WO2021124801A1 - Glass article manufacturing method and glass article manufacturing device - Google Patents

Glass article manufacturing method and glass article manufacturing device Download PDF

Info

Publication number
WO2021124801A1
WO2021124801A1 PCT/JP2020/043475 JP2020043475W WO2021124801A1 WO 2021124801 A1 WO2021124801 A1 WO 2021124801A1 JP 2020043475 W JP2020043475 W JP 2020043475W WO 2021124801 A1 WO2021124801 A1 WO 2021124801A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
furnace
slow cooling
molding
gas
Prior art date
Application number
PCT/JP2020/043475
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大庭
隆英 中村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2021565399A priority Critical patent/JPWO2021124801A1/ja
Priority to CN202080073567.5A priority patent/CN114555536B/en
Priority to KR1020227009100A priority patent/KR20220117197A/en
Publication of WO2021124801A1 publication Critical patent/WO2021124801A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B15/00Drawing glass upwardly from the melt
    • C03B15/02Drawing glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/10Annealing glass products in a continuous way with vertical displacement of the glass products
    • C03B25/12Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Definitions

  • the present invention relates to a method for manufacturing a glass article and an apparatus for manufacturing a glass article.
  • a manufacturing apparatus for manufacturing a glass article for a display such as a liquid crystal display or an organic EL display
  • a molding furnace for molding a glass ribbon by a down draw method and a molding furnace communicating with the lower part of the molding furnace to gradually move the glass ribbon.
  • Examples thereof include a slow cooling furnace for cooling and a cooling unit that communicates below the slow cooling furnace to cool the glass ribbon.
  • examples of the glass article include a glass plate having a substantially rectangular shape obtained by cutting a glass ribbon to a predetermined length, a glass roll obtained by winding the glass ribbon around a winding core, and the like in a roll shape.
  • a glass roll for example, it is possible to easily cut out a large number of glass plates.
  • the molding furnace, slow cooling furnace, and cooling unit form a tubular space that communicates in the vertical direction, and this tubular space is used as a glass ribbon transfer booth. Since a part of the inside of the transport booth is heated to a high temperature, an updraft may be generated in the transport booth due to the chimney effect. This updraft adversely affects the slow cooling process of the glass ribbon in the slow cooling furnace, and the distortion of the glass ribbon may be exacerbated.
  • the updraft generated in the transport booth becomes a problem. That is, in order to reduce the heat shrinkage of the glass article, it is effective to slowly cool the glass ribbon for a long time at a slow slow cooling (cooling) rate in the slow cooling step. Therefore, in order to satisfy this condition, the length of the slow cooling furnace is increased, and the glass ribbon in the slow cooling furnace is easily affected by the updraft.
  • Patent Document 1 discloses that a molding slow cooling chamber in which a molding furnace and a slow cooling furnace are arranged is pressurized by a pressurizing mechanism such as a pressurizing fan.
  • a pressurizing mechanism such as a pressurizing fan.
  • An object of the present invention is to suppress the adhesion of foreign matter to the glass ribbon while suppressing the deterioration of the distortion of the glass ribbon when manufacturing the glass article by the down draw method.
  • the present invention communicates with a molding furnace that forms a glass ribbon by the downdraw method, a slow cooling furnace that communicates with the lower part of the molding furnace to slowly cool the glass ribbon, and a slow cooling furnace that communicates with the lower part of the slow cooling furnace.
  • a method for manufacturing a glass article using a manufacturing apparatus including a cooling unit for cooling the glass ribbon, a molding slow cooling chamber in which a molding furnace and a slow cooling furnace are arranged, and a cooling chamber in which the cooling unit is arranged inside.
  • the molding slow cooling chamber is divided into a first chamber in which the upper part of the molding furnace and the slow cooling furnace is arranged inside and a second chamber in which the lower part of the slow cooling furnace is arranged inside. It is characterized in that the gas in the second chamber is exhausted to the outside by an exhaust mechanism while pressurizing one chamber.
  • the first chamber of the molding slow cooling chamber is pressurized by the pressurizing mechanism, so that the gas does not flow out from the gap (for example, joint) of the furnace wall above the molding furnace and / or the slow cooling furnace. Can be reduced.
  • the updraft inside each of the molding furnace, the slow cooling furnace, and the cooling unit (inside the transport booth) can be suppressed. Therefore, it is possible to suppress the deterioration of the distortion of the glass ribbon due to the updraft.
  • the second chamber is provided in the molding slow cooling chamber and the gas in the second chamber is exhausted to the outside by the exhaust mechanism, the foreign matter in the second chamber corresponding to the lower part of the molding slow cooling chamber also goes out of the room together with the gas. It is discharged. Therefore, it is possible to prevent foreign matter in the second chamber from entering the slow cooling furnace through a gap in the furnace wall at the bottom of the slow cooling furnace. Therefore, it is possible to suppress the adhesion of foreign matter to the glass ribbon.
  • the air pressure in the first chamber is higher than the air pressure in the second chamber and the air pressure in the second chamber is lower than the air pressure in the cooling chamber.
  • the air pressure in the second chamber is the lowest among the first chamber, the second chamber and the cooling chamber, so that foreign matter in the first chamber and foreign matter in the cooling chamber easily flow into the second chamber. Therefore, foreign matter in the first chamber and foreign matter in the cooling chamber can also be discharged to the outside from the second chamber by the exhaust mechanism. Therefore, the adhesion of foreign matter to the glass ribbon can be suppressed more reliably.
  • the air pressure at the lower part of the slow cooling furnace is higher than the air pressure at the second chamber.
  • the position corresponding to the strain point temperature of the glass ribbon is included in the upper part of the slow cooling furnace.
  • the updraft at the position corresponding to the strain point temperature that affects the strain of the glass ribbon can be reliably suppressed, so that the strain of the glass ribbon can be sufficiently reduced.
  • the side wall of the lower part of the slow cooling furnace may have a flow path for guiding a part of the gas in the slow cooling furnace to the second chamber.
  • the updraft generated in the cooling section is likely to be drawn into the second chamber through the flow path at the bottom of the slow cooling furnace. Therefore, the deterioration of the distortion of the glass ribbon can be suppressed more reliably.
  • the first chamber is pressurized by the pressurizing mechanism and the gas in the first chamber is exhausted to the outside at a position different from the pressurizing mechanism.
  • the temperature in the first chamber can be high due to the heat of the furnace, the temperature in the first chamber can be appropriately lowered because the gas in the first chamber can be easily replaced.
  • the cold air tends to have a high density and tends to fall, and the hot air tends to have a low density and tends to rise, so that the gas can be efficiently circulated in the first chamber. Therefore, the air temperature in the first room can be efficiently lowered.
  • the gas in the second chamber is exhausted by the exhaust mechanism and the gas is supplied to the second chamber at a position different from that of the exhaust mechanism.
  • the temperature in the second chamber can be high due to the heat of the furnace, the temperature in the second chamber can be appropriately lowered because the gas in the second chamber can be easily replaced.
  • the present invention communicates with a molding furnace that forms a glass ribbon by the downdraw method, a slow cooling furnace that communicates with the lower part of the molding furnace to slowly cool the glass ribbon, and a slow cooling furnace that communicates with the lower part of the slow cooling furnace.
  • a molding apparatus for manufacturing a glass article comprising a cooling unit for cooling the glass ribbon, a molding slow cooling chamber in which a molding furnace and a slow cooling furnace are arranged, and a cooling chamber in which the cooling unit is arranged inside.
  • the slow cooling chamber includes a first chamber in which the upper part of the molding furnace and the slow cooling furnace is arranged inside, and a second chamber in which the lower part of the slow cooling furnace is arranged inside. (Ii) It is further provided with an exhaust mechanism for exhausting the gas in the room to the outside.
  • the present invention when a glass article is manufactured by the down draw method, it is possible to suppress the deterioration of the distortion of the glass ribbon and the adhesion of foreign matter to the glass ribbon.
  • the glass article manufacturing apparatus 1 As shown in FIG. 1, the glass article manufacturing apparatus 1 according to the first embodiment of the present invention is an apparatus for manufacturing a glass plate G as a glass article by an overflow down draw method, and constitutes a part of a building X. To do. The inside of the building X is managed under positive pressure in order to suppress the intrusion of outside air.
  • the manufacturing apparatus 1 includes a molding furnace 2, a slow cooling furnace 3 arranged below the molding furnace 2, a cooling unit 4 arranged below the slow cooling furnace 3, and a cutting chamber 5 arranged below the cooling unit 4.
  • a molding slow cooling chamber 6 in which the molding furnace 2 and the slow cooling furnace 3 are arranged inside, and a cooling chamber 7 in which the cooling unit 4 is arranged inside are provided.
  • the molding slow cooling chamber 6, the cooling chamber 7, and the cutting chamber 5 are processing chambers (for example, clean rooms) that partition and form a space capable of blocking contaminants from the outside to some extent.
  • the molding furnace 2, the slow cooling furnace 3, and the cooling unit 4 form a tubular space that communicates in the vertical direction with walls 8a to 8d.
  • the covered tubular space including the walls 8a to 8d is used as a transfer booth 9 for the glass ribbon Gr molded in the molding furnace 2.
  • the transfer booth 9 is located between the molding furnace 2 and the upper portion 3a of the slow cooling furnace 3, between the upper portion 3a of the slow cooling furnace 3 and the lower portion 3b of the slow cooling furnace 3, between the lower portion 3b of the slow cooling furnace 3 and the cooling unit 4, and for cooling.
  • the section 4 and the cutting chamber 5 are partitioned by partitioning members 10a to 10d including the floor surface of the building X. Each of the partition members 10a to 10d is provided with an opening for passing the glass ribbon Gr.
  • the partition members 10a to 10d in the transport booth 9 may be omitted, or a partition member may be added between the partition members 10a to 10d.
  • a molded body 11 for molding the glass ribbon Gr from the molten glass Gm by the overflow down draw method is arranged inside the molding furnace 2.
  • the molten glass Gm supplied to the molded body 11 overflows from the groove formed at the top of the molded body 11, and the overflowed molten glass Gm travels along the side surfaces of both sides of the molded body 11 at the lower end.
  • the plate-shaped glass ribbon Gr is continuously formed.
  • the glass ribbon Gr to be molded is transported to the downstream side (preferably vertically downward) of the transport booth 9 in a vertical posture (preferably a vertical posture).
  • the slow cooling furnace 3 is a furnace for reducing the distortion of the glass ribbon Gr molded in the molding furnace 2.
  • the inside of the slow cooling furnace 3 has a predetermined temperature gradient downward.
  • the glass ribbon Gr is slowly cooled (annealed) so that the temperature becomes lower as it moves downward in the slow cooling furnace 3.
  • the temperature gradient in the slow cooling furnace 3 can be adjusted by, for example, a heater (not shown) arranged in the slow cooling furnace 3.
  • the cooling unit 4 is a space for dissipating heat from the glass ribbon Gr slowly cooled in the slow cooling furnace 3 and cooling it to around room temperature.
  • a heater is not arranged in the cooling unit 4.
  • an edge roller 12 that regulates the shrinkage of the glass ribbon Gr in the width direction is arranged directly under the molded body 11.
  • the edge roller 12 sandwiches both ends of the glass ribbon Gr in the width direction from both the front and back sides.
  • ears that are relatively thicker than the central portion in the width direction of the glass ribbon Gr are formed at both ends in the width direction of the glass ribbon Gr.
  • the edge roller 12 may be arranged in the forming furnace 2.
  • the annealing roller 13 is arranged below the edge roller 12.
  • the annealing rollers 13 are provided in a plurality of stages in the vertical direction.
  • the annealing roller 13 is composed of rollers made of an inorganic material such as those made of ceramics.
  • a support roller 14 for sandwiching the glass ribbon Gr from both the front and back sides is arranged in the cooling unit 4.
  • the support rollers 14 are arranged in one or a plurality of stages (illustrated example) in the vertical direction.
  • the support roller 14 is composed of a roller made of a heat-resistant resin material such as rubber.
  • a cutting device (not shown) is arranged in the cutting chamber 5.
  • the cutting device is a device for cutting the glass ribbon Gr cooled by the cooling unit 4 at predetermined lengths to obtain a glass plate G.
  • the cutting method by the cutting device is not particularly limited, and for example, bending stress fracture, laser fracture, laser fusing and the like can be used.
  • the molding slow cooling chamber 6 includes a first chamber 6a in which the upper portion 3a of the molding furnace 2 and the slow cooling furnace 3 is arranged inside, and a second chamber 6b in which the lower portion 3b of the slow cooling furnace 3 is arranged inside.
  • the upper portion 3a of the slow cooling furnace 3 includes a position corresponding to the slow cooling point temperature of the glass ribbon Gr and a position corresponding to the strain point temperature of the glass ribbon Gr.
  • the slow cooling point temperature means a temperature at which strain is removed when the glass is held at this temperature for 15 minutes
  • the strain point temperature means a temperature at which strain does not occur in the glass even if it is rapidly cooled below that temperature. To do.
  • the strain point temperature is, for example, 30 to 150 ° C. lower than the slow cooling point temperature. That is, the position corresponding to the slow cooling point temperature of the glass ribbon Gr is located above the position corresponding to the strain point temperature of the glass ribbon Gr.
  • the partition members 15a to 15c may be configured to allow the flow of gas.
  • the partition members 15a to 15c may have a gap through which gas can flow from the transfer booth 9.
  • the vertical positions of the partition members 15a to 15c are the same as the vertical positions of the partition members 10b to 10d in the transport booth 9, the vertical positions of the partition members 15a to 15c may be different from each other.
  • the glass article manufacturing apparatus 1 further includes a first pressurizing mechanism 16 that pressurizes the inside of the first chamber 6a.
  • the inside of the first chamber 6a means the space outside the upper portion 3a of the molding furnace 2 and the slow cooling furnace 3.
  • the first pressurizing mechanism 16 includes an outside air duct 17 connected to the outside (outside of the building X), an air supply fan 18 that takes in outdoor gas (outside air) from the outside air duct 17, and an air supply fan. It is composed of an air conditioner including an air supply duct 19 for supplying the gas taken in by 18 into the first chamber 6a.
  • the manufacturing apparatus 1 further includes an exhaust mechanism 20 that exhausts the gas in the second chamber 6b to the outside.
  • the inside of the second chamber 6b means the space outside the lower portion 3b of the slow cooling furnace 3.
  • the exhaust mechanism 20 is preferably configured to reduce the pressure in the second chamber 6b as the gas in the second chamber 6b is exhausted.
  • the exhaust mechanism 20 includes a return air duct 21 connected to the second chamber 6b, an exhaust fan 22 that takes in the gas in the second chamber 6b from the return air duct 21, and a gas taken in by the exhaust fan 22. Is provided with an exhaust duct 23 for exhausting the air to the outside.
  • the air pressure is adjusted so that the air pressure in the second chamber 6b is lower than the air pressure in the lower part 3b of the slow cooling furnace 3.
  • the air pressure is adjusted so that the air pressure in the first chamber 6a is higher than the air pressure in the second chamber 6b and the air pressure in the second chamber 6b is lower than the air pressure in the cooling chamber 7.
  • the manufacturing apparatus 1 further includes a second pressurizing mechanism 24 that pressurizes the inside of the cooling unit 4.
  • the inside of the cooling chamber 7 means the space outside the cooling unit 4.
  • the second pressurizing mechanism 24 is preferably configured to pressurize the inside of the cooling unit 4 so that the air pressure of the cooling unit 4 is higher than the air pressure of the cutting chamber 5.
  • the second pressurizing mechanism 24 may be omitted.
  • the second pressurizing mechanism 24 includes an outside air duct 25 connected to the outside, an air supply fan 26 that takes in outdoor gas from the outside air duct 25, and a cooling unit 4 that takes in gas taken in by the air supply fan 26. It is composed of an air conditioner provided with an air supply duct 27 for supplying air inside.
  • the air supply duct 27 is preferably connected to the cooling unit 4 below the cooling unit 4 near the cutting chamber 5, specifically, below the support roller 14 at the bottom.
  • the air conditioning is illustrated. The arrangement mode of the machine is not limited to this.
  • the second pressurizing mechanism 24 further includes a temperature control unit 28 and a filter unit 29.
  • a temperature control unit 28 for example, a sheathed heater, an energizing heating device (which energizes the piping of the second pressurizing mechanism 24), an induction heating device, or the like can be used.
  • the filter unit 29 for example, a coarse dust filter, a medium performance filter (for example, MEPA filter), a high performance filter (for example, a HEPA filter, a ULPA filter, etc.) and the like can be used. At least one of the temperature control unit 28 and the filter unit 29 may be omitted.
  • This manufacturing method is a method of manufacturing a glass plate G as a glass article by using the manufacturing apparatus 1 described above.
  • the present manufacturing method includes a molding step of molding the glass ribbon Gr by the overflow down draw method in the molding furnace 2, a slow cooling step of slowly cooling the molded glass ribbon Gr in the slow cooling furnace 3, and a slow cooling step.
  • a cooling step of cooling the cooled glass ribbon Gr in the cooling unit 4 and a cutting step of cutting the cooled glass ribbon Gr in the cutting chamber 5 are provided.
