquid crystal display element can be obtained by providing the liquid crystal cell with a backlight, a polarizing plate, a ⁇ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method, if necessary.
  • FIG. 1 is a schematic cross-sectional view showing an example of a liquid crystal display element according to the present invention, and is an example of an IPS mode liquid crystal display element.
  • the liquid crystal composition 3 is sandwiched between the comb tooth electrode substrate 2 provided with the radical generating film 2c and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb-tooth electrode substrate 2 is formed on the base material 2a and the base material 2a so as to cover the plurality of linear electrodes 2b arranged in a comb-teeth shape and the linear electrodes 2b on the base material 2a. It has a radical generation film 2c.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal display element 1 when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the lines of electric force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the liquid crystal display element according to the present invention, and is an example of an FFS mode liquid crystal display element.
  • the liquid crystal composition 3 is sandwiched between the comb tooth electrode substrate 2 provided with the radical generating film 2h and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb-tooth electrode substrate 2 is formed on the base material 2d, the surface electrode 2e formed on the base material 2d, the insulating film 2f formed on the surface electrode 2e, and the insulating film 2f, and has a comb-tooth shape. It has a plurality of arranged linear electrodes 2g and a radical generating film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. In the liquid crystal display element 1, when a voltage is applied to the surface electrode 2e and the linear electrode 2g, an electric field is generated between the surface electrode 2e and the linear electrode 2g as shown by the lines of electric force L.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • ⁇ Viscosity measurement> The viscosity of the polyamic acid solution was measured at 25 ° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1 ° 34', R24). ..
  • the molecular weight was measured by a room temperature GPC (gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC device GPC-101 (manufactured by Showa Denko), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N, N-dimethylformamide (addition)
  • lithium bromide monohydrate LiBr ⁇ H2O
  • phosphoric acid / anhydrous crystal o-phosphate
  • THF tetrahydrofuran
  • Standard sample for preparing calibration lines TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Toso Co., Ltd.) and polyethylene glycol (molecular weight: about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
  • DA-4, DA-5, and DA-6 are novel compounds that have not been published in the literature, and the synthetic method will be described in detail below.
  • THF tetrahydrofuran
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • DMAP 4-dimethylaminopyridine
  • Tetrahydrofuran (240 g) is added to the compound [0] (29.8 g, 40.0 mmol) obtained in the first step, nitrogen substitution is performed, and then 3% platinum carbon (hydrous product) (2.38 g) is added. Further, the mixture was replaced with nitrogen, a hydrogen tedler bag was attached, and the mixture was stirred at room temperature for about 17 hours. After completion of the reaction, platinum carbon was removed through a membrane filter, and the mixture was concentrated and dried to obtain DA-4 (yield: 27.4 g, 40.0 mmol, yield quant).
  • N, N-dimethylformamide (80 g) and potassium carbonate (21.0 g, 0.152 mol) were added to 2-amino-5-nitrophenol (19.5 g, 0.127 mol), and the mixture was heated and stirred at 80 ° C. ..
  • a solution of compound [1] (58.5 g, 0.155 mol) in N, N-dimethylformamide (80 g) was added dropwise using a dropping funnel, and the mixture was heated and stirred at 80 ° C. for 17 hours after completion of the addition. After completion of the reaction, the reaction solution was filtered to remove potassium carbonate, and the filtrate was added to water (1000 g) for water split crystallization.
  • reaction solution was returned to room temperature and slowly poured into methanol (300 mL) cooled to 10 ° C. to precipitate a solid, and the mixture was stirred for 10 minutes.
  • the obtained solid was collected by filtration, and the obtained solid was further stirred and washed with methanol (100 mL) for 10 minutes twice in total, dried in a vacuum drying oven at 80 ° C. for 6 hours, and the desired polyimide powder (PI) was dried. -1) was obtained.
  • the imidization rate was 66%.
  • reaction solution was returned to room temperature and slowly poured into methanol (300 mL) cooled to 10 ° C. to precipitate a solid, and the mixture was stirred for 10 minutes.
  • the obtained solid was collected by filtration, and the obtained solid was further stirred and washed with methanol (100 mL) for 10 minutes twice in total, dried in a vacuum drying oven at 80 ° C. for 6 hours, and the desired polyimide powder (PI) was dried. -2) was obtained.
  • the imidization rate was 72%.
  • reaction solution was returned to room temperature and slowly poured into methanol (300 mL) cooled to 10 ° C. to precipitate a solid, and the mixture was stirred for 10 minutes.
  • the obtained solid was collected by filtration, and the obtained solid was further stirred and washed with methanol (100 mL) for 10 minutes twice in total, dried in a vacuum drying oven at 80 ° C. for 6 hours, and the desired polyimide powder (SPI) was dried. -3) was obtained.
  • the imidization rate was 68%.
  • reaction solution was returned to room temperature and slowly poured into methanol (300 mL) cooled to 10 ° C. to precipitate a solid, and the mixture was stirred for 10 minutes.
  • the obtained solid was collected by filtration, and the obtained solid was further stirred and washed with methanol (100 mL) for 10 minutes twice in total, dried in a vacuum drying oven at 80 ° C. for 6 hours, and the desired polyimide powder (SPI) was dried. -4) was obtained.
  • the imidization rate was 71%.
  • the method for producing a liquid crystal cell for evaluating the liquid crystal orientation is shown below.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by a CVD (chemical vapor deposition) method is formed as a second layer on the counter electrode of the first layer.
  • the thickness of the SiN film of the second layer is 500 nm, and it functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an IZO film as a third layer is arranged on the SiN film of the second layer to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm in length and about 5 mm in width.
  • the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb-teeth shape in which a plurality of electrode elements having a width of 3 ⁇ m in which the central portion is bent at an internal angle of 160 ° are arranged in parallel with an interval of 6 ⁇ m.
  • the pixel has a first region and a second region with a line connecting the bent portions of the plurality of electrode elements as a boundary.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the orientation direction of the liquid crystal alignment film described later is used as a reference, the electrode elements of the pixel electrodes are formed so as to form an angle (clockwise) of + 80 ° in the first region of the pixel, and the pixel is formed in the second region of the pixel.
  • the electrode elements of the electrodes are formed so as to form an angle of ⁇ 80 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotational movement (inplane switching) of the liquid crystal induced by the application of the voltage between the pixel electrode and the counter electrode in the substrate surface are mutually different. It is configured to be in the opposite direction.
  • an FFS substrate first substrate
  • the radical-generating film-forming compositions AL-2 to AL-9 or the liquid crystal aligning agent AL-1 obtained by the above method are filtered through a filter having a pore size of 1.0 ⁇ m, and then the prepared first substrate is prepared.
  • a glass substrate (hereinafter referred to as a second substrate) having an ITO film formed on the back surface and having a columnar spacer having a height of 4.0 ⁇ m is coated and formed by a spin coating method as a facing substrate. It was. Then, it was dried on a hot plate at 80 ° C. for 80 minutes and then fired at 230 ° C. for 20 minutes to obtain a coating film having a film thickness of 100 nm.
  • the polyimide film on the first substrate was oriented along the direction of the comb teeth, and the polyimide film on the second substrate side was oriented in the direction orthogonal to the comb teeth electrode.
  • a UV exposure apparatus manufactured by Ushio, Inc. was used, and linearly polarized UV having an extinction ratio of about 26: 1 was applied between 50 and 500 mJ / cm 2 with respect to a wavelength of 254 nm.
  • Polarized UV was irradiated at the irradiation amount of No. 1 and heated at 230 ° C. for 30 minutes, and comparison was performed using the conditions in which the orientation grade was the best for each.
  • the display element to be the target of the embodiment was manufactured by combining AL-1 on the first substrate side and a radical generating film on the second substrate side.
  • AL-1 is used for both substrates
  • a radical generation film AL-1 is used for the first substrate side
  • AL-2 or AL-6 is used for the second substrate side.
  • the one prepared by the combination of the used ones was used.
  • the cells were combined so that their orientation directions were parallel (in the case of rubbing, they were antiparallel), and the periphery was sealed leaving the liquid crystal injection port to prepare an empty cell having a cell gap of about 4.0 ⁇ m.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element.
  • UV UV lamp: FLR40SUV32 / A-1
  • UV-FL irradiation device manufactured by Toshiba Litec Co., Ltd. in a state where no voltage was applied.
  • a liquid crystal display element was obtained by irradiating for 30 minutes.
  • a white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) with a polarizing plate is set between them so that the brightness is minimized, and the voltage is applied to 8V at 1V intervals.
  • the VT curve was measured by applying the voltage and measuring the brightness at the voltage. From the obtained VT curve, the values of the drive threshold voltage and the voltage that maximizes the brightness were estimated. Further, the transmitted brightness at the time of parallel Nicol was set to 100% through the liquid crystal cell to which no voltage was applied, and the maximum transmitted brightness was estimated by comparing the maximum transmitted brightness on the VT curve.
  • the radical generation film using the diamine compounds DA-4 to DA-6 of the present invention has better photoorientity and tends to improve black brightness as compared with the one using DA-3 having a bent structure. I understand. Further, the one using any of the radical generating membranes has a lower Vmax and an improved maximum transmittance than the strong anchoring cell of Comparative Example 1, but the one using DA-4 to DA-6 is any of them. Was also found to be improved over that using DA-3. On the other hand, in Comparative Example 4 in which the photo-alignment treatment was not performed, Vmax was large and the voltage was lowered, and the maximum transmittance was greatly improved. On the other hand, the response time was significantly deteriorated as compared with Comparative Example 1, but compared to that. It can be seen that the delay in response time is also suppressed in the photo-alignment treatment using DA-4 to DA-6.
  • liquid crystal alignment agent of the present invention By using the liquid crystal alignment agent of the present invention, it is possible to provide a transverse electric field liquid crystal display element capable of obtaining a very good black display, achieving high backlight transmittance and a high response speed. Further, the liquid crystal display element obtained by the method of the present invention is useful as a horizontal electric field drive type liquid crystal display element.
  • Liquid crystal display element Comb tooth electrode substrate 2a Base material 2b Linear electrode 2c Radical generation film 2d Base material 2e Surface electrode 2f Insulation film 2g Linear electrode 2h Radical generation film 3 Liquid crystal composition 4 Opposing substrate 4a Liquid crystal alignment film 4b group Material

