WO2013001834A1 - Glass plate manufacturing method and glass plate manufacturing device - Google Patents

Glass plate manufacturing method and glass plate manufacturing device Download PDF

Info

Publication number
WO2013001834A1
WO2013001834A1 PCT/JP2012/004231 JP2012004231W WO2013001834A1 WO 2013001834 A1 WO2013001834 A1 WO 2013001834A1 JP 2012004231 W JP2012004231 W JP 2012004231W WO 2013001834 A1 WO2013001834 A1 WO 2013001834A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
space
glass
atmospheric pressure
glass ribbon
Prior art date
Application number
PCT/JP2012/004231
Other languages
French (fr)
Japanese (ja)
Inventor
浩幸 苅谷
公彦 中嶋
Original Assignee
AvanStrate株式会社
アヴァンストレート コリア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, アヴァンストレート コリア インコーポレイテッド filed Critical AvanStrate株式会社
Priority to KR1020127020852A priority Critical patent/KR101300934B1/en
Priority to JP2012530008A priority patent/JP5235249B1/en
Priority to KR1020127034182A priority patent/KR101442384B1/en
Priority to CN201280002970.4A priority patent/CN103108840B/en
Publication of WO2013001834A1 publication Critical patent/WO2013001834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath

Definitions

  • the present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus by a downdraw method.
  • the overflow downdraw method includes a step of forming a glass ribbon below the formed body by allowing molten glass to overflow from the top of the formed body in a forming furnace, and a step of gradually cooling the glass ribbon in a slow cooling furnace. Including.
  • the slow cooling furnace draws the glass ribbon between the pair of rollers and stretches the glass ribbon to a desired thickness, and then slowly cools the glass ribbon so as to reduce distortion and thermal shrinkage inside the glass ribbon. Thereafter, the glass ribbon is cut into a predetermined size to form a glass plate, which is laminated on a bundle of glass plates, or conveyed to the next step.
  • the downdraw method it describes in the following patent document 1, for example.
  • a TFT Thin Film Transistor
  • the glass plate is heat-treated at a temperature of 400 ° C. to 600 ° C. in the display manufacturing process. There is a case. This minute change in dimensions may cause a displacement of the TFT formation position formed on the glass plate with respect to the target position (pixel position), and as a result, display defects of the liquid crystal display may occur.
  • a glass plate on which a TFT is formed and a glass plate on which a color filter is formed for each pixel are opposed to each other, and a liquid crystal is provided between the glass plates.
  • the glass plate on which the TFT is formed undergoes a minute dimensional change due to heat shrinkage, accurate alignment may not be possible in pixel units with the glass plate on which the color filter is formed. For this reason, in order to reduce the change of the dimension of a glass plate, it is calculated
  • Patent Document 2 in order to reduce the plane distortion of the glass plate, the pressure outside the furnace (space outside the furnace) of the forming furnace and / or the slow cooling furnace is pressurized and generated along the glass ribbon in the slow cooling furnace.
  • the technique which suppresses the temperature fluctuation in a slow cooling furnace by reducing the upward airflow to perform is disclosed.
  • the air in the furnace outer space may flow into the inner space of the forming furnace or the slow cooling furnace.
  • the temperature in the outer space of the furnace is about 200 to 1200 ° C. lower than the temperature in the furnace atmosphere (space inside the furnace) of the forming furnace or the slow cooling furnace.
  • an air flow that rises from a cooling chamber, a cutting chamber, or the like into the slow cooling furnace may occur, but even if an air flow occurs, the air flow remains in the slow cooling furnace. As the temperature rises, the effect on temperature fluctuations in the furnace interior space is small.
  • the temperature in the slow cooling furnace cannot be maintained at the set temperature, and the variation in thermal shrinkage of the glass plate may increase.
  • the glass plate is required to have a small variation in thermal shrinkage, for example, a glass plate for flat panel display (in particular, a glass substrate for liquid crystal display, a glass substrate for organic EL display, or an oxide semiconductor thin film transistor).
  • a glass plate for flat panel display in particular, a glass substrate for liquid crystal display, a glass substrate for organic EL display, or an oxide semiconductor thin film transistor.
  • an object of the present invention is to provide a method for producing a glass plate that efficiently reduces variation in thermal shrinkage when producing a glass plate by a downdraw method.
  • One aspect of the present invention is a method for producing a glass plate by a downdraw method, A melting step of melting glass raw material to obtain molten glass; Forming the glass ribbon by supplying the molten glass to a molded body provided in a molding furnace, and forming a flow of the glass ribbon; A slow cooling step of cooling the glass ribbon in the slow cooling furnace by pulling with a roller provided in the slow cooling furnace; A cutting step of cutting the cooled glass ribbon in a cutting space.
  • the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon.
  • the atmospheric pressure is adjusted to be low.
  • the atmospheric pressure in the outer space of the furnace is in a region between a position in the slow cooling furnace corresponding to the slow cooling point temperature of the glass ribbon and a position in the slow cooling furnace corresponding to the strain point temperature of the glass ribbon. It is preferable that the atmospheric pressure is adjusted so as to be lower than the atmospheric pressure at the same position in the furnace internal space.
  • the difference between the pressure in the furnace internal space and the pressure in the furnace external space is 40 Pa or less at the same position in the flow direction of the glass ribbon with respect to the pressure of the at least part of the furnace external space.
  • the pressure outside the furnace is adjusted to be higher than the atmospheric pressure.
  • the furnace outer space has an upper space located above the ceiling surface of the inner space of the molding furnace, and the upper space does not allow air to flow from the upper space into the furnace inner space. It is preferable that the air pressure in the upper space is adjusted.
  • the flow direction of the glass ribbon is a vertical direction, and the forming furnace is provided vertically above the slow cooling furnace.
  • the furnace external space is divided into a plurality of partial spaces in the vertical direction, and the difference between the respective atmospheric pressure of the partial space and the atmospheric pressure of the furnace internal space at the same position in the vertical direction of the partial space,
  • the atmospheric pressure is adjusted such that the difference at the uppermost portion is larger than the difference at the lowermost portion. It is preferable.
  • the difference in the atmospheric pressure in the partial space increases as it goes upward.
  • the glass plate is, for example, a glass substrate for liquid crystal display on which a TFT (Thin Film Transistor) is formed.
  • TFT Thin Film Transistor
  • the furnace When the outer space of the furnace includes a first partial space at the same position as the formed body in the flow direction of the glass ribbon, the furnace at the same position in the flow direction of the glass ribbon and the atmospheric pressure of the first partial space
  • the difference in atmospheric pressure in the internal space is preferably greater than 0 and 40 Pa or less.
  • the furnace external space includes a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the difference between the atmospheric pressure of the furnace internal space of the slow cooling furnace and the atmospheric pressure of the second partial space is 0 It is preferably 40 Pa or less.
  • the furnace external space includes a first partial space located at the same position as the formed body and a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the first partial space and the first When two partial spaces are separated by a wall and adjacent to each other, the atmospheric pressure in the first partial space of the furnace external space is larger than the atmospheric pressure in the second partial space, and the atmospheric pressure in the first partial space and the second It is preferable that the difference in the atmospheric pressure of the partial space is smaller than 20 Pa.
  • the furnace outer space includes a plurality of second partial spaces at the same position as the slow cooling furnace, and the plurality of second partial spaces have higher atmospheric pressure toward the upstream side in the flow direction of the molten glass. preferable.
  • the slow cooling step includes In the central part of the width direction of the glass ribbon, so that a tensile stress works in the flow direction of the glass ribbon, At least in a temperature range from a temperature obtained by adding 150 ° C. to the annealing point temperature of the glass ribbon to a temperature obtained by subtracting 200 ° C. from the strain point temperature of the glass ribbon,
  • the cooling rate of the central part in the width direction of the glass ribbon is faster than the cooling rate of the both end parts, It is preferable that the glass ribbon is changed from a state where the temperature of the central portion in the width direction of the glass ribbon is higher than the both end portions to a state where the temperature of the central portion is lower than the both end portions.
  • the slow cooling step includes a first cooling step, a second cooling step, and a third cooling step
  • the first cooling step is a step of cooling at the first average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the annealing point temperature
  • the second cooling step is a step of cooling at the second average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the strain point temperature of ⁇ 50 ° C. from the annealing point temperature
  • the third cooling step is a step of cooling at a third average cooling rate until the temperature of the central portion in the width direction of the glass ribbon becomes a strain point temperature of ⁇ 50 ° C. to a strain point temperature of ⁇ 200 ° C.
  • the first average cooling rate is 5.0 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is the second It is preferable that the cooling rate is higher than the average cooling rate.
  • the average cooling rate of the central portion of the glass ribbon in the first cooling step is preferably 5.5 ° C./second to 50.0 ° C./second.
  • the average cooling rate of the glass ribbon in the second cooling step is preferably 0.5 to less than 5.5 ° C./second.
  • the cooling rate of the central portion of the glass ribbon in the third cooling step is preferably 1.5 ° C./second to 7.0 ° C./second.
  • the strain point temperature of the glass is preferably 675 ° C. or higher, and the strain point temperature is 675 ° C. to 750 ° C. More preferably, it is ° C.
  • Another embodiment of the present invention is a glass plate manufacturing apparatus using a downdraw method.
  • the manufacturing equipment A melting apparatus for melting glass raw material to obtain molten glass;
  • the molten glass is supplied to a molded body provided in a molding furnace to form a glass ribbon, the flow of the glass ribbon is created, and the glass ribbon is pulled by a roller provided in the slow cooling furnace, and the slow cooling furnace A molding device for cooling inside, And a cutting device for cutting the cooled glass ribbon in a cutting space.
  • the furnace When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition wall with respect to the atmospheric pressure atmosphere.
  • An air pressure control device for adjusting the air pressure is provided in the molding apparatus so that the air pressure in at least a part of the furnace outer space is lower than the air pressure in the furnace inner space at the same position in the flow direction of the glass ribbon. It has been.
  • the air pressure control device is a device that adjusts the inflow of air with the atmosphere in order to control the air pressure in the furnace outer space.
  • FIG. 2 is a diagram schematically showing an apparatus for performing a melting step to a cutting step according to the present embodiment. It is a schematic side view of the glass plate shaping
  • the center part of a glass ribbon means the center of the width direction of a glass ribbon among the widths of the width direction of a glass ribbon.
  • the edge part of a glass ribbon means the range within 100 mm from the edge of the width direction of a glass ribbon.
  • the strain point temperature refers to the temperature of a glass plate having a log ⁇ of 14.5 when the glass viscosity is ⁇ .
  • the annealing point temperature refers to the temperature of a glass plate having a log ⁇ of 13.
  • FIG. 1 is a diagram showing a flow of a glass plate manufacturing method according to the present embodiment.
  • the glass plate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a forming step (ST5), and a slow cooling step (ST6). And a cutting step (ST7).
  • a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
  • FIG. 2 is a diagram schematically showing a glass plate manufacturing apparatus that performs the melting step (ST1) to the cutting step (ST7).
  • the apparatus mainly includes a melting apparatus 200, a molding apparatus 300, and a cutting apparatus 400.
  • the dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the molding apparatus 300 will be described later.
  • the glass raw material supplied into the melting tank 201 is heated and melted with a flame and an electric heater (not shown) to obtain molten glass.
  • the clarification step (ST2) is performed in the clarification tank 202, and by heating the molten glass in the clarification tank 202, oxygen and SO 2 bubbles contained in the molten glass grow by the oxidation-reduction reaction of the clarifier. The bubble gas component is released by rising to the liquid surface, or the gas component in the bubble is absorbed into the molten glass and the bubble disappears.
  • the homogenization step (ST3) the molten glass in the stirring tank 203 supplied through the first pipe 204 is stirred using a stirrer to homogenize the glass components.
  • the molten glass is supplied to the molding apparatus 300 through the second pipe 205.
  • a molding process (ST5) and a slow cooling process (ST6) are performed.
  • molten glass is supplied to a formed body provided in a forming furnace to form a glass ribbon G (see FIG. 3).
  • an overflow down draw method using a molded body 310 described later is used.
  • the glass ribbon G that has been molded and flowed has a desired thickness, and is cooled by being pulled by a roller so as not to cause a plane distortion and a thermal contraction rate. .
  • the cutting device 400 cuts the glass ribbon G supplied from the forming device 300 into a predetermined length, thereby obtaining a plate-like glass plate G1 (see FIG. 3).
  • the cut glass plate G1 is further cut into a predetermined size to produce a glass plate G1 having a target size.
  • the glass end face is ground and polished, then cleaned, and further inspected for the presence of abnormal defects such as bubbles and striae, and then the glass plate G1 that has passed the inspection is packed as the final product. Is done.
  • FIG. 3 and 4 are diagrams mainly showing a configuration of the glass sheet forming apparatus 300
  • FIG. 3 mainly shows a schematic side view of the forming apparatus 300
  • FIG. 4 is a schematic front view of the forming apparatus 300.
  • the glass plate molded by the molding apparatus 300 is suitably used for a glass substrate for flat panel display or a cover glass, for example.
  • the glass substrate for a flat panel display include a glass substrate for a liquid crystal display, a glass substrate for an organic EL display, and a display glass on which an oxide semiconductor thin film transistor is formed.
  • the glass plate molded by the molding apparatus 300 can also be used as a display for a portable terminal device, a cover glass for a housing, a touch panel plate, a glass substrate of a solar cell, or a cover glass. Particularly, it is suitable for a glass substrate for a liquid crystal display using a polysilicon TFT.
  • the forming furnace 40 for performing the forming step (ST5) and the slow cooling furnace 50 for performing the slow cooling step (ST6) are surrounded by a furnace wall composed of a refractory material such as a refractory brick, a refractory heat insulating brick, or a fiber-based heat insulating material.
  • the molding furnace 40 is provided vertically above the slow cooling furnace 50.
  • the forming furnace 40 and the slow cooling furnace 50 are collectively referred to as a furnace 30.
  • a furnace inner space surrounded by the furnace wall of the furnace 30 a molded body 310, an atmosphere partition member 320, a cooling roller 330, a cooling unit 340, conveying rollers 350a to 350h, pressure sensors 355, 360a to 360c ( 4). As shown in FIG.
  • the molded body 310 forms molten glass flowing from the melting device 200 through the second pipe 205 into a glass ribbon G. Thereby, the flow of the glass ribbon G of the vertically lower direction is made in the forming apparatus 300.
  • the molded body 310 is a long and narrow structure made of refractory brick or the like, and has a wedge-shaped cross section as shown in FIG.
  • a groove 312 serving as a flow path for guiding the molten glass is provided on the top of the molded body 310.
  • the groove 312 is connected to the second pipe 205 at a supply port 311 (see FIG. 4) provided in the molding apparatus 300.
  • the molten glass flowing through the second pipe 205 flows along the groove 312.
  • the depth of the groove 312 is shallower toward the downstream side of the flow of the molten glass, so that the molten glass overflows vertically downward from the groove 312. 3 and 4, the molten glass is represented by the reference symbol MG.
  • the molten glass overflowing from the groove 312 travels down the side walls on both sides of the molded body 310 and flows down vertically.
  • the molten glass that has flowed through the side walls merges at the lower end 313 of the molded body 310 shown in FIG. 3, and one glass ribbon G is formed.
  • the glass ribbon G flows down toward the slow cooling furnace 50.
  • the viscosity of the glass ribbon G at the time of starting to flow down after leaving the molded body 310 is, for example, 10 5.7 to 10 7.5 poise.
  • an atmosphere partition member 320 is provided.
  • the atmosphere partition member 320 is a pair of plate-like heat insulating members and is configured to sandwich the glass ribbon G from both sides in the thickness direction. That is, a gap is formed in the atmosphere partition member 320 so as not to contact the glass ribbon G.
  • the atmosphere partition member 320 blocks the movement of heat between the furnace internal space above the atmosphere partition member 320 and the furnace internal space below by partitioning the molding furnace internal space.
  • a cooling roller 330 is provided below the atmosphere partition member 320.
  • the cooling roller 330 is in contact with the surface of the glass ribbon G in the vicinity of both ends in the width direction of the glass ribbon G, pulls the glass ribbon G downward, and sets the thickness of the glass ribbon G to a desired thickness in the vicinity of both ends. At the same time, the glass ribbon G is cooled (rapidly cooled). Due to the rapid cooling by the cooling roller 330, the viscosity at both ends of the glass ribbon becomes, for example, 10 9.0 to 10 10.5 poise.
  • the viscosity at both ends of the glass ribbon G is, for example, 10 10.5 to 10 14.5 poise due to cooling with a cooling function lower than the cooling function in the rapid cooling.
  • a cooling unit 340 is provided below the cooling roller 330. The cooling unit 340 cools the glass ribbon G that has passed through the cooling roller 330. By the cooling by the cooling unit 340, the warp of the glass ribbon G is suppressed.
  • conveying rollers 350a to 350h are provided at predetermined intervals, and pull the glass ribbon G downward.
  • the space below the cooling unit 340 is a furnace internal space of the slow cooling furnace 50.
  • Each of the transport rollers 350a to 350h has a pair of rollers and is provided at both end portions in the width direction of the glass ribbon G so as to sandwich both sides of the glass ribbon G.
  • a pressure sensor 355 for measuring the pressure inside the furnace internal space is provided in the furnace internal space of the molding furnace 40.
  • the pressure sensor 355 is provided at the same position as the molded body 310 in the height direction (vertically upward direction).
  • the height direction is the upward direction of the drawing in FIGS. Since the glass ribbon G flows vertically downward from the molded body 310, the flow direction of the glass ribbon G is opposite to the height direction.
  • Pressure sensors 360a to 360c are provided in the furnace internal space of the slow cooling furnace 50.