  • This manufacturing method further includes a first pressurizing step of pressurizing the inside of the first chamber 6a by the first pressurizing mechanism 16 and an exhaust step of exhausting the gas in the second chamber 6b to the outside by the exhaust mechanism 20.
  • the first pressurizing step and the exhaust step are performed in parallel with the above-mentioned molding step, slow cooling step, cooling step and cutting step.
  • the first pressurizing mechanism 16 supplies gas into the first chamber 6a to raise the air pressure in the first chamber 6a.
  • the first pressurizing mechanism 16 supplies gas into the first chamber 6a to raise the air pressure in the first chamber 6a.
  • the first pressurizing mechanism 16 supplies gas into the first chamber 6a to raise the air pressure in the first chamber 6a.
  • the temperature of the transport booth 9 rises as it goes upward, and the air pressure tends to rise. Therefore, the differential pressure between the molding slow cooling chamber 6 and the transfer booth 9 tends to be smaller in the second chamber 6b corresponding to the lower portion of the molding slow cooling chamber 6 than in the first chamber 6a corresponding to the upper portion of the molding slow cooling chamber 6. That is, when the second chamber 6b is pressurized in the same manner as the first chamber 6a, foreign matter in the second chamber 6b easily enters the slow cooling furnace 3. Therefore, only the first chamber 6a is directly pressurized by the first pressurizing mechanism 16.
  • the atmospheric pressures of the upper portions 3a of the molding furnace 2 and the slow cooling furnace 3 become higher than the atmospheric pressure of the first chamber 6a of the molding slow cooling chamber 6. Be maintained.
  • the differential pressure between the molding furnace 2 (high pressure side) and the first chamber 6a (low pressure side) is preferably, for example, 5 to 50 Pa, and the upper portion 3a (high pressure side) and the first chamber 6a (low pressure side) of the slow cooling furnace 3
  • the differential pressure with and from is preferably, for example, 5 to 40 Pa.
  • the differential pressure is controlled by the pressure sensors 30, 31 and 32, but a predetermined differential pressure gauge may be used.
  • the value of the differential pressure is not particularly limited and can be adjusted as appropriate.
  • the differential pressure between the first chamber 6a (high pressure side) and the outside of the building X (low pressure side) may be, for example, 20 to 100 Pa.
  • the exhaust mechanism 20 discharges the gas in the second chamber 6b and the foreign matter in the second chamber 6b to the outside. Therefore, it is possible to prevent foreign matter in the second chamber 6b from entering the lower portion 3b of the slow cooling furnace 3 through a gap such as a joint of the wall 8c of the lower portion 3b of the slow cooling furnace 3. Therefore, it is possible to suppress the adhesion of foreign matter to the glass ribbon Gr transported in the transport booth 9.
  • the exhaust step it is preferable to reduce the pressure in the second chamber 6b in the process of exhausting the gas in the second chamber 6b by the exhaust mechanism 20.
  • the atmospheric pressure in the lower portion 3b of the slow cooling furnace 3 is maintained higher than the atmospheric pressure in the second chamber 6b by adjusting the depressurizing condition by the exhaust mechanism 20.
  • the updraft generated in the cooling unit 4 is drawn into the second chamber 6b in the lower part 3b of the slow cooling furnace 3, so that the updraft in the molding furnace 2 and the upper part 3a of the slow cooling furnace 3 rises.
  • the air volume of the air flow can be suppressed.
  • a part of the gas in the slow cooling furnace 3 is placed in the second chamber on the wall 8c of the lower portion 3b of the slow cooling furnace 3.
  • a hole H is provided to form a flow path leading to 6b. The hole H may be omitted.
  • the differential pressure between the lower part 3b (high pressure side) of the slow cooling furnace 3 and the second chamber 6b (low pressure side) is controlled to be, for example, 2 to 30 Pa.
  • the differential pressure is controlled by the pressure sensors 33 and 34, but a predetermined differential pressure gauge may be used.
  • the value of the differential pressure is not particularly limited and can be adjusted as appropriate.
  • the position corresponding to the strain point temperature of the glass ribbon Gr is included in the upper part 3a of the slow cooling furnace 3. In this way, even if an updraft is generated in the cooling unit 4, the updraft generated in the cooling unit 4 is the third in the lower portion 3b of the slow cooling furnace 3 below the position corresponding to the strain point temperature of the glass ribbon Gr. It is drawn into the second room 6b. Therefore, the updraft can be reliably suppressed at a position corresponding to the strain point temperature of the glass ribbon Gr.
  • the strain point temperature of the glass ribbon Gr is an important temperature that determines the strain of the glass ribbon Gr, if the updraft is suppressed at a position corresponding to this temperature, the strain of the glass ribbon Gr can be sufficiently reduced.
  • the strain of the glass ribbon Gr may be aggravated by the air flow from the lower portion 3b of the slow cooling furnace 3 to the second chamber 6b. ..
  • the air pressure in the first chamber 6a is higher than the air pressure in the second chamber 6b and the air pressure in the second chamber 6b is cooled by the pressurizing conditions in the pressurizing step and the depressurizing conditions in the exhausting step. It is preferable to keep the pressure lower than the air pressure of the chamber 7. In this way, the air pressure in the second chamber 6b is the lowest among the first chamber 6a, the second chamber 6b, and the cooling chamber 7. Therefore, foreign matter in the first chamber 6a and foreign matter in the cooling chamber 7 also flow into the second chamber 6b through, for example, gaps between the partition members 15a and 15b.
  • the foreign matter in the first chamber 6a and the foreign matter in the cooling chamber 7 can be easily discharged from the second chamber 6b to the outside by the exhaust mechanism 20. Therefore, it is possible to more reliably suppress the adhesion of foreign matter to the glass ribbon Gr transported in the transport booth 9.
  • the differential pressure between the first chamber 6a (high pressure side) and the second chamber 6b (low pressure side) is preferably, for example, 10 to 60 Pa.
  • the differential pressure between the cooling chamber 7 (high pressure side) and the second chamber 6b (low pressure side) is preferably, for example, more than 0 to 20 Pa.
  • the differential pressure is controlled by the pressure sensors 32, 34, 36, but a predetermined differential pressure gauge may be used. The value of the differential pressure is not particularly limited and can be adjusted as appropriate.
  • the present manufacturing method further includes a second pressurizing step of pressurizing the inside of the cooling unit 4 by the second pressurizing mechanism 24 during the molding step, the slow cooling step, the cooling step, and the cutting step.
  • the second pressurizing step is performed in parallel with the above-mentioned molding step, slow cooling step, cooling step and cutting step.
  • the second pressurizing mechanism 24 supplies gas into the cooling unit 4 to raise the air pressure of the cooling unit 4. As a result, it is possible to prevent foreign matter (glass powder, etc.) generated in the cutting chamber 5 from entering the cooling unit 4.
  • the atmospheric pressure of the cooling unit 4 is maintained higher than the atmospheric pressure of the cutting chamber 5 by adjusting the pressurizing conditions by the second pressurizing mechanism 24. In this way, foreign matter generated in the cutting chamber 5 can be more reliably suppressed from entering the cooling unit 4.
  • the differential pressure between the cooling unit 4 (high pressure side) and the cutting chamber 5 (low pressure side) is preferably 0 to 6 Pa, for example.
  • the differential pressure is controlled by the pressure sensors 36 and 37, but a predetermined differential pressure gauge may be used.
  • the value of the differential pressure is not particularly limited and can be adjusted as appropriate.
  • the temperature control portion 28 of the second pressurizing mechanism 24 adjusts the supply air temperature according to the temperature of the gas taken in from the outside air duct 25.
  • the temperature inside the transport booth 9 (particularly the cooling unit 4) can be adjusted, so that the air volume of the updraft generated in the transport booth 9 can be adjusted by the chimney effect.
  • the filter unit 29 of the second pressurizing mechanism 24 removes foreign matter from the supplied gas. As a result, a highly clean gas can be supplied to the cooling unit 4.
  • the air pressure of the cooling unit 4 is the air pressure of the second chamber 6b by adjusting the depressurization condition by the exhaust mechanism 20 and the pressurization condition by the second pressurization mechanism 24. It is preferable to keep it in a higher state than. In this way, foreign matter in the second chamber 6b is less likely to enter the cooling chamber 7.
  • the upper surface of the cooling unit 4 is larger than the lower surface of the slow cooling furnace 3, and a part of the second chamber 6b and a part of the cooling unit 4 face each other via the partition plate 15b. It is valid. In this case, it is possible to prevent a part of the foreign matter generated in the second chamber 6b from flowing into the cooling unit 4 through the gap of the partition plate 15b or the like.
  • the differential pressure between the cooling unit 4 (high pressure side) and the second chamber 6b (low pressure side) is preferably, for example, 5 to 30 Pa.
  • the differential pressure is controlled by the pressure sensors 34 and 35, but a predetermined differential pressure gauge may be used.
  • the value of the differential pressure is not particularly limited and can be adjusted as appropriate.
  • the difference between the glass article manufacturing apparatus 1 and the manufacturing method according to the second embodiment of the present invention from the first embodiment is that the exhaust mechanism 41 is provided in the first chamber 6a.
  • the air supply mechanism 51 is provided in the second chamber 6b.
  • the exhaust mechanism 41 exhausts the return air duct 42 connected to the first chamber 6a, the exhaust fan 43 that takes in the gas in the first chamber 6a from the return air duct 42, and the gas taken in by the exhaust fan 43 to the outside. It is provided with an exhaust duct 44.
  • the amount of gas exhausted by the exhaust mechanism 41 is preferably smaller than the amount of gas supplied by the pressurizing mechanism 16. That is, in the first chamber 6a, the gas is exhausted by the exhaust mechanism 41 while supplying gas by the pressurizing mechanism 16, but the exhaust by the exhaust mechanism 41 is auxiliary, and the first by the pressurizing mechanism 16. The pressurized state of the chamber 6a is maintained.
  • the air supply mechanism 51 has an outside air duct 52 connected to the outside (outside of the building X), an air supply fan 53 that takes in outdoor gas (outside air) from the outside air duct 52, and a gas taken in by the air supply fan 53.
  • An air supply duct 54 for supplying air is provided in the two chambers 6b.
  • the amount of gas supplied by the air supply mechanism 51 is preferably smaller than the amount of gas supplied by the exhaust mechanism 20. That is, in the second chamber 6b, the gas is exhausted by the exhaust mechanism 20 while the gas is supplied by the air supply mechanism 51, but the air supply by the air supply mechanism 51 is auxiliary, and the exhaust mechanism 20 provides the second gas. The depressurized state of the two chambers 6b is maintained.
  • the difference between the glass article manufacturing apparatus 1 and the manufacturing method according to the third embodiment of the present invention from the second embodiment is the gas supply by the pressurizing mechanism 16 and the exhaust mechanism. The point is that the gas is exhausted by 41 from above the first chamber 6a.
  • the pressurizing mechanism 16 supplies cold air C into the room from above the first room 6a on one side of the transport booth 9.
  • the exhaust mechanism 41 exhausts hot air (cold air warmed by the influence of the molding furnace 2 and the slow cooling furnace 3) W to the outside of the room from above the first chamber 6a on the other side of the transport booth 9.
  • the cold air C is, for example, room temperature (20 ° C. ⁇ 15 ° C.)
  • the hot air W is, for example, 80 ° C. ⁇ 20 ° C.
  • the cold air C tends to have a high density and tends to fall, and the hot air W tends to have a low density and rises, so that the gas can be efficiently circulated in the first chamber 6a. Therefore, the air temperature in the first chamber 6a, which tends to become high due to the influence of the molding furnace 2 and the slow cooling furnace 3, can be efficiently lowered.
  • the pressurizing mechanism 16 supplies cold air into the room from above the first chamber 6a, and the exhaust mechanism 41 is used to supply cold air from above the first chamber 6a at a position different from the pressurizing mechanism 16.
  • the configuration can also be applied to the second room 6b. That is, the air supply mechanism 51 supplies cold air into the room from above the second chamber 6b, and the exhaust mechanism 20 exhausts hot air from above the second chamber 6b to the outside at a position different from that of the air supply mechanism 51. You may.
  • the air supply position of cold air and the exhaust position of hot air are not limited to the upper side, and may be supplied and exhausted from the side to the upper part of the first chamber 6a and / or the second chamber 6b.
  • the difference between the glass article manufacturing apparatus 1 and the manufacturing method according to the fourth embodiment of the present invention from the second embodiment is that the cooling unit 4 is also provided with the exhaust mechanism 61. is there.
  • the exhaust mechanism 61 includes a return air duct 62 connected to the cooling unit 4, an exhaust fan 63 that takes in the gas in the cooling unit 4 from the return air duct 62, and an exhaust duct that exhausts the gas taken in by the exhaust fan 63 to the outside. It includes 64.
  • the pressurizing mechanism 24 and the exhaust mechanism 61 are kept as far apart as possible in consideration of the influence of particles from the cutting chamber 5. Further, it is preferable that the pressurizing mechanism 24 is arranged above the cooling unit 4 and the exhaust mechanism 61 is arranged below the cooling unit 4. Therefore, in the present embodiment, the exhaust mechanism 61 (return air duct 62) is arranged diagonally to the pressurizing mechanism 24 (air supply duct 27) arranged above the cooling unit 4. In this way, since the gas circulates in the cooling unit 4, the particles can be reliably captured and easily discharged to the outside.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the first pressurizing mechanism 16 is not limited to a configuration in which gas is taken in from the outside of the building X.
  • the first pressurizing mechanism 16 is configured to take in gas from any place in the building X. You may.
  • gas is taken in from the room of the building X in this way, there is an advantage that the ducts 17 and 19 can be shortened.
  • the configuration for taking in gas from the room of the building X in this way can be similarly applied to the pressurizing mechanism 24 and the air supply mechanism 51.
  • the exhaust mechanism 20 is not limited to a configuration in which gas is exhausted to the outside of the building X.
  • the exhaust mechanism 20 in the case of the outdoor of the second room 6b, the exhaust mechanism 20 is configured to exhaust the gas to any place in the room of the building X. May be good. When the gas is exhausted into the room of the building X in this way, there is an advantage that the ducts 21 and 23 can be shortened.
  • the exhaust mechanism 20 may have a configuration in which the gas in the second chamber 6b is exhausted to the outside by utilizing the differential pressure between the second chamber 6b and the portion where the gas is exhausted (for example, the outside of the building X). .. That is, for example, the exhaust mechanism 20 may be configured to exhaust the gas of the second chamber 6b to the outside through an opening provided in the wall portion of the second chamber 6b without providing the exhaust fan 22. These configurations can be similarly applied to the exhaust mechanisms 41 and 61.
  • the exhaust mechanism 20 may further include a filter unit like the second pressurizing mechanism 24. If foreign matter (iron powder, etc.) is removed from the exhausted gas by the filter unit, a highly clean gas can be exhausted outdoors. For the same reason, the exhaust mechanisms 41 and 61 may further include a filter unit.
  • the first pressurizing mechanism 16 may further include a filter portion like the second pressurizing mechanism 24. If the filter unit removes foreign matter from the gas supplied to the first chamber 6a, a highly clean gas can be supplied to the first chamber 6a. For the same reason, the air supply mechanism 51 may further include a filter unit.
  • the first pressurizing mechanism 16 may further include a temperature control portion like the second pressurizing mechanism 24. If the temperature of the gas supplied to the first chamber 6a is adjusted by the temperature control unit, even if the gas in the first chamber 6a invades the molding furnace 2 or the upper part 3a of the slow cooling furnace 3, the molding conditions and slow cooling are performed. It is thought that the disturbance of conditions can be reduced. For the same reason, the air supply mechanism 51 may further include a temperature control unit.
  • a pressurizing mechanism (air supply mechanism) and / or an exhaust mechanism may be provided in the cooling chamber 7 and / or the cutting chamber 5. In this way, it becomes easy to adjust the air pressure in the cooling chamber 7 and the cutting chamber 5. That is, the differential pressure can be easily managed.
  • a collection chamber for dropping and collecting waste glass from the cutting chamber 5 may be provided on the lower floor of the cutting chamber 5.
  • the glass article manufacturing apparatus 1 includes a second cutting apparatus for cutting both ends in the width direction including the ears of the glass plate G, an end face processing apparatus for processing the end face of the glass plate G, and a glass plate on the downstream side of the cutting chamber 5.
  • a cleaning device for cleaning G, an inspection device for inspecting the glass plate G, and the like may be further provided.
  • a second cutting step of cutting both ends in the width direction of the glass plate G, an end face processing step of processing the end face of the glass plate G, and cleaning of the glass plate G are performed. It may further include a cleaning step for inspecting the glass plate G and an inspection step for inspecting the glass plate G.
  • the glass plate G is illustrated, but the glass article is not limited to this, and a glass roll or the like in which the glass ribbon Gr is wound around the winding core in a roll shape may be used.
  • the glass article manufacturing apparatus 1 winds the glass ribbon Gr, which is a cutting apparatus for cutting and removing both ends in the width direction including the ears of the glass ribbon Gr, in a roll shape on the downstream side of the cooling unit 4.
  • a winding device for obtaining a glass roll may be further provided.
  • the method for manufacturing a glass article is a cutting step of cutting and removing both ends of the glass ribbon Gr in the width direction on the downstream side of the cooling step, and winding the glass ribbon Gr into a roll to obtain a glass roll. It may be further provided with a process or the like.
  • the case where the glass ribbon Gr (or the glass article) is formed by the overflow down draw method is illustrated, but other down draw methods such as the slot down draw method and the redraw method can also be used.