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

弱アンカリング膜を製造することが可能なポリマー安定化技術を応用し、常温において、簡便且つ安価な方法で非接触配向と低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現できる横電界液晶表示素子を得るために、該横電界液晶表示素子に使用する液晶配向剤を提供する。 下記式(1)で表される構造単位を主鎖に有する重合体を含有する液晶配向剤である。(式中、Aはラジカル重合を誘発する有機基を表す。)

Description

液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法
 本発明は、液晶分子に電圧を印加した状態で紫外線を照射することによって作製されるPSA方式の液晶表示素子や、弱アンカリング液晶表示素子等に好適に使用し得る液晶配向剤、及びラジカル発生膜に関する。
 また、本発明は、該液晶配向剤やラジカル発生膜を用いた横電界液晶セルの製造方法に関する。
 近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In-Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。
 近年、4Kや8K等の更なる高精細化や高コントラスト化などが目指されており、バックライトの高輝度化も進んでいる。それに伴い、液晶表示素子も透過率の向上、低駆動電圧化等が目指されており、特にFFSモードはTV用途だけでなくタブレットやスマートフォン等にも使用されているため、透過率向上や駆動電圧の低減は非常に大きな課題となっている。
 液晶表示素子の透過率改善に関しては、FFSモードについてはネガ液晶を用いる方法が提唱され、実際実用化が進んでいる。一方で、ネガ液晶を用いる場合、透過率の改善においては効果が大きいが応答時間の悪化や駆動電圧の増大も伴うため、消費電力の低下の効果は低く、ネガ液晶自体がコンタミを溶解しやすく、ムラや焼き付き等の不具合を生じやすいという問題点も挙げられる。
 最近、液晶表示素子の透過率向上と駆動電圧の低下が可能になる技術として、アンカリングエネルギーが非常に低い膜を液晶配向膜として用いる弱アンカリングIPSという技術が注目されている。弱アンカリングIPS技術は基板として櫛歯電極幅がある程度広いIPS基板を使用しても透過率を大きく改善でき駆動電圧も下げることができるため、実用化ができれば基板コストメリットも大きくなり、FFSモード特有の問題であるフリッカーの発生等も抑制できるメリットがある(特許文献1参照)。
 近年では、濃厚ポリマーブラシ等を用いてゼロ面状態を作り出し、ゼロ面アンカリングIPSモード(弱アンカリングIPSモードともいう)の技術提案がなされている(特許文献2参照)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。
特許第4053530号公報 特開2013-231757号公報
 一方でこの技術には原理的に発生する課題があり、第1はポリマーブラシを基板上に安定的に発生させるためには非常に繊細な条件で行う必要があり、量産を考えると現実的ではないことが挙げられる。第2は、配向膜は焼き付き抑制などの重要な働きを担っているが、ポリマーブラシ等を用いる場合は必要となる電気物性などの制御が困難であることが挙げられる。第3は駆動原理上電圧Offにした際の応答速度が非常に遅くなることが挙げられる。配向規制力をゼロにすることで液晶にかかる駆動時の抵抗を無くすことで閾値電圧の大幅な低下と、駆動時の配向不良領域が減少することによる輝度向上が期待されるが、液晶の戻りに関しては、液晶の戻る際の動力は液晶の弾性力に依存するため、配向膜があるときに比べて大きく速度が低下することが考えられる。
 このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。
 本発明は、上記のような課題を解決するためになされたものであり、弱アンカリング膜を製造することが可能なポリマー安定化技術を応用し、常温において、簡便且つ安価な方法で非接触配向と低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現できる横電界液晶表示素子を提供することを目的とする。
 特に、黒表示の品質に優れ、透過率が高く、弱アンカリング表示素子の課題である応答時間の遅延が抑制された横電界液晶表示素子を提供することを目的とする。
 そして、本発明は、そのように優れた横電界液晶表示素子を得るため、該横電界液晶表示素子に使用する液晶配向剤を提供することを目的とする。
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
 すなわち、本発明は以下を包含する。
[1]下記式(1)で表される構造単位を主鎖に有する重合体を含有する液晶配向剤。
Figure JPOXMLDOC01-appb-C000007
 (式中、Aはラジカル重合を誘発する有機基を表す。)
[2]前記重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体である[1]に記載の液晶配向剤。
[3]前記ラジカル重合を誘発する有機基を含有するジアミンが下記式(2)で表されるジアミンである[2]に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
 (式(2)中、A及びAはそれぞれ水素原子又は前記ラジカル重合を誘発する有機基を表し、但し、A及びAのうち少なくとも1つは前記ラジカル重合を誘発する有機基を表し、
 Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表し、
 pは、0~2の整数を表す。pが2の場合、複数のAはそれぞれ独立して前記定義を有する。また、pが0の場合、Aはラジカル重合を誘発する有機基からなる。)
[4]前記ラジカル重合を誘発する有機基が式(3)で表される基である、[1]~[3]のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000009
 (式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい。
 Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
Figure JPOXMLDOC01-appb-C000010
 式[X-1]~[X-18]中、*はRとの結合箇所を示し、S及びSはそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R及びRはそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
Figure JPOXMLDOC01-appb-C000011
 式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していても良く、
 Qは下記のいずれかの構造を表し、
Figure JPOXMLDOC01-appb-C000012
 式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
 R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
[5][1]~[4]のいずれかに記載の液晶配向剤を用いて得られるラジカル発生膜。
[6]液晶配向膜を有する第一基板と、[5]に記載のラジカル発生膜を有する第二基板とを用意するステップ、
 前記第二基板上のラジカル発生膜が前記第一基板に対向するようにセルを作成するステップ、および、
 前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、前記第一基板と前記第二基板のいずれか一方が櫛歯電極基板であり、他方が対向基板である横電界液晶セルの製造方法。
[7]前記第一基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である[6]に記載の横電界液晶セルの製造方法。
[8]前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である[7]に記載の横電界液晶セルの製造方法。
[9]前記櫛歯電極基板がIPS基板又はFFS基板である[6]~[8]のいずれかに記載の横電界液晶セルの製造方法。
 本発明によれば、黒表示の品質に優れ、透過率が高く、弱アンカリング表示素子の課題である応答時間の遅延が抑制された横電界液晶表示素子を得るために、該横電界液晶表示素子に有効に使用し得る液晶配向剤を提供することができる。
本発明に係る液晶表示素子の一例を示す概略断面図である。 本発明に係る液晶表示素子の他の例を示す概略断面図である。
(液晶配向剤)
 本発明は、上記式(1)で表される構造単位を主鎖に有する重合体を含有する液晶配向剤である。その結果、本発明の液晶配向剤は、ラジカル重合を誘発する有機基を含有する。このような組成物を塗布、硬化して膜を形成することにより、ラジカルを発生しうる基が膜中に固定化され、種々の機能を有する液晶配向膜を得ることができる。
 そのような、ラジカル重合を誘発する有機基としては上記式(3)で表される基が挙げられる。
 上記[W]、[Y]及び[Z]から選ばれる式で表される有機基としては、具体的には、以下が好ましい。特に、得られる液晶表示素子の信頼性の点から、(b)及び(c)が好ましい。
Figure JPOXMLDOC01-appb-C000013
 本発明に用いる、ラジカル重合を誘発する有機基を有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、紫外線照射により分解し、ラジカルを発生する部位を側鎖に有するモノマー用いて製造することが好ましい。一方で、ラジカルを発生するモノマーはそれ自体が自発的に重合をしてしまうなどの問題点が考えられ、不安定化合物となってしまうため、合成のしやすさの点ではラジカル発生部位を有するジアミンから誘導される重合体が好ましく、ポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミドなどがより好ましい。
 そのようなラジカル発生部位含有ジアミンは、具体的には、例えば、ラジカルを発生し重合可能な側鎖を有するジアミンであり、上記式(2)で表されるジアミンを挙げることができる。
 上記式(2)中、Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、又はそれらの任意の組み合わせからなる2価の有機基を表すが、ここで、「それらの任意の組み合わせ」としては、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-などを挙げることができるがこれらに限定されない。
 メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
(式中、Jは単結合、-O-、-COO-、-NHCO-、又は-NH-を表し、Jは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
 上記[W]、[Y]及び[Z]から選ばれる式で表される有機基を有するジアミンとしては、合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000015
(式中、nは2~8の整数であり、Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-又は-COO-(CH-OCO-であり、mは1~8の整数である。)
 上記ジアミンに関しては、適切な合成法等を選択して合成することができる。以下に本発明ジアミンの主な合成法について説明する。尚、以下で説明した方法は合成例であり、これに限定されないものとする。
 基本的には以下のスキームに従い合成することができる。
Figure JPOXMLDOC01-appb-C000016
 前駆体である化合物[A]は、下記のとおり、化合物[C]に化合物A’を反応させることによりラジカル発生基を導入するという方法で製造することができる。
Figure JPOXMLDOC01-appb-C000017
 ここで、化合物[C]を得る方法としては、例えば、化合物[D]と化合物[E]とを反応させて、XとXが同じで、VとVが同じである化合物[C1]を得る方法や、化合物[D]と化合物[F]とを反応させる方法などが挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 また、化合物[A]は、下記のとおり、化合物[D]にあらかじめラジカル発生基を導入した化合物[G]を合成し、それを化合物[E]と反応させることによっても得ることができる。
Figure JPOXMLDOC01-appb-C000020
 上記式中、X、X、X、XおよびXはそれぞれ独立して脱離基または付加反応、置換反応、縮合反応を起こす反応性基を表し、R及びRは上記と同様の意味を表す。また上記式中A、Aは請求項で示した式(2)の記載と同義である。式中V及びVはそれぞれ独立してアミノ基またはアミノ基に変換できる有機基を表す。アミノ基に変換できる有機基の例としてはニトロ基や保護基のついたアミノ基、イソシアネート基やブロックイソシアネート基、カルボキシ基、アミド基等が挙げられるがこれらに限定はしない。ニトロ基や一部の保護基のついたアミノ基、ベンゾフェノンイミン、フタルイミドはパラジウムカーボンや鉄を用いた水素化還元によってアミノ基に変換でき、保護アミノ基に関しては適宜脱保護条件を選ぶことでアミノ基に誘導できる。保護アミノ基としてはBoc(tert-ブトキシカルボニル)保護アミン、Fmoc(9-フルオレニルメチルオキシカルボニル)保護アミン、ベンジル保護アミン、ベンジルオキシカルボニル保護アミン等が挙げられる。またイソシアネートやブロックドイソシアネートなどは水の存在下で加熱することでアミノ基に誘導でき、カルボン酸やアミドはクルチウス転移やホフマン転移を用いてイソシアネートを経由しアミノ基に変換できる。一方でA、Aによってはアミノ基へ変換する工程で変化してしまうものも存在しており、これらの手法を適宜選択することが重要である。上記手法に従い合成することで、本発明に係るジアミンを得ることができるが一例でありこれに限定しない。
 上記の本発明に用いるジアミンは、液晶配向膜とした際の液晶配向性、エネルギーを与えた際の重合反応における感度、液晶の配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 このようなラジカル重合が発生する部位を有するジアミンの量は特に限定されず、すべて上記ラジカルが発生する部位を有するジアミンを用いることも可能であるが、液晶配向剤に含有させる重合体の合成に用いるジアミン成分全体の5~80モル%となる量を用いることが好ましく、より好ましくは10~50モル%である。
 なお、本発明の液晶配向剤に用いる重合体をジアミンから得る場合、上記ラジカルが発生する部位を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、トランス-1,4-ビス(4-アミノフェニル)シクロヘキサン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;1,3-ビス[2-(p-アミノフェニル)エチル]ウレア、1,3-ビス[2-(p-アミノフェニル)エチル]-1-tert-ブトキシカルボニルウレア等のウレア構造を有するジアミン;N-p-アミノフェニル-4-p-アミノフェニル(tert-ブトキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン等のN-Boc基(Bocはtert-ブトキシカルボニル基を表す)を有するジアミン等が挙げられる。
 上記その他のジアミンは、液晶配向膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 重合体がポリアミック酸である場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4.3.0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6.2.1.1<3,6>.0<2,7>]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。
 勿論、テトラカルボン酸二無水物も、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
 重合体がポリアミック酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸ジアルキルエステルなどが挙げられる。
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
 重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000021
式中R22及びR23は炭素数1~10の脂肪族炭化水素基を表す。
 K-1~K-5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K-6~K-7に示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面においてK-1、K-7、K-8、K-9、K-10が好ましく、電気特性の観点ではK-12、液晶配向性の観点ではK-13が好ましい。ジイソシアネートは1種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。
 また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。
 重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4”-ターフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
 上記の各種ジカルボン酸は酸ジハライドあるいは無水物の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4,4”-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。
 原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。
 ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を撹拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~100℃、好ましくは-5~80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。
 本発明に用いられる重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。また、ポリウレアを合成する場合は、ジアミンとジイソシアネートとを反応させればよい。ポリアミック酸エステルまたはポリアミドを製造する際には、ジアミンと、テトラカルボン酸ジエステル及びジカルボン酸から選ばれる成分を、公知の縮合剤の存在下で、又は、公知の方法で酸ハライドに誘導したのちに、ジアミンと反応させればよい。
 上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、30~99%であることがより好ましい。一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、70%以下が好ましい。両方の特性を加味すると、40~80%がより好ましい。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量は、アミック酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。
 重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の重合体としては、液晶配向剤としての使用の観点から、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であるとより好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(6)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(2)のジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
<テトラカルボン酸二無水物>
 Xはテトラカルボン酸誘導体に由来する4価の有機基であり、その構造は特に限定されるものではない。また、ポリイミド前駆体中のXは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Xの具体例をあえて示すならば、国際公開公報2015/119168の13項~14項に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