  • furnace exterior spaces S1, S2, S3a to S3c are provided outside the furnace wall of the forming furnace 40.
  • the furnace outer space S ⁇ b> 1 is an upper space located further above the ceiling surface of the inner space of the molding furnace 40.
  • Each of these spaces is delimited by floor surfaces (floor walls) 411, 412, 413a to 413c in the height direction. That is, the molding apparatus 300 is provided in a building B having a plurality of floors, and furnace external spaces (partial spaces) S1, S2, S3a to S3c divided into a plurality by the floor surface are provided on each floor.
  • a space S4 (cutting space) partitioned by walls on the floor 414 is provided below the furnace external space S3c.
  • the air pressure in these spaces is adjusted by blowers 421, 422, 423a, 423b, 423c, and 424, which will be described later.
  • the furnace outside space S1 is a space vertically above the position in the height direction of the molded body 310, and a pressure sensor 415 for measuring the pressure in the furnace outside space is provided in the furnace outside space S1.
  • the furnace exterior space S2 is a space provided on the floor surface 412, and the molded body 310 is disposed in the furnace interior space corresponding to this space.
  • a pressure sensor 416 for measuring the atmospheric pressure in the furnace external space S2 is provided in the furnace external space S2.
  • a pressure sensor 355 for measuring the pressure in the furnace internal space is provided at the same position in the height direction of the pressure sensor 416 (see FIG. 4).
  • the furnace outside spaces S3a to S3c are spaces provided below the furnace outside space S2 in the order of the furnace outside spaces S3a to 3c from the highest in the height direction.
  • the furnace outer spaces S3a to 3c are provided on the floor surfaces 413a to 413c.
  • pressure sensors 417a to 417c for measuring the atmospheric pressure in the furnace external spaces 3a to 3c are provided in the furnace external spaces S3a to S3c, respectively.
  • pressure sensors 360a to 360c for measuring the pressure in the furnace internal space are provided at the same position in the height direction of the pressure sensors 417a to 417c (see FIG. 4).
  • the pressure sensors 355, 360a to 360c are provided at each position in the furnace internal space, but the pressure sensor may be inserted into each position in the furnace internal space to measure the pressure. .
  • the fans 421, 422, 423a, 423b, 423c, and 424 are provided outside the partition walls separating the furnace outside spaces S1, S2, S3a to S3c and the space S4.
  • Air sent from the atmosphere by the blowers 421, 422, 423a, 423b, 423c, and 424 is supplied to each of the furnace external spaces S1, S2, S3a to S3c, and the space S4 through a pipe.
  • the amount of air sent by the blowers 421, 422, 423a, 423b, 423c, 424 is determined by a drive signal from the drive unit 510 described later.
  • the blowers 421, 422, 423a, 423b, 423c, and 424 are pressure control that adjusts the inflow of air to the atmosphere in order to control the respective air pressures in the furnace exterior spaces S1, S2, S3a to S3c, and the space S4 Functions as a device.
  • FIG. 5 is a schematic diagram of a control system that controls the amount of air that the blowers 421, 422, 423a, 423b, 423c, and 424 send.
  • the control system includes pressure sensors 355, 360a to 360c provided in the furnace internal space, pressure sensors 415, 416, 417a to 417c, 418 provided in the furnace external space, the control device 500, and the drive unit 510. And blowers 421, 422, 423a, 423b, 423c, and 424.
  • the control device 500 includes a measurement result of the atmospheric pressure in the furnace internal space sent from each of the pressure sensors 355, 360a to 360c, and a measurement result of the atmospheric pressure in the furnace external space sent from the pressure sensors 415, 416, 417a to 417c, 418.
  • the blowers 421, 422, 423a, 423b, 423c, 424 are sent from the atmosphere so that the difference in atmospheric pressure at the same position in the height direction in the furnace inner space and the furnace outer space is adjusted to a set range.
  • a control signal for adjusting the amount of air is generated.
  • the generated control signal is sent to the drive unit 510.
  • the drive unit 510 generates a drive signal for individually adjusting the amount of air sent by the blowers 421, 422, 423a, 423b, 423c, and 424 based on the control signal.
  • the drive unit 510 sends drive signals to the fans 421, 422, 423a, 423b, 423c, and 424, respectively.
  • the control device 500 and the drive unit 510 automatically control the air feed amount, but the operator may adjust the air feed amount manually.
  • the amount of air sent from the fans 421, 422, 423a, 423b, 423c, 424 is such that the pressure in the furnace outer space S2, S3a to S3c is lower than the pressure in the furnace inner space at the same position in the height direction.
  • the difference in atmospheric pressure between the furnace inner space and the furnace outer space S2 of the molding furnace 40 is more than 0 to 40 Pa, preferably 4 to 35 Pa, more preferably 8 to 30 Pa, and more preferably 10 to 27 Pa. It is more preferable that the pressure is 10 to 25 Pa.
  • the difference in the atmospheric pressure exceeds the above range, a large amount of air may flow out of the gap between the furnace walls from the furnace inner space toward the furnace outer space S2, and the air rise in the furnace inner space is increased.
  • the difference between the atmospheric pressures is less than the above range, air may flow in from the gap between the furnace walls from the furnace outer space S2 toward the furnace inner space, and the temperature distribution in the furnace inner space varies.
  • the difference in atmospheric pressure between the inner space of the slow cooling furnace 50 and the outer space S3a to S3c is more than 0 to 40 Pa, preferably 2 to 35 Pa, more preferably 2 to 25 Pa, The pressure is more preferably 3 to 23 Pa, and further preferably 5 to 20 Pa. Particularly preferred is 10 to 20 Pa. If the difference in the atmospheric pressure exceeds the above range, a large amount of air may flow out of the gap between the furnace walls from the furnace inner space toward the furnace outer space S3a to S3c, increasing the air rise in the furnace inner space. .
  • the difference in the atmospheric pressure is less than the above range, air may flow in from the gaps in the furnace wall from the furnace outer space S3a to S3c toward the furnace inner space, and the temperature distribution in the furnace inner space varies.
  • the difference in the atmospheric pressure it is possible to prevent low-temperature air from flowing into the furnace internal space of the slow cooling furnace 50 from the furnace external spaces S3a to S3c, so that the temperature variation in the furnace internal space can be suppressed.
  • variation in heat shrink can be suppressed.
  • the difference in atmospheric pressure between the furnace outer spaces S3a to S3c and the furnace inner space increases as it goes upward. It is considered that the temperature of the furnace internal space becomes higher as it goes upward, and the influence of the inflow of air at a temperature lower than that of the furnace internal space is increased.
  • the pressure difference between the furnace external space S3c and the space S4 is preferably 0 ⁇ (pressure in the furnace external space S3c ⁇ pressure in the space S4), and 0 ⁇ (pressure in the furnace external space S3c ⁇ pressure in the space S4).
  • Atmospheric pressure) ⁇ 20 Pa is more preferable, and 1 Pa ⁇ (atmospheric pressure in the furnace outer space S3c ⁇ atmospheric pressure in the space S4) ⁇ 15 Pa is further preferable, and 2Pa ⁇ (atmospheric pressure in the outer furnace space S3c ⁇ atmospheric pressure in the space S4). More preferably, it is ⁇ 15 Pa.
  • the pressure difference between the furnace outside lower space S2 and the furnace outside space S3a is preferably 0 ⁇ (the pressure in the furnace outside lower space S2 ⁇ the pressure in the furnace outside space S3a), and 0 ⁇ (the furnace outside space S2 More preferably, the atmospheric pressure—the atmospheric pressure of the furnace outer space S3a) ⁇ 20 Pa, and more preferably 1 Pa ⁇ (the atmospheric pressure of the outer furnace space S2—the atmospheric pressure of the outer furnace space S3a) ⁇ 15 Pa, more preferably 2 Pa ⁇ (the outer furnace space). It is more preferable that the pressure of S2 ⁇ the pressure of the furnace outer space S3a) ⁇ 15 Pa.
  • the pressure difference between the furnace outside space S1 and the furnace outside space S2 is preferably 0 ⁇ (atmosphere pressure in the furnace outside space S1 ⁇ atmospheric pressure in the furnace outside space S2), and 0 ⁇ (atmospheric pressure in the furnace outside space S1 ⁇ It is more preferable that the pressure in the furnace outer space S2) ⁇ 30 Pa, and it is more preferable that 1 Pa ⁇ (the pressure in the furnace outer space S1 ⁇ the pressure in the furnace outer space S2) ⁇ 25 Pa, more preferably 2 Pa ⁇ (in the furnace outer space S1). More preferably, the pressure is equal to the atmospheric pressure of the furnace outer space S2.
  • the furnace outside space S1 If the pressure difference between the furnace outside space S3c and the space S4, the pressure difference between the furnace outside space S2 and the furnace outside space S3a, and the pressure difference between the furnace outside space S1 and the furnace outside space S2 are too large, the furnace outside space S1
  • the absolute values of the atmospheric pressure in the furnace outer space S2 and the furnace outer spaces S3a to S3c become too large, and air flows from the furnace outer space into the furnace inner space. For this reason, there exists a possibility that the problem that the temperature in a furnace interior space may fluctuate arises. Furthermore, there is a possibility that the local airflow concentration in the external space of the furnace or the flow velocity of the airflow is locally increased, and the atmospheric pressure stability of the external space of the furnace may be lowered. There is also a possibility that the problem that the temperature varies will occur.
  • the pressure in the furnace outer space is adjusted so that the pressure in all the furnace outer spaces is lower than the pressure in the furnace inner space at the same position in the height direction.
  • the pressure in the outer space of the furnace may be adjusted so that the pressure in at least a part of the furnace becomes lower than the pressure in the furnace inner space at the same position in the height direction.
  • the atmospheric pressure in the outside space of the furnace is high. It is preferable to adjust so that it may become low with respect to the atmospheric
  • the position corresponding to the annealing point temperature is, for example, a position in the height direction of the furnace outside space S3a
  • the position corresponding to the strain point temperature is, for example, a position in the height direction of the furnace outside space S3b.
  • the glass ribbon G is solidified and most affects the plane distortion and thermal shrinkage of the glass. Therefore, the air pressure is efficiently adjusted in the above region to suppress the inflow of air from the outside space of the furnace. By doing so, it is preferable to suppress variations in temperature in the furnace internal space.
  • the air from the external space of the furnace Inflow can be suppressed, and variations in temperature in this region can be suppressed, and warpage of the glass ribbon G can be prevented by this suppression.
  • the glass ribbon G is one continuous plate until it is cut from the molding furnace 40. Therefore, if the warp shape of the glass ribbon G changes in a region where the temperature of the glass ribbon G is equal to or lower than the strain point temperature, it also affects the glass ribbon in the region where the temperature is higher than the strain point temperature, resulting in variations in plane strain and thermal shrinkage. Will occur. As described above, that is, by suppressing variations in temperature in the region where the temperature of the glass ribbon G is equal to or lower than the strain point temperature, variations in warpage, plane strain, and thermal shrinkage can be suppressed.
  • the pressure sensor 415 at a position in the height direction where there is no furnace internal space is used to adjust the furnace external space S1 by the blower 421 so that air does not flow from the furnace external space S1 into the furnace internal space. It is preferable to measure the atmospheric pressure.
  • the space of the forming furnace 40 in the furnace internal space is located at the most upstream position in the furnace internal space, and the atmospheric pressure is high and the temperature in the space is also high. It is not preferable that air flows out from the ceiling surface of the internal space of the forming furnace 40 to the external space S1 because the flow of air in the internal space of the furnace is promoted by the chimney effect. Therefore, in order to prevent the outflow of air to the furnace exterior space S1, the atmospheric pressure in the furnace exterior space S1 is increased. However, if the atmospheric pressure in the furnace external space S1 is excessively increased, air tends to easily flow from the furnace external space S1 into the furnace internal space.
  • the cold air flowing from the furnace outer space S1 is not preferable because it forms the glass ribbon with the molded body 310 in the space of the molding furnace 40 and affects the viscosity of the molten glass being molded. It also affects the cooling of the glass ribbon in the slow cooling step.
  • the pressure sensor 415 measures the atmospheric pressure in the furnace external space S1 in order to adjust the furnace external space S1 by the blower 421 so that air does not flow into the furnace internal space from the furnace external space S1. That is, on the ceiling surface of the molding furnace 40 in which no cooling roller or conveyance roller is provided, the pressure in the molding furnace external space S1 is set so that air does not flow from the gap between the ceiling surfaces into the furnace internal space from the furnace external space S1. It is preferably adjusted by the blower 421.
  • the pressure sensor 418 is used for measuring the atmospheric pressure in the space S4.
  • the air pressure in the space S4 is adjusted so that the space S4 is further lower than the lowest air pressure in the furnace internal space.
  • the pressure in the space S4 is adjusted to be equal to or higher than the atmospheric pressure.
  • the atmospheric pressure in the space S4 is adjusted to be equal to or higher than atmospheric pressure and lower than a predetermined pressure.
  • the pressure in the space S4 is adjusted to be equal to or higher than the atmospheric pressure and equal to or lower than the lowest pressure in the furnace internal space (the lowest pressure in the furnace internal space).
  • the pressure in the space S4 is preferably 0 ⁇ (the pressure in the space S4 ⁇ the atmospheric pressure), more preferably 0 ⁇ (the pressure in the space S4 ⁇ the atmospheric pressure) ⁇ 40 Pa, more preferably 5Pa ⁇ (the space S4 (Atmospheric pressure ⁇ atmospheric pressure) ⁇ 40 Pa is more preferable.
  • the air blowers 421, 422, 423a, 423b, 423c, 424 are adjusted so that the air pressure in any space is higher than the atmospheric pressure by sending air into the furnace outer spaces S1, S2, S3a to S3c and the space S4.
  • increasing the atmospheric pressure of these spaces with respect to the atmospheric pressure prevents a large amount of air from flowing from the outside of the building B into the outside space S1, S2, S3a to S3c and the space S4.
  • This is for efficiently adjusting the atmospheric pressure in the spaces S1, S2, S3a to S3c, S4.
  • the atmospheric pressure in the furnace internal space becomes higher as the position in the height direction is higher. This is due to the fact that the air that has reached a high temperature moves upward in an ascending current.
  • the atmospheric pressure in the external space of the furnace is adjusted according to the atmospheric pressure distribution. This is to suppress the flow of air into the furnace internal space due to the difference between the pressure in the furnace external space and the pressure in the furnace internal space, and to suppress the occurrence of air convection due to air leakage into the furnace external space. It is. For this reason, a pressure sensor is provided in the furnace inner space at the same position in the height direction as the pressure sensor provided in each of the furnace outer space.
  • the difference between the atmospheric pressure in the furnace external space and the atmospheric pressure in the furnace internal space at the same position in the height direction of the furnace external space is calculated as the position in the height direction. It is preferable to adjust so that it may change with. For example, when a comparison is made between the uppermost furnace outer space S2 and the lowermost furnace outer space S3c among the furnace outer spaces S2, S3a to S3c in which the furnace inner space exists at the same position in the height direction, It is preferable that the difference in atmospheric pressure is adjusted so as to be larger than the difference in atmospheric pressure at the bottom. For example, the difference in the atmospheric pressure may be set so as to increase as the position in the height direction increases.
  • air pressure of a furnace exterior space is so high that the position of the height direction is high, ie, the upstream position of the flow direction of a glass ribbon.
  • produces along a furnace wall can be reduced in a furnace exterior space.
  • the cooling rate at the center in the width direction of the glass ribbon is faster than the cooling rate at both ends of the glass ribbon, and the temperature at the center in the width direction of the glass ribbon is higher than both ends of the glass ribbon. It is preferable to change the glass ribbon from a higher state to a state where the temperature at the center is lower than both ends. Thereby, a tensile stress can work in the flow direction of the glass ribbon at the center in the width direction of the glass ribbon. By applying a tensile stress in the flow direction of the glass ribbon, it is possible to further suppress the warpage of the glass ribbon, and thus the glass plate.
  • the slow cooling step can include a first cooling step, a second cooling step, and a third cooling step.
  • the first cooling step is a step of cooling at the first average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the annealing point temperature.
  • the second cooling step is a step of cooling at the second average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the strain point temperature of ⁇ 50 ° C. from the annealing point temperature.
  • the third cooling step is a step of cooling at the third average cooling rate until the temperature of the central portion in the width direction of the glass ribbon changes from the strain point temperature of ⁇ 50 ° C. to the strain point temperature of ⁇ 200 ° C.
  • the first average cooling rate is 5 ° C./second or more
  • the first average cooling rate is faster than the third average cooling rate
  • the third average cooling rate is the second average cooling rate. It is preferable to make it faster. That is, the average cooling rate is, in descending order, the first average cooling rate, the third average cooling rate, and the second average cooling rate.
  • the average cooling rate of the central portion of the glass ribbon in the first cooling step is preferably 5.5 ° C./second to 50 ° C./second. If the average cooling rate at the central portion of the glass ribbon in the first cooling step is less than 5.5 ° C./second, the productivity is lowered.
  • the average cooling rate at the center of the glass ribbon in the first cooling step is more preferably 8 ° C./second to 16.5 ° C./second.
  • the average cooling rate of the glass ribbon in the second cooling step is preferably 0.5 to 5.5 ° C./second.
  • the average cooling rate at the center of the glass ribbon in the second cooling step is more preferably 0.5 ° C./second to 5.5 ° C./second.
  • the cooling rate of the central portion of the glass ribbon in the third cooling step is not particularly limited, but is preferably 1.5 ° C./second to 7 ° C./second. If the cooling rate of the central part of the glass ribbon in the third cooling step is less than 1.5 ° C./second, the productivity is lowered. On the other hand, at 7 ° C./second or more, the glass ribbon may be cracked due to excessive quenching of the glass ribbon.