Abstract

This glass article manufacturing device 1 is provided with: a forming furnace 2 which forms a glass ribbon Gr with a downdraw method; a slow cooling furnace 3 which communicates with the lower part of the forming furnace 2 and gradually cools the glass ribbon Gr; a cooling unit 4 which communicates with the lower part of the slow cooling furnace 3 and cools the glass ribbon Gr; a forming and cooling chamber 6 inside of which the forming furnace 2 and the slow cooling furnace 3 are arranged; and a cooling chamber 7 inside of which the cooling unit 4 is arranged. The forming and cooling chamber 6 is provided with a first chamber 6a inside of which the top of the forming furnace 2 and the slow cooling furnace 3 are arranged, and a second chamber 6b inside of which the bottom of the slow cooling furnace 3 is arranged. The first chamber 6a is provided with a pressurizing mechanism 16 which pressurizes the inside of the first chamber 6a, and the second chamber 6b is provided with a discharge mechanism 20 which discharges the gas inside of the second chamber 6b to outside of the chamber.

Description

ガラス物品の製造方法及びガラス物品の製造装置Glass article manufacturing method and glass article manufacturing equipment
 本発明は、ガラス物品の製造方法及びガラス物品の製造装置に関する。 The present invention relates to a method for manufacturing a glass article and an apparatus for manufacturing a glass article.
 液晶ディスプレイや有機ELディスプレイなどのディスプレイ用のガラス物品を製造するための製造装置としては、例えば、ダウンドロー法によりガラスリボンを成形する成形炉と、成形炉の下方に連通してガラスリボンを徐冷する徐冷炉と、徐冷炉の下方に連通してガラスリボンを冷却する冷却部とを備えたものが挙げられる。 As a manufacturing apparatus for manufacturing a glass article for a display such as a liquid crystal display or an organic EL display, for example, a molding furnace for molding a glass ribbon by a down draw method and a molding furnace communicating with the lower part of the molding furnace to gradually move the glass ribbon. Examples thereof include a slow cooling furnace for cooling and a cooling unit that communicates below the slow cooling furnace to cool the glass ribbon.
 ここで、ガラス物品としては、ガラスリボンを所定長さで切断した略矩形状等のガラス板や、ガラスリボンを巻芯などの周囲にロール状に巻き取ったガラスロールなどが挙げられる。ガラスロールの場合、例えばガラス板を多数枚に亘って切り出すことも容易に行い得る。 Here, examples of the glass article include a glass plate having a substantially rectangular shape obtained by cutting a glass ribbon to a predetermined length, a glass roll obtained by winding the glass ribbon around a winding core, and the like in a roll shape. In the case of a glass roll, for example, it is possible to easily cut out a large number of glass plates.
 この種の製造装置の場合、成形炉、徐冷炉及び冷却部が、上下方向に連通する筒状の空間を構成し、この筒状の空間がガラスリボンの搬送ブースとされる。そして、この搬送ブース内の一部は高温とされるため、煙突効果により、搬送ブース内に上昇気流が発生し得る。この上昇気流は、徐冷炉におけるガラスリボンの徐冷工程に悪影響を与え、ガラスリボンの歪が悪化するおそれがある。 In the case of this type of manufacturing equipment, the molding furnace, slow cooling furnace, and cooling unit form a tubular space that communicates in the vertical direction, and this tubular space is used as a glass ribbon transfer booth. Since a part of the inside of the transport booth is heated to a high temperature, an updraft may be generated in the transport booth due to the chimney effect. This updraft adversely affects the slow cooling process of the glass ribbon in the slow cooling furnace, and the distortion of the glass ribbon may be exacerbated.
 特に、近年のディスプレイの高精細化に対応するために熱収縮の小さいガラス物品を製造する場合に、搬送ブース内に発生する上昇気流が問題となる。つまり、ガラス物品の熱収縮を低減するためには、ガラスリボンの徐冷工程において、ゆっくりとした徐冷(冷却)速度で長時間に亘って徐冷するのが効果的である。そのため、この条件を満足するために徐冷炉の長尺化が図られており、徐冷炉内のガラスリボンが上昇気流の影響を受けやすくなっている。 In particular, when manufacturing a glass article having a small heat shrinkage in order to cope with the high definition of a display in recent years, the updraft generated in the transport booth becomes a problem. That is, in order to reduce the heat shrinkage of the glass article, it is effective to slowly cool the glass ribbon for a long time at a slow slow cooling (cooling) rate in the slow cooling step. Therefore, in order to satisfy this condition, the length of the slow cooling furnace is increased, and the glass ribbon in the slow cooling furnace is easily affected by the updraft.
 そこで、例えば特許文献1には、成形炉及び徐冷炉が内部に配置された成形徐冷室内を加圧ファンなどの加圧機構によって加圧することが開示されている。このように成形徐冷室内を加圧すれば、成形炉や徐冷炉の炉壁の隙間などから気体が流出するのを低減できるため、搬送ブース内の上昇気流を抑制できる。なお、成形炉や徐冷炉の炉壁の隙間などから大量の気体が流出すると、搬送ブース内の気体の上昇が増大し、上昇気流が発生しやすくなる。 Therefore, for example, Patent Document 1 discloses that a molding slow cooling chamber in which a molding furnace and a slow cooling furnace are arranged is pressurized by a pressurizing mechanism such as a pressurizing fan. By pressurizing the molding slow cooling chamber in this way, it is possible to reduce the outflow of gas from the gaps in the furnace walls of the molding furnace and the slow cooling furnace, so that the updraft in the transport booth can be suppressed. If a large amount of gas flows out from a gap in the furnace wall of a molding furnace or a slow cooling furnace, the rise of the gas in the transport booth increases, and an updraft is likely to occur.
特開2017-154911号公報JP-A-2017-154911
 しかしながら、特許文献1に開示されているように、成形徐冷室内を加圧すれば、成形徐冷室内の気圧が高くなるため、成形徐冷室の下部(例えば、成形徐冷室の底面近傍)において、成形徐冷室内の異物が、徐冷炉の炉壁の隙間から徐冷炉内に侵入するおそれがある。この異物は、徐冷炉外に延びるアニーラローラの軸受部などから発生する鉄粉を含む。そして、このような異物がガラスリボンに付着すると、製造されるガラス板などのガラス物品の表面品位が低下するという問題が生じ得る。 However, as disclosed in Patent Document 1, if the molding slow cooling chamber is pressurized, the air pressure in the molding slow cooling chamber increases, so that the lower part of the molding slow cooling chamber (for example, near the bottom surface of the molding slow cooling chamber). ), Foreign matter in the molding slow cooling chamber may enter the slow cooling furnace through the gap in the furnace wall of the slow cooling furnace. This foreign matter contains iron powder generated from the bearing portion of the annealing roller extending outside the slow cooling furnace. Then, when such a foreign substance adheres to the glass ribbon, there may be a problem that the surface quality of the glass article such as the manufactured glass plate is deteriorated.
 本発明は、ダウンドロー法によりガラス物品を製造する際に、ガラスリボンの歪の悪化を抑制しつつ、ガラスリボンへの異物の付着を抑制することを課題とする。 An object of the present invention is to suppress the adhesion of foreign matter to the glass ribbon while suppressing the deterioration of the distortion of the glass ribbon when manufacturing the glass article by the down draw method.
 上記の課題を解決するために創案された本発明は、ダウンドロー法によりガラスリボンを成形する成形炉と、成形炉の下方に連通してガラスリボンを徐冷する徐冷炉と、徐冷炉の下方に連通してガラスリボンを冷却する冷却部と、成形炉及び徐冷炉が内部に配置される成形徐冷室と、冷却部が内部に配置される冷却室とを備える製造装置を用いるガラス物品の製造方法であって、成形徐冷室を、成形炉及び徐冷炉の上部が内部に配置される第一室と、徐冷炉の下部が内部に配置される第二室とに区分した状態で、加圧機構によって第一室内を加圧しながら、排気機構によって第二室内の気体を室外に排気することを特徴とする。 The present invention, which was devised to solve the above problems, communicates with a molding furnace that forms a glass ribbon by the downdraw method, a slow cooling furnace that communicates with the lower part of the molding furnace to slowly cool the glass ribbon, and a slow cooling furnace that communicates with the lower part of the slow cooling furnace. A method for manufacturing a glass article using a manufacturing apparatus including a cooling unit for cooling the glass ribbon, a molding slow cooling chamber in which a molding furnace and a slow cooling furnace are arranged, and a cooling chamber in which the cooling unit is arranged inside. The molding slow cooling chamber is divided into a first chamber in which the upper part of the molding furnace and the slow cooling furnace is arranged inside and a second chamber in which the lower part of the slow cooling furnace is arranged inside. It is characterized in that the gas in the second chamber is exhausted to the outside by an exhaust mechanism while pressurizing one chamber.
 このようにすれば、加圧機構により成形徐冷室の第一室内が加圧されるため、成形炉及び/又は徐冷炉の上部の炉壁の隙間(例えば目地)などから気体が流出するのを低減できる。その結果、成形炉、徐冷炉及び冷却部のそれぞれの内部(搬送ブース内)における上昇気流を抑制できる。したがって、上昇気流によるガラスリボンの歪の悪化を抑制できる。また、成形徐冷室に第二室が設けられ、この第二室内の気体が排気機構により室外に排気されるため、成形徐冷室の下部に対応する第二室内の異物も気体と共に室外に排出される。そのため、第二室内の異物が、徐冷炉の下部の炉壁の隙間などから徐冷炉内に侵入するのを抑制できる。したがって、ガラスリボンへの異物の付着を抑制できる。 In this way, the first chamber of the molding slow cooling chamber is pressurized by the pressurizing mechanism, so that the gas does not flow out from the gap (for example, joint) of the furnace wall above the molding furnace and / or the slow cooling furnace. Can be reduced. As a result, the updraft inside each of the molding furnace, the slow cooling furnace, and the cooling unit (inside the transport booth) can be suppressed. Therefore, it is possible to suppress the deterioration of the distortion of the glass ribbon due to the updraft. Further, since the second chamber is provided in the molding slow cooling chamber and the gas in the second chamber is exhausted to the outside by the exhaust mechanism, the foreign matter in the second chamber corresponding to the lower part of the molding slow cooling chamber also goes out of the room together with the gas. It is discharged. Therefore, it is possible to prevent foreign matter in the second chamber from entering the slow cooling furnace through a gap in the furnace wall at the bottom of the slow cooling furnace. Therefore, it is possible to suppress the adhesion of foreign matter to the glass ribbon.
 上記の構成において、第一室の気圧が第二室の気圧よりも高く、かつ、第二室の気圧が冷却室の気圧よりも低いことが好ましい。 In the above configuration, it is preferable that the air pressure in the first chamber is higher than the air pressure in the second chamber and the air pressure in the second chamber is lower than the air pressure in the cooling chamber.
 このようにすれば、第一室、第二室及び冷却室のうち、第二室の気圧が最も低くなるため、第一室内の異物や冷却室内の異物も第二室内に流れ込みやすくなる。そのため、第一室内の異物や冷却室内の異物も、第二室から排気機構により屋外に排出できる。したがって、ガラスリボンへの異物の付着をより確実に抑制できる。 In this way, the air pressure in the second chamber is the lowest among the first chamber, the second chamber and the cooling chamber, so that foreign matter in the first chamber and foreign matter in the cooling chamber easily flow into the second chamber. Therefore, foreign matter in the first chamber and foreign matter in the cooling chamber can also be discharged to the outside from the second chamber by the exhaust mechanism. Therefore, the adhesion of foreign matter to the glass ribbon can be suppressed more reliably.
 上記の構成において、徐冷炉の下部の気圧が、第二室の気圧よりも高いことが好ましい。 In the above configuration, it is preferable that the air pressure at the lower part of the slow cooling furnace is higher than the air pressure at the second chamber.
 このようにすれば、第二室内の異物が、徐冷炉の下部に侵入するのをより確実に抑制できる。また、冷却部で上昇気流が発生したとしても、冷却部で発生した上昇気流は、徐冷炉の下部で炉壁の隙間などから第二室に引き込まれるため、成形炉及び徐冷炉の上部における上昇気流を抑制できる。したがって、上昇気流によるガラスリボンの歪の悪化をより確実に抑制できる。 In this way, foreign matter in the second chamber can be more reliably suppressed from entering the lower part of the slow cooling furnace. Further, even if an updraft is generated in the cooling section, the updraft generated in the cooling section is drawn into the second chamber through a gap in the furnace wall at the lower part of the slow cooling furnace. Can be suppressed. Therefore, it is possible to more reliably suppress the deterioration of the distortion of the glass ribbon due to the updraft.
 徐冷炉の下部の気圧を第二室の気圧よりも高く調整する場合、ガラスリボンの歪点温度に対応する位置が、徐冷炉の上部に含まれることが好ましい。 When adjusting the air pressure in the lower part of the slow cooling furnace to be higher than the air pressure in the second chamber, it is preferable that the position corresponding to the strain point temperature of the glass ribbon is included in the upper part of the slow cooling furnace.
 このようにすれば、ガラスリボンの歪に影響を与える歪点温度に対応する位置における上昇気流を確実に抑制できるため、ガラスリボンの歪を十分に低減できる。 By doing so, the updraft at the position corresponding to the strain point temperature that affects the strain of the glass ribbon can be reliably suppressed, so that the strain of the glass ribbon can be sufficiently reduced.
 徐冷炉の下部の気圧を第二室の気圧よりも高く調整する場合、徐冷炉の下部の側壁に、徐冷炉内の気体の一部を第二室に導く流路を有していてもよい。 When adjusting the air pressure in the lower part of the slow cooling furnace to be higher than the air pressure in the second chamber, the side wall of the lower part of the slow cooling furnace may have a flow path for guiding a part of the gas in the slow cooling furnace to the second chamber.
 このようにすれば、冷却部で発生した上昇気流が、徐冷炉の下部で流路を通じて第二室に引き込まれやすくなる。そのため、ガラスリボンの歪の悪化をより確実に抑制できる。 In this way, the updraft generated in the cooling section is likely to be drawn into the second chamber through the flow path at the bottom of the slow cooling furnace. Therefore, the deterioration of the distortion of the glass ribbon can be suppressed more reliably.
 上記の構成において、加圧機構によって第一室内を加圧すると共に、加圧機構とは異なる位置で第一室内の気体を室外に排気することが好ましい。 In the above configuration, it is preferable that the first chamber is pressurized by the pressurizing mechanism and the gas in the first chamber is exhausted to the outside at a position different from the pressurizing mechanism.
 このようにすれば、第一室内の気圧を調整しやすくなる。また、第一室内は炉の熱で高温となり得るが、第一室内の気体を流通させて入れ替えやすくなるため、第一室内の気温を適度に下げることができる。 By doing this, it becomes easier to adjust the air pressure in the first room. Further, although the temperature in the first chamber can be high due to the heat of the furnace, the temperature in the first chamber can be appropriately lowered because the gas in the first chamber can be easily replaced.
 第一室内の気体を室外に排気する場合、加圧機構により第一室の上部から冷気を室内に給気すると共に、加圧機構とは異なる位置で第一室の上部から熱気を室外に排気することが好ましい。 When the gas in the first room is exhausted to the outside, cold air is supplied to the room from the upper part of the first room by the pressurizing mechanism, and hot air is exhausted to the outside from the upper part of the first room at a position different from the pressurizing mechanism. It is preferable to do so.
 このようにすれば、冷気は密度が高く下降する傾向があり、熱気は密度が低く上昇する傾向があるため、第一室内で気体を効率よく循環させることができる。したがって、第一室内の気温を効率よく下げることができる。 In this way, the cold air tends to have a high density and tends to fall, and the hot air tends to have a low density and tends to rise, so that the gas can be efficiently circulated in the first chamber. Therefore, the air temperature in the first room can be efficiently lowered.
 上記の構成において、排気機構によって第二室内の気体を排気すると共に、排気機構とは異なる位置で第二室内に気体を給気することが好ましい。 In the above configuration, it is preferable that the gas in the second chamber is exhausted by the exhaust mechanism and the gas is supplied to the second chamber at a position different from that of the exhaust mechanism.
 このようにすれば、第二室内の気圧を調整しやすくなる。また、第二室内は炉の熱で高温となり得るが、第二室内の気体を流通させて入れ替えやすくなるため、第二室内の気温を適度に下げることができる。 By doing this, it becomes easier to adjust the air pressure in the second room. Further, although the temperature in the second chamber can be high due to the heat of the furnace, the temperature in the second chamber can be appropriately lowered because the gas in the second chamber can be easily replaced.
 上記の課題を解決するために創案された本発明は、ダウンドロー法によりガラスリボンを成形する成形炉と、成形炉の下方に連通してガラスリボンを徐冷する徐冷炉と、徐冷炉の下方に連通してガラスリボンを冷却する冷却部と、成形炉及び徐冷炉が内部に配置される成形徐冷室と、冷却部が内部に配置される冷却室とを備えるガラス物品の製造装置であって、成形徐冷室は、成形炉及び徐冷炉の上部が内部に配置される第一室と、徐冷炉の下部が内部に配置される第二室とを備え、第一室内を加圧する加圧機構と、第二室内の気体を室外に排気する排気機構とをさらに備えることを特徴とする。 The present invention, which was devised to solve the above problems, communicates with a molding furnace that forms a glass ribbon by the downdraw method, a slow cooling furnace that communicates with the lower part of the molding furnace to slowly cool the glass ribbon, and a slow cooling furnace that communicates with the lower part of the slow cooling furnace. A molding apparatus for manufacturing a glass article, comprising a cooling unit for cooling the glass ribbon, a molding slow cooling chamber in which a molding furnace and a slow cooling furnace are arranged, and a cooling chamber in which the cooling unit is arranged inside. The slow cooling chamber includes a first chamber in which the upper part of the molding furnace and the slow cooling furnace is arranged inside, and a second chamber in which the lower part of the slow cooling furnace is arranged inside. (Ii) It is further provided with an exhaust mechanism for exhausting the gas in the room to the outside.
 このようにすれば、既に述べた対応する構成と同様の作用効果を享受できる。 In this way, the same action and effect as the corresponding configuration already described can be enjoyed.