 以下に、好ましいXの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記の構造のうち、(A-1)、(A-2)は光配向性という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)などは、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
<重合体(その他の構造単位)>
 式(6)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(7)で表される構造単位、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種を含んでいても良い。
Figure JPOXMLDOC01-appb-C000025
 式(7)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)の構造を含まないジアミンに由来する2価の有機基であり、Rは、上記式(6)のRの定義と同じであり、水素原子又は炭素数1~5のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表す。また、2つあるRの少なくとも一方は水素原子であることが好ましい。
 Xの具体例としては、好ましい例も含めて式(6)のXで例示したものと同じ構造を挙げることができる。また、ポリイミド前駆体中のYは式(1)の構造を含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Yの具体例をあえて示すならば、国際公開公報2015/119168の4項に掲載される式(2)の構造、及び、8項~12項に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6項に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8項に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8項に掲載される式(3)の構造;日本国公開特許公報2012-173514の8項に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9項に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
 以下に、好ましいYの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記の構造のうち、(B-28)、(B-29)などは、膜硬度の更なる向上という観点から特に好ましく、(B-1)~(B-3)などは、液晶配向性の更なる向上という観点から特に好ましく、(B-14)~(B-18)および(B-27)などは、蓄積電荷の緩和速度の更なる向上という観点から特に好まく、(B-26)などは、電圧保持率の更なる向上という観点から好ましい。
 式(6)で表される構造単位を含むポリイミド前駆体が、式(7)で表される構造単位を同時に含む場合、式(6)で表される構造単位は、式(6)と式(7)の合計に対して5モル%~100モル%であることが好ましく、より好ましくは10モル%~50モル%である。
 式(1)で表される2価の基を主鎖に有するポリイミドとしては、上記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 また、上記液晶配向膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合、本発明に用いる液晶配向剤は、ラジカル重合を誘発する有機基を含有する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は5~95質量%が好ましく、より好ましくは30~70質量%である。
 液晶配向剤が含有する重合体の分子量は、液晶配向剤を塗布して得られる液晶配向膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。
 液晶配向剤は、重合体成分、必要に応じてその他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒に特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。
 また、塗膜の均一性や平滑性を向上させる溶媒を、液晶配向剤の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 液晶配向剤には、上記以外の成分を含有させてもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜と基板との密着性を向上させる化合物、液晶配向膜の膜強度をさらに向上させる化合物などが挙げられる。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(三菱マテリアル電子化成社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGC社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。
 また、液晶配向膜の膜強度をさらに上げるためには、2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。
 さらに、液晶配向剤には、上記の他、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
 なお、本発明の液晶配向剤は、ラジカル重合を誘発する有機基を含有しており、ラジカル発生能を有しているため、本明細書において、本発明の液晶配向剤をラジカル発生膜形成組成物ともいう。また、本発明の液晶配向剤から得られる膜をラジカル発生膜ともいう。
(ラジカル発生膜及び液晶配向膜)
 本実施形態のラジカル発生膜は、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子にUVを照射することも可能である。
 ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
 ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されない。具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などを挙げることができる。
 ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
 上記の方法でラジカル発生膜形成組成物を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100~350℃の任意の温度で行うことができるが、好ましくは140~300℃であり、より好ましくは150~230℃、更に好ましくは160~220℃である。焼成時間は通常5~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン、ベルト炉などを用いることができる。
 この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
 以上のようにしてラジカル発生膜を有する基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。
 光配向処理により塗膜に液晶配向能を付与する場合、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射の方向は斜め方向とする。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは10~2,000mJ/cmであり、より好ましくは30~1,000mJ/cmである。
 また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30~250℃であり、好ましくは40~200℃であり、より好ましくは50~150℃である。
 また、150~800nmの波長の光を含む紫外線を使用する場合には、上記工程で得られた光照射膜をそのまま液晶配向膜として使用することができるが、該光照射膜を焼成、水や有機溶媒による洗浄、又はこれらの組合せを実施してもよい。このときの焼成温度は、好ましくは80~300℃であり、より好ましくは80~250℃である。焼成時間は、好ましくは5~200分であり、より好ましくは10~100分である。尚、焼成の回数は1回若しくは2回以上の回数で行ってもよい。ここでの光配向処理が、液晶層と接触していない状態での光照射の処理に相当する。
 上記洗浄に使用する有機溶媒としては、特に限定されるものではないが、具体例としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。
 本発明に係る液晶セルは、一方の基板側に配する液晶配向膜として、上記本発明のラジカル発生膜を用い、他方の基板側に配する液晶配向膜として、液晶配向膜として通常用いられている液晶配向膜を用いることができる。
 他方の基板側に配する本実施形態の液晶配向膜としては、上記ラジカル発生膜形成組成物の代わりに通常用いられている液晶配向剤を用いる以外は、ラジカル発生膜と同様の方法を用いて得られる。
 なお、ラジカル発生膜形成組成物を塗布する基板と、液晶配向剤を塗布する基板としては、上記で挙げた基板のどちらか一方の上に液晶を駆動するための透明電極が形成された基板が好ましい。IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
 なお、櫛歯電極が形成されている基板上の液晶配向膜をラビングする場合、液晶の電気的物性によってラビング方向が選択されるが、正の誘電異方性を有する液晶を用いる場合においては、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。
(液晶セル)
 本発明の液晶セルは、液晶配向膜を有する基板(第一基板)と、上記の方法により基板にラジカル発生膜を形成した基板(第二基板)とを、ラジカル発生膜と液晶配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。また、第一基板の配向方向と、第二基板の配向方向とを平行にすることにより、IPSモードやFFSモードに使用することができ、ラビング方向が直交するように配置すれば、ツイストネマチックモードに使用することができる。
 上記第一基板と上記第二基板のいずれか一方は櫛歯電極基板であることが好ましい。
 上記第一の基板に形成される配向膜としては、公知の液晶配向膜であっても、本発明に係るラジカル発生膜のいずれであってもよく、目的に応じて適宜選択することができる。