  • the cooling rate of the central portion of the glass ribbon in the third cooling step is preferably 1.5 ° C./second to 7 ° C./second, more preferably 2 ° C./second to 5.5 ° C./second. It is.
  • the cooling rate in the flow direction of the glass ribbon affects the heat shrinkage of the glass plate to be manufactured.
  • the slow cooling step by setting the cooling rate, it is possible to obtain a glass plate having a suitable heat shrinkage rate while improving the production amount of the glass plate.
  • Such a cooling rate is performed by controlling the temperature using a heater (not shown) provided in the furnace internal space.
  • a thermal contraction rate can also be made small by providing a thermal contraction reduction process (offline annealing) process separately after a slow cooling process.
  • the slow cooling process preferably includes a heat shrinkage reduction process.
  • the said 2nd cooling process corresponds to a thermal contraction reduction process process among slow cooling processes.
  • Glass plate As the glass used for the glass plate of the present embodiment, for example, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, alkali aluminogermanate glass, etc. can be applied. it can.
  • the glass applicable to the present invention is not limited to the above.
  • Glass composition 1 Examples of the glass composition of the glass plate used in the present embodiment include the following.
  • the content rate display of the composition shown below is mass%.
  • SiO 2 40 to 70%, Al 2 O 3 : 2 to 25%, B 2 O 3 : 0 to 20%, MgO: 0 to 10%, CaO: 0 to 15%, SrO: 0 to 10%, BaO: 0 to 15%, ZnO: 0 to 10%, ZrO 2 : 0 to 10%, Refiner: 0-2%, It is an alkali-free glass.
  • Glass composition 2 (Glass composition 2) Moreover, the alkali free glass of the following composition is also illustrated.
  • the indications in parentheses below are the preferred contents of each component, and the ones described later are more preferred.
  • SiO 2 50 to 70% (55 to 65%, 57 to 64%, 58 to 62%), Al 2 O 3 : 2 to 25% (10 to 20%, 12 to 18%, 15 to 18%), B 2 O 3 : 0 to 20% (5 to 15%, 6 to 13%, 7 to 12%).
  • the following components may be included as optional components.
  • MgO 0 to 10% (lower limit is 0.01%, lower limit is 0.5%, upper limit is 5%, upper limit is 4%, upper limit is 2%), CaO: 0 to 20% (lower limit is 1%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, Upper limit is 7%, upper limit is 6%), SrO: 0 to 20% (lower limit is 0.5%, lower limit is 3%, upper limit is 9%, upper limit is 8%, upper limit is 7 %%, upper limit is 6%), BaO: 0 to 10% (upper limit is 8%, upper limit is 3%, upper limit is 1%, upper limit is 0.2%), ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
  • Glass composition 3 SiO 2 : 50 to 70%, B 2 O 3 : 5 to 18%, Al 2 O 3 : 0 to 25%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5 to 20% (where R is at least one selected from Mg, Ca, Sr and Ba, and the glass plate contains), It is preferable to contain. Furthermore, the total of R ′ 2 O exceeds 0.20% and is 2.0% or less (provided that R ′ is at least one selected from Li, Na and K, and is contained in the glass plate). It is preferable. Further, it is preferable that the total amount of fining agents is 0.05 to 1.5% and substantially free of As 2 O 3 , Sb 2 O 3 and PbO. More preferably, the iron oxide content in the glass is 0.01 to 0.2%.
  • Glass composition 4 examples of the glass composition of the other glass plate used in the present embodiment include the following.
  • the strain point temperature can be increased, and the thermal contraction of the glass plate can be further reduced.
  • the glass plate of the following composition is suitable for the glass substrate for liquid crystal displays and the glass substrate for organic EL displays, and is especially suitable for the glass substrate to which a polysilicon TFT is applied.
  • the content rate display of the composition shown below is mass%.
  • the indications in parentheses below are the preferred contents of each component, and the ones described later are more preferred.
  • SiO 2 57 to 75%, Al 2 O 3 : 8 to 25%, B 2 O 3 : 3 to less than 11%, CaO: 0-20%, MgO: 0 to 15%, Non-alkali glass.
  • the glass plate may contain a trace amount of alkali metals.
  • the alkali metal is contained, the total of R ′ 2 O exceeds 0.20% and is 2.0% or less (provided that R ′ is at least one selected from Li, Na, and K, and is contained in the glass plate). It is preferable to contain. Further, it is preferable that the total amount of fining agents is 0.05 to 1.5% and substantially free of As 2 O 3 , Sb 2 O 3 and PbO.
  • the content of iron oxide in the glass is more preferably 0.01 to 0.2% from the viewpoint of reducing the specific resistance.
  • Glass composition 5 Glass composition 5
  • the glass plate applied to the cover glass or the glass plate for solar cell after chemical strengthening include those in which the glass plate is in mass% and contains the following components.
  • SiO 2 50 to 70% (55 to 65%, 57 to 64%, 57 to 62%), Al 2 O 3 : 5 to 20% (9 to 18%, 12 to 17%), Na 2 O: 6-30% (7-20%, 8-18%, 10-15%).
  • the following composition may be included as an optional component.
  • MgO 0 to 10% (lower limit is 1%, lower limit is 2%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, upper limit is 7%), CaO: 0 to 20% (lower limit is 0.1%, lower limit is 1%, lower limit is 2%, upper limit is 10%, upper limit is 5%, upper limit is 4%, upper limit is 3%), ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
  • a glass plate having a glass strain point temperature of 675 ° C. or higher (strain point temperature of 675 ° C. to 750 ° C.) is preferable, and a strain point temperature of 680 ° C. or higher (strain point temperature of 680 ° C.).
  • a glass plate having a strain point temperature of 690 ° C. or higher (a strain point temperature of 690 ° C. to 750 ° C.) is particularly preferable.
  • a glass plate is a mass% display and includes the following components.
  • the total content of SrO and BaO is less than 8% by mass in terms of reducing weight and reducing the thermal expansion coefficient.
  • the total content of SrO and BaO is preferably 0 to 7%, more preferably 0 to 5%, still more preferably 0 to 3%, still more preferably 0 to 1%.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / RO is preferably 7.5 or more.
  • the ⁇ -OH value is preferably set to 0.1 to 0.3 [mm ⁇ 1 ].
  • the glass plate is made of R 2 O (where R 2 O is Li 2 O, Na 2 O and K 2 O).
  • the total amount of all components contained in the glass plate is preferably 0.01 to 0.8% by mass from the viewpoint of reducing the specific resistance of the glass.
  • the glass plate preferably has a CaO / RO of 0.65 or more in order to prevent an increase in the devitrification temperature while realizing a high strain point temperature. By setting the devitrification temperature to 1250 ° C. or lower, the overflow downdraw method can be applied.
  • the total content of SrO and BaO is preferably 0% or more and less than 2% from the viewpoint of weight reduction.
  • SiO 2 is a component constituting the glass skeleton of the glass plate, and has the effect of increasing the chemical durability and strain point temperature of the glass.
  • the content of SiO 2 is too low, the effects of chemical durability and heat resistance cannot be obtained sufficiently.
  • the strain point temperature decreases and the thermal expansion coefficient increases, the thermal contraction rate increases. If the content of SiO 2 is too high, the glass tends to be devitrified, making molding difficult, and increasing the viscosity, making it difficult to homogenize the glass. Moreover, since the specific resistance of glass is increased, melting becomes difficult.
  • Al 2 O 3 is a component forming a glass skeleton, and has an effect of increasing the chemical durability and strain point temperature of the glass. It also has the effect of increasing the etching rate. When the content of Al 2 O 3 is too low, the effects of chemical durability and heat resistance of the glass cannot be obtained sufficiently. In addition, the strain point temperature and Young's modulus are reduced. On the other hand, when the content ratio of Al 2 O 3 is too high, the viscosity of the glass increases to make it difficult to dissolve, and the acid resistance decreases. Moreover, since the specific resistance of glass is increased, melting becomes difficult.
  • B 2 O 3 is a component that lowers the viscosity of the glass and promotes melting and clarification of the glass. If the content of B 2 O 3 is too low, melting becomes difficult, and the acid resistance of the glass decreases. Moreover, devitrification resistance falls and a thermal expansion coefficient increases. On the other hand, if the content of B 2 O 3 is too high, the strain point temperature is lowered, so that the heat resistance is lowered. In addition, Young's modulus decreases. Moreover, due to the volatilization of B 2 O 3 during glass melting, glass non-uniformity becomes prominent and striae are likely to occur.
  • MgO and CaO are components that lower the viscosity of the glass and promote glass melting and fining. Further, Mg and Ca are advantageous components for improving the meltability while reducing the weight of the obtained glass because the ratio of increasing the density of the glass is small in the alkaline earth metal. However, if the content of MgO and CaO becomes too high, the strain point temperature is lowered. Furthermore, the chemical durability of the glass is reduced. CaO is an effective component for reducing the specific resistance and improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. Therefore, it is preferable to contain in the glass of high strain point temperature. Moreover, since MgO raises the devitrification temperature of glass, when reducing a devitrification temperature, it is preferable not to contain substantially.
  • SrO and BaO are components that lower the viscosity of the glass and promote glass melting and fining. Moreover, it is also a component which improves the oxidizability of a glass raw material and improves clarity. However, if the content of SrO and BaO becomes too high, the density of the glass increases, the weight of the glass plate cannot be reduced, and the chemical durability of the glass decreases.
  • BaO is preferably not substantially contained. In the present specification, “substantially free of BaO” means less than 0.01% by mass and is not intentionally contained except for impurities.
  • Li 2 O, Na 2 O, and K 2 O are components that reduce the viscosity of the glass and improve the meltability and moldability of the glass.
  • Li 2 O, Na 2 O and K 2 O content is too low it reduces the melting properties of the glass, the higher the cost for the melting.
  • the content of Li 2 O, Na 2 O, or K 2 O becomes too high, devitrification resistance decreases due to deterioration of the glass balance.
  • Li 2 O, Na 2 O, and K 2 O are components that may be eluted from the glass to deteriorate the TFT characteristics, and may increase the thermal expansion coefficient of the glass and damage the substrate during heat treatment. Therefore, when applied as a glass substrate for a liquid crystal display or a glass substrate for an organic EL display, it is preferably substantially not contained. However, by deliberately containing the above-mentioned components in the glass, the basicity of the glass is increased while the deterioration of the TFT characteristics and the thermal expansion of the glass are suppressed within a certain range, and the oxidation of the metal whose valence fluctuates. It is possible to make clear and exhibit clarity.
  • the total amount of Li 2 O, Na 2 O and K 2 O is 0 to 2.0%, more preferably 0.1 to 1.0%, and still more preferably 0.2 to 0.5%.
  • Li 2 O, without Na 2 O is allowed to contain, in the component, most glass eluted from be contained hardly K 2 O which deteriorates the characteristics of the TFT are preferred.
  • the content of K 2 O is 0 to 2.0%, more preferably 0.1 to 1.0%, and further preferably 0.2 to 0.5%.
  • ZrO 2 is a component that increases the viscosity near the devitrification temperature of glass and the strain point temperature. ZrO 2 is also a component that improves the heat resistance of the glass. However, if the content of ZrO 2 becomes too high, the devitrification temperature increases and the devitrification resistance decreases.
  • TiO 2 is a component that lowers the high temperature viscosity of the glass. However, when the content of TiO 2 becomes too high, the devitrification resistance is lowered. Furthermore, since the glass is colored, application to a cover glass of a display screen of an electronic device is not preferable. Further, since the glass is colored, the ultraviolet transmittance is reduced, and therefore, when the treatment using the ultraviolet curable resin is performed, there is a disadvantage that the ultraviolet curable resin cannot be sufficiently cured.
  • a clarifier can be added as a component for defoaming bubbles in the glass.
  • the fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties.
  • a metal oxide such as tin oxide, iron oxide, cerium oxide, terbium oxide, molybdenum oxide and tungsten oxide. There may be mentioned at least one selected.
  • Sb 2 O 3 and PbO are substances having an effect of clarifying the glass by causing a reaction with valence fluctuation in the molten glass, but As 2 O 3 , Sb 2 O 3 and Since PbO is a substance having a large environmental load, it is preferable that PbO is not substantially contained.
  • substantially not containing As 2 O 3 , Sb 2 O 3 and PbO means less than 0.01% by mass and intentionally not containing impurities.
  • the thickness of the glass plate of this embodiment is, for example, 0.1 mm to 1.5 mm.
  • the thickness is preferably 0.1 to 1.2 mm, more preferably 0.3 to 1.0 mm, even more preferably 0.3 to 0.8 mm, and particularly preferably 0.3 to 0.5 mm.
  • the thinner the glass plate the smaller the amount of heat held by the glass, making it difficult to control the glass temperature distribution in the forming furnace 40 and the slow cooling furnace 50. Therefore, a glass plate having a thickness of 0.5 mm or less is applied to the method of the present embodiment, which can stabilize the temperature of the furnace internal space, so that the glass plate is deformed, warped, and variations in plane distortion and heat shrinkage. This has a great effect of suppressing the variation of the image.
  • the length in the width direction of the glass plate of the present embodiment is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
  • the length of the glass plate in the vertical direction is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
  • a glass manufacturing apparatus will also be enlarged corresponding to the magnitude
  • the furnace internal space is widened, and when low-temperature air flows from the furnace external space into the furnace internal space, the influence on the cooling of the glass ribbon G differs in the width direction of the glass ribbon G. Accordingly, the region corresponding to the annealing point temperature to the strain point temperature of the glass ribbon G varies in the width direction of the glass ribbon G, and the time for the glass ribbon G to pass the annealing point temperature to the strain point temperature may vary. . As a result, the thermal contraction of the glass ribbon G also varies in the width direction.
  • the effect of the present embodiment that is, the effect of suppressing the deformation, warpage, plane distortion variation, and thermal shrinkage variation of the glass plate is increased. Furthermore, the effect of this embodiment becomes remarkable, so that the length of the glass plate in the width direction is 2500 mm or more and 3000 mm or more.
  • the thermal shrinkage rate when left in a temperature atmosphere at 550 ° C. for 2 hours is 110 ppm or less, 80 ppm or less, 50 ppm or less, preferably 40 ppm or less, more preferably 35 ppm or less. Yes, more preferably 30 ppm or less, particularly preferably 20 ppm or less.
  • the heat shrinkage rate is calculated by heat shrinkage / initial length ⁇ 10 6 (ppm). The following methods are exemplified as a method for measuring the heat shrinkage rate. 1.
  • the glass plate is cut in half in a direction perpendicular to the marking line, and one of them is heat-treated (in the above, 550 ° C. for 2 hours). 3. The glass plate after the heat treatment and the other glass plate are put together to measure the amount of deviation of the marking line.
  • the variation in the heat shrinkage rate is more likely to cause a display defect in the display panel than when the heat shrinkage rate is high or low, particularly when a TFT is formed on a glass plate in the production of a display. In this respect, it is important to suppress variations in the heat shrinkage rate. In addition, it is preferable that the dispersion
  • the variation in the heat shrinkage rate means that when the heat shrinkage rate is measured by the above method at three positions in the width direction of the glass plate (for example, the position of the central portion and the position in the vicinity of both end portions in the width direction).
  • the variation in thermal shrinkage of the glass plate is preferably ⁇ 3.0% or less, more preferably ⁇ 2.85% or less, still more preferably ⁇ 2.7% or less, and further preferably ⁇ 2.65% or less. .
  • the variation in the thermal shrinkage rate is preferably ⁇ 3.0% or less.
  • it is ⁇ 2.8% or less, more preferably ⁇ 2.7% or less, and further preferably ⁇ 2.6% or less.
  • high strain point glass refers to glass having a strain point temperature of 680 ° C. or higher.
  • the maximum value (flat value of retardation value) of the plane distortion of a glass plate is 1.7 nm or less.
  • it is 1.3 nm or less, More preferably, it is 1.0 nm or less, More preferably, it is 0.7 nm or less.
  • the plane strain is measured by, for example, a birefringence measuring device manufactured by UNIOPT.
  • the method of the present embodiment capable of reducing the plane distortion of the glass plate is particularly preferably used for manufacturing a glass substrate for a liquid crystal display.
  • the warpage of the glass plate when measured by the following method, has a maximum warpage in the range of 0 to 0.2 mm, preferably 0 to 0.15 mm, more preferably 0 to 0.1 mm. Or less, more preferably 0 to 0.05 mm or less, and particularly preferably 0 to 0.05 mm or less.
  • the measurement of warpage is 1. First, a plurality of small plates (about 400 mm square plates) are cut out from a glass plate. 2. Next, for each of the small plates, the warpage of the four corners and the four central portions is measured on each of the front and back sides (that is, a total of 16 warpages are measured).
  • the glass plate is manufactured by variously changing the manufacturing method of the glass plate, and further heat treatment is performed under the same conditions as when the liquid crystal display is manufactured, and the heat shrinkage rate is obtained by the method described above In addition, the plane strain was measured, and the variation of the thermal shrinkage rate was obtained.
  • Example 1 In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space corresponding to the same position in the height direction of this region is 5 Pa (in detail) Was adjusted to 3 to 7 Pa).
  • the manufactured glass plate is a glass substrate for a liquid crystal display, and has a size of 2200 mm ⁇ 2500 mm and a thickness of 0.7 mm.
  • the glass composition of the glass plate was as follows. The content rate is expressed by mass%. SiO 2 60% Al 2 O 3 19.5% B 2 O 3 10% CaO 5% SrO 5% SnO 2 0.5%
  • Example 2 As in Example 1, the pressure difference between the region in the furnace internal space where the temperature of the glass ribbon G is between the annealing point temperature and the strain point temperature and the space outside the furnace corresponding to the height position of this region is The pressure in the external space of the furnace was adjusted so as to be 5 Pa (specifically, 3 to 7 Pa).