 本発明によれば、ダウンドロー法によりガラス物品を製造する際に、ガラスリボンの歪の悪化を抑制しつつ、ガラスリボンへの異物の付着を抑制できる。 According to the present invention, when a glass article is manufactured by the down draw method, it is possible to suppress the deterioration of the distortion of the glass ribbon and the adhesion of foreign matter to the glass ribbon.
本発明の第一実施形態に係るガラス物品の製造装置の概略側面図である。It is a schematic side view of the manufacturing apparatus of the glass article which concerns on 1st Embodiment of this invention. 本発明の第二実施形態に係るガラス物品の製造装置の概略側面図である。It is a schematic side view of the manufacturing apparatus of the glass article which concerns on 2nd Embodiment of this invention. 本発明の第三実施形態に係るガラス物品の製造装置の成形徐冷室の第一室周辺を拡大して示す概略側面図である。It is the schematic side view which shows the periphery of the 1st chamber of the molding slow cooling chamber of the manufacturing apparatus of the glass article which concerns on 3rd Embodiment of this invention in an enlarged manner. 本発明の第四実施形態に係るガラス物品の製造装置の概略側面図である。It is a schematic side view of the manufacturing apparatus of the glass article which concerns on 4th Embodiment of this invention.
 以下、本発明の実施形態について添付図面を参照して説明する。なお、各実施形態において対応する構成要素には同一符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, duplicate description may be omitted by assigning the same reference numeral to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configurations of the other embodiments described above can be applied to the other parts of the configuration. Further, not only the combination of the configurations specified in the description of each embodiment but also the configurations of a plurality of embodiments can be partially combined even if the combination is not specified.
(第一実施形態)
 図1に示すように、本発明の第一実施形態に係るガラス物品の製造装置1は、オーバーフローダウンドロー法によってガラス物品としてのガラス板Gを製造する装置であり、建屋Xの一部を構成する。なお、建屋Xの内部は、外気の侵入を抑制するために陽圧に管理される。
(First Embodiment)
As shown in FIG. 1, the glass article manufacturing apparatus 1 according to the first embodiment of the present invention is an apparatus for manufacturing a glass plate G as a glass article by an overflow down draw method, and constitutes a part of a building X. To do. The inside of the building X is managed under positive pressure in order to suppress the intrusion of outside air.
 本製造装置1は、成形炉2と、成形炉2の下方に配置された徐冷炉3と、徐冷炉3の下方に配置された冷却部4と、冷却部4の下方に配置された切断室5と、成形炉2及び徐冷炉3が内部に配置される成形徐冷室6と、冷却部4が内部に配置される冷却室7とを備える。成形徐冷室6、冷却室7及び切断室5は、外部からの汚染物質をある程度遮断できる空間を区画形成する処理室(例えばクリーンルーム)である。 The manufacturing apparatus 1 includes a molding furnace 2, a slow cooling furnace 3 arranged below the molding furnace 2, a cooling unit 4 arranged below the slow cooling furnace 3, and a cutting chamber 5 arranged below the cooling unit 4. A molding slow cooling chamber 6 in which the molding furnace 2 and the slow cooling furnace 3 are arranged inside, and a cooling chamber 7 in which the cooling unit 4 is arranged inside are provided. The molding slow cooling chamber 6, the cooling chamber 7, and the cutting chamber 5 are processing chambers (for example, clean rooms) that partition and form a space capable of blocking contaminants from the outside to some extent.
 成形炉2、徐冷炉3及び冷却部4は、上下方向に連通する筒状の空間を壁8a~8dによって区画形成している。壁8a~8dを含む有蓋筒状の空間は、成形炉2で成形されるガラスリボンGrの搬送ブース9とされる。なお、搬送ブース9は、成形炉2と徐冷炉3の上部3aとの間、徐冷炉3の上部3aと徐冷炉3の下部3bとの間、徐冷炉3の下部3bと冷却部4との間、及び冷却部4と切断室5との間が、建屋Xのフロア面などからなる仕切り部材10a~10dによって仕切られている。各仕切り部材10a~10dには、ガラスリボンGrを通過させるための開口部が設けられている。なお、搬送ブース9内の仕切り部材10a~10dは省略してもよく、各仕切り部材10a~10dの間に仕切り部材を追加してもよい。 The molding furnace 2, the slow cooling furnace 3, and the cooling unit 4 form a tubular space that communicates in the vertical direction with walls 8a to 8d. The covered tubular space including the walls 8a to 8d is used as a transfer booth 9 for the glass ribbon Gr molded in the molding furnace 2. The transfer booth 9 is located between the molding furnace 2 and the upper portion 3a of the slow cooling furnace 3, between the upper portion 3a of the slow cooling furnace 3 and the lower portion 3b of the slow cooling furnace 3, between the lower portion 3b of the slow cooling furnace 3 and the cooling unit 4, and for cooling. The section 4 and the cutting chamber 5 are partitioned by partitioning members 10a to 10d including the floor surface of the building X. Each of the partition members 10a to 10d is provided with an opening for passing the glass ribbon Gr. The partition members 10a to 10d in the transport booth 9 may be omitted, or a partition member may be added between the partition members 10a to 10d.
 成形炉2の内部には、オーバーフローダウンドロー法により溶融ガラスGmからガラスリボンGrを成形する成形体11が配置されている。成形体11に供給された溶融ガラスGmは成形体11の頂部に形成された溝部から溢れ出るようになっており、その溢れ出た溶融ガラスGmが成形体11の両側の側面を伝って下端で合流することで、板状のガラスリボンGrが連続成形される。成形されるガラスリボンGrは、縦姿勢(好ましくは鉛直姿勢)のまま搬送ブース9の下流側(好ましくは鉛直下方)へと搬送される。 Inside the molding furnace 2, a molded body 11 for molding the glass ribbon Gr from the molten glass Gm by the overflow down draw method is arranged. The molten glass Gm supplied to the molded body 11 overflows from the groove formed at the top of the molded body 11, and the overflowed molten glass Gm travels along the side surfaces of both sides of the molded body 11 at the lower end. By merging, the plate-shaped glass ribbon Gr is continuously formed. The glass ribbon Gr to be molded is transported to the downstream side (preferably vertically downward) of the transport booth 9 in a vertical posture (preferably a vertical posture).
 徐冷炉3は、成形炉2で成形されたガラスリボンGrの歪を低減するための炉である。徐冷炉3内は、下方に向かって所定の温度勾配を有している。ガラスリボンGrは、徐冷炉3内を下方に向かって移動するに連れて、温度が低くなるように徐冷(アニール)される。徐冷炉3内の温度勾配は、例えば、徐冷炉3に配置されたヒーター(図示省略)により調整できる。 The slow cooling furnace 3 is a furnace for reducing the distortion of the glass ribbon Gr molded in the molding furnace 2. The inside of the slow cooling furnace 3 has a predetermined temperature gradient downward. The glass ribbon Gr is slowly cooled (annealed) so that the temperature becomes lower as it moves downward in the slow cooling furnace 3. The temperature gradient in the slow cooling furnace 3 can be adjusted by, for example, a heater (not shown) arranged in the slow cooling furnace 3.
 冷却部4は、徐冷炉3で徐冷されたガラスリボンGrを放熱させて室温付近まで冷却するための空間である。なお、冷却部4には、ヒーターは配置されていない。 The cooling unit 4 is a space for dissipating heat from the glass ribbon Gr slowly cooled in the slow cooling furnace 3 and cooling it to around room temperature. A heater is not arranged in the cooling unit 4.
 徐冷炉3内には、成形体11の直下で、ガラスリボンGrの幅方向収縮を規制するエッジローラ12が配置されている。エッジローラ12は、ガラスリボンGrの幅方向両端部を表裏両側から挟持する。これにより、ガラスリボンGrの幅方向両端部には、ガラスリボンGrの幅方向中央部よりも相対的に厚肉となる耳部が形成される。なお、エッジローラ12が徐冷炉3内に配置される場合を例示したが、エッジローラ12は、成形炉2内に配置されていてもよい。 In the slow cooling furnace 3, an edge roller 12 that regulates the shrinkage of the glass ribbon Gr in the width direction is arranged directly under the molded body 11. The edge roller 12 sandwiches both ends of the glass ribbon Gr in the width direction from both the front and back sides. As a result, ears that are relatively thicker than the central portion in the width direction of the glass ribbon Gr are formed at both ends in the width direction of the glass ribbon Gr. Although the case where the edge roller 12 is arranged in the slow cooling furnace 3 is illustrated, the edge roller 12 may be arranged in the forming furnace 2.
 徐冷炉3内には、エッジローラ12の下方にアニーラローラ13が配置されている。アニーラローラ13は、上下方向に複数段設けられている。アニーラローラ13は、例えばセラッミクス製などの無機材質製のローラで構成される。 In the slow cooling furnace 3, the annealing roller 13 is arranged below the edge roller 12. The annealing rollers 13 are provided in a plurality of stages in the vertical direction. The annealing roller 13 is composed of rollers made of an inorganic material such as those made of ceramics.
 冷却部4内には、ガラスリボンGrを表裏両側から挟持する支持ローラ14が配置されている。支持ローラ14は、上下方向に一段又は複数段(図示例)配置されている。支持ローラ14は、例えばゴム製などの耐熱樹脂材料製のローラで構成される。 A support roller 14 for sandwiching the glass ribbon Gr from both the front and back sides is arranged in the cooling unit 4. The support rollers 14 are arranged in one or a plurality of stages (illustrated example) in the vertical direction. The support roller 14 is composed of a roller made of a heat-resistant resin material such as rubber.
 切断室5内には、切断装置(図示省略)が配置されている。切断装置は、冷却部4で冷却されたガラスリボンGrを所定長さ毎に切断し、ガラス板Gを得るための装置である。切断装置による切断方法は、特に限定されるものではなく、例えば、曲げ応力割断、レーザ割断、レーザ溶断などが利用できる。 A cutting device (not shown) is arranged in the cutting chamber 5. The cutting device is a device for cutting the glass ribbon Gr cooled by the cooling unit 4 at predetermined lengths to obtain a glass plate G. The cutting method by the cutting device is not particularly limited, and for example, bending stress fracture, laser fracture, laser fusing and the like can be used.
 成形徐冷室6は、成形炉2及び徐冷炉3の上部3aが内部に配置される第一室6aと、徐冷炉3の下部3bが内部に配置される第二室6bとを備える。本実施形態では、徐冷炉3の上部3aには、ガラスリボンGrの徐冷点温度に対応する位置と、ガラスリボンGrの歪点温度に対応する位置とが含まれる。ここで、徐冷点温度とは、ほぼこの温度に15分間保持すると歪が除去される温度を意味し、歪点温度は、その温度以下では急冷してもガラスに歪が発生しない温度を意味する。歪点温度は、徐冷点温度よりも例えば30~150℃低くなる。つまり、ガラスリボンGrの徐冷点温度に対応する位置は、ガラスリボンGrの歪点温度に対応する位置よりも上方に位置する。 The molding slow cooling chamber 6 includes a first chamber 6a in which the upper portion 3a of the molding furnace 2 and the slow cooling furnace 3 is arranged inside, and a second chamber 6b in which the lower portion 3b of the slow cooling furnace 3 is arranged inside. In the present embodiment, the upper portion 3a of the slow cooling furnace 3 includes a position corresponding to the slow cooling point temperature of the glass ribbon Gr and a position corresponding to the strain point temperature of the glass ribbon Gr. Here, the slow cooling point temperature means a temperature at which strain is removed when the glass is held at this temperature for 15 minutes, and the strain point temperature means a temperature at which strain does not occur in the glass even if it is rapidly cooled below that temperature. To do. The strain point temperature is, for example, 30 to 150 ° C. lower than the slow cooling point temperature. That is, the position corresponding to the slow cooling point temperature of the glass ribbon Gr is located above the position corresponding to the strain point temperature of the glass ribbon Gr.
 第一室6aと第二室6bとの間、第二室6bと冷却室7との間、及び冷却室7と切断室5との間は、建屋Xのフロア面などからなる仕切り部材15a~15cによって仕切られている。仕切り部材15a~15cは、気体の流通を許容する構成としてもよい。例えば、仕切り部材15a~15cは、搬送ブース9との間に、気体が流通可能な隙間を有していてもよい。なお、仕切り部材15a~15cの上下方向位置は、搬送ブース9内の仕切り部材10b~10dの上下方向位置と同じ場合を例示しているが、両者の上下方向位置は異なっていてもよい。 Between the first chamber 6a and the second chamber 6b, between the second chamber 6b and the cooling chamber 7, and between the cooling chamber 7 and the cutting chamber 5, partition members 15a to be formed of the floor surface of the building X or the like. It is partitioned by 15c. The partition members 15a to 15c may be configured to allow the flow of gas. For example, the partition members 15a to 15c may have a gap through which gas can flow from the transfer booth 9. Although the vertical positions of the partition members 15a to 15c are the same as the vertical positions of the partition members 10b to 10d in the transport booth 9, the vertical positions of the partition members 15a to 15c may be different from each other.
 ガラス物品の製造装置1は、第一室6a内を加圧する第一加圧機構16をさらに備える。ここで、第一室6a内とは、成形炉2及び徐冷炉3の上部3aの外側の空間を意味する。 The glass article manufacturing apparatus 1 further includes a first pressurizing mechanism 16 that pressurizes the inside of the first chamber 6a. Here, the inside of the first chamber 6a means the space outside the upper portion 3a of the molding furnace 2 and the slow cooling furnace 3.
 本実施形態では、第一加圧機構16は、屋外(建屋Xの外部)に接続された外気ダクト17と、外気ダクト17から屋外の気体(外気)を取り込む給気ファン18と、給気ファン18で取り込んだ気体を第一室6a内に給気する給気ダクト19とを備える空調機からなる。 In the present embodiment, the first pressurizing mechanism 16 includes an outside air duct 17 connected to the outside (outside of the building X), an air supply fan 18 that takes in outdoor gas (outside air) from the outside air duct 17, and an air supply fan. It is composed of an air conditioner including an air supply duct 19 for supplying the gas taken in by 18 into the first chamber 6a.
 本製造装置1は、第二室6b内の気体を室外に排気する排気機構20をさらに備える。ここで、第二室6b内とは、徐冷炉3の下部3bの外側の空間を意味する。排気機構20は、第二室6b内の気体の排気に伴って、第二室6b内を減圧するように構成されていることが好ましい。 The manufacturing apparatus 1 further includes an exhaust mechanism 20 that exhausts the gas in the second chamber 6b to the outside. Here, the inside of the second chamber 6b means the space outside the lower portion 3b of the slow cooling furnace 3. The exhaust mechanism 20 is preferably configured to reduce the pressure in the second chamber 6b as the gas in the second chamber 6b is exhausted.
 本実施形態では、排気機構20は、第二室6bに接続された還気ダクト21と、還気ダクト21から第二室6b内の気体を取り込む排気ファン22と、排気ファン22で取り込んだ気体を屋外に排気する排気ダクト23とを備える。 In the present embodiment, the exhaust mechanism 20 includes a return air duct 21 connected to the second chamber 6b, an exhaust fan 22 that takes in the gas in the second chamber 6b from the return air duct 21, and a gas taken in by the exhaust fan 22. Is provided with an exhaust duct 23 for exhausting the air to the outside.
 本製造装置1では、第二室6bの気圧が徐冷炉3の下部3bの気圧よりも低くなるように気圧調整がなされる。 In the manufacturing apparatus 1, the air pressure is adjusted so that the air pressure in the second chamber 6b is lower than the air pressure in the lower part 3b of the slow cooling furnace 3.
 本製造装置1では、第一室6aの気圧が第二室6bの気圧よりも高く、かつ、第二室6bの気圧が冷却室7の気圧よりも低くなるように気圧調整がなされる。 In the manufacturing apparatus 1, the air pressure is adjusted so that the air pressure in the first chamber 6a is higher than the air pressure in the second chamber 6b and the air pressure in the second chamber 6b is lower than the air pressure in the cooling chamber 7.
 本製造装置1は、冷却部4内を加圧する第二加圧機構24をさらに備える。ここで、冷却室7内とは、冷却部4の外側の空間を意味する。第二加圧機構24は、冷却部4の気圧が切断室5の気圧よりも高くなるように、冷却部4内を加圧するように構成されていることが好ましい。なお、第二加圧機構24は省略してもよい。 The manufacturing apparatus 1 further includes a second pressurizing mechanism 24 that pressurizes the inside of the cooling unit 4. Here, the inside of the cooling chamber 7 means the space outside the cooling unit 4. The second pressurizing mechanism 24 is preferably configured to pressurize the inside of the cooling unit 4 so that the air pressure of the cooling unit 4 is higher than the air pressure of the cutting chamber 5. The second pressurizing mechanism 24 may be omitted.
 本実施形態では、第二加圧機構24は、屋外に接続された外気ダクト25と、外気ダクト25から屋外の気体を取り込む給気ファン26と、給気ファン26で取り込んだ気体を冷却部4内に給気する給気ダクト27とを備える空調機からなる。給気ダクト27は、切断室5に近い冷却部4の下部、具体的には、最下部の支持ローラ14よりも下方で冷却部4に接続されていることが好ましい。なお、外気ダクト25及び給気ファン26が配置された建屋Xのフロアが、給気ダクト27が冷却部4に接続される建屋Xのフロアの下階である場合を例示しているが、空調機の配置態様はこれに限定されない。 In the present embodiment, the second pressurizing mechanism 24 includes an outside air duct 25 connected to the outside, an air supply fan 26 that takes in outdoor gas from the outside air duct 25, and a cooling unit 4 that takes in gas taken in by the air supply fan 26. It is composed of an air conditioner provided with an air supply duct 27 for supplying air inside. The air supply duct 27 is preferably connected to the cooling unit 4 below the cooling unit 4 near the cutting chamber 5, specifically, below the support roller 14 at the bottom. In addition, although the case where the floor of the building X in which the outside air duct 25 and the air supply fan 26 are arranged is the lower floor of the floor of the building X in which the air supply duct 27 is connected to the cooling unit 4, the air conditioning is illustrated. The arrangement mode of the machine is not limited to this.
 本実施形態では、第二加圧機構24は、温調部28と、フィルタ部29とをさらに備える。温調部28としては、例えば、シーズヒーター、通電加熱装置(第二加圧機構24の配管に通電するもの)、誘導加熱装置などが使用できる。フィルタ部29としては、例えば、粗塵用フィルタ、中性能フィルタ(例えばMEPAフィルタ)、高性能フィルタ(例えば、HEPAフィルタ、ULPAフィルタなど)などが使用できる。なお、温調部28及びフィルタ部29の少なくとも一方を省略してもよい。 In the present embodiment, the second pressurizing mechanism 24 further includes a temperature control unit 28 and a filter unit 29. As the temperature control unit 28, for example, a sheathed heater, an energizing heating device (which energizes the piping of the second pressurizing mechanism 24), an induction heating device, or the like can be used. As the filter unit 29, for example, a coarse dust filter, a medium performance filter (for example, MEPA filter), a high performance filter (for example, a HEPA filter, a ULPA filter, etc.) and the like can be used. At least one of the temperature control unit 28 and the filter unit 29 may be omitted.