 上記第一の基板に形成される配向膜には、一軸配向処理を施すことができる。
 また、第一の基板に、一軸配向処理された水平配向用の液晶配向膜を形成することが好ましい。
 液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。
<液晶及びラジカル重合性化合物を含有する液晶組成物>
 本発明の液晶表示素子の作成において、液晶とともに用いる重合性化合物は、ラジカル重合性化合物であれば特に限定されないが、例えば、一分子中に一個又は二個以上の重合性反応基を有する化合物である。好ましくは一分子中に一個の重合性反応基を有する化合物である(以下、「一官能の重合性基を有する化合物」、「単官能の重合性基を有する化合物」等と称する場合がある)。重合性反応基は、好ましくはラジカル重合性反応基であり、例えばビニル結合である。
 上記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。
 そして、上記ラジカル重合性化合物の重合性基としては以下の構造から選ばれる重合性基が好ましい。
Figure JPOXMLDOC01-appb-C000030
(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示す。)
 また、上記液晶及びラジカル重合性化合物を含有する液晶組成物において、ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有することが好ましい。
 単官能のラジカル重合性基を有する化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な反応基を有するものであり、例えば、tert-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレートなどのメタクリレート系モノマー;tert-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ベンジルアクリレート、ラウリルアクリレート、n-オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o-、m-、p-メトキシスチレン、o-、m-、p-tert-ブトキシスチレン、o-、m-、p-クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプロペン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。
 また、上記ラジカル重合性化合物としては、下記式(A)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000031
(式(A)中、RおよびRはそれぞれ独立に炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合、アミド結合から選ばれる結合基を表す。文中Rは水素原子、炭素数1~4のアルキル基を示す。)
 上記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。
 そして、上記式(A)で表されるラジカル重合性化合物としては、式中Eがエステル結合(-C(=O)-O-または-O-C(=O)-であらわされる結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造を有する化合物が好ましいが、特に限定はしない。
Figure JPOXMLDOC01-appb-C000032
(式(A-1)及び(A-2)中、RおよびRはそれぞれ独立に炭素数2~8の直鎖アルキル基を表す。)
 液晶組成物中のラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは3質量%以上、より好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下である。
 上記ラジカル重合性化合物を重合させて得られるポリマーは、そのTgを100℃以下とすることが好ましい。
 なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4-ペンチル-4’-シアノビフェニルである。
 次に、この液晶とラジカル重合性化合物とを含む混合物(液晶組成物)が導入された液晶セルに当該ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与える。これは、例えば、熱を加えるか、UV照射することにより実施することができ、当該ラジカル重合性化合物がその場で重合されることで、所望の特性が発現する。中でもUVの使用は配向性のパターニングが可能となり、更に短時間で重合反応させられる点で、UV照射が好ましい。なお、ツイストネマチックモードに使用する際は、上記液晶組成物に加えて、必要に応じてカイラルドーパントを液晶セルに導入すればよい。
 またUV照射の際、加熱を行ってもよい。UV照射を行う際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。
 ここで、UV照射する場合におけるUV照射波長は、反応する重合性化合物の反応量子収率の最も良い波長を選択することが好ましく、UVの照射量は、通常0.5~30J/cmであるが、好ましくは、1~10J/cmであり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが向上するので好適である。
 また、UV照射ではなく、加熱のみで重合させる場合の加熱は、重合性化合物の反応する温度であって、液晶の分解温度未満となる温度範囲で行うことが好ましい。具体的には、100℃以上150℃以下である。
 ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるとき、電圧を印加しない、無電界状態であることが好ましい。
(液晶表示素子)
 このようにして得られた液晶セルを用いて液晶表示素子を作製することができる。例えば、この液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。また、この液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
 図1は、本発明に係る液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する液晶表示素子1においては、ラジカル発生膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶組成物3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成されたラジカル発生膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。
 この液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
 図2は、本発明に係る液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する液晶表示素子1においては、ラジカル発生膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶組成物3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成されたラジカル発生膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。
 この液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
 本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。ポリマーの重合および膜形成組成物の調製で使用した化合物の略号、及び特性評価の方法は以下のとおりである。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
NMP:N-メチル-2-ピロリドン、
BCS:ブチルセロソルブ
<粘度測定>
 ポリアミック酸溶液について、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)にて25℃の粘度を測定した。
<分子量の測定>
 分子量は常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
 GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05質量%TMS(テトラメチルシラン)混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、測定装置(日本電子データム社製、JNW-ECA500)にて測定した。
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド基のNHに由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 式中、xはアミド基のNH由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド基のNHプロトン1個に対する基準プロトンの個数割合である。
<実施例>
 DA-4、DA-5、DA-6は文献等未公開の新規化合物であり、以下に合成法を詳述する。
 下記合成例に記載の生成物は1H-NMR分析により同定した(分析条件は下記の通り)。
 装置:BRUKER ADVANCE III-500MHz
 測定溶媒:DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
本発明における略号はそれぞれ以下の意味を示す。
THF:テトラヒドロフラン
EDC:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド
DMAP:4-ジメチルアミノピリジン
<合成例1 DA-4の合成>
Figure JPOXMLDOC01-appb-C000035
(第1工程)