  • glass composition is as follows (a content rate is a mass% display).
  • size of a glass plate is 1100 mm x 1300 mm. This glass plate is used as a glass substrate for a liquid crystal display for forming a polysilicon TFT. SiO 2 66% Al 2 O 3 17.5% B 2 O 3 7.5% CaO 8.5% SnO 2 0.5%
  • Example 3 In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space of the furnace corresponding to the height position of this region is 20 Pa (specifically, 18 to A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that the pressure was 22 Pa).
  • Example 4 In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space of the furnace corresponding to the height position of this region is 20 Pa (specifically, 18 to The glass substrate for liquid crystal display which forms a polysilicon TFT was manufactured by the method similar to Example 2 except being 22Pa).
  • Example 5 In the interior space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the space outside the furnace corresponding to the height position of this region is 35 Pa (specifically 33 to A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that the pressure was 37 Pa).
  • Example 6 In the interior space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the space outside the furnace corresponding to the height position of this region is 35 Pa (specifically 33 to The glass substrate for liquid crystal display which forms a polysilicon TFT by the method similar to Example 2 except having been 37 Pa) was manufactured.
  • Example 7 In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space of the furnace corresponding to the height position of this region is 60 Pa (specifically 55 to A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that the pressure was 65 Pa).
  • Table 1 below shows the evaluation results of Examples 1 to 7 and Comparative Example.
  • the molten glass was supplied to the forming apparatus 200, and a glass plate was produced by the overflow down draw method. Thereafter, the glass plate was cut to produce a glass plate having a longitudinal direction of 1100 mm, a width direction of 1300 mm, and a thickness of 0.5 mm.
  • the atmospheric pressure in the furnace outer space was controlled to be higher toward the upstream side as shown in Table 2 below.
  • the content rate of each component contained in a molten glass is as follows.
  • the maximum strain (maximum value of retardation) of the glass plates produced in Examples 8 to 12 was 1.6 nm or less. Moreover, the curvature of the glass plate was 0.18 mm or less. In particular, the maximum strain (maximum retardation value) of the glass plates produced in Examples 9 to 11 was 1.0 nm or less. Moreover, the curvature of the glass plate was 0.15 mm or less.
  • Example 8 to 12 the furnace external spaces S3a and S3b shown in FIG. 3 were connected to control the atmospheric pressure as one space. At that time, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the furnace external space S3a, S3b corresponding to the height position of this region is 10 to 20 Pa. The pressure in the space outside the furnace was adjusted. The air pressure in the furnace external space S3c was adjusted so that the difference between the air pressure in the furnace external space S3c and the pressure in the corresponding position in the furnace internal space was 5 Pa (specifically, 3 to 7 Pa). Table 2 below shows the conditions and evaluation results of Examples 8 to 12.
  • P1 Air pressure [Pa] in the upper space S1 outside the forming furnace
  • P2 Pressure in the furnace outer space S2 [Pa]
  • P3 Pressure in the furnace outer space S3a, S3b [Pa]
  • P4 Pressure in space S4 [Pa]
  • (Disclosure 1) A method for producing a glass plate by a downdraw method, A melting step of melting glass raw material to obtain molten glass; Forming the glass ribbon by supplying the molten glass to a molded body provided in a molding furnace, and forming a flow of the glass ribbon; A slow cooling step of cooling the glass ribbon in the slow cooling furnace by pulling with a roller provided in the slow cooling furnace; Cutting the cooled glass ribbon in a cutting space, and
  • the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon.
  • a method for producing a glass plate wherein the atmospheric pressure is adjusted so as to be low.
  • the pressure in the outer space of the furnace is in the region between the position in the slow cooling furnace corresponding to the slow cooling point temperature of the glass ribbon and the position in the slow cooling furnace corresponding to the strain point temperature of the glass ribbon.
  • the furnace outer space has an upper space located above the ceiling surface of the inner space of the molding furnace, and the upper space does not allow air to flow from the upper space into the furnace inner space.
  • the flow direction of the glass ribbon is a vertical direction
  • the molding furnace is provided vertically above the slow cooling furnace
  • the furnace outer space is divided into a plurality of partial spaces in the vertical direction,
  • the difference between each atmospheric pressure in the partial space and the atmospheric pressure in the furnace internal space at the same position in the vertical direction of the partial space is compared between the uppermost partial space and the lowermost partial space.
  • the furnace outer space includes a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the difference between the atmospheric pressure of the furnace internal space of the slow cooling furnace and the atmospheric pressure of the second partial space is 0
  • the furnace external space includes a first partial space located at the same position as the formed body and a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the first partial space and the first When two partial spaces are separated by a wall and adjacent to each other, the atmospheric pressure in the first partial space of the furnace external space is larger than the atmospheric pressure in the second partial space, and the atmospheric pressure in the first partial space and the second
  • the furnace exterior space includes a plurality of second partial spaces at the same position as the slow cooling furnace, and the plurality of the second partial spaces have a higher atmospheric pressure toward the upstream side in the flow direction of the molten glass. 12.
  • the slow cooling step includes In the central part of the width direction of the glass ribbon, so that a tensile stress works in the flow direction of the glass ribbon, At least in a temperature range from a temperature obtained by adding 150 ° C. to the annealing point temperature of the glass ribbon to a temperature obtained by subtracting 200 ° C. from the strain point temperature of the glass ribbon, The cooling rate of the central part in the width direction of the glass ribbon is faster than the cooling rate of the both end parts, The disclosure 1 to 12, wherein the glass ribbon is changed from a state in which a temperature in a central portion in the width direction of the glass ribbon is higher than the both end portions to a state in which the temperature in the central portion is lower than the both end portions. Manufacturing method of glass plate.
  • the slow cooling step includes a first cooling step, a second cooling step, and a third cooling step
  • the first cooling step is a step of cooling at the first average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the annealing point temperature
  • the second cooling step is a step of cooling at the second average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the strain point temperature of ⁇ 50 ° C. from the annealing point temperature
  • the third cooling step is a step of cooling at a third average cooling rate until the temperature of the central portion in the width direction of the glass ribbon becomes a strain point temperature of ⁇ 50 ° C. to a strain point temperature of ⁇ 200 ° C.
  • the first average cooling rate is 5.0 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is the second 14.
  • An apparatus for producing a glass plate by a downdraw method A melting apparatus for melting glass raw material to obtain molten glass; The molten glass is supplied to a molded body provided in a molding furnace to form a glass ribbon, the flow of the glass ribbon is created, and the glass ribbon is pulled by a roller provided in the slow cooling furnace, and the slow cooling furnace A molding device for cooling inside, A cutting device for cutting the cooled glass ribbon in a cutting space,
  • the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon.
  • An apparatus for producing a glass plate characterized in that an atmospheric pressure control device for adjusting the atmospheric pressure
  • the atmospheric pressure control device is a device that adjusts the inflow of air to and from the atmosphere in order to control the atmospheric pressure in the furnace exterior space.
  • cooling roller 340 Cooling units 350a to 350h Conveying rollers 355, 360a, 360b, 360c, 415, 416, 417a, 417b, 417c, 418 Pressure sensor 400 Cutting devices 411, 412, 413a, 413b, 413c, 414 Floor surfaces 421, 422, 423a, 423b, 423c, 424 Blower 500 Controller 510 Drive unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A glass plate manufacturing method comprises: a melting step for melting a glass starting material to obtain molten glass; a forming step for supplying the molten glass to a forming body provided in a forming furnace to form a glass ribbon and creating the flow of the glass ribbon; a slow cooling step for pulling the glass ribbon by a roller provided in a slow cooling furnace and cooling slowly the glass ribbon in the slow cooling furnace; and a cutting step for cutting the cooled glass ribbon in a cutting space. When the interior space of the forming furnace and the interior space of the slow cooling furnace are defined as a furnace interior space and the exterior spaces of the forming furnace and the slow cooling furnace are defined as a furnace exterior space, the furnace exterior space is a space separated from an atmospheric pressure atmosphere by a partition wall. The atmospheric pressure in the furnace exterior space is adjusted such that the atmospheric pressure in at least a part of the furnace exterior space is lower than the atmospheric pressure in the furnace interior space at the same position in the flow direction of the glass ribbon.

Description

ガラス板の製造方法及びガラス板の製造装置Glass plate manufacturing method and glass plate manufacturing apparatus
 本発明は、ダウンドロー法によるガラス板の製造方法及びガラス板の製造装置に関する。 The present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus by a downdraw method.
 従来より、例えば、液晶ディスプレイ等のフラットパネルディスプレイに用いるガラス基板の成形方法として、ダウンドロー法が用いられる。
 ダウンドロー法のうちオーバーフローダウンドロー法は、成形炉において溶融ガラスを成形体の頂部から溢れさせることにより成形体の下方においてガラスリボンを成形する工程と、ガラスリボンを徐冷炉において徐冷する工程とを含む。徐冷炉は、対になったローラ間にガラスリボンを引き込むことにより所望の厚さに引き伸ばした後、ガラスリボン内部の歪や熱収縮を低減するように、ガラスリボンを徐冷する。この後、ガラスリボンは、所定の寸法に切断されてガラス板とされてガラス板の束に積層され、あるいは次工程に搬送される。ダウンドロー法については、例えば、下記特許文献1に記載されている。
Conventionally, for example, a downdraw method is used as a method for forming a glass substrate used in a flat panel display such as a liquid crystal display.
Among the downdraw methods, the overflow downdraw method includes a step of forming a glass ribbon below the formed body by allowing molten glass to overflow from the top of the formed body in a forming furnace, and a step of gradually cooling the glass ribbon in a slow cooling furnace. Including. The slow cooling furnace draws the glass ribbon between the pair of rollers and stretches the glass ribbon to a desired thickness, and then slowly cools the glass ribbon so as to reduce distortion and thermal shrinkage inside the glass ribbon. Thereafter, the glass ribbon is cut into a predetermined size to form a glass plate, which is laminated on a bundle of glass plates, or conveyed to the next step. About the downdraw method, it describes in the following patent document 1, for example.
 例えば、ガラス板を液晶ディスプレイ用ガラス基板に用いる時、ガラス板の表面に、TFT(Thin Film Transistor)が形成される。例えば、TFTがポリシリコンTFTである場合、ガラス板はディスプレイ製造工程において400℃~600℃の温度に熱処理されるが、この熱処理後の冷却によってガラス板は熱収縮して寸法が微小に変化する場合がある。この寸法の微小な変化は、ガラス板に形成されるTFT形成位置の目標位置(画素位置)に対する位置ずれを発生させ、この結果、液晶ディスプレイの表示不良を発生させる場合がある。また、液晶ディスプレイでは、TFTを形成したガラス板と、画素毎にカラーフィルタを形成したガラス板をお互いに対向させ、ガラス板間に液晶が設けられる。しかし、TFTを形成したガラス板が熱収縮によって微小な寸法変化を起こすと、カラーフィルタを形成したガラス板と画素単位で正確な位置合わせができない場合もある。このため、ガラス板の寸法の変化を低減するために、熱収縮の小さいことがガラス板に求められている。なお、熱収縮は、ガラスリボンの徐冷工程において、冷却速度を低くすることにより低減することができる。 For example, when a glass plate is used as a glass substrate for a liquid crystal display, a TFT (Thin Film Transistor) is formed on the surface of the glass sheet. For example, when the TFT is a polysilicon TFT, the glass plate is heat-treated at a temperature of 400 ° C. to 600 ° C. in the display manufacturing process. There is a case. This minute change in dimensions may cause a displacement of the TFT formation position formed on the glass plate with respect to the target position (pixel position), and as a result, display defects of the liquid crystal display may occur. In a liquid crystal display, a glass plate on which a TFT is formed and a glass plate on which a color filter is formed for each pixel are opposed to each other, and a liquid crystal is provided between the glass plates. However, if the glass plate on which the TFT is formed undergoes a minute dimensional change due to heat shrinkage, accurate alignment may not be possible in pixel units with the glass plate on which the color filter is formed. For this reason, in order to reduce the change of the dimension of a glass plate, it is calculated | required by the glass plate that heat contraction is small. The heat shrinkage can be reduced by lowering the cooling rate in the glass ribbon slow cooling step.
 ところで、下記特許文献2には、ガラス板の平面歪を低減するために、成形炉及び/又は徐冷炉の炉外部雰囲気(炉外部空間)の気圧を加圧し、徐冷炉内でガラスリボンに沿って発生する上昇気流を低減することで、徐冷炉内の温度変動を抑制する技術が開示されている。 By the way, in Patent Document 2 below, in order to reduce the plane distortion of the glass plate, the pressure outside the furnace (space outside the furnace) of the forming furnace and / or the slow cooling furnace is pressurized and generated along the glass ribbon in the slow cooling furnace. The technique which suppresses the temperature fluctuation in a slow cooling furnace by reducing the upward airflow to perform is disclosed.
特開2009-196879号公報JP 2009-196879 A 特開2009-173525号公報JP 2009-173525 A
 しかし、特許文献2に記載されているように、単に炉外部空間の気圧を高くすると、炉外部空間の空気が、成形炉や徐冷炉の内部空間に流入してしまう場合がある。一般的に、炉外部空間の温度は、成形炉や徐冷炉の炉内雰囲気(炉内部部空間)の温度に比べると、200~1200℃程度低くなっている。ここで、特許文献2に記載されているように、冷却室や切断室などから徐冷炉内に上昇する空気流が生じる場合があるが、空気流が生じたとしても、当該空気流は、徐冷炉内の上昇とともに暖められるため、炉内部空間の温度変動に与える影響は小さい。これに対し、炉外部空間の空気が成形炉や徐冷炉の炉壁の隙間から炉内部空間に流入する場合、当該空気は加熱されることはないので、炉内部空間の温度との温度差が大きく、炉内部空間において、流入した空気が通過する部分とそれ以外の部分で温度差が生じ、炉内部空間の温度の均一性に大きな影響を与える。ここで、熱収縮率および平面歪を低減するためには、ガラスリボンの温度管理を精度よく行うことが効果的である。しかし、上述のように温度変動した成形炉や徐冷炉の炉内部空間をガラスリボンが通過すると、ガラスリボンの冷却速度が部分的に異なるため、ガラス板の熱収縮もばらつきが生じる。なお、変動とは、温度が、設定温度から意図せずに変化してしまうことを示す。 However, as described in Patent Document 2, if the pressure in the furnace outer space is simply increased, the air in the furnace outer space may flow into the inner space of the forming furnace or the slow cooling furnace. In general, the temperature in the outer space of the furnace is about 200 to 1200 ° C. lower than the temperature in the furnace atmosphere (space inside the furnace) of the forming furnace or the slow cooling furnace. Here, as described in Patent Document 2, an air flow that rises from a cooling chamber, a cutting chamber, or the like into the slow cooling furnace may occur, but even if an air flow occurs, the air flow remains in the slow cooling furnace. As the temperature rises, the effect on temperature fluctuations in the furnace interior space is small. On the other hand, when the air in the furnace outer space flows into the furnace inner space from the gap between the furnace walls of the forming furnace and the slow cooling furnace, the air is not heated, so the temperature difference from the temperature of the furnace inner space is large. In the interior space of the furnace, a temperature difference occurs between the portion through which the inflowing air passes and the other portion, which greatly affects the temperature uniformity of the interior space of the furnace. Here, in order to reduce the thermal contraction rate and the plane strain, it is effective to accurately control the temperature of the glass ribbon. However, when the glass ribbon passes through the furnace interior space of the forming furnace or the slow cooling furnace whose temperature fluctuates as described above, the cooling rate of the glass ribbon is partially different, so that the thermal contraction of the glass plate also varies. The fluctuation indicates that the temperature changes unintentionally from the set temperature.
 すなわち、当該特許文献2のガラス板の製造方法の徐冷処理(アニール処理)では、徐冷炉内における温度を設定温度に保てず、ガラス板の熱収縮のばらつきが大きくなってしまう場合がある。このため、当該ガラス板を熱収縮のばらつきが小さいことが求められるガラス板、例えば、フラットパネルディスプレイ用ガラス板(特に、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板、あるいは酸化物半導体薄膜トランジスタが形成されるディスプレイ用ガラス基板)に適用した場合に、表示不良が生じる場合があるという問題がある。 That is, in the slow cooling treatment (annealing treatment) of the glass plate manufacturing method of Patent Document 2, the temperature in the slow cooling furnace cannot be maintained at the set temperature, and the variation in thermal shrinkage of the glass plate may increase. For this reason, the glass plate is required to have a small variation in thermal shrinkage, for example, a glass plate for flat panel display (in particular, a glass substrate for liquid crystal display, a glass substrate for organic EL display, or an oxide semiconductor thin film transistor). When applied to a display glass substrate to be formed, there is a problem that display defects may occur.
 そこで、本発明は、ダウンドロー法によるガラス板の製造する際、熱収縮のばらつきを効率よく低減するガラス板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a glass plate that efficiently reduces variation in thermal shrinkage when producing a glass plate by a downdraw method.