 次に、本実施形態に係るガラス物品の製造方法について説明する。本製造方法は、上記の製造装置1を用いてガラス物品としてのガラス板Gを製造する方法である。 Next, a method for manufacturing a glass article according to the present embodiment will be described. This manufacturing method is a method of manufacturing a glass plate G as a glass article by using the manufacturing apparatus 1 described above.
 図1に示すように、本製造方法は、成形炉2でオーバーフローダウンドロー法によりガラスリボンGrを成形する成形工程と、成形されたガラスリボンGrを徐冷炉3で徐冷する徐冷工程と、徐冷されたガラスリボンGrを冷却部4で冷却する冷却工程と、冷却されたガラスリボンGrを切断室5で切断する切断工程とを備える。 As shown in FIG. 1, the present manufacturing method includes a molding step of molding the glass ribbon Gr by the overflow down draw method in the molding furnace 2, a slow cooling step of slowly cooling the molded glass ribbon Gr in the slow cooling furnace 3, and a slow cooling step. A cooling step of cooling the cooled glass ribbon Gr in the cooling unit 4 and a cutting step of cutting the cooled glass ribbon Gr in the cutting chamber 5 are provided.
 本製造方法は、第一加圧機構16によって第一室6a内を加圧する第一加圧工程と、排気機構20によって第二室6b内の気体を室外に排気する排気工程とをさらに備える。第一加圧工程及び排気工程は、上記の成形工程、徐冷工程、冷却工程及び切断工程と並行して行われる。 This manufacturing method further includes a first pressurizing step of pressurizing the inside of the first chamber 6a by the first pressurizing mechanism 16 and an exhaust step of exhausting the gas in the second chamber 6b to the outside by the exhaust mechanism 20. The first pressurizing step and the exhaust step are performed in parallel with the above-mentioned molding step, slow cooling step, cooling step and cutting step.
 詳細には、第一加圧工程では、第一加圧機構16によって、第一室6a内に気体を給気し、第一室6a内の気圧を上昇させる。これにより、成形炉2及び/又は徐冷炉3の上部3aの壁8a,8bの目地などの隙間から気体が流出するのを低減できる。その結果、搬送ブース9を流れる上昇気流の風量を抑制できる。したがって、徐冷炉3において、徐冷温度が不均一になったりガラスリボンGrが揺れたりすることによって、ガラスリボンGrの歪が悪化するという事態を抑制できる。 Specifically, in the first pressurizing step, the first pressurizing mechanism 16 supplies gas into the first chamber 6a to raise the air pressure in the first chamber 6a. As a result, it is possible to reduce the outflow of gas from the gaps such as the joints of the walls 8a and 8b of the upper portion 3a of the molding furnace 2 and / or the slow cooling furnace 3. As a result, the air volume of the updraft flowing through the transport booth 9 can be suppressed. Therefore, in the slow cooling furnace 3, it is possible to suppress a situation in which the strain of the glass ribbon Gr is exacerbated due to the slow cooling temperature becoming non-uniform or the glass ribbon Gr shaking.
 ここで、搬送ブース9は上方に向かうに連れて温度が高くなり、気圧が高くなりやすい。そのため、成形徐冷室6の上部に対応する第一室6aに比べて、成形徐冷室6の下部に対応する第二室6bにおいて、搬送ブース9との間の差圧が小さくなりやすい。つまり、第二室6bを第一室6aと同様に加圧すると、第二室6b内の異物が徐冷炉3内に侵入しやすくなる。そこで、第一加圧機構16によって、第一室6aのみを直接加圧している。 Here, the temperature of the transport booth 9 rises as it goes upward, and the air pressure tends to rise. Therefore, the differential pressure between the molding slow cooling chamber 6 and the transfer booth 9 tends to be smaller in the second chamber 6b corresponding to the lower portion of the molding slow cooling chamber 6 than in the first chamber 6a corresponding to the upper portion of the molding slow cooling chamber 6. That is, when the second chamber 6b is pressurized in the same manner as the first chamber 6a, foreign matter in the second chamber 6b easily enters the slow cooling furnace 3. Therefore, only the first chamber 6a is directly pressurized by the first pressurizing mechanism 16.
 ただし、第一加圧機構16による加圧条件を調整することにより、成形炉2及び徐冷炉3の上部3aのそれぞれの気圧が、成形徐冷室6の第一室6aの気圧よりも高い状態に維持される。 However, by adjusting the pressurizing conditions by the first pressurizing mechanism 16, the atmospheric pressures of the upper portions 3a of the molding furnace 2 and the slow cooling furnace 3 become higher than the atmospheric pressure of the first chamber 6a of the molding slow cooling chamber 6. Be maintained.
 成形炉2(高圧側)と第一室6a(低圧側)との差圧は、例えば5~50Paであることが好ましく、徐冷炉3の上部3a(高圧側)と第一室6a(低圧側)との差圧は、例えば5~40Paであることが好ましい。差圧は、圧力センサ30,31,32によって管理されるが、所定の差圧計を用いてもよい。差圧の値は特に限定されるものではなく適宜調整できる。なお、第一室6a(高圧側)と建屋Xの外部(低圧側)との差圧は、例えば20~100Paとすればよい。 The differential pressure between the molding furnace 2 (high pressure side) and the first chamber 6a (low pressure side) is preferably, for example, 5 to 50 Pa, and the upper portion 3a (high pressure side) and the first chamber 6a (low pressure side) of the slow cooling furnace 3 The differential pressure with and from is preferably, for example, 5 to 40 Pa. The differential pressure is controlled by the pressure sensors 30, 31 and 32, but a predetermined differential pressure gauge may be used. The value of the differential pressure is not particularly limited and can be adjusted as appropriate. The differential pressure between the first chamber 6a (high pressure side) and the outside of the building X (low pressure side) may be, for example, 20 to 100 Pa.
 排気工程では、排気機構20によって、第二室6b内の気体と共に、第二室6b内の異物を屋外に排出する。そのため、第二室6b内の異物が、徐冷炉3の下部3bの壁8cの目地などの隙間から徐冷炉3の下部3b内に侵入するのを抑制できる。したがって、搬送ブース9内を搬送されるガラスリボンGrへの異物の付着を抑制できる。 In the exhaust process, the exhaust mechanism 20 discharges the gas in the second chamber 6b and the foreign matter in the second chamber 6b to the outside. Therefore, it is possible to prevent foreign matter in the second chamber 6b from entering the lower portion 3b of the slow cooling furnace 3 through a gap such as a joint of the wall 8c of the lower portion 3b of the slow cooling furnace 3. Therefore, it is possible to suppress the adhesion of foreign matter to the glass ribbon Gr transported in the transport booth 9.
 排気工程では、排気機構20によって第二室6b内の気体を排気する過程で、第二室6b内を減圧することが好ましい。具体的には、排気機構20による減圧条件を調整することにより、徐冷炉3の下部3bの気圧が、第二室6bの気圧よりも高い状態に維持されることが好ましい。このようにすれば、第二室6b内の異物が、徐冷炉3の下部3bの壁8cの目地などの隙間から徐冷炉3の下部3b内に侵入するのをより確実に抑制できる。また、冷却部4で上昇気流が発生したとしても、冷却部4で発生した上昇気流は、徐冷炉3の下部3bで第二室6bに引き込まれるため、成形炉2及び徐冷炉3の上部3aにおける上昇気流の風量を抑制できる。なお、本実施形態では、徐冷炉3の下部3bで第二室6bに向かう気流を形成しやすくするために、徐冷炉3の下部3bの壁8cに、徐冷炉3内の気体の一部を第二室6bに導く流路を構成する孔Hを設けている。孔Hは省略してもよい。 In the exhaust step, it is preferable to reduce the pressure in the second chamber 6b in the process of exhausting the gas in the second chamber 6b by the exhaust mechanism 20. Specifically, it is preferable that the atmospheric pressure in the lower portion 3b of the slow cooling furnace 3 is maintained higher than the atmospheric pressure in the second chamber 6b by adjusting the depressurizing condition by the exhaust mechanism 20. By doing so, it is possible to more reliably prevent foreign matter in the second chamber 6b from entering the lower 3b of the slow cooling furnace 3 through a gap such as a joint of the wall 8c of the lower 3b of the slow cooling furnace 3. Further, even if an updraft is generated in the cooling unit 4, the updraft generated in the cooling unit 4 is drawn into the second chamber 6b in the lower part 3b of the slow cooling furnace 3, so that the updraft in the molding furnace 2 and the upper part 3a of the slow cooling furnace 3 rises. The air volume of the air flow can be suppressed. In the present embodiment, in order to facilitate the formation of an air flow toward the second chamber 6b in the lower portion 3b of the slow cooling furnace 3, a part of the gas in the slow cooling furnace 3 is placed in the second chamber on the wall 8c of the lower portion 3b of the slow cooling furnace 3. A hole H is provided to form a flow path leading to 6b. The hole H may be omitted.
 徐冷炉3の下部3b(高圧側)と第二室6b(低圧側)との差圧は、例えば2~30Paになるように管理される。差圧は、圧力センサ33,34によって管理されるが、所定の差圧計を用いてもよい。差圧の値は特に限定されるものではなく適宜調整できる。 The differential pressure between the lower part 3b (high pressure side) of the slow cooling furnace 3 and the second chamber 6b (low pressure side) is controlled to be, for example, 2 to 30 Pa. The differential pressure is controlled by the pressure sensors 33 and 34, but a predetermined differential pressure gauge may be used. The value of the differential pressure is not particularly limited and can be adjusted as appropriate.
 徐冷炉3の下部3bの気圧を第二室6bの気圧よりも高く調整する場合、ガラスリボンGrの歪点温度に対応する位置が、徐冷炉3の上部3aに含まれることが好ましい。このようにすれば、冷却部4で上昇気流が発生したとしても、冷却部4で発生した上昇気流は、ガラスリボンGrの歪点温度に対応する位置よりも下方の徐冷炉3の下部3bで第二室6bに引き込まれる。そのため、ガラスリボンGrの歪点温度に対応する位置で上昇気流を確実に抑制できる。ガラスリボンGrの歪点温度は、ガラスリボンGrの歪を決定付ける重要な温度であるため、この温度に対応する位置で上昇気流を抑制すれば、ガラスリボンGrの歪を十分に低減できる。なお、ガラスリボンGrの歪点温度に対応する位置が徐冷炉3の下部3bに含まれる場合、徐冷炉3の下部3bから第二室6bへ向かう気流によって、ガラスリボンGrの歪が悪化するおそれがある。 When the air pressure in the lower part 3b of the slow cooling furnace 3 is adjusted to be higher than the air pressure in the second chamber 6b, it is preferable that the position corresponding to the strain point temperature of the glass ribbon Gr is included in the upper part 3a of the slow cooling furnace 3. In this way, even if an updraft is generated in the cooling unit 4, the updraft generated in the cooling unit 4 is the third in the lower portion 3b of the slow cooling furnace 3 below the position corresponding to the strain point temperature of the glass ribbon Gr. It is drawn into the second room 6b. Therefore, the updraft can be reliably suppressed at a position corresponding to the strain point temperature of the glass ribbon Gr. Since the strain point temperature of the glass ribbon Gr is an important temperature that determines the strain of the glass ribbon Gr, if the updraft is suppressed at a position corresponding to this temperature, the strain of the glass ribbon Gr can be sufficiently reduced. When the position corresponding to the strain point temperature of the glass ribbon Gr is included in the lower portion 3b of the slow cooling furnace 3, the strain of the glass ribbon Gr may be aggravated by the air flow from the lower portion 3b of the slow cooling furnace 3 to the second chamber 6b. ..
 本製造方法では、上記の加圧工程の加圧条件や排気工程の減圧条件などによって、第一室6aの気圧が第二室6bの気圧よりも高く、かつ、第二室6bの気圧が冷却室7の気圧よりも低い状態に維持されることが好ましい。このようにすれば、第一室6a、第二室6b及び冷却室7のうち、第二室6bの気圧が最も低くなる。そのため、第一室6a内の異物や冷却室7内の異物も、例えば仕切り部材15a,15bの隙間等から第二室6b内に流れ込む。その結果、第一室6a内の異物や冷却室7内の異物も、第二室6bから排気機構20によって屋外に排出しやすくなる。したがって、搬送ブース9内を搬送されるガラスリボンGrへの異物の付着をより確実に抑制できる。 In this manufacturing method, the air pressure in the first chamber 6a is higher than the air pressure in the second chamber 6b and the air pressure in the second chamber 6b is cooled by the pressurizing conditions in the pressurizing step and the depressurizing conditions in the exhausting step. It is preferable to keep the pressure lower than the air pressure of the chamber 7. In this way, the air pressure in the second chamber 6b is the lowest among the first chamber 6a, the second chamber 6b, and the cooling chamber 7. Therefore, foreign matter in the first chamber 6a and foreign matter in the cooling chamber 7 also flow into the second chamber 6b through, for example, gaps between the partition members 15a and 15b. As a result, the foreign matter in the first chamber 6a and the foreign matter in the cooling chamber 7 can be easily discharged from the second chamber 6b to the outside by the exhaust mechanism 20. Therefore, it is possible to more reliably suppress the adhesion of foreign matter to the glass ribbon Gr transported in the transport booth 9.
 第一室6a(高圧側)と第二室6b(低圧側)との差圧は、例えば10~60Paであることが好ましい。冷却室7(高圧側)と第二室6b(低圧側)との差圧は、例えば0超~20Paであることが好ましい。差圧は、圧力センサ32,34,36によって管理されるが、所定の差圧計を用いてもよい。差圧の値は特に限定されるものではなく適宜調整できる。 The differential pressure between the first chamber 6a (high pressure side) and the second chamber 6b (low pressure side) is preferably, for example, 10 to 60 Pa. The differential pressure between the cooling chamber 7 (high pressure side) and the second chamber 6b (low pressure side) is preferably, for example, more than 0 to 20 Pa. The differential pressure is controlled by the pressure sensors 32, 34, 36, but a predetermined differential pressure gauge may be used. The value of the differential pressure is not particularly limited and can be adjusted as appropriate.
 また、本製造方法では、これら成形工程、徐冷工程、冷却工程、切断工程を行う間、第二加圧機構24によって冷却部4内を加圧する第二加圧工程をさらに備える。第二加圧工程は、上記の成形工程、徐冷工程、冷却工程及び切断工程と並行して行われる。 Further, the present manufacturing method further includes a second pressurizing step of pressurizing the inside of the cooling unit 4 by the second pressurizing mechanism 24 during the molding step, the slow cooling step, the cooling step, and the cutting step. The second pressurizing step is performed in parallel with the above-mentioned molding step, slow cooling step, cooling step and cutting step.
 詳細には、第二加圧工程では、第二加圧機構24によって冷却部4内に気体を給気して、冷却部4の気圧を上昇させる。これにより、切断室5で発生した異物(ガラス粉など)が冷却部4に侵入するのを抑制できる。 Specifically, in the second pressurizing step, the second pressurizing mechanism 24 supplies gas into the cooling unit 4 to raise the air pressure of the cooling unit 4. As a result, it is possible to prevent foreign matter (glass powder, etc.) generated in the cutting chamber 5 from entering the cooling unit 4.
 第二加圧工程では、第二加圧機構24による加圧条件を調整することにより、冷却部4の気圧が切断室5の気圧よりも高い状態に維持されることが好ましい。このようにすれば、切断室5で発生した異物が冷却部4に侵入するのをより確実に抑制できる。 In the second pressurizing step, it is preferable that the atmospheric pressure of the cooling unit 4 is maintained higher than the atmospheric pressure of the cutting chamber 5 by adjusting the pressurizing conditions by the second pressurizing mechanism 24. In this way, foreign matter generated in the cutting chamber 5 can be more reliably suppressed from entering the cooling unit 4.
 冷却部4(高圧側)と切断室5(低圧側)との差圧は、例えば0~6Paであることが好ましい。差圧は圧力センサ36,37によって管理されるが、所定の差圧計を用いてもよい。差圧の値は特に限定されるものではなく適宜調整できる。 The differential pressure between the cooling unit 4 (high pressure side) and the cutting chamber 5 (low pressure side) is preferably 0 to 6 Pa, for example. The differential pressure is controlled by the pressure sensors 36 and 37, but a predetermined differential pressure gauge may be used. The value of the differential pressure is not particularly limited and can be adjusted as appropriate.
 第二加圧工程では、第二加圧機構24の温調部28によって、外気ダクト25から取り込む気体の温度に応じて給気温度を調整する。これにより、搬送ブース9(特に冷却部4)内の温度を調整できるため、煙突効果によって搬送ブース9内に発生する上昇気流の風量を調整できる。 In the second pressurizing step, the temperature control portion 28 of the second pressurizing mechanism 24 adjusts the supply air temperature according to the temperature of the gas taken in from the outside air duct 25. As a result, the temperature inside the transport booth 9 (particularly the cooling unit 4) can be adjusted, so that the air volume of the updraft generated in the transport booth 9 can be adjusted by the chimney effect.
 第二加圧工程では、第二加圧機構24のフィルタ部29によって、給気される気体から異物を除去する。これにより、清浄度の高い気体を冷却部4に給気できる。 In the second pressurizing step, the filter unit 29 of the second pressurizing mechanism 24 removes foreign matter from the supplied gas. As a result, a highly clean gas can be supplied to the cooling unit 4.
 なお、排気工程及び/又は第二加圧工程では、排気機構20による減圧条件や第二加圧機構24による加圧条件などを調整することにより、冷却部4の気圧が第二室6bの気圧よりも高い状態に維持されることが好ましい。このようにすれば、第二室6b内の異物が冷却室7に侵入しにくくなる。特に、図示例のように、徐冷炉3の下面よりも冷却部4の上面が大きく、第二室6bの一部と冷却部4の一部とが仕切り板15bを介して対面している場合に有効である。この場合、第二室6bで発生した異物の一部が、仕切り板15bの隙間等から冷却部4に流入することを防ぐことができる。 In the exhaust step and / or the second pressurization step, the air pressure of the cooling unit 4 is the air pressure of the second chamber 6b by adjusting the depressurization condition by the exhaust mechanism 20 and the pressurization condition by the second pressurization mechanism 24. It is preferable to keep it in a higher state than. In this way, foreign matter in the second chamber 6b is less likely to enter the cooling chamber 7. In particular, as shown in the illustrated example, when the upper surface of the cooling unit 4 is larger than the lower surface of the slow cooling furnace 3, and a part of the second chamber 6b and a part of the cooling unit 4 face each other via the partition plate 15b. It is valid. In this case, it is possible to prevent a part of the foreign matter generated in the second chamber 6b from flowing into the cooling unit 4 through the gap of the partition plate 15b or the like.
 冷却部4(高圧側)と第二室6b(低圧側)との差圧は、例えば5~30Paであることが好ましい。差圧は圧力センサ34,35によって管理されるが、所定の差圧計を用いてもよい。差圧の値は特に限定されるものではなく適宜調整できる。 The differential pressure between the cooling unit 4 (high pressure side) and the second chamber 6b (low pressure side) is preferably, for example, 5 to 30 Pa. The differential pressure is controlled by the pressure sensors 34 and 35, but a predetermined differential pressure gauge may be used. The value of the differential pressure is not particularly limited and can be adjusted as appropriate.