 4,4’-ジニトロ-[1,1’-ビフェニル]-2,2’-ジカルボン酸(20.0g,60.2mmol)に対し、テトラヒドロフラン(120g)、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン(28.4g,126mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(28.0g,181mmol)、及びN,N-ジメチルアミノピリジン(0.735g,6.02mmol)を仕込み、室温で終夜撹拌した。反応終了後、水/クロロホルムで2回分液抽出し、得られた有機相を濃縮し水飴状茶色オイルを得た。これを酢酸エチル/ヘキサン=3/1(体積比)混合溶媒でカラムクロマトグラフィーにより精製した。得られたフラクションを濃縮したところ、黄色透明オイルとなり、静置し続けたところオイルから白色結晶が析出した。析出した結晶を酢酸エチル/ヘキサン=3/1(体積比)混合溶媒でスラリー洗浄し、濾過し、結晶を乾燥させ、化合物[0]を得た(収量:29.8g,40.0mmol,収率67%)。
H-NMR(500MHz) in DMSO-d:8.57(d,J=2.5Hz,2H),8.37(dd,J=8.5Hz,2.5Hz,2H),8.18(d,J=9.0Hz,4H),7.55(d,J=8.5Hz,2H),6.85(d,J=9.0Hz,4H),5.631(s,2H),4.39-4.35(m,4H),4.02-3.99(m,2H),3.96-3.94(m,2H),1.40(s,12H).
(第2工程)
 第1工程で得られた化合物[0](29.8g,40.0mmol)に対し、テトラヒドロフラン(240g)を加え、窒素置換した後、3%プラチナカーボン(含水品)(2.38g)を加えさらに窒素置換し、水素テドラーバッグを取り付け室温で約17時間撹拌した。反応終了後、メンブレンフィルターに通しプラチナカーボンを除去後、濃縮・乾燥させ、DA-4を得た(収量:27.4g,40.0mmol,収率quant)。
H-NMR(500MHz) in DMSO-d:8.20(dd,J=7.1Hz,1.9Hz,4H),6.99(d,J=2.5Hz,2H),6.92(dd,J=7.3Hz,1.9Hz,4H),6.80(d,J=8.2Hz,2H),6.67(dd,J=8.2Hz,2.5Hz,2H),5.64(s,2H),5.24(s,4H),4.22(t,J=4.5Hz, 4H),4.00(br,4H),1.39(s,12H).
<合成例2 DA-5の合成>
Figure JPOXMLDOC01-appb-C000036
(第1工程)
 2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン(36.0g,0.161mol)に対し、テトラヒドロフラン(150g)及び水酸化カリウム(9.71g,0.173mol)を仕込み、氷浴にて冷却し撹拌した。滴下ロートを用いてp-トルエンスルホニルクロリド(30.0g,0.157mol)のテトラヒドロフラン(150g)溶液を滴下し、滴下終了後室温にて18時間撹拌した。反応終了後、反応液を濃縮し、酢酸エチル(300g)を加え、水(250g)で2回分液洗浄し、有機相を濃縮し、乾燥させ、化合物[1]を得た(収量:58.6g,0.155mol,収率98%)。
H-NMR(500MHz) in DMSO-d:8.17(dd,J=7.0Hz,2.0Hz,2H),7.80(d,J=8.5Hz,2H),7.48(d,J=8.0Hz,2H),6.90(dd,J=7.0Hz,2.0Hz,2H),5.65(s,1H),4.37-4.36(m,2H),4.25-4.24(m,2H),2.42(s,3H),1.38(s,6H).
(第2工程)
 2-アミノ-5-ニトロフェノール(19.5g,0.127mol)に対し、N,N-ジメチルホルムアミド(80g)及び炭酸カリウム(21.0g,0.152mol)を仕込み、80℃で加熱撹拌した。滴下ロートを用いて化合物[1](58.5g,0.155mol)のN,N-ジメチルホルムアミド(80g)溶液を滴下し、滴下終了後80℃で17時間加熱撹拌した。反応終了後、反応液を濾過し炭酸カリウムを除去し、濾液を水(1000g)に加えて水割り晶析した。これを濾過し、得られた結晶を乾燥させた(粗結晶55.9g)。粗結晶に対し、アセトニトリル(165g)を加え、80℃で加熱撹拌し、結晶が全溶解した後室温に冷却して再結晶させた。これを濾過し、得られた結晶を乾燥させ、化合物[2]を得た。濾液を濃縮し、同様の操作で2次晶まで回収し、化合物[2]を得た(収量:30.0g,0.0832mol,収率66%)。
H-NMR(500MHz) in DMSO-d:8.22(dd,J=7.0Hz,2.0Hz,2H),7.76(dd,J=9.0Hz,2.5Hz,1H),7.69(d,J=2.5Hz,1H),7.07(d,J=9.0Hz,2H),6.68(d,J=9.0Hz,1H),6.37(br,2H),5.65(s,1H),4.46(s,4H),1.39(s,6H).
(第3工程)
 化合物[2](22.5g,0.0624mol)に対し、N,N-ジメチルホルムアミド(180g)を加え、窒素置換した後、3%プラチナカーボン(含水品)(0.90g)を加えさらに窒素置換し、水素テドラーバッグを取り付け60℃で約3日間加熱撹拌した。反応終了後、メンブレンフィルターに通しプラチナカーボンを除去後、濃縮・乾燥させ、DA-5粗結晶を得た(収量:23g)。粗結晶に対し、N,N-ジメチルホルムアミドを加えて80℃で加熱撹拌し、全溶解後氷浴にて冷却し再結晶させた。得られた結晶を乾燥させ、DA-5を得た。濾液を濃縮し、同様の操作で2次晶まで回収し、DA-5を得た(収量:11.5g,0.0348mol,収率56%)。
H-NMR(500MHz) in DMSO-d:8.22(d,J=9.0Hz,2H),7.06(d,J=9.0Hz,2H),6.40(d,J=8.5Hz,1H),6.25(d,J=2.5Hz,1H),6.03(dd,J=8.0Hz,2.5Hz,1H),5.65(s,1H),4.41-4.39(m,2H),4.28(br,2H),4.20-4.18(m,2H),3.85(br,2H),1.39(s,6H).
<合成例3 DA-6の合成>
Figure JPOXMLDOC01-appb-C000037
(第1工程)
 化合物[2](20.5g,0.0569mol)に対し、テトラヒドロフラン(100g)及びピリジン(4.54g,0.0574mol)を仕込み、氷浴にて冷却し撹拌した。滴下ロートを用いてアジポイルクロリド(5.00g,0.0273mol)のテトラヒドロフラン(20g)溶液を滴下し、滴下終了後室温にて撹拌した。滴下途中から撹拌性が悪化したため、テトラヒドロフラン(30g)を追加添加し、さらに3.5時間撹拌した。反応終了後、反応液を水(1000g)に加えて水割り晶析した。これを濾過し、得られた結晶を乾燥させた(粗結晶43g)。粗結晶に対し、テトラヒドロフラン(646g)を加え、80℃で加熱撹拌し、結晶が全溶解した後氷浴で冷却して再結晶させた。これを濾過し、得られた結晶を乾燥させ、化合物[3]を得た。濾液を濃縮し、同様の操作で2次晶まで回収し、化合物[3]を得た(収量:16.0g,0.0193mol,収率70%)。
H-NMR(500MHz) in DMSO-d:9.29(s,2H),8.37(d,J=9.0Hz,2H),8.21-8.20(m,4H),7.96(d,J=2.5Hz,2H),7.89(dd,J=9.0Hz,2.5Hz,2H),7.05(d,J=8.0Hz,4H),5.63(s,2H),4.60-4.58(m,4H),4.52-4.50(m,4H),2.50-2.46(m,4H),1.59(s,4H),1.37(s,12H).
(第2工程)
 化合物[3](15.9g,0.0191mol)に対し、N,N-ジメチルホルムアミド(159g)を加え、窒素置換した後、3%プラチナカーボン(含水品)(1.27g)を加えさらに窒素置換し、水素テドラーバッグを取り付け室温で終夜加熱撹拌した。翌日、結晶が析出し反応が停止したため、75℃に加熱し結晶を全溶解させ、さらに3時間撹拌した。反応終了後、メンブレンフィルターに通しプラチナカーボンを除去後、濾液を水(900g)に加えて水割り晶析した。これを濾過し、得られた結晶を乾燥させ、DA-6を得た(収量:14.4g,0.0187mol,収率98%)。
H-NMR(500MHz) in DMSO-d:8.52(s,2H),8.21(d,J=9.0Hz,2H),7.27(d,J=8.5Hz,4H),7.04(d,J=9.0Hz,4H),6.32(d,J=2.0Hz,2H),6.13-6.11(m,2H),5.64(s,2H),5.17(br,4H),4.39-4.38(m,4H),4.23-4.21(m,4H),2.17(s,4H),1.50(s,4H),1.38(s,12H).
<ポリアミック酸・ポリイミドの合成>
<合成例4> TC-1/DA-1、DA-2(50) ポリアミック酸(PAA-1)の重合
 メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコにDA-1(1.62g:15.00mmol)、DA-2(3.66g:15.00mmol)及びNMP(55.4g)を量り取り、しばらく撹拌し溶解させた後、TC-1(6.25g:27.90mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、固形分濃度が15質量%のポリアミック酸溶液(PAA-1)を得た。粘度は410mPa・sであり、重量平均分子量は約30,500であった。
<合成例5> TC-1/DA-2、DA-3(50) ポリアミック酸(PAA-2)の重合
 メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-2(2.44g:10.00mmol)、DA-3(3.30g:10.00mmol)、NMP(47.2g)を量り取り、しばらく撹拌し溶解させた後、TC-1(4.35g:19.4mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、固形分濃度が15質量%のポリアミック酸溶液(PAA-2)を得た。粘度は360mPa・sであり、重量平均分子量は約31,900であった。
<合成例6> TC-1/DA-2、DA-3(50) 可溶性ポリイミド(PI-1)の合成
 窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例5で得られたポリアミック酸溶液(PAA-2)(30.0g)を量り取り、NMP(45.0g)、無水酢酸(2.79g:27.3mmol)及びピリジン(1.44g:18.2mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)中にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(PI-1)を得た。イミド化率は66%であった。
<合成例7> TC-1/DA-2、DA-4(50) ポリアミック酸(PAA-3)の重合
 メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-2(1.71g:7.00mmol)、DA-4(4.79g:7.00mmol)及びNMP(42.60g)を量り取り、しばらく撹拌し溶解させた後、TC-1(2.92g:13.02mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、ポリアミック酸溶液(PAA-3)を得た。粘度は440mPa・sであり、重量平均分子量は約32,600であった。
<合成例8> TC-1/DA-2、DA-4(50) 可溶性ポリイミド(PI-2)の合成
 窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例7で得られたポリアミック酸溶液(PAA-3)(30.0g)を量り取り、NMP(45.0g)、無水酢酸(1.85g:18.0mmol)及びピリジン(0.95g:12.0mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)中にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(PI-2)を得た。イミド化率は72%であった。
<合成例9> TC-1/DA-2、DA-5(50) ポリアミック酸(PAA-4)の重合
 メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-2(2.44g:10.00mmol)、DA-5(3.30g:10.00mmol)及びNMP(44.8g)を量り取り、しばらく撹拌し溶解させた後、TC-1(4.17g:18.60mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、固形分濃度が15質量%のポリアミック酸溶液(PAA-4)を得た。粘度は380mPa・sであり、重量平均分子量は約29,600であった。
<合成例10> TC-1/DA-2、DA-5(50) 可溶性ポリイミド(PI-3)の合成
 窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例9で得られたポリアミック酸溶液(PAA-4)(30.0g)を量り取り、NMP(45.0g)、無水酢酸(2.42g:23.7mmol)及びピリジン(1.25g:15.8mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)中にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(SPI-3)を得た。イミド化率は68%であった。
<合成例11> TC-1/DA-2、DA-6(50) ポリアミック酸(PAA-5)の重合
 メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-2(1.22g:5.00mmol)、DA-6(3.85g:5.00mmol)、NMP(30.8g)を量り取り、しばらく撹拌し溶解させた後、TC-1(2.13g:9.50mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、固形分濃度が15質量%のポリアミック酸溶液(PAA-5)を得た。粘度は430mPa・sであり、重量平均分子量は約33,400であった。
<合成例12> TC-1/DA-2、DA-6(50) 可溶性ポリイミド(PI-4)の合成
 窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例11で得られたポリアミック酸溶液(PAA-5)(30.0g)を量り取り、NMP(45.0g)、無水酢酸(1.94g:18.9mmol)及びピリジン(1.00g:12.6mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)中にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(SPI-4)を得た。イミド化率は71%であった。
(実施例1~5)
液晶配向剤 AL-1~AL-5の調製
 撹拌子を取り付けた50mL三角フラスコに、上記合成例4にて得られたポリアミック酸溶液(PAA-1)(10.0g)を量り取り、NMP(7.5g)及びBCS(7.5g)を加え、室温で30分撹拌することで液晶配向剤AL-1を調製した。
 また、PAA-1の代わりにPAA-2~PAA-5を用いた以外は上記AL-1と同様に調製し、ラジカル発生膜形成組成物AL-2~AL-5を得た。
(実施例6~9) AL-6~AL-9の調製
 窒素導入管と撹拌子を取り付けた2口ナスフラスコに、上記合成例6にて得られたポリイミド粉末(PI-1)(2.0g)を量り取り、NMP(18.0g)を加え、40℃で6時間撹拌し溶解させた。完全に溶解したのを確認し、NMP(3.3g)及びBCS(10.0g)を加え、室温で30分撹拌することでラジカル発生膜形成組成物AL-6を調製した。
 また、PI-1の代わりにPI-2~PI-4を用いた以外は上記AL-6と同様に調製し、ラジカル発生膜形成組成物AL-7~AL-9を得た。
<液晶セルの作製>
 以下に、液晶配向性を評価するための液晶セルの作製方法を示す。
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向方向を基準とした場合、画素の第1領域では画素電極の電極要素が+80°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-80°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。以後FFS基板(第1基板)と呼ぶ。
 次に、上記の方法で得られたラジカル発生膜形成組成物AL-2~AL-9、または液晶配向剤AL-1を孔径1.0μmのフィルターで濾過した後、準備された上記第1基板と対向基板として、裏面にITO膜が成膜されており、かつ高さ4.0μmの柱状のスペーサーを有するガラス基板(以後第2基板と呼ぶ)にスピンコート法にて塗布・成膜を行った。次いで、80℃のホットプレート上で80分乾燥後、230℃で20分焼成し、膜厚100nmの塗膜を得た。第1基板上のポリイミド膜においては、櫛歯の方向に添う方向で配向処理を行い、第2基板側のポリイミド膜においては櫛歯電極と直行する方向に配向処理を行った。尚、配向処理においては、いずれもウシオ電機(株)社製のUV露光装置を用い、消光比が約26:1の直線偏光UVを、254nmの波長を基準として50~500mJ/cmの間の照射量で偏光UVを照射し、230℃にて30分加熱することで行い、それぞれの最も配向品位が良好になる条件を用いて比較を行った。
 その後、上記2種類の基板を用いて、実施例の対象とする表示素子に関しては第1基板側にAL-1、第2基板側にラジカル発生膜を設けたもの同士の組み合わせにて作製したものを用い、比較対象とする表示素子においては両方の基板にAL-1を用いたもの及び第1基板側にラジカル発生膜AL-1を用い、第2基板側にAL-2又はAL-6を用いたもの組み合わせにて作製したものを用いた。それぞれの配向方向が平行(ラビングの場合は逆平行)になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが約4.0μmの空セルを作製した。この空セルに、液晶(メルク社製MLC-3019に添加剤IC6を3質量%添加したもの)を常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行い、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射して液晶表示素子を得た。
<液晶配向性の評価>
 偏光顕微鏡を用い、偏光版をクロスニコルに設定し、液晶セルの輝度が最も小さくなる状態で固定し、そこから1°液晶セルを回転させ、液晶の配向状態の観察を行った。ムラやザラツキ等が観察されない場合あるいは非常に軽微な場合は「良好」とし、明確に観察させた場合は「不良」として評価した。
 また、同偏光顕微鏡にフォトダイオードを取り付け、電流-電圧変換アンプを介してエレクトロメーターに接続し、クロスニコル下で輝度が最も小さくなる条件での電圧をモニターすることで黒輝度の測定を行った。
<V-Tカーブの測定と駆動閾値電圧、輝度最大電圧評価>
 光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV-Tカーブの測定を行った。得られたV-Tカーブから駆動閾値電圧と輝度が最大になる電圧の値を見積もった。また、電圧無印加の液晶セルを介して、パラレルニコル時の透過輝度を100%とし、V-Tカーブでの最大透過輝度を比較することにより最大透過率として見積もった。
<応答時間(Ton、Toff)の測定>
 上記V-Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)及び電圧を0Vに戻した際の応答速度(Toff)を測定した。
<重合体の内容>
Figure JPOXMLDOC01-appb-T000038
<液晶配向剤またはラジカル発生膜形成組成物の内容>
Figure JPOXMLDOC01-appb-T000039
(実施例10~16、及び比較例1~4)
<実施例液晶セル内容>
 液晶セルの構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000040
<結果>
Figure JPOXMLDOC01-appb-T000041
 本発明のジアミン化合物DA-4~DA-6を用いたラジカル発生膜は屈曲した構造のDA-3を用いたものに比べて光配向性が良好であり、黒輝度が向上する傾向にあることが分かる。また、いずれのラジカル発生膜を用いたものは比較例1の強アンカリングセルに比べてVmaxが低くなり最大透過率も向上しているが、DA-4~DA-6を用いたものはいずれもDA-3を用いたものよりも向上することがわかった。一方で、光配向処理をしていない比較例4のものはVmaxが大きく低電圧化し最大透過率も大きく向上する反面、比較例1に比べて応答時間が大きく悪化しているが、それに比べてDA-4~DA-6を用いて光配向処理したものは応答時間の遅延も抑制されていることが分かる。
 本発明の液晶配向剤を用いることにより、非常に良好な黒表示が得られ、高いバックライト透過率、速い応答速度を実現できる横電界液晶表示素子を提供することができる。また、本発明の方法で得られる液晶表示素子は、横電界駆動方式の液晶表示素子として有用である。
 1  液晶表示素子
 2  櫛歯電極基板
 2a 基材
 2b 線状電極
 2c ラジカル発生膜
 2d 基材
 2e 面電極
 2f 絶縁膜
 2g 線状電極
 2h ラジカル発生膜
 3  液晶組成物
 4  対向基板
 4a 液晶配向膜
 4b 基材