 本発明の一態様は、ダウンドロー法によるガラス板の製造方法であって、
 ガラス原料を溶解して溶融ガラスを得る溶解工程と、
 前記溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンを成形し、前記ガラスリボンの流れを作る成形工程と、
 前記ガラスリボンを、徐冷炉内に設けられたローラで牽引して前記徐冷炉内で冷却する徐冷工程と、
 冷却された前記ガラスリボンを切断空間で切断する切断工程と、を含む。
 前記成形体が設けられた前記成形炉の内部空間および前記ローラが設けられた前記徐冷炉の内部空間を炉内部空間とし、前記成形炉および前記徐冷炉の外部空間を炉外部空間としたとき、前記炉外部空間は、大気圧雰囲気に対して隔壁で区切られた空間であり、前記炉外部空間の少なくとも一部分の気圧は、前記ガラスリボンの流れ方向の同じ位置における、前記炉内部空間の気圧に対して低くなるように、気圧の調整がされている。
One aspect of the present invention is a method for producing a glass plate by a downdraw method,
A melting step of melting glass raw material to obtain molten glass;
Forming the glass ribbon by supplying the molten glass to a molded body provided in a molding furnace, and forming a flow of the glass ribbon;
A slow cooling step of cooling the glass ribbon in the slow cooling furnace by pulling with a roller provided in the slow cooling furnace;
A cutting step of cutting the cooled glass ribbon in a cutting space.
When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon. The atmospheric pressure is adjusted to be low.
 このとき、前記炉外部空間の気圧は、前記ガラスリボンの徐冷点温度に対応する前記徐冷炉内の位置と、前記ガラスリボンの歪点温度に対応する前記徐冷炉内の位置との間の領域において、前記炉内部空間の同じ位置における気圧に対して低くなるように、気圧の調整がされている、ことが好ましい。 At this time, the atmospheric pressure in the outer space of the furnace is in a region between a position in the slow cooling furnace corresponding to the slow cooling point temperature of the glass ribbon and a position in the slow cooling furnace corresponding to the strain point temperature of the glass ribbon. It is preferable that the atmospheric pressure is adjusted so as to be lower than the atmospheric pressure at the same position in the furnace internal space.
 また、前記炉外部空間の前記少なくとも一部分の気圧について、前記ガラスリボンの流れ方向の同じ位置において、前記炉内部空間の気圧と前記炉外部空間の気圧との差分が40Pa以下である、ことが好ましい。 Moreover, it is preferable that the difference between the pressure in the furnace internal space and the pressure in the furnace external space is 40 Pa or less at the same position in the flow direction of the glass ribbon with respect to the pressure of the at least part of the furnace external space. .
 前記炉外部空間の気圧は大気圧に対して高くなるように調整されている、ことが好ましい。 It is preferable that the pressure outside the furnace is adjusted to be higher than the atmospheric pressure.
 前記炉外部空間は、前記成形炉の前記内部空間の天井面に対して上方に位置する上部空間を有し、前記上部空間は、前記上部空間から前記炉内部空間に空気が流入しないように、前記上部空間の気圧は調整されている、ことが好ましい。 The furnace outer space has an upper space located above the ceiling surface of the inner space of the molding furnace, and the upper space does not allow air to flow from the upper space into the furnace inner space. It is preferable that the air pressure in the upper space is adjusted.
 前記ガラスリボンの流れ方向は鉛直方向であり、前記成形炉は前記徐冷炉に対して鉛直上方に設けられる。このとき、前記炉外部空間は、鉛直方向に複数の部分空間に区分けされ、前記部分空間のそれぞれの気圧と、当該部分空間の鉛直方向の同じ位置における前記炉内部空間の気圧との差分を、前記部分空間のうち最上部の部分空間と最下部の部分空間との間で比較したとき、前記最上部における前記差分は、前記最下部における前記差分に比べて大きくなるように、気圧が調整されていることが好ましい。 The flow direction of the glass ribbon is a vertical direction, and the forming furnace is provided vertically above the slow cooling furnace. At this time, the furnace external space is divided into a plurality of partial spaces in the vertical direction, and the difference between the respective atmospheric pressure of the partial space and the atmospheric pressure of the furnace internal space at the same position in the vertical direction of the partial space, When comparing the uppermost partial space and the lowermost partial space of the partial spaces, the atmospheric pressure is adjusted such that the difference at the uppermost portion is larger than the difference at the lowermost portion. It is preferable.
 前記部分空間の前記気圧の前記差分は、上方に行くほど大きくなる、ことが好ましい。 It is preferable that the difference in the atmospheric pressure in the partial space increases as it goes upward.
 前記ガラス板は、例えば、TFT(Thin Film Transistor)を表面に形成する液晶ディスプレイ用ガラス基板である。 The glass plate is, for example, a glass substrate for liquid crystal display on which a TFT (Thin Film Transistor) is formed.
 前記炉外部空間が、前記ガラスリボンの流れ方向において、前記成形体と同じ位置にある第1部分空間を含むとき、前記第1部分空間の気圧と前記ガラスリボンの流れ方向の同じ位置における前記炉内部空間の気圧の差分は、0より大きく40Pa以下であることが好ましい。 When the outer space of the furnace includes a first partial space at the same position as the formed body in the flow direction of the glass ribbon, the furnace at the same position in the flow direction of the glass ribbon and the atmospheric pressure of the first partial space The difference in atmospheric pressure in the internal space is preferably greater than 0 and 40 Pa or less.
 前記炉外部空間は、前記ガラスリボンの流れ方向において、前記徐冷炉と同じ位置にある第2部分空間を含み、前記徐冷炉の炉内部空間の気圧と前記第2部分空間の気圧の差分は、0より大きく40Pa以下である、ことが好ましい。 The furnace external space includes a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the difference between the atmospheric pressure of the furnace internal space of the slow cooling furnace and the atmospheric pressure of the second partial space is 0 It is preferably 40 Pa or less.
 前記炉外部空間は、前記ガラスリボンの流れ方向において、前記成形体と同じ位置にある第1部分空間と、前記徐冷炉と同じ位置にある第2部分空間を含み、前記第1部分空間と前記第2部分空間が壁により仕切られて隣り合うとき、前記炉外部空間の前記第1部分空間の気圧は前記第2部分空間の気圧に比べて大きく、前記第1部分空間の気圧と前記前記第2部分空間の気圧の差分が20Paより小さい、ことが好ましい。 The furnace external space includes a first partial space located at the same position as the formed body and a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the first partial space and the first When two partial spaces are separated by a wall and adjacent to each other, the atmospheric pressure in the first partial space of the furnace external space is larger than the atmospheric pressure in the second partial space, and the atmospheric pressure in the first partial space and the second It is preferable that the difference in the atmospheric pressure of the partial space is smaller than 20 Pa.
 前記炉外部空間が、前記徐冷炉と同じ位置にある複数の第2部分空間を含み、複数の前記第2部分空間は、前記溶融ガラスの流れ方向の上流側ほど気圧が高くなっている、ことが好ましい。 The furnace outer space includes a plurality of second partial spaces at the same position as the slow cooling furnace, and the plurality of second partial spaces have higher atmospheric pressure toward the upstream side in the flow direction of the molten glass. preferable.
 前記徐冷工程は、
 前記ガラスリボンの幅方向の中央部に、前記ガラスリボンの流れ方向に引張り応力が働くように、
 少なくとも、前記ガラスリボンの徐冷点温度に150℃を足した温度から、前記ガラスリボンの歪点温度から200℃引いた温度までの温度領域において、
 前記ガラスリボンの幅方向の中央部の冷却速度は前記両端部の冷却速度よりも速く、
 前記ガラスリボンの幅方向の中央部の温度が前記両端部よりも高い状態から前記中央部の温度が前記両端部よりも低い状態へ前記ガラスリボンを変化させる、ことが好ましい。
The slow cooling step includes
In the central part of the width direction of the glass ribbon, so that a tensile stress works in the flow direction of the glass ribbon,
At least in a temperature range from a temperature obtained by adding 150 ° C. to the annealing point temperature of the glass ribbon to a temperature obtained by subtracting 200 ° C. from the strain point temperature of the glass ribbon,
The cooling rate of the central part in the width direction of the glass ribbon is faster than the cooling rate of the both end parts,
It is preferable that the glass ribbon is changed from a state where the temperature of the central portion in the width direction of the glass ribbon is higher than the both end portions to a state where the temperature of the central portion is lower than the both end portions.
 前記徐冷工程は、第1の冷却工程と、第2の冷却工程と、第3の冷却工程と、を含み、
 前記第1の冷却工程は、ガラスリボンの幅方向の中央部の温度が、徐冷点温度になるまで、第1の平均冷却速度で冷却する工程であり、
 前記第2の冷却工程は、ガラスリボンの幅方向の中央部の温度が、徐冷点温度から歪点温度-50℃になるまで、第2の平均冷却速度で冷却する工程であり、
 前記第3の冷却工程は、ガラスリボンの幅方向の中央部の温度が、歪点温度-50℃から歪点温度-200℃になるまで、第3の平均冷却速度で冷却する工程であり、
 前記第1の平均冷却速度は、5.0℃/秒以上であり、前記第1の平均冷却速度は、前記第3の平均冷却速度より速く、前記第3の平均冷却速度は、前記第2の平均冷却速度より速くする、ことが好ましい。
 このとき、前記第1冷却工程におけるガラスリボンの中央部の平均冷却速度は、好ましくは、5.5℃/秒~50.0℃/秒である。また、前記第2冷却工程におけるガラスリボンの平均冷却速度は、好ましくは0.5~5.5℃/秒未満である。さらに、前記第3冷却工程におけるガラスリボンの中央部の冷却速度は、好ましくは1.5℃/秒~7.0℃/秒である。
The slow cooling step includes a first cooling step, a second cooling step, and a third cooling step,
The first cooling step is a step of cooling at the first average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the annealing point temperature,
The second cooling step is a step of cooling at the second average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the strain point temperature of −50 ° C. from the annealing point temperature,
The third cooling step is a step of cooling at a third average cooling rate until the temperature of the central portion in the width direction of the glass ribbon becomes a strain point temperature of −50 ° C. to a strain point temperature of −200 ° C.
The first average cooling rate is 5.0 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is the second It is preferable that the cooling rate is higher than the average cooling rate.
At this time, the average cooling rate of the central portion of the glass ribbon in the first cooling step is preferably 5.5 ° C./second to 50.0 ° C./second. The average cooling rate of the glass ribbon in the second cooling step is preferably 0.5 to less than 5.5 ° C./second. Further, the cooling rate of the central portion of the glass ribbon in the third cooling step is preferably 1.5 ° C./second to 7.0 ° C./second.
 前記ガラス板が、ポリシリコン(低温ポリシリコン)TFTあるいは酸化物半導体を形成するガラス基板であるとき、ガラスの歪点温度は675℃以上であることが好ましく、前記歪点温度は675℃~750℃であることがより好ましい。 When the glass plate is a polysilicon (low temperature polysilicon) TFT or a glass substrate on which an oxide semiconductor is formed, the strain point temperature of the glass is preferably 675 ° C. or higher, and the strain point temperature is 675 ° C. to 750 ° C. More preferably, it is ° C.
 また、本発明の他の一態様は、ダウンドロー法によるガラス板の製造装置である。当該製造装置は、
 ガラス原料を溶解して溶融ガラスを得る溶解装置と、
 前記溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンを成形し、前記ガラスリボンの流れを作り、前記ガラスリボンを、徐冷炉内に設けられたローラで牽引して前記徐冷炉内で冷却する成形装置と、
 冷却された前記ガラスリボンを切断空間で切断する切断装置と、を含む。
 前記成形体が設けられた前記成形炉の内部空間および前記ローラが設けられた前記徐冷炉の内部空間を炉内部空間とし、前記成形炉および前記徐冷炉の外部空間を炉外部空間としたとき、前記炉外部空間は、大気圧雰囲気に対して隔壁で区切られた空間である。
 前記炉外部空間の少なくとも一部分の気圧は、前記ガラスリボンの流れ方向の同じ位置における、前記炉内部空間の気圧に対して低くなるように、気圧の調整をする気圧制御装置が前記成形装置に設けられている。
Another embodiment of the present invention is a glass plate manufacturing apparatus using a downdraw method. The manufacturing equipment
A melting apparatus for melting glass raw material to obtain molten glass;
The molten glass is supplied to a molded body provided in a molding furnace to form a glass ribbon, the flow of the glass ribbon is created, and the glass ribbon is pulled by a roller provided in the slow cooling furnace, and the slow cooling furnace A molding device for cooling inside,
And a cutting device for cutting the cooled glass ribbon in a cutting space.
When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition wall with respect to the atmospheric pressure atmosphere.
An air pressure control device for adjusting the air pressure is provided in the molding apparatus so that the air pressure in at least a part of the furnace outer space is lower than the air pressure in the furnace inner space at the same position in the flow direction of the glass ribbon. It has been.
 前記気圧制御装置は、前記炉外部空間の気圧を制御するために、大気との間で空気の流入を調整する装置である、ことが好ましい。 It is preferable that the air pressure control device is a device that adjusts the inflow of air with the atmosphere in order to control the air pressure in the furnace outer space.
 上記態様のガラス板の製造方法によれば、ガラス板の熱収縮のばらつきを効率よく低減することができる。 According to the method for producing a glass plate of the above aspect, variation in thermal contraction of the glass plate can be efficiently reduced.
本実施形態であるガラス板の製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method of the glass plate which is this embodiment. 本実施形態の溶解工程~切断工程を行う装置を模式的に示す図である。FIG. 2 is a diagram schematically showing an apparatus for performing a melting step to a cutting step according to the present embodiment. 本実施形態におけるガラス板の成形装置の概略の側面図である。It is a schematic side view of the glass plate shaping | molding apparatus in this embodiment. 本実施形態におけるガラス板の成形装置の概略の正面図である。It is a schematic front view of the glass plate shaping | molding apparatus in this embodiment. 本実施形態で用いる送風機が送り込む空気の量を制御する制御システムの概略図である。It is the schematic of the control system which controls the quantity of the air which the air blower used by this embodiment sends.
 以下、本発明のガラス板の製造方法及び製造装置について説明する。
 本明細書における下記語句は、以下のように定める。
 ガラスリボンの中央部とは、ガラスリボンの幅方向の幅のうちガラスリボンの幅方向の中心をいう。
 ガラスリボンの端部とは、ガラスリボンの幅方向の縁から100mm以内の範囲をいう。
 歪点温度とは、ガラス粘度をηとしたとき、logηが14.5であるガラス板の温度をいう。
 徐冷点温度とは、logηが13のガラス板の温度をいう。
 図1は、本実施形態であるガラス板の製造方法のフローを示す図である。
Hereinafter, the manufacturing method and manufacturing apparatus of the glass plate of this invention are demonstrated.
The following words and phrases in this specification are defined as follows.
The center part of a glass ribbon means the center of the width direction of a glass ribbon among the widths of the width direction of a glass ribbon.
The edge part of a glass ribbon means the range within 100 mm from the edge of the width direction of a glass ribbon.
The strain point temperature refers to the temperature of a glass plate having a log η of 14.5 when the glass viscosity is η.
The annealing point temperature refers to the temperature of a glass plate having a log η of 13.
FIG. 1 is a diagram showing a flow of a glass plate manufacturing method according to the present embodiment.
(ガラス板の製造方法の全体概要)
 ガラス板の製造方法は、溶解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス板は、納入先の業者に搬送される。
(Overall overview of glass plate manufacturing method)
The glass plate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a forming step (ST5), and a slow cooling step (ST6). And a cutting step (ST7). In addition, a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
 図2は、溶解工程(ST1)~切断工程(ST7)を行うガラス板の製造装置を模式的に示す図である。当該装置は、図2に示すように、主に溶解装置200と、成形装置300と、切断装置400と、を有する。溶解装置200は、溶解槽201と、清澄槽202と、攪拌槽203と、第1配管204と、第2配管205と、を有する。成形装置300については後述する。 FIG. 2 is a diagram schematically showing a glass plate manufacturing apparatus that performs the melting step (ST1) to the cutting step (ST7). As shown in FIG. 2, the apparatus mainly includes a melting apparatus 200, a molding apparatus 300, and a cutting apparatus 400. The dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205. The molding apparatus 300 will be described later.
 溶解工程(ST1)では、溶解槽201内に供給されたガラス原料を、図示されない火焔および電気ヒータで加熱して溶解することで溶融ガラスを得る。
 清澄工程(ST2)は、清澄槽202において行われ、清澄槽202内の溶融ガラスを加熱することにより、溶融ガラス中に含まれる酸素やSO2の気泡が、清澄剤の酸化還元反応により成長し液面に浮上して気泡のガス成分が放出される、あるいは、気泡中のガス成分が溶融ガラス中に吸収されて、気泡が消滅する。
 均質化工程(ST3)では、第1配管204を通って供給された攪拌槽203内の溶融ガラスを、スターラを用いて攪拌することにより、ガラス成分の均質化を行う。
 供給工程(ST4)では、第2配管205を通して溶融ガラスが成形装置300に供給される。
In the melting step (ST1), the glass raw material supplied into the melting tank 201 is heated and melted with a flame and an electric heater (not shown) to obtain molten glass.
The clarification step (ST2) is performed in the clarification tank 202, and by heating the molten glass in the clarification tank 202, oxygen and SO 2 bubbles contained in the molten glass grow by the oxidation-reduction reaction of the clarifier. The bubble gas component is released by rising to the liquid surface, or the gas component in the bubble is absorbed into the molten glass and the bubble disappears.
In the homogenization step (ST3), the molten glass in the stirring tank 203 supplied through the first pipe 204 is stirred using a stirrer to homogenize the glass components.
In the supplying step (ST4), the molten glass is supplied to the molding apparatus 300 through the second pipe 205.