(第二実施形態)
 図2に示すように、本発明の第二実施形態に係るガラス物品の製造装置1及び製造方法が、第一実施形態と相違するところは、第一室6aに排気機構41を設けた点と、第二室6bに給気機構51を設けた点である。
(Second Embodiment)
As shown in FIG. 2, the difference between the glass article manufacturing apparatus 1 and the manufacturing method according to the second embodiment of the present invention from the first embodiment is that the exhaust mechanism 41 is provided in the first chamber 6a. , The point is that the air supply mechanism 51 is provided in the second chamber 6b.
 排気機構41は、第一室6aに接続された還気ダクト42と、還気ダクト42から第一室6a内の気体を取り込む排気ファン43と、排気ファン43で取り込んだ気体を屋外に排気する排気ダクト44とを備える。 The exhaust mechanism 41 exhausts the return air duct 42 connected to the first chamber 6a, the exhaust fan 43 that takes in the gas in the first chamber 6a from the return air duct 42, and the gas taken in by the exhaust fan 43 to the outside. It is provided with an exhaust duct 44.
 排気機構41による気体の排気量は、加圧機構16による気体の給気量よりも少ないことが好ましい。つまり、第一室6aでは、加圧機構16により気体を給気しながら、排気機構41により気体を排気するが、排気機構41による排気は補助的なものであり、加圧機構16による第一室6aの加圧状態は維持されるようになっている。 The amount of gas exhausted by the exhaust mechanism 41 is preferably smaller than the amount of gas supplied by the pressurizing mechanism 16. That is, in the first chamber 6a, the gas is exhausted by the exhaust mechanism 41 while supplying gas by the pressurizing mechanism 16, but the exhaust by the exhaust mechanism 41 is auxiliary, and the first by the pressurizing mechanism 16. The pressurized state of the chamber 6a is maintained.
 給気機構51は、屋外(建屋Xの外部)に接続された外気ダクト52と、外気ダクト52から屋外の気体(外気)を取り込む給気ファン53と、給気ファン53で取り込んだ気体を第二室6b内に給気する給気ダクト54とを備える。 The air supply mechanism 51 has an outside air duct 52 connected to the outside (outside of the building X), an air supply fan 53 that takes in outdoor gas (outside air) from the outside air duct 52, and a gas taken in by the air supply fan 53. An air supply duct 54 for supplying air is provided in the two chambers 6b.
 給気機構51による気体の給気量は、排気機構20による気体の給気量よりも少ないことが好ましい。つまり、第二室6bでは、給気機構51により気体を給気しながら、排気機構20により気体を排気するが、給気機構51による給気は補助的なものであり、排気機構20による第二室6bの減圧状態は維持されるようになっている。 The amount of gas supplied by the air supply mechanism 51 is preferably smaller than the amount of gas supplied by the exhaust mechanism 20. That is, in the second chamber 6b, the gas is exhausted by the exhaust mechanism 20 while the gas is supplied by the air supply mechanism 51, but the air supply by the air supply mechanism 51 is auxiliary, and the exhaust mechanism 20 provides the second gas. The depressurized state of the two chambers 6b is maintained.
 このようにすれば、第一室6a及び第二室6bのそれぞれで気体の給排気がなされるため、第一室6a及び第二室6bの気圧を調整しやすくなる。また、第一室6a及び第二室6bは成形炉2及び/又は徐冷炉3の熱で高温となり得るが、第一室6a内及び/又は第二室6b内の気体を流通させて入れ替えやすくなるため、それぞれの室内の気温を適度に下げることができる。 In this way, gas is supplied and exhausted in each of the first chamber 6a and the second chamber 6b, so that the air pressure in the first chamber 6a and the second chamber 6b can be easily adjusted. Further, the first chamber 6a and the second chamber 6b can become hot due to the heat of the molding furnace 2 and / or the slow cooling furnace 3, but the gas in the first chamber 6a and / or the second chamber 6b can be easily replaced by circulating the gas. Therefore, the temperature in each room can be lowered appropriately.
 なお、上記の実施形態では、第一室6aに排気機構41を設けると共に、第二室6bに給気機構51を設ける場合を説明したが、排気機構41及び給気機構51のうちのいずれか一方のみを設けるようにしてもよい。 In the above embodiment, the case where the exhaust mechanism 41 is provided in the first chamber 6a and the air supply mechanism 51 is provided in the second chamber 6b has been described, but any one of the exhaust mechanism 41 and the air supply mechanism 51 has been described. Only one may be provided.
(第三実施形態)
 図3に示すように、本発明の第三実施形態に係るガラス物品の製造装置1及び製造方法が、第二実施形態と相違するところは、加圧機構16による気体の給気と、排気機構41による気体の排気とを、第一室6aの上方から行う点にある。
(Third Embodiment)
As shown in FIG. 3, the difference between the glass article manufacturing apparatus 1 and the manufacturing method according to the third embodiment of the present invention from the second embodiment is the gas supply by the pressurizing mechanism 16 and the exhaust mechanism. The point is that the gas is exhausted by 41 from above the first chamber 6a.
 詳細には、加圧機構16は、搬送ブース9の一方側の側方で、第一室6aの上方から冷気Cを室内に給気する。排気機構41は、搬送ブース9の他方側の側方で、第一室6aの上方から熱気(成形炉2や徐冷炉3の影響により温められた冷気)Wを室外に排気する。ここで、冷気Cは例えば常温(20℃±15℃)であり、熱気Wは例えば80℃±20℃である。 Specifically, the pressurizing mechanism 16 supplies cold air C into the room from above the first room 6a on one side of the transport booth 9. The exhaust mechanism 41 exhausts hot air (cold air warmed by the influence of the molding furnace 2 and the slow cooling furnace 3) W to the outside of the room from above the first chamber 6a on the other side of the transport booth 9. Here, the cold air C is, for example, room temperature (20 ° C. ± 15 ° C.), and the hot air W is, for example, 80 ° C. ± 20 ° C.
 このようにすれば、冷気Cは密度が高く下降する傾向があり、熱気Wは密度が低く上昇する傾向があるため、第一室6a内で気体を効率よく循環させることができる。したがって、成形炉2や徐冷炉3の影響により高温になりやすい第一室6a内の気温を効率よく下げることができる。 In this way, the cold air C tends to have a high density and tends to fall, and the hot air W tends to have a low density and rises, so that the gas can be efficiently circulated in the first chamber 6a. Therefore, the air temperature in the first chamber 6a, which tends to become high due to the influence of the molding furnace 2 and the slow cooling furnace 3, can be efficiently lowered.
 なお、上記の実施形態では、加圧機構16により第一室6aの上方から冷気を室内に給気すると共に、加圧機構16とは異なる位置で、排気機構41により第一室6aの上方から熱気を室外に排気する場合を説明したが、当該構成は、第二室6bにも適用できる。つまり、給気機構51により第二室6bの上方から冷気を室内に給気すると共に、給気機構51とは異なる位置で、排気機構20により第二室6bの上方から熱気を室外に排気してもよい。 In the above embodiment, the pressurizing mechanism 16 supplies cold air into the room from above the first chamber 6a, and the exhaust mechanism 41 is used to supply cold air from above the first chamber 6a at a position different from the pressurizing mechanism 16. Although the case where the hot air is exhausted to the outside of the room has been described, the configuration can also be applied to the second room 6b. That is, the air supply mechanism 51 supplies cold air into the room from above the second chamber 6b, and the exhaust mechanism 20 exhausts hot air from above the second chamber 6b to the outside at a position different from that of the air supply mechanism 51. You may.
 また、冷気の給気位置及び熱気の排気位置は、上方に限らず、側方から第一室6a及び/又は第二室6bの上部に給排気してもよい。 Further, the air supply position of cold air and the exhaust position of hot air are not limited to the upper side, and may be supplied and exhausted from the side to the upper part of the first chamber 6a and / or the second chamber 6b.
(第四実施形態)
 図4に示すように、本発明の第四実施形態に係るガラス物品の製造装置1及び製造方法が、第二実施形態と相違するところは、冷却部4にも排気機構61を設けた点である。
(Fourth Embodiment)
As shown in FIG. 4, the difference between the glass article manufacturing apparatus 1 and the manufacturing method according to the fourth embodiment of the present invention from the second embodiment is that the cooling unit 4 is also provided with the exhaust mechanism 61. is there.
 排気機構61は、冷却部4に接続された還気ダクト62と、還気ダクト62から冷却部4内の気体を取り込む排気ファン63と、排気ファン63で取り込んだ気体を屋外に排気する排気ダクト64とを備える。 The exhaust mechanism 61 includes a return air duct 62 connected to the cooling unit 4, an exhaust fan 63 that takes in the gas in the cooling unit 4 from the return air duct 62, and an exhaust duct that exhausts the gas taken in by the exhaust fan 63 to the outside. It includes 64.
 冷却部4では、切断室5からのパーティクルの影響を考慮し、加圧機構24と排気機構61とは距離をできるだけ離すことが好ましい。また、冷却部4の上部に加圧機構24を配置し、冷却部4の下部に排気機構61を配置することが好ましい。このため、本実施形態では、冷却部4の上部に配置された加圧機構24(給気ダクト27)の対角に排気機構61(還気ダクト62)が配置されている。このようにすれば、冷却部4内で気体が循環するため、パーティクルを確実に補足して外部に排出しやすくなる。 In the cooling unit 4, it is preferable to keep the pressurizing mechanism 24 and the exhaust mechanism 61 as far apart as possible in consideration of the influence of particles from the cutting chamber 5. Further, it is preferable that the pressurizing mechanism 24 is arranged above the cooling unit 4 and the exhaust mechanism 61 is arranged below the cooling unit 4. Therefore, in the present embodiment, the exhaust mechanism 61 (return air duct 62) is arranged diagonally to the pressurizing mechanism 24 (air supply duct 27) arranged above the cooling unit 4. In this way, since the gas circulates in the cooling unit 4, the particles can be reliably captured and easily discharged to the outside.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 第一加圧機構16は、建屋Xの外部から気体を取り込む構成に限定されず、例えば、第一室6aの室外であれば、建屋Xの室内のいずれかの場所から気体を取り込む構成であってもよい。このように建屋Xの室内から気体を取り込む場合、ダクト17,19を短くできるなどの利点がある。このように建屋Xの室内から気体を取り込む構成は、加圧機構24、給気機構51についても同様に適用できる。 The first pressurizing mechanism 16 is not limited to a configuration in which gas is taken in from the outside of the building X. For example, in the case of the outside of the first room 6a, the first pressurizing mechanism 16 is configured to take in gas from any place in the building X. You may. When gas is taken in from the room of the building X in this way, there is an advantage that the ducts 17 and 19 can be shortened. The configuration for taking in gas from the room of the building X in this way can be similarly applied to the pressurizing mechanism 24 and the air supply mechanism 51.
 排気機構20は、建屋Xの外部に気体を排気する構成に限定されず、例えば、第二室6bの室外であれば、建屋Xの室内のいずれかの場所に気体を排気する構成であってもよい。このように建屋Xの室内に気体を排気する場合、ダクト21,23を短くできるなどの利点がある。また、排気機構20は、第二室6bと気体が排気される部分(例えば建屋Xの外部)との差圧を利用して第二室6bの気体を室外に排気する構成であってもよい。すなわち、排気機構20は、例えば、排気ファン22を備えることなく、第二室6bの壁部に設けられた開口部によって第二室6bの気体を室外に排気する構成であってもよい。これらの構成は、排気機構41,61についても同様に適用できる。 The exhaust mechanism 20 is not limited to a configuration in which gas is exhausted to the outside of the building X. For example, in the case of the outdoor of the second room 6b, the exhaust mechanism 20 is configured to exhaust the gas to any place in the room of the building X. May be good. When the gas is exhausted into the room of the building X in this way, there is an advantage that the ducts 21 and 23 can be shortened. Further, the exhaust mechanism 20 may have a configuration in which the gas in the second chamber 6b is exhausted to the outside by utilizing the differential pressure between the second chamber 6b and the portion where the gas is exhausted (for example, the outside of the building X). .. That is, for example, the exhaust mechanism 20 may be configured to exhaust the gas of the second chamber 6b to the outside through an opening provided in the wall portion of the second chamber 6b without providing the exhaust fan 22. These configurations can be similarly applied to the exhaust mechanisms 41 and 61.
 排気機構20は、第二加圧機構24のように、フィルタ部をさらに備えていてもよい。フィルタ部によって、排気される気体から異物(鉄粉など)を除去すれば、清浄度の高い気体を屋外に排気できる。同様の理由により、排気機構41,61が、フィルタ部をさらに備えていてもよい。 The exhaust mechanism 20 may further include a filter unit like the second pressurizing mechanism 24. If foreign matter (iron powder, etc.) is removed from the exhausted gas by the filter unit, a highly clean gas can be exhausted outdoors. For the same reason, the exhaust mechanisms 41 and 61 may further include a filter unit.
 第一加圧機構16は、第二加圧機構24のように、フィルタ部をさらに備えていてもよい。フィルタ部によって、第一室6aに給気される気体から異物を除去すれば、清浄度の高い気体を第一室6aに給気できる。同様の理由により、給気機構51が、フィルタ部をさらに備えていてもよい。 The first pressurizing mechanism 16 may further include a filter portion like the second pressurizing mechanism 24. If the filter unit removes foreign matter from the gas supplied to the first chamber 6a, a highly clean gas can be supplied to the first chamber 6a. For the same reason, the air supply mechanism 51 may further include a filter unit.
 第一加圧機構16は、第二加圧機構24のように、温調部をさらに備えていてもよい。温調部によって、第一室6aに給気される気体の温度を調整すれば、第一室6a内の気体が成形炉2や徐冷炉3の上部3aに侵入したとしても、成形条件や徐冷条件の乱れを小さくできると考えられる。同様の理由により、給気機構51が、温調部をさらに備えていてもよい。 The first pressurizing mechanism 16 may further include a temperature control portion like the second pressurizing mechanism 24. If the temperature of the gas supplied to the first chamber 6a is adjusted by the temperature control unit, even if the gas in the first chamber 6a invades the molding furnace 2 or the upper part 3a of the slow cooling furnace 3, the molding conditions and slow cooling are performed. It is thought that the disturbance of conditions can be reduced. For the same reason, the air supply mechanism 51 may further include a temperature control unit.
 冷却室7及び/又は切断室5に、加圧機構(給気機構)及び/又は排気機構を設けてもよい。このようにすれば、冷却室7や切断室5の気圧を調整しやすくなる。つまり、差圧の管理が容易となる。 A pressurizing mechanism (air supply mechanism) and / or an exhaust mechanism may be provided in the cooling chamber 7 and / or the cutting chamber 5. In this way, it becomes easy to adjust the air pressure in the cooling chamber 7 and the cutting chamber 5. That is, the differential pressure can be easily managed.
 切断室5の下階に、切断室5から廃棄ガラスを落下させて回収するための回収室を設けてもよい。 A collection chamber for dropping and collecting waste glass from the cutting chamber 5 may be provided on the lower floor of the cutting chamber 5.
 ガラス物品の製造装置1は、切断室5の下流側において、ガラス板Gの耳部を含む幅方向両端部を切断する第二切断装置、ガラス板Gの端面を加工する端面加工装置、ガラス板Gを洗浄する洗浄装置、ガラス板Gを検査する検査装置などをさらに備えていてもよい。同様に、ガラス物品の製造方法は、切断工程の下流側において、ガラス板Gの幅方向両端部を切断する第二切断工程、ガラス板Gの端面を加工する端面加工工程、ガラス板Gを洗浄する洗浄工程、ガラス板Gを検査する検査工程などをさらに備えていてもよい。 The glass article manufacturing apparatus 1 includes a second cutting apparatus for cutting both ends in the width direction including the ears of the glass plate G, an end face processing apparatus for processing the end face of the glass plate G, and a glass plate on the downstream side of the cutting chamber 5. A cleaning device for cleaning G, an inspection device for inspecting the glass plate G, and the like may be further provided. Similarly, in the method for manufacturing a glass article, on the downstream side of the cutting step, a second cutting step of cutting both ends in the width direction of the glass plate G, an end face processing step of processing the end face of the glass plate G, and cleaning of the glass plate G are performed. It may further include a cleaning step for inspecting the glass plate G and an inspection step for inspecting the glass plate G.
 上記の実施形態では、ガラス板Gを例示したが、ガラス物品はこれに限定されず、巻芯の周囲にガラスリボンGrをロール状に巻き取ったガラスロールなどであってもよい。この場合、ガラス物品の製造装置1は、冷却部4の下流側において、ガラスリボンGrの耳部を含む幅方向両端部を切断して除去する切断装置、ガラスリボンGrをロール状に巻き取ってガラスロールを得る巻取装置などをさらに備えていてもよい。同様に、ガラス物品の製造方法は、冷却工程の下流側において、ガラスリボンGrの幅方向両端部を切断して除去する切断工程、ガラスリボンGrをロール状に巻き取ってガラスロールを得る巻取工程などをさらに備えていてもよい。 In the above embodiment, the glass plate G is illustrated, but the glass article is not limited to this, and a glass roll or the like in which the glass ribbon Gr is wound around the winding core in a roll shape may be used. In this case, the glass article manufacturing apparatus 1 winds the glass ribbon Gr, which is a cutting apparatus for cutting and removing both ends in the width direction including the ears of the glass ribbon Gr, in a roll shape on the downstream side of the cooling unit 4. A winding device for obtaining a glass roll may be further provided. Similarly, the method for manufacturing a glass article is a cutting step of cutting and removing both ends of the glass ribbon Gr in the width direction on the downstream side of the cooling step, and winding the glass ribbon Gr into a roll to obtain a glass roll. It may be further provided with a process or the like.
 上記の実施形態では、オーバーフローダウンドロー法によりにガラスリボンGr(又はガラス物品)を成形する場合を例示したが、スロットダウンドロー法、リドロー法などの他のダウンドロー法も利用できる。 In the above embodiment, the case where the glass ribbon Gr (or the glass article) is formed by the overflow down draw method is illustrated, but other down draw methods such as the slot down draw method and the redraw method can also be used.
1   ガラス物品の製造装置
2   成形炉
3   徐冷炉
4   冷却部
5   切断室
6   成形徐冷室
6a  第一室
6b  第二室
7   冷却室
9   搬送ブース
11  成形体
16  第一加圧機構
20  排気機構
24  第二加圧機構
G   ガラス板(ガラス物品)
Gr  ガラスリボン
1 Glass article manufacturing equipment 2 Molding furnace 3 Slow cooling furnace 4 Cooling section 5 Cutting chamber 6 Molding slow cooling chamber 6a First chamber 6b Second chamber 7 Cooling chamber 9 Conveyance booth 11 Molded body 16 First pressurizing mechanism 20 Exhaust mechanism 24 No. (Ii) Pressurization mechanism G glass plate (glass article)
Gr glass ribbon