 

Claims (9)

  1.  下記式(1)で表される構造単位を主鎖に有する重合体を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Aはラジカル重合を誘発する有機基を表す。)
  2.  前記重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体である請求項1に記載の液晶配向剤。
  3.  前記ラジカル重合を誘発する有機基を含有するジアミンが下記式(2)で表されるジアミンである請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、A及びAはそれぞれ水素原子又は前記ラジカル重合を誘発する有機基を表し、但し、A及びAのうち少なくとも1つは前記ラジカル重合を誘発する有機基を表し、
     Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表し、
     pは、0~2の整数を表す。pが2の場合、複数のAはそれぞれ独立して前記定義を有する。また、pが0の場合、Aはラジカル重合を誘発する有機基からなる。)
  4.  前記ラジカル重合を誘発する有機基が、下記式(3)で表される基である、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
     (式(3)中、破線はベンゼン環との結合を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
     Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
     Rは、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
    Figure JPOXMLDOC01-appb-C000004
     式[X-1]~[X-18]中、*はRとの結合箇所を示し、S、S及びSはそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R及びRはそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
    Figure JPOXMLDOC01-appb-C000005
     式[W]、[Y]、[Z]中、*はRとの結合箇所を表し、Sは単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R及びR10で環を形成していても良く、
     Qは下記のいずれかの構造を表し、
    Figure JPOXMLDOC01-appb-C000006
     式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
     R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
  5.  請求項1~4のいずれか一項に記載の液晶配向剤を用いて得られるラジカル発生膜。
  6.  請求項5に記載のラジカル発生膜を有する第一基板と、液晶配向膜を有する第二基板とを用意するステップ、
     前記第二基板上のラジカル発生膜が前記第一基板に対向するようにセルを作成するステップ、および、
     前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、前記第一基板と前記第二基板のいずれか一方が櫛歯電極基板であり、他方が対向基板である横電界液晶セルの製造方法。
  7.  前記第一基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である請求項6に記載の横電界液晶セルの製造方法。
  8.  前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である請求項7に記載の横電界液晶セルの製造方法。
  9.  前記櫛歯電極基板がIPS基板又はFFS基板である請求項6~8のいずれか一項に記載の横電界液晶セルの製造方法。

     
PCT/JP2020/047411 2019-12-18 2020-12-18 液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法 WO2021125319A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565676A JPWO2021125319A1 (ja) 2019-12-18 2020-12-18
CN202080088138.5A CN114830024A (zh) 2019-12-18 2020-12-18 液晶取向膜、自由基产生膜、以及水平电场液晶单元的制造方法
KR1020227022843A KR20220116205A (ko) 2019-12-18 2020-12-18 액정 배향제, 라디칼 발생막 및 횡전계 액정 셀의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-228004 2019-12-18
JP2019228004 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021125319A1 true WO2021125319A1 (ja) 2021-06-24

Family

ID=76478321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047411 WO2021125319A1 (ja) 2019-12-18 2020-12-18 液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法

Country Status (5)

Country Link
JP (1) JPWO2021125319A1 (ja)
KR (1) KR20220116205A (ja)
CN (1) CN114830024A (ja)
TW (1) TW202130704A (ja)
WO (1) WO2021125319A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093629A1 (ja) * 2011-01-06 2012-07-12 シャープ株式会社 液晶表示装置及びその製造方法
JP2014527555A (ja) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag 光配向性材料
JP2014532104A (ja) * 2011-10-03 2014-12-04 ロリク アーゲーRolic Ag 光アライニング材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053530B2 (ja) 2004-09-14 2008-02-27 独立行政法人科学技術振興機構 ゼロ面アンカリング液晶配向法及びその液晶デバイス
JP2013231757A (ja) 2012-04-27 2013-11-14 Lg Display Co Ltd ゼロ面アンカリング液晶配向法及びそれを利用した非接触液晶配向法、並びに液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093629A1 (ja) * 2011-01-06 2012-07-12 シャープ株式会社 液晶表示装置及びその製造方法
JP2014527555A (ja) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag 光配向性材料
JP2014532104A (ja) * 2011-10-03 2014-12-04 ロリク アーゲーRolic Ag 光アライニング材料

Also Published As

Publication number Publication date
TW202130704A (zh) 2021-08-16
CN114830024A (zh) 2022-07-29
JPWO2021125319A1 (ja) 2021-06-24
KR20220116205A (ko) 2022-08-22

Similar Documents

Publication Publication Date Title
JP7234924B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
JP6478052B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子
JP6249197B2 (ja) ジアミン化合物
WO2021020399A1 (ja) 横電界液晶表示素子、及び横電界液晶セルの製造方法
WO2022030602A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
JP7276149B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2021125319A1 (ja) 液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法
WO2021125329A1 (ja) ラジカル発生膜形成組成物、ラジカル発生膜、及び横電界液晶セルの製造方法
WO2022071286A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
WO2022196565A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
WO2021125327A1 (ja) パターン化された液晶表示素子の製造方法
JP7367673B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
JP7367674B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
JPWO2019244821A5 (ja)
JPWO2019244820A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565676

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227022843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903579

Country of ref document: EP

Kind code of ref document: A1