 成形装置300では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
 成形工程(ST5)では、溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンG(図3参照)を成形する。本実施形態では、後述する成形体310を用いたオーバーフローダウンドロー法を用いる。徐冷工程(ST6)では、成形されて流れるガラスリボンGが所望の厚さになり、平面歪が生じないように、さらに、熱収縮率が大きくならないように、ローラで牽引されて冷却される。
 切断工程(ST7)では、切断装置400において、成形装置300から供給されたガラスリボンGを所定の長さに切断することで、板状のガラス板G1(図3参照)を得る。切断されたガラス板G1はさらに、所定のサイズに切断され、目標サイズのガラス板G1を作る。この後、ガラス端面の研削・研磨が行われた後、洗浄が行われ、さらに、気泡や脈理等の異常欠陥の有無が検査された後、検査合格品のガラス板G1が最終製品として梱包される。
In the molding apparatus 300, a molding process (ST5) and a slow cooling process (ST6) are performed.
In the forming step (ST5), molten glass is supplied to a formed body provided in a forming furnace to form a glass ribbon G (see FIG. 3). In this embodiment, an overflow down draw method using a molded body 310 described later is used. In the slow cooling step (ST6), the glass ribbon G that has been molded and flowed has a desired thickness, and is cooled by being pulled by a roller so as not to cause a plane distortion and a thermal contraction rate. .
In the cutting step (ST7), the cutting device 400 cuts the glass ribbon G supplied from the forming device 300 into a predetermined length, thereby obtaining a plate-like glass plate G1 (see FIG. 3). The cut glass plate G1 is further cut into a predetermined size to produce a glass plate G1 having a target size. After this, the glass end face is ground and polished, then cleaned, and further inspected for the presence of abnormal defects such as bubbles and striae, and then the glass plate G1 that has passed the inspection is packed as the final product. Is done.
(成形装置の説明)
 図3及び図4は、ガラス板の成形装置300の構成を主に示す図であり、図3は主に成形装置300の概略の側面図を示し、図4は成形装置300の概略の正面図を示す。
 成形装置300で成形されるガラス板は、例えば、フラットパネルディスプレイ用ガラス基板あるいはカバーガラスに好適に用いられる。フラットパネルディスプレイ用ガラス基板としては、例えば、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板、酸化物半導体薄膜トランジスタが形成されるディスプレイ用ガラスが挙げられる。成成形装置300で成形されるガラス板は、その他、携帯端末機器などのディスプレイや筐体用のカバーガラス、タッチパネル板、太陽電池のガラス基板やカバーガラスとしても用いることができる。特に、ポリシリコンTFTを用いた液晶ディスプレイ用ガラス基板に好適である。
(Description of molding equipment)
3 and 4 are diagrams mainly showing a configuration of the glass sheet forming apparatus 300, FIG. 3 mainly shows a schematic side view of the forming apparatus 300, and FIG. 4 is a schematic front view of the forming apparatus 300. Indicates.
The glass plate molded by the molding apparatus 300 is suitably used for a glass substrate for flat panel display or a cover glass, for example. Examples of the glass substrate for a flat panel display include a glass substrate for a liquid crystal display, a glass substrate for an organic EL display, and a display glass on which an oxide semiconductor thin film transistor is formed. The glass plate molded by the molding apparatus 300 can also be used as a display for a portable terminal device, a cover glass for a housing, a touch panel plate, a glass substrate of a solar cell, or a cover glass. Particularly, it is suitable for a glass substrate for a liquid crystal display using a polysilicon TFT.
 成形工程(ST5)を行う成形炉40および徐冷工程(ST6)を行う徐冷炉50は、耐火レンガ、耐火断熱レンガ、あるいはファイバー系断熱材等の耐火物で構成された炉壁に囲まれて構成されている。成形炉40は、徐冷炉50に対して鉛直上方に設けられている。なお、成形炉40および徐冷炉50をあわせて炉30という。炉30の炉壁で囲まれた炉内部空間に、成形体310と、雰囲気仕切り部材320と、冷却ローラ330と、冷却ユニット340と、搬送ローラ350a~350hと、圧力センサ355,360a~360c(図4参照)が設けられている。
 成形体310は、図2に示すように、第2配管205を通して溶解装置200から流れてくる溶融ガラスを、ガラスリボンGに成形する。これにより、成形装置300内で、鉛直下方のガラスリボンGの流れが作られる。成形体310には、耐火レンガ等によって構成された細長い構造体であり、図3に示すように断面が楔形状を成している。成形体310の頂部には、溶融ガラスを導く流路となる溝312が設けられている。溝312は、成形装置300に設けられた供給口311(図4参照)において第2配管205と接続される。第2配管205を通して流れてくる溶融ガラスは、溝312を伝って流れる。溝312の深さは、溶融ガラスの流れの下流ほど浅くなっており、溝312から溶融ガラスが鉛直下方に向かって溢れ出るようになっている。図3,4では、熔融ガラスを参照符号MGで表す。
 溝312から溢れ出た溶融ガラスは、成形体310の両側の側壁を伝わって鉛直下方に流下する。側壁を流れた溶融ガラスは、図3に示す成形体310の下方端部313で合流し、1つのガラスリボンGが成形される。これによって、ガラスリボンGは、徐冷炉50に向かって流下する。成形体310を離れて流下を開始する時点におけるガラスリボンGの粘度は、例えば105.7~107.5poiseである。
The forming furnace 40 for performing the forming step (ST5) and the slow cooling furnace 50 for performing the slow cooling step (ST6) are surrounded by a furnace wall composed of a refractory material such as a refractory brick, a refractory heat insulating brick, or a fiber-based heat insulating material. Has been. The molding furnace 40 is provided vertically above the slow cooling furnace 50. The forming furnace 40 and the slow cooling furnace 50 are collectively referred to as a furnace 30. In the furnace inner space surrounded by the furnace wall of the furnace 30, a molded body 310, an atmosphere partition member 320, a cooling roller 330, a cooling unit 340, conveying rollers 350a to 350h, pressure sensors 355, 360a to 360c ( 4).
As shown in FIG. 2, the molded body 310 forms molten glass flowing from the melting device 200 through the second pipe 205 into a glass ribbon G. Thereby, the flow of the glass ribbon G of the vertically lower direction is made in the forming apparatus 300. The molded body 310 is a long and narrow structure made of refractory brick or the like, and has a wedge-shaped cross section as shown in FIG. A groove 312 serving as a flow path for guiding the molten glass is provided on the top of the molded body 310. The groove 312 is connected to the second pipe 205 at a supply port 311 (see FIG. 4) provided in the molding apparatus 300. The molten glass flowing through the second pipe 205 flows along the groove 312. The depth of the groove 312 is shallower toward the downstream side of the flow of the molten glass, so that the molten glass overflows vertically downward from the groove 312. 3 and 4, the molten glass is represented by the reference symbol MG.
The molten glass overflowing from the groove 312 travels down the side walls on both sides of the molded body 310 and flows down vertically. The molten glass that has flowed through the side walls merges at the lower end 313 of the molded body 310 shown in FIG. 3, and one glass ribbon G is formed. As a result, the glass ribbon G flows down toward the slow cooling furnace 50. The viscosity of the glass ribbon G at the time of starting to flow down after leaving the molded body 310 is, for example, 10 5.7 to 10 7.5 poise.
 成形体310の下方端部313の下方近傍には、雰囲気仕切り部材320が設けられている。雰囲気仕切り部材320は、一対の板状の断熱部材であって、ガラスリボンGを厚さ方向の両側から挟むように構成されている。すなわち、雰囲気仕切り部材320には、ガラスリボンGと接触しない程度に隙間があけられている。雰囲気仕切り部材320は、成形炉内部空間を仕切ることにより、雰囲気仕切り部材320の上方の炉内部空間と下方の炉内部空間との間の熱の移動を遮断する。 Near the lower end 313 of the molded body 310, an atmosphere partition member 320 is provided. The atmosphere partition member 320 is a pair of plate-like heat insulating members and is configured to sandwich the glass ribbon G from both sides in the thickness direction. That is, a gap is formed in the atmosphere partition member 320 so as not to contact the glass ribbon G. The atmosphere partition member 320 blocks the movement of heat between the furnace internal space above the atmosphere partition member 320 and the furnace internal space below by partitioning the molding furnace internal space.
 雰囲気仕切り部材320の下方には冷却ローラ330が設けられている。冷却ローラ330は、ガラスリボンGの幅方向の両端部近傍のガラスリボンG表面と接触して、ガラスリボンGを下方に引き下げて、両端部近傍においてガラスリボンGの厚さを所望の厚さにするとともに、ガラスリボンGを冷却(急冷)する。冷却ローラ330による急冷により、ガラスリボンの両端部における粘度は、例えば109.0~1010.5poiseとなる。冷却ローラ310を用いた急冷~徐冷工程では、上記急冷における冷却機能よりも冷却機能が低下した冷却により、ガラスリボンGの両端部の粘度は、例えば、1010.5~1014.5poiseに維持される。
 冷却ローラ330の下方には冷却ユニット340が設けられている。冷却ユニット340は、冷却ローラ330を通過したガラスリボンGを冷却する。この冷却ユニット340による冷却により、ガラスリボンGの反りが抑制される。
A cooling roller 330 is provided below the atmosphere partition member 320. The cooling roller 330 is in contact with the surface of the glass ribbon G in the vicinity of both ends in the width direction of the glass ribbon G, pulls the glass ribbon G downward, and sets the thickness of the glass ribbon G to a desired thickness in the vicinity of both ends. At the same time, the glass ribbon G is cooled (rapidly cooled). Due to the rapid cooling by the cooling roller 330, the viscosity at both ends of the glass ribbon becomes, for example, 10 9.0 to 10 10.5 poise. In the rapid cooling to slow cooling process using the cooling roller 310, the viscosity at both ends of the glass ribbon G is, for example, 10 10.5 to 10 14.5 poise due to cooling with a cooling function lower than the cooling function in the rapid cooling. Maintained.
A cooling unit 340 is provided below the cooling roller 330. The cooling unit 340 cools the glass ribbon G that has passed through the cooling roller 330. By the cooling by the cooling unit 340, the warp of the glass ribbon G is suppressed.
 冷却ユニット340の下方には、搬送ローラ350a~350hが所定の間隔で設けられ、ガラスリボンGを下方向に牽引する。冷却ユニット340の下方の空間は、徐冷炉50の炉内部空間となっている。搬送ローラ350a~350hのそれぞれは、ローラ対を有し、ガラスリボンGの両側を挟むようにガラスリボンGの幅方向の両側端部に設けられている。 Below the cooling unit 340, conveying rollers 350a to 350h are provided at predetermined intervals, and pull the glass ribbon G downward. The space below the cooling unit 340 is a furnace internal space of the slow cooling furnace 50. Each of the transport rollers 350a to 350h has a pair of rollers and is provided at both end portions in the width direction of the glass ribbon G so as to sandwich both sides of the glass ribbon G.
 成形炉40の炉内部空間には、炉内部空間の気圧を計測する圧力センサ355(図4参照)が設けられている。圧力センサ355は、成形体310と高さ方向(鉛直上方向)の同じ位置に設けられている。高さ方向とは、図3,4において、紙面の上方向である。ガラスリボンGは成形体310から鉛直下方に流れるので、ガラスリボンGの流れ方向は高さ方向と反対の向きである。徐冷炉50の炉内部空間には、圧力センサ360a~360c(図4参照)が設けられている。 A pressure sensor 355 (see FIG. 4) for measuring the pressure inside the furnace internal space is provided in the furnace internal space of the molding furnace 40. The pressure sensor 355 is provided at the same position as the molded body 310 in the height direction (vertically upward direction). The height direction is the upward direction of the drawing in FIGS. Since the glass ribbon G flows vertically downward from the molded body 310, the flow direction of the glass ribbon G is opposite to the height direction. Pressure sensors 360a to 360c (see FIG. 4) are provided in the furnace internal space of the slow cooling furnace 50.
 一方、成形炉40の炉壁の外側には、隔壁により大気圧雰囲気に対して建物Bの隔壁で区切られた空間、すなわち炉外部空間S1,S2,S3a~S3cが設けられている。炉外部空間S1は、成形炉40の内部空間の天井面に対してさらに上方に位置する上部空間である。これらの空間のそれぞれは、高さ方向に関して、床面(床壁)411,412,413a~413cによって区切られている。すなわち、成形装置300は、複数のフロアを有する建物Bに設けられ、床面によって複数に区切られた炉外部空間(部分空間)S1,S2,S3a~S3cが各フロアに設けられている。さらに、炉外部空間S3cの下方には、フロア414上に壁で区切られた空間S4(切断空間)が設けられている。空間S4には、炉壁は設けられない。これらの空間の気圧はそれぞれ後述する送風機421,422,423a,423b,423c,424により調整されている。
 炉外部空間S1は、成形体310の高さ方向の位置よりも鉛直上方にある空間であり、炉外部空間S1には、炉外部空間の気圧を計測する圧力センサ415が設けられている。
 炉外部空間S2は、床面412上に設けられた空間であり、この空間に対応する炉内部空間には成形体310が配置されている。また、炉外部空間S2には、炉外部空間S2の気圧を計測する圧力センサ416が設けられている。炉壁で囲まれた炉内部空間には、圧力センサ416の高さ方向の同じ位置に、炉内部空間の気圧を計測する圧力センサ355が設けられている(図4参照)。
 炉外部空間S3a~S3cは、炉外部空間S2の下方に、高さ方向の高い方から炉外部空間S3a~3cの順に設けられた空間である。炉外部空間S3a~3cは、床面413a~413c上に設けられている。また、炉外部空間S3a~S3cのそれぞれには、炉外部空間3a~3cの気圧を計測する圧力センサ417a~417cが設けられている。炉壁で囲まれた炉内部空間には、圧力センサ417a~417cの高さ方向の同じ位置に、炉内部空間の気圧を計測する圧力センサ360a~360cが設けられている(図4参照)。
 なお、本実施形態では、圧力センサ355,360a~360cが炉内部空間の各位置に設けられているが、炉内部空間の各位置に圧力センサが挿入されて圧力の測定が行われてもよい。
On the other hand, outside the furnace wall of the forming furnace 40, spaces partitioned by the partition walls of the building B with respect to the atmospheric pressure atmosphere by the partition walls, that is, furnace exterior spaces S1, S2, S3a to S3c are provided. The furnace outer space S <b> 1 is an upper space located further above the ceiling surface of the inner space of the molding furnace 40. Each of these spaces is delimited by floor surfaces (floor walls) 411, 412, 413a to 413c in the height direction. That is, the molding apparatus 300 is provided in a building B having a plurality of floors, and furnace external spaces (partial spaces) S1, S2, S3a to S3c divided into a plurality by the floor surface are provided on each floor. Furthermore, a space S4 (cutting space) partitioned by walls on the floor 414 is provided below the furnace external space S3c. In the space S4, no furnace wall is provided. The air pressure in these spaces is adjusted by blowers 421, 422, 423a, 423b, 423c, and 424, which will be described later.
The furnace outside space S1 is a space vertically above the position in the height direction of the molded body 310, and a pressure sensor 415 for measuring the pressure in the furnace outside space is provided in the furnace outside space S1.
The furnace exterior space S2 is a space provided on the floor surface 412, and the molded body 310 is disposed in the furnace interior space corresponding to this space. Further, a pressure sensor 416 for measuring the atmospheric pressure in the furnace external space S2 is provided in the furnace external space S2. In the furnace internal space surrounded by the furnace wall, a pressure sensor 355 for measuring the pressure in the furnace internal space is provided at the same position in the height direction of the pressure sensor 416 (see FIG. 4).
The furnace outside spaces S3a to S3c are spaces provided below the furnace outside space S2 in the order of the furnace outside spaces S3a to 3c from the highest in the height direction. The furnace outer spaces S3a to 3c are provided on the floor surfaces 413a to 413c. In addition, pressure sensors 417a to 417c for measuring the atmospheric pressure in the furnace external spaces 3a to 3c are provided in the furnace external spaces S3a to S3c, respectively. In the furnace internal space surrounded by the furnace wall, pressure sensors 360a to 360c for measuring the pressure in the furnace internal space are provided at the same position in the height direction of the pressure sensors 417a to 417c (see FIG. 4).
In this embodiment, the pressure sensors 355, 360a to 360c are provided at each position in the furnace internal space, but the pressure sensor may be inserted into each position in the furnace internal space to measure the pressure. .
 また、炉外部空間S1,S2,S3a~S3c及び空間S4それぞれを区切る隔壁の外側には、炉外部空間S1,S2,S3a~S3c及び空間S4のそれぞれに対して、送風機421,422,423a,423b,423c,424が設けられている。送風機421,422,423a,423b,423c,424により大気から送り込まれる空気は、管を通して炉外部空間S1,S2,S3a~S3c及び空間S4のそれぞれに供給される。送風機421,422,423a,423b,423c,424が送り込む空気の量は、それぞれ、後述する駆動ユニット510からの駆動信号によって定められている。送風機421,422,423a,423b,423c,424は、炉外部空間S1,S2,S3a~S3c及び空間S4のそれぞれの気圧を制御するために、大気との間で空気の流入を調整する気圧制御装置として機能する。 In addition, outside the partition walls separating the furnace outside spaces S1, S2, S3a to S3c and the space S4, the fans 421, 422, 423a, 423b, 423c, and 424 are provided. Air sent from the atmosphere by the blowers 421, 422, 423a, 423b, 423c, and 424 is supplied to each of the furnace external spaces S1, S2, S3a to S3c, and the space S4 through a pipe. The amount of air sent by the blowers 421, 422, 423a, 423b, 423c, 424 is determined by a drive signal from the drive unit 510 described later. The blowers 421, 422, 423a, 423b, 423c, and 424 are pressure control that adjusts the inflow of air to the atmosphere in order to control the respective air pressures in the furnace exterior spaces S1, S2, S3a to S3c, and the space S4 Functions as a device.
 図5は、送風機421,422,423a,423b,423c,424が送り込む空気の量を制御する制御システムの概略図である。
 制御システムは、炉内部空間に設けられた圧力センサ355,360a~360cと、それぞれの炉外部空間に設けられた圧力センサ415,416,417a~417c,418と、制御装置500と、駆動ユニット510と、送風機421,422,423a,423b,423c,424と、を有する。
 制御装置500は、圧力センサ355,360a~360cのそれぞれから送られる炉内部空間における気圧の計測結果と、圧力センサ415,416,417a~417c,418から送られる炉外部空間における気圧の計測結果とを用いて、炉内部空間及び炉外部空間における高さ方向の同じ位置における気圧の差分が設定された範囲に調整されるように、送風機421,422,423a,423b,423c,424が大気から送り込む空気の量を調整するための制御信号を生成する。生成された制御信号は、駆動ユニット510に送られる。
 駆動ユニット510は、制御信号に基いて、送風機421,422,423a,423b,423c,424によって送り込む空気の量を個別に調整するための駆動信号を生成する。駆動ユニット510は、駆動信号を、それぞれ送風機421,422,423a,423b,423c,424に送る。
 本実施形態では、制御装置500及び駆動ユニット510が空気の送り込み量を自動制御するが、オペレータがマニュアルで空気の送り込み量を調整してもよい。
FIG. 5 is a schematic diagram of a control system that controls the amount of air that the blowers 421, 422, 423a, 423b, 423c, and 424 send.
The control system includes pressure sensors 355, 360a to 360c provided in the furnace internal space, pressure sensors 415, 416, 417a to 417c, 418 provided in the furnace external space, the control device 500, and the drive unit 510. And blowers 421, 422, 423a, 423b, 423c, and 424.
The control device 500 includes a measurement result of the atmospheric pressure in the furnace internal space sent from each of the pressure sensors 355, 360a to 360c, and a measurement result of the atmospheric pressure in the furnace external space sent from the pressure sensors 415, 416, 417a to 417c, 418. , The blowers 421, 422, 423a, 423b, 423c, 424 are sent from the atmosphere so that the difference in atmospheric pressure at the same position in the height direction in the furnace inner space and the furnace outer space is adjusted to a set range. A control signal for adjusting the amount of air is generated. The generated control signal is sent to the drive unit 510.
The drive unit 510 generates a drive signal for individually adjusting the amount of air sent by the blowers 421, 422, 423a, 423b, 423c, and 424 based on the control signal. The drive unit 510 sends drive signals to the fans 421, 422, 423a, 423b, 423c, and 424, respectively.
In the present embodiment, the control device 500 and the drive unit 510 automatically control the air feed amount, but the operator may adjust the air feed amount manually.
 ここで、送風機421,422,423a,423b,423c,424の送り込む空気の量は、炉外部空間S2,S3a~S3cの気圧が、高さ方向の同じ位置における炉内部空間の気圧に対して低くなるように、各炉外部空間の気圧は調整される。
 成形炉40の炉内部空間と炉外部空間S2との間の気圧の差分は、0超~40Paであり、4~35Paであることが好ましく、8~30Paであることがより好ましく、10~27Paであることがさらに好ましく、10~25Paであることがさらに好ましい。
Here, the amount of air sent from the fans 421, 422, 423a, 423b, 423c, 424 is such that the pressure in the furnace outer space S2, S3a to S3c is lower than the pressure in the furnace inner space at the same position in the height direction. Thus, the atmospheric pressure in each furnace external space is adjusted.
The difference in atmospheric pressure between the furnace inner space and the furnace outer space S2 of the molding furnace 40 is more than 0 to 40 Pa, preferably 4 to 35 Pa, more preferably 8 to 30 Pa, and more preferably 10 to 27 Pa. It is more preferable that the pressure is 10 to 25 Pa.
 上記気圧の差分が、上記範囲を上回ると、炉内部空間から炉外部空間S2に向かって炉壁の隙間から大量の空気が流出する虞があり、炉内部空間における空気の上昇を増大させる。一方、上記気圧の差分が、上記範囲を下回ると、炉外部空間S2から炉内部空間に向かって炉壁の隙間から空気が流入する虞があり、炉内部空間の温度分布がばらつく。気圧の差分を上記の範囲に調整することで、成形炉40の炉内部空間に炉外部空間S2から低温の空気が流入することを防止できる。このため、炉内部空間の温度のばらつきを抑制できる。これにより、冷却速度のばらつき、ひいてはガラスリボンGの板厚のばらつきを抑制できる。なお、温度のばらつきとは、予め設定された温度から意図せずに変化してしまうことをいう。 If the difference in the atmospheric pressure exceeds the above range, a large amount of air may flow out of the gap between the furnace walls from the furnace inner space toward the furnace outer space S2, and the air rise in the furnace inner space is increased. On the other hand, if the difference between the atmospheric pressures is less than the above range, air may flow in from the gap between the furnace walls from the furnace outer space S2 toward the furnace inner space, and the temperature distribution in the furnace inner space varies. By adjusting the difference in atmospheric pressure to the above range, it is possible to prevent low temperature air from flowing into the furnace internal space of the molding furnace 40 from the furnace external space S2. For this reason, the dispersion | variation in the temperature of furnace interior space can be suppressed. Thereby, the dispersion | variation in cooling rate and by extension, the dispersion | variation in the plate | board thickness of the glass ribbon G can be suppressed. The temperature variation means that the temperature changes unintentionally from a preset temperature.
 一方、徐冷炉50の炉内部空間と炉外部空間S3a~S3cとの間の気圧の差分は、0超~40Paであり、2~35Paであることが好ましく、2~25Paであることがより好ましく、3~23Paであることがさらに好ましく、5~20Paであることがさらに好ましい。特に好ましくは、10~20Paである。上記気圧の差分が、上記範囲を上回ると、炉内部空間から炉外部空間S3a~S3cに向かって炉壁の隙間から大量の空気が流出する虞があり、炉内部空間における空気の上昇を増大させる。一方、上記気圧の差分が、上記範囲を下回ると、炉外部空間S3a~S3cから炉内部空間に向かって炉壁の隙間から空気が流入する虞があり、炉内部空間の温度分布がばらつく。気圧の差分を上記の範囲に調整することで、徐冷炉50の炉内部空間に炉外部空間S3a~S3cから低温の空気が流入することを防止できるので、炉内部空間の温度のばらつきを抑制できる。これにより、ガラスリボンGの変形、反り、平面歪のばらつき及び熱収縮のばらつきを抑制することができる。また、炉外部空間S3a~S3cと炉内部空間との気圧の差分は、上方に行くほど大きくなることが好ましい。炉内部空間の温度は上方に行くほど高くなり、炉内部空間よりも低い温度の空気流入による影響が大きくなると考えられる。 On the other hand, the difference in atmospheric pressure between the inner space of the slow cooling furnace 50 and the outer space S3a to S3c is more than 0 to 40 Pa, preferably 2 to 35 Pa, more preferably 2 to 25 Pa, The pressure is more preferably 3 to 23 Pa, and further preferably 5 to 20 Pa. Particularly preferred is 10 to 20 Pa. If the difference in the atmospheric pressure exceeds the above range, a large amount of air may flow out of the gap between the furnace walls from the furnace inner space toward the furnace outer space S3a to S3c, increasing the air rise in the furnace inner space. . On the other hand, if the difference in the atmospheric pressure is less than the above range, air may flow in from the gaps in the furnace wall from the furnace outer space S3a to S3c toward the furnace inner space, and the temperature distribution in the furnace inner space varies. By adjusting the difference in the atmospheric pressure to the above range, it is possible to prevent low-temperature air from flowing into the furnace internal space of the slow cooling furnace 50 from the furnace external spaces S3a to S3c, so that the temperature variation in the furnace internal space can be suppressed. Thereby, the deformation | transformation of the glass ribbon G, a curvature, the dispersion | variation in a plane distortion, and the dispersion | variation in heat shrink can be suppressed. Further, it is preferable that the difference in atmospheric pressure between the furnace outer spaces S3a to S3c and the furnace inner space increases as it goes upward. It is considered that the temperature of the furnace internal space becomes higher as it goes upward, and the influence of the inflow of air at a temperature lower than that of the furnace internal space is increased.
 このとき、炉外部空間S3cと空間S4との気圧差は、0<(炉外部空間S3cの気圧-空間S4の気圧)であることが好ましく、0<(炉外部空間S3cの気圧-空間S4の気圧)<20Paであることがより好ましく、1Pa<(炉外部空間S3cの気圧-空間S4の気圧)<15Paであることがさらに好ましく、2Pa<(炉外部空間S3cの気圧-空間S4の気圧)<15Paであることが一層好ましい。
 また、炉外部下方空間S2と炉外部空間S3aとの気圧差は、0<(炉外部下方空間S2の気圧-炉外部空間S3aの気圧)であることが好ましく、0<(炉外部空間S2の気圧-炉外部空間S3aの気圧)<20Paであることがより好ましく、1Pa<(炉外部空間S2の気圧-炉外部空間S3aの気圧)<15Paであることがさらに好ましく、2Pa<(炉外部空間S2の気圧-炉外部空間S3aの気圧)<15Paであることが一層好ましい。
At this time, the pressure difference between the furnace external space S3c and the space S4 is preferably 0 <(pressure in the furnace external space S3c−pressure in the space S4), and 0 <(pressure in the furnace external space S3c−pressure in the space S4). Atmospheric pressure) <20 Pa is more preferable, and 1 Pa <(atmospheric pressure in the furnace outer space S3c−atmospheric pressure in the space S4) <15 Pa is further preferable, and 2Pa <(atmospheric pressure in the outer furnace space S3c−atmospheric pressure in the space S4). More preferably, it is <15 Pa.
Further, the pressure difference between the furnace outside lower space S2 and the furnace outside space S3a is preferably 0 <(the pressure in the furnace outside lower space S2−the pressure in the furnace outside space S3a), and 0 <(the furnace outside space S2 More preferably, the atmospheric pressure—the atmospheric pressure of the furnace outer space S3a) <20 Pa, and more preferably 1 Pa <(the atmospheric pressure of the outer furnace space S2—the atmospheric pressure of the outer furnace space S3a) <15 Pa, more preferably 2 Pa <(the outer furnace space). It is more preferable that the pressure of S2−the pressure of the furnace outer space S3a) <15 Pa.
 また、炉外部空間S1と炉外部空間S2との気圧差は、0<(炉外部空間S1の気圧-炉外部空間S2の気圧)であることが好ましく、0<(炉外部空間S1の気圧-炉外部空間S2の気圧)<30Paであることがより好ましく、1Pa<(炉外部空間S1の気圧-炉外部空間S2の気圧)<25Paであることがさらに好ましく、2Pa<(炉外部空間S1の気圧-炉外部空間S2の気圧)<15Paであることが一層好ましい。炉外部空間S3cと空間S4との気圧差、炉外部空間S2と炉外部空間S3aとの気圧差、及び炉外部空間S1と炉外部空間S2との気圧差を大きくし過ぎると、炉外部空間S1、炉外部空間S2、炉外部空間S3a~cの気圧の絶対値が大きくなり過ぎ、炉外部空間から炉内部空間内に空気が流入してしまう。このため、炉内部空間内の温度が変動してしまうという問題が生じる虞がある。さらに、炉外部空間において局部的な気流の集中や、気流の流速が局部的に速くなるということが生じ、炉外部空間の気圧安定性が低下する虞があり、その結果、炉内部空間内の温度がばらついてしまうという問題が生じる虞もある。 The pressure difference between the furnace outside space S1 and the furnace outside space S2 is preferably 0 <(atmosphere pressure in the furnace outside space S1−atmospheric pressure in the furnace outside space S2), and 0 <(atmospheric pressure in the furnace outside space S1− It is more preferable that the pressure in the furnace outer space S2) <30 Pa, and it is more preferable that 1 Pa <(the pressure in the furnace outer space S1−the pressure in the furnace outer space S2) <25 Pa, more preferably 2 Pa <(in the furnace outer space S1). More preferably, the pressure is equal to the atmospheric pressure of the furnace outer space S2. If the pressure difference between the furnace outside space S3c and the space S4, the pressure difference between the furnace outside space S2 and the furnace outside space S3a, and the pressure difference between the furnace outside space S1 and the furnace outside space S2 are too large, the furnace outside space S1 The absolute values of the atmospheric pressure in the furnace outer space S2 and the furnace outer spaces S3a to S3c become too large, and air flows from the furnace outer space into the furnace inner space. For this reason, there exists a possibility that the problem that the temperature in a furnace interior space may fluctuate arises. Furthermore, there is a possibility that the local airflow concentration in the external space of the furnace or the flow velocity of the airflow is locally increased, and the atmospheric pressure stability of the external space of the furnace may be lowered. There is also a possibility that the problem that the temperature varies will occur.
 なお、本実施形態では、全ての炉外部空間の気圧が、高さ方向の同じ位置における炉内部空間の気圧に対して低くなるように、炉外部空間の気圧は調整されるが、炉外部空間の少なくとも一部分における気圧が、高さ方向の同じ位置における炉内部空間の気圧に対して低くなるように、炉外部空間の気圧は調整されてもよい。この場合、ガラスリボンGの徐冷点温度に対応する徐冷炉内の位置と、ガラスリボンGの歪点温度に対応する徐冷炉内の位置との間の領域において、炉外部空間の気圧は、高さ方向の同じ位置における炉内部空間の気圧に対して低くなるように調整されることが好ましい。徐冷点温度に対応する位置は、例えば炉外部空間S3aの高さ方向の位置にあり、また、歪点温度に対応する位置は、例えば炉外部空間S3bの高さ方向の位置にある。上記領域では、ガラスリボンGが固化する段階であり、最もガラスの平面歪や熱収縮に影響を与えることから、上記領域において効率よく気圧を調整して、炉外部空間からの空気の流れ込みを抑制することにより、炉内部空間における温度のばらつきを抑えることが好ましい。
 さらに、徐冷炉50の炉内部空間においてガラスリボンGの温度が歪点温度以下となる領域に対応する高さ方向の同じ位置における炉外部空間における気圧を調整することにより、空気の炉外部空間からの流れ込みを抑制でき、この領域の温度のばらつきを抑制することができ、この抑制によりガラスリボンGの反りを防止することができる。ここで、ガラスリボンGは、成形炉40から切断されるまで一枚の連続した板である。そのため、ガラスリボンGの温度が歪点温度以下となる領域においてガラスリボンGの反り形状が変化すると、歪点温度以上となる領域のガラスリボンにも影響を与え、平面歪や熱収縮のばらつきが発生してしまう。上述のように、つまり、ガラスリボンGの温度が歪点温度以下となる領域の温度のばらつきを抑制することで、反り、平面歪および熱収縮のばらつきを抑制することができる。
In this embodiment, the pressure in the furnace outer space is adjusted so that the pressure in all the furnace outer spaces is lower than the pressure in the furnace inner space at the same position in the height direction. The pressure in the outer space of the furnace may be adjusted so that the pressure in at least a part of the furnace becomes lower than the pressure in the furnace inner space at the same position in the height direction. In this case, in the region between the position in the slow cooling furnace corresponding to the annealing point temperature of the glass ribbon G and the position in the annealing furnace corresponding to the strain point temperature of the glass ribbon G, the atmospheric pressure in the outside space of the furnace is high. It is preferable to adjust so that it may become low with respect to the atmospheric | air pressure of the furnace internal space in the same position of a direction. The position corresponding to the annealing point temperature is, for example, a position in the height direction of the furnace outside space S3a, and the position corresponding to the strain point temperature is, for example, a position in the height direction of the furnace outside space S3b. In the above region, the glass ribbon G is solidified and most affects the plane distortion and thermal shrinkage of the glass. Therefore, the air pressure is efficiently adjusted in the above region to suppress the inflow of air from the outside space of the furnace. By doing so, it is preferable to suppress variations in temperature in the furnace internal space.
Furthermore, by adjusting the atmospheric pressure in the external space of the furnace at the same position in the height direction corresponding to the region where the temperature of the glass ribbon G is equal to or lower than the strain point temperature in the internal space of the slow cooling furnace 50, the air from the external space of the furnace Inflow can be suppressed, and variations in temperature in this region can be suppressed, and warpage of the glass ribbon G can be prevented by this suppression. Here, the glass ribbon G is one continuous plate until it is cut from the molding furnace 40. Therefore, if the warp shape of the glass ribbon G changes in a region where the temperature of the glass ribbon G is equal to or lower than the strain point temperature, it also affects the glass ribbon in the region where the temperature is higher than the strain point temperature, resulting in variations in plane strain and thermal shrinkage. Will occur. As described above, that is, by suppressing variations in temperature in the region where the temperature of the glass ribbon G is equal to or lower than the strain point temperature, variations in warpage, plane strain, and thermal shrinkage can be suppressed.
 また、炉内部空間がない高さ方向の位置にある圧力センサ415は、炉内部空間に炉外部空間S1から空気が流入しないように送風機421による炉外部空間S1を調整するために炉外部空間S1の気圧を計測することが好ましい。
 炉内部空間と炉外部空間とを仕切る炉壁には、冷却ローラ310や搬送ローラ350a~350hの軸周りに隙間があり、さらには、炉内部空間と炉外部空間とを区切る炉壁と床面411との接続部分等には隙間がある。このため、気圧の差分がある程度以上ある場合、炉内部空間と炉外部空間との間で空気の流れが生じ易い。したがって、炉内部空間の周囲を取り巻く炉外部空間の気圧を調整することが好ましい。特に、炉内部空間のうち成形炉40の空間は、炉内部空間内で最も上流側の位置にあり、気圧が高く空間内の温度も高い。この成形炉40の内部空間の天井面から炉外部空間S1に空気が流出することは煙突効果により炉内部空間における空気の流れを促進するため好ましくない。したがって、空気の炉外部空間S1への流出を防ぐために、炉外部空間S1の気圧を高くする。しかし、炉外部空間S1の気圧を過度に高くすると、逆に炉外部空間S1から炉内部空間へ空気が流入し易くなる。この場合、炉外部空間S1から流入する冷たい空気は、成形炉40の空間において成形体310でガラスリボンを成形するので、成形中の溶融ガラスの粘度に影響を与えるので、好ましくない。また、徐冷工程におけるガラスリボンの冷却にも影響を与える。このため、圧力センサ415は、炉内部空間に炉外部空間S1から空気が流入しないように送風機421による炉外部空間S1を調整するために炉外部空間S1の気圧を計測する。すなわち、冷却ローラや搬送ローラは設けられていない成形炉40の天井面では、炉外部空間S1から炉内部空間に天井面の隙間から空気が流入しないように、成形炉外部空間S1の気圧は、送風機421により調整されていることが好ましい。
Further, the pressure sensor 415 at a position in the height direction where there is no furnace internal space is used to adjust the furnace external space S1 by the blower 421 so that air does not flow from the furnace external space S1 into the furnace internal space. It is preferable to measure the atmospheric pressure.
There is a gap around the axis of the cooling roller 310 and the conveying rollers 350a to 350h in the furnace wall that divides the furnace internal space and the furnace external space, and further, the furnace wall and the floor surface that separate the furnace internal space and the furnace external space There is a gap in the connection portion with 411 or the like. For this reason, when there is a certain pressure difference or more, an air flow is likely to occur between the furnace internal space and the furnace external space. Therefore, it is preferable to adjust the atmospheric pressure of the furnace outer space surrounding the furnace inner space. In particular, the space of the forming furnace 40 in the furnace internal space is located at the most upstream position in the furnace internal space, and the atmospheric pressure is high and the temperature in the space is also high. It is not preferable that air flows out from the ceiling surface of the internal space of the forming furnace 40 to the external space S1 because the flow of air in the internal space of the furnace is promoted by the chimney effect. Therefore, in order to prevent the outflow of air to the furnace exterior space S1, the atmospheric pressure in the furnace exterior space S1 is increased. However, if the atmospheric pressure in the furnace external space S1 is excessively increased, air tends to easily flow from the furnace external space S1 into the furnace internal space. In this case, the cold air flowing from the furnace outer space S1 is not preferable because it forms the glass ribbon with the molded body 310 in the space of the molding furnace 40 and affects the viscosity of the molten glass being molded. It also affects the cooling of the glass ribbon in the slow cooling step. For this reason, the pressure sensor 415 measures the atmospheric pressure in the furnace external space S1 in order to adjust the furnace external space S1 by the blower 421 so that air does not flow into the furnace internal space from the furnace external space S1. That is, on the ceiling surface of the molding furnace 40 in which no cooling roller or conveyance roller is provided, the pressure in the molding furnace external space S1 is set so that air does not flow from the gap between the ceiling surfaces into the furnace internal space from the furnace external space S1. It is preferably adjusted by the blower 421.
 また、圧力センサ418は、空間S4における気圧の計測のために用いられる。例えば、空間S4は、炉内部空間の最も低い気圧に対してさらに低くなるように、空間S4の気圧は調整されることが好ましい。このとき、空間S4の気圧が大気圧以上の気圧になるように調整されていることが好ましい。他方、空間S4の気圧が所定の圧力以上になると、炉内部空間へ空気が流れやすくなり、炉内部空間の温度が影響を受けることが懸念される。よって、空間S4の気圧は、大気圧以上であって所定の圧力未満になるように調整されている。より具体的には、空間S4の気圧は、大気圧以上であって炉内部空間の最も低い気圧(炉内部空間の最低気圧)以下となるように調整している。例えば、空間S4の気圧は、0<(空間S4の気圧―大気圧)であることが好ましく、0<(空間S4の気圧―大気圧)<40Paであることがより好ましく、5Pa<(空間S4の気圧―大気圧)<40Paであることがさらに好ましい。
 空間S4の気圧を上記のように調整することにより、空間S4から炉内部空間に流れる空気を減少させることができる。
The pressure sensor 418 is used for measuring the atmospheric pressure in the space S4. For example, it is preferable that the air pressure in the space S4 is adjusted so that the space S4 is further lower than the lowest air pressure in the furnace internal space. At this time, it is preferable that the pressure in the space S4 is adjusted to be equal to or higher than the atmospheric pressure. On the other hand, when the atmospheric pressure in the space S4 is equal to or higher than a predetermined pressure, air tends to flow into the furnace internal space, and there is a concern that the temperature of the furnace internal space is affected. Therefore, the atmospheric pressure in the space S4 is adjusted to be equal to or higher than atmospheric pressure and lower than a predetermined pressure. More specifically, the pressure in the space S4 is adjusted to be equal to or higher than the atmospheric pressure and equal to or lower than the lowest pressure in the furnace internal space (the lowest pressure in the furnace internal space). For example, the pressure in the space S4 is preferably 0 <(the pressure in the space S4−the atmospheric pressure), more preferably 0 <(the pressure in the space S4−the atmospheric pressure) <40 Pa, more preferably 5Pa <(the space S4 (Atmospheric pressure−atmospheric pressure) <40 Pa is more preferable.
By adjusting the atmospheric pressure in the space S4 as described above, the air flowing from the space S4 to the furnace internal space can be reduced.
 なお、送風機421,422,423a,423b,423c,424は炉外部空間S1,S2,S3a~S3c及び空間S4に空気を送り込むことにより、いずれの空間の気圧も大気圧に対して高く調整されるが、これらの空間の気圧を大気圧に対して高くするのは、炉外部空間S1,S2,S3a~S3c及び空間S4内に建物Bの外部から大量の空気が流入するのを防ぎ、炉外部空間S1,S2,S3a~S3c,S4の気圧を効率よく調整するためである。
 また、炉内部空間における気圧は、高さ方向の位置が高いほど気圧が高くなる。これは、高温となった空気が上昇気流で上方に移動することに拠る。このように炉内部空間に温度分布が生じ、気圧に分布が生じても、この気圧分布に応じて、炉外部空間における気圧が調整される。これは、炉外部空間それぞれの気圧と炉内部空間の気圧との差分によって空気が炉内部空間に流れ込むことを抑制し、炉外部空間に空気が漏れて空気の対流が発生することを抑制するためである。このため、炉内部空間には、炉外部空間のそれぞれに設けられた圧力センサと高さ方向の同じ位置に、圧力センサが設けられる。このように、炉内部空間に圧力分布が生じる場合、炉外部空間のそれぞれの気圧と、この炉外部空間の高さ方向の同じ位置における炉内部空間の気圧との差分を、高さ方向の位置によって変化するように調整されることが好ましい。例えば、高さ方向の同じ位置に炉内部空間が存在する炉外部空間S2,S3a~S3cのうち最上部の炉外部空間S2と最下部の炉外部空間S3cとの間で比較したとき、最上部における気圧の差分は、最下部における気圧の差分に比べて大きくなるように調整されることが好ましい。例えば、気圧の上記差分が高さ方向の位置が高くなるにつれて大きくなるように設定されるとよい。これは、徐冷炉における炉内部空間では、高さ方向の位置が高いほど温度が高いため、冷たい空気が流入した際のガラスリボンGとの温度差が大きくなり、高さ方向の位置が高いほど、ガラスリボンGの温度のばらつきが大きくなることを防止するためである。
 また、炉外部空間の気圧は、高さ方向の位置が高いほど、すなわち、ガラスリボンの流れる方向の上流側の位置ほど、高いことが好ましい。これにより、炉外部空間において、炉壁に沿って発生する上昇気流の大きさを低減できる。つまり、炉壁に沿って発生する上昇気流による炉壁の温度変動によって炉壁近傍の炉内部空間の温度が変動することを抑制できるので、炉内部空間の温度のばらつきも抑制することができる。
The air blowers 421, 422, 423a, 423b, 423c, 424 are adjusted so that the air pressure in any space is higher than the atmospheric pressure by sending air into the furnace outer spaces S1, S2, S3a to S3c and the space S4. However, increasing the atmospheric pressure of these spaces with respect to the atmospheric pressure prevents a large amount of air from flowing from the outside of the building B into the outside space S1, S2, S3a to S3c and the space S4. This is for efficiently adjusting the atmospheric pressure in the spaces S1, S2, S3a to S3c, S4.
Further, the atmospheric pressure in the furnace internal space becomes higher as the position in the height direction is higher. This is due to the fact that the air that has reached a high temperature moves upward in an ascending current. Thus, even if a temperature distribution is generated in the furnace internal space and a distribution is generated in the atmospheric pressure, the atmospheric pressure in the external space of the furnace is adjusted according to the atmospheric pressure distribution. This is to suppress the flow of air into the furnace internal space due to the difference between the pressure in the furnace external space and the pressure in the furnace internal space, and to suppress the occurrence of air convection due to air leakage into the furnace external space. It is. For this reason, a pressure sensor is provided in the furnace inner space at the same position in the height direction as the pressure sensor provided in each of the furnace outer space. Thus, when pressure distribution occurs in the furnace internal space, the difference between the atmospheric pressure in the furnace external space and the atmospheric pressure in the furnace internal space at the same position in the height direction of the furnace external space is calculated as the position in the height direction. It is preferable to adjust so that it may change with. For example, when a comparison is made between the uppermost furnace outer space S2 and the lowermost furnace outer space S3c among the furnace outer spaces S2, S3a to S3c in which the furnace inner space exists at the same position in the height direction, It is preferable that the difference in atmospheric pressure is adjusted so as to be larger than the difference in atmospheric pressure at the bottom. For example, the difference in the atmospheric pressure may be set so as to increase as the position in the height direction increases. This is because in the furnace internal space in the slow cooling furnace, the higher the position in the height direction, the higher the temperature, so the temperature difference with the glass ribbon G when cold air flows in increases, and the higher the position in the height direction, This is to prevent the temperature variation of the glass ribbon G from becoming large.
Moreover, it is preferable that the atmospheric | air pressure of a furnace exterior space is so high that the position of the height direction is high, ie, the upstream position of the flow direction of a glass ribbon. Thereby, the magnitude | size of the upward airflow which generate | occur | produces along a furnace wall can be reduced in a furnace exterior space. In other words, since the temperature of the furnace internal space near the furnace wall can be prevented from fluctuating due to the temperature fluctuation of the furnace wall due to the rising air flow generated along the furnace wall, the temperature variation in the furnace internal space can also be suppressed.
(ガラスリボンの冷却)
 本実施形態では、ガラス板の熱収縮のばらつきを低減することができるが、さらに、成形されたガラスリボンの冷却速度を調整することにより、熱収縮のばらつきに加えて、ガラス板の変形を抑制し、反りを抑制し、熱収縮率の絶対値を低減することができる。
 具体的には、ローラを用いてガラスリボンを搬送しながら徐冷する徐冷工程では、ガラスリボンの徐冷点温度に150℃を足した温度から、ガラスリボンの歪点温度から200℃引いた温度までの温度領域を定める。このとき、少なくとも上記温度領域において、ガラスリボンの幅方向の中央部の冷却速度はガラスリボンの両端部の冷却速度よりも速く、ガラスリボンの幅方向の中央部の温度がガラスリボンの両端部よりも高い状態から中央部の温度が両端部よりも低い状態へガラスリボンを変化させることが好ましい。これにより、ガラスリボンの幅方向の中央部に、ガラスリボンの流れ方向に引張り応力が働くようにすることができる。ガラスリボンの流れ方向に引張り応力が働くことで、ガラスリボン、ひいてはガラス板の反りをより一層抑制することができる。
(Cooling of glass ribbon)
In this embodiment, variation in thermal shrinkage of the glass plate can be reduced, but furthermore, by adjusting the cooling rate of the molded glass ribbon, deformation of the glass plate is suppressed in addition to variation in thermal shrinkage. In addition, warpage can be suppressed and the absolute value of the heat shrinkage rate can be reduced.
Specifically, in the slow cooling process in which the glass ribbon is slowly transported using a roller, 200 ° C. is subtracted from the strain point temperature of the glass ribbon from the temperature obtained by adding 150 ° C. to the slow cooling point temperature of the glass ribbon. Define the temperature range up to the temperature. At this time, at least in the above temperature region, the cooling rate at the center in the width direction of the glass ribbon is faster than the cooling rate at both ends of the glass ribbon, and the temperature at the center in the width direction of the glass ribbon is higher than both ends of the glass ribbon. It is preferable to change the glass ribbon from a higher state to a state where the temperature at the center is lower than both ends. Thereby, a tensile stress can work in the flow direction of the glass ribbon at the center in the width direction of the glass ribbon. By applying a tensile stress in the flow direction of the glass ribbon, it is possible to further suppress the warpage of the glass ribbon, and thus the glass plate.
 さらに、徐冷工程は、第1の冷却工程と、第2の冷却工程と、第3の冷却工程と、を含むことができる。
 第1の冷却工程は、ガラスリボンの幅方向の中央部の温度が、徐冷点温度になるまで、第1の平均冷却速度で冷却する工程である。
 第2の冷却工程は、ガラスリボンの幅方向の中央部の温度が、徐冷点温度から歪点温度-50℃になるまで、第2の平均冷却速度で冷却する工程である。
 第3の冷却工程は、ガラスリボンの幅方向の中央部の温度が、歪点温度-50℃から歪点温度-200℃になるまで、第3の平均冷却速度で冷却する工程である。
 この場合、第1の平均冷却速度は、5℃/秒以上であり、第1の平均冷却速度は、第3の平均冷却速度より速く、第3の平均冷却速度は、第2の平均冷却速度より速くすることが好ましい。すなわち、平均冷却速度は、高い順番に、第1の平均冷却速度、第3の平均冷却速度、第2の平均冷却速度となっている。
 このとき、第1冷却工程におけるガラスリボンの中央部の平均冷却速度は、好ましくは、5.5℃/秒~50℃/秒である。第1冷却工程におけるガラスリボンの中央部の平均冷却速度が5.5℃/秒未満では、生産性が低下してしまう。他方、第1冷却工程におけるガラスリボンの中央部の平均冷却速度が50℃/秒超となると、平面歪や反りを抑制するために行うガラスリボンの幅方向の温度分布の制御がし難くなるため、好ましくない。第1冷却工程におけるガラスリボンの中央部の平均冷却速度は、より好ましくは8℃/秒~16.5℃/秒である。
 また、第2冷却工程(熱収縮低減処理工程)におけるガラスリボンの平均冷却速度は、好ましくは0.5~5.5℃/秒未満である。第2冷却工程におけるガラスリボンの中央部の平均冷却速度が、0.5℃/秒未満では、徐冷装置が長くなり製造設備が巨大化し、生産性が低下してしまう。他方、5.5℃/秒以上では、熱収縮率を十分に小さくすることができない。第2冷却工程におけるガラスリボンの中央部の平均冷却速度は、より好ましくは、0.5℃/秒~5.5℃/秒である。
 一方、第3冷却工程におけるガラスリボンの中央部の冷却速度は、特に制限はないが、1.5℃/秒~7℃/秒であることが好ましい。第3冷却工程におけるガラスリボンの中央部の冷却速度が1.5℃/秒未満では生産性が低下してしまう。他方、7℃/秒以上では、ガラスリボンが過度に急冷されることにより、ガラスリボンが割れてしまうおそれがある。以上のことから、第3冷却工程におけるガラスリボンの中央部の冷却速度は、好ましくは1.5℃/秒~7℃/秒であり、より好ましくは2℃/秒~5.5℃/秒である。
 ガラスリボンの流れ方向の冷却速度は、製造されるガラス板の熱収縮に影響を与える。しかし、徐冷工程において、上記冷却速度を設定することにより、ガラス板の製造量を向上させつつ、好適な熱収縮率を有するガラス板を得ることができる。
 このような冷却速度は、炉内部空間に設けられた図示されないヒータを用いて温度を制御することにより行われる。
 なお、徐冷工程後に熱収縮低減処理(オフラインアニール)工程を別途設けることで、熱収縮率を小さくすることもできる。しかし、徐冷工程とは別にオフラインアニール工程を設けると、生産性が低下し、コストが高騰してしまうという問題点がある。そのため、上述したように、徐冷工程においてガラス板の冷却速度を制御するという熱収縮低減処理(オンラインアニール)を施すことによって、熱収縮率を所定範囲内におさめることが好ましい。つまり、徐冷工程は、熱収縮低減処理工程を含むことが好ましい。なお、徐冷工程のうち上記第2冷却工程が、熱収縮低減処理工程にあたる。
Furthermore, the slow cooling step can include a first cooling step, a second cooling step, and a third cooling step.
The first cooling step is a step of cooling at the first average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the annealing point temperature.
The second cooling step is a step of cooling at the second average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the strain point temperature of −50 ° C. from the annealing point temperature.
The third cooling step is a step of cooling at the third average cooling rate until the temperature of the central portion in the width direction of the glass ribbon changes from the strain point temperature of −50 ° C. to the strain point temperature of −200 ° C.
In this case, the first average cooling rate is 5 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is the second average cooling rate. It is preferable to make it faster. That is, the average cooling rate is, in descending order, the first average cooling rate, the third average cooling rate, and the second average cooling rate.
At this time, the average cooling rate of the central portion of the glass ribbon in the first cooling step is preferably 5.5 ° C./second to 50 ° C./second. If the average cooling rate at the central portion of the glass ribbon in the first cooling step is less than 5.5 ° C./second, the productivity is lowered. On the other hand, when the average cooling rate of the central portion of the glass ribbon in the first cooling step exceeds 50 ° C./second, it becomes difficult to control the temperature distribution in the width direction of the glass ribbon