Claims (9)

  1.  ダウンドロー法によりガラスリボンを成形する成形炉と、前記成形炉の下方に連通して前記ガラスリボンを徐冷する徐冷炉と、前記徐冷炉の下方に連通して前記ガラスリボンを冷却する冷却部と、前記成形炉及び前記徐冷炉が内部に配置される成形徐冷室と、前記冷却部が内部に配置される冷却室とを備える製造装置を用いるガラス物品の製造方法であって、
     前記成形徐冷室を、前記成形炉及び前記徐冷炉の上部が内部に配置される第一室と、前記徐冷炉の下部が内部に配置される第二室とに区分した状態で、
     加圧機構によって前記第一室内を加圧しながら、排気機構によって前記第二室内の気体を室外に排気することを特徴とするガラス物品の製造方法。
    A molding furnace that forms a glass ribbon by a down-draw method, a slow cooling furnace that communicates below the molding furnace to slowly cool the glass ribbon, and a cooling unit that communicates below the slow cooling furnace to cool the glass ribbon. A method for manufacturing a glass article using a manufacturing apparatus including a molding slow cooling chamber in which the molding furnace and the slow cooling furnace are arranged, and a cooling chamber in which the cooling unit is arranged inside.
    The molding slow cooling chamber is divided into a first chamber in which the molding furnace and the upper part of the slow cooling furnace are arranged inside, and a second chamber in which the lower part of the slow cooling furnace is arranged inside.
    A method for manufacturing a glass article, which comprises exhausting gas in the second chamber to the outside by an exhaust mechanism while pressurizing the first chamber by a pressurizing mechanism.
  2.  前記第一室の気圧が前記第二室の気圧よりも高く、かつ、前記第二室の気圧が前記冷却室の気圧よりも低い請求項1に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1, wherein the air pressure in the first chamber is higher than the air pressure in the second chamber, and the air pressure in the second chamber is lower than the air pressure in the cooling chamber.
  3.  前記徐冷炉の下部の気圧が、前記第二室の気圧よりも高い請求項1又は2に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1 or 2, wherein the atmospheric pressure at the lower part of the slow cooling furnace is higher than the atmospheric pressure in the second chamber.
  4.  前記ガラスリボンの歪点温度に対応する位置が、前記徐冷炉の上部に含まれる請求項3に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 3, wherein the position corresponding to the strain point temperature of the glass ribbon is included in the upper part of the slow cooling furnace.
  5.  前記徐冷炉の下部の側壁に、前記徐冷炉内の気体の一部を前記第二室に導く流路を設ける請求項3又は4に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 3 or 4, wherein a flow path for guiding a part of the gas in the slow cooling furnace to the second chamber is provided on the lower side wall of the slow cooling furnace.
  6.  前記加圧機構によって前記第一室内を加圧すると共に、前記加圧機構とは異なる位置で前記第一室内の気体を室外に排気する請求項1~5のいずれか1項に記載のガラス物品の製造方法。 The glass article according to any one of claims 1 to 5, wherein the first chamber is pressurized by the pressurizing mechanism and the gas in the first chamber is exhausted to the outside at a position different from the pressurizing mechanism. Production method.
  7.  前記加圧機構により前記第一室の上部から冷気を室内に給気すると共に、前記加圧機構とは異なる位置で前記第一室の上部から熱気を室外に排気する請求項6に記載のガラス物品の製造方法。 The glass according to claim 6, wherein cold air is supplied into the room from the upper part of the first chamber by the pressurizing mechanism, and hot air is exhausted to the outside from the upper part of the first chamber at a position different from the pressurizing mechanism. Manufacturing method of goods.
  8.  前記排気機構によって前記第二室内の気体を排気すると共に、前記排気機構とは異なる位置で前記第二室内に気体を給気する請求項1~7のいずれか1項に記載のガラス物品の製造方法。 The production of the glass article according to any one of claims 1 to 7, wherein the gas in the second chamber is exhausted by the exhaust mechanism and the gas is supplied to the second chamber at a position different from the exhaust mechanism. Method.
  9.  ダウンドロー法によりガラスリボンを成形する成形炉と、前記成形炉の下方に連通して前記ガラスリボンを徐冷する徐冷炉と、前記徐冷炉の下方に連通して前記ガラスリボンを冷却する冷却部と、前記成形炉及び前記徐冷炉が内部に配置される成形徐冷室と、前記冷却部が内部に配置される冷却室とを備えるガラス物品の製造装置であって、
     前記成形徐冷室は、前記成形炉及び前記徐冷炉の上部が内部に配置される第一室と、前記徐冷炉の下部が内部に配置される第二室とを備え、
     前記第一室内を加圧する加圧機構と、前記第二室内の気体を室外に排気する排気機構とをさらに備えることを特徴とするガラス物品の製造装置。
    A molding furnace that forms a glass ribbon by a down-draw method, a slow cooling furnace that communicates below the molding furnace to slowly cool the glass ribbon, and a cooling unit that communicates below the slow cooling furnace to cool the glass ribbon. A glass article manufacturing apparatus including a molding slow cooling chamber in which the molding furnace and the slow cooling furnace are arranged, and a cooling chamber in which the cooling unit is arranged inside.
    The molding slow cooling chamber includes a first chamber in which the molding furnace and the upper portion of the slow cooling furnace are arranged inside, and a second chamber in which the lower portion of the slow cooling furnace is arranged inside.
    An apparatus for manufacturing a glass article, further comprising a pressurizing mechanism for pressurizing the first chamber and an exhaust mechanism for exhausting gas in the second chamber to the outside.
PCT/JP2020/043475 2019-12-18 2020-11-20 Glass article manufacturing method and glass article manufacturing device WO2021124801A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565399A JPWO2021124801A1 (en) 2019-12-18 2020-11-20
CN202080073567.5A CN114555536B (en) 2019-12-18 2020-11-20 Method and apparatus for manufacturing glass article
KR1020227009100A KR20220117197A (en) 2019-12-18 2020-11-20 Method for manufacturing a glass article and an apparatus for manufacturing a glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019228190 2019-12-18
JP2019-228190 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021124801A1 true WO2021124801A1 (en) 2021-06-24

Family

ID=76477258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043475 WO2021124801A1 (en) 2019-12-18 2020-11-20 Glass article manufacturing method and glass article manufacturing device

Country Status (4)

Country Link
JP (1) JPWO2021124801A1 (en)
KR (1) KR20220117197A (en)
CN (1) CN114555536B (en)
WO (1) WO2021124801A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266098A (en) * 2007-04-24 2008-11-06 Nippon Electric Glass Co Ltd Glass plate manufacturing method and glass plate manufacturing equipment
JP2009173525A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate
JP2009173524A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate
WO2013001834A1 (en) * 2011-06-30 2013-01-03 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing device
JP2014125363A (en) * 2012-12-25 2014-07-07 Avanstrate Inc Glass substrate production apparatus, and production method of glass substrate for display
JP2017065988A (en) * 2015-09-30 2017-04-06 AvanStrate株式会社 Method and apparatus for manufacturing glass substrate
JP2017154911A (en) * 2016-02-29 2017-09-07 日本電気硝子株式会社 Facility and method for manufacturing glass plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209767A (en) * 1991-03-19 1993-05-11 Glasstech, Inc. Glass sheet annealing lehr having gas support conveyor
KR101346939B1 (en) * 2011-09-29 2014-01-03 아반스트레이트코리아 주식회사 Method and apparatus of making glass substrate
WO2014051069A1 (en) * 2012-09-28 2014-04-03 AvanStrate株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
JP6642798B2 (en) * 2016-03-14 2020-02-12 日本電気硝子株式会社 Glass plate manufacturing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266098A (en) * 2007-04-24 2008-11-06 Nippon Electric Glass Co Ltd Glass plate manufacturing method and glass plate manufacturing equipment
JP2009173525A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate
JP2009173524A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate
WO2013001834A1 (en) * 2011-06-30 2013-01-03 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing device
JP2014125363A (en) * 2012-12-25 2014-07-07 Avanstrate Inc Glass substrate production apparatus, and production method of glass substrate for display
JP2017065988A (en) * 2015-09-30 2017-04-06 AvanStrate株式会社 Method and apparatus for manufacturing glass substrate
JP2017154911A (en) * 2016-02-29 2017-09-07 日本電気硝子株式会社 Facility and method for manufacturing glass plate

Also Published As

Publication number Publication date
CN114555536A (en) 2022-05-27
CN114555536B (en) 2024-02-13
JPWO2021124801A1 (en) 2021-06-24
KR20220117197A (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP6623836B2 (en) Glass plate manufacturing equipment and glass plate manufacturing method
KR102454959B1 (en) Thermally tempered glass and methods and apparatuses for thermal tempering of glass
KR102210004B1 (en) Method for molding sheet glass, and mold
JP5434578B2 (en) Cooling rare of float glass manufacturing equipment
JPWO2004035492A1 (en) Method and apparatus for manufacturing bending tempered glass plate
CN105280518A (en) Semiconductor substrate heat treatment device
WO2021124801A1 (en) Glass article manufacturing method and glass article manufacturing device
FI100596B (en) Method and apparatus for heating glass sheets in a roll curing oven
JP5983406B2 (en) Float plate glass manufacturing apparatus and float plate glass manufacturing method
JP2000327355A (en) Ring for supporting glass plate
CN105198197B (en) A kind of toughened glass production line
JP3949494B2 (en) Heat treatment equipment with filter dust generation treatment function
JP6608756B2 (en) Method and apparatus for producing physically strengthened glass
JP2017014062A (en) Production method for glass substrate and glass substrate
JP6082434B2 (en) Glass substrate manufacturing method and glass substrate
JP7415252B2 (en) Method for manufacturing glass articles
JP2005114284A (en) Kiln
JP2015024942A (en) Glass manufacturing apparatus
KR102639794B1 (en) Apparatus for manufacturing glass plate
WO2022131205A1 (en) Glass article production apparatus
JP6587844B2 (en) Display glass plate manufacturing method and display glass plate manufacturing apparatus
JP2005249276A (en) Clean oven
KR20160119497A (en) Apparatus for manufacturing float glass
TWI580650B (en) Glass substrate manufacturing method and glass substrate
JP2017014050A (en) Manufacturing method of glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021565399

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902676

Country of ref document: EP

Kind code of ref document: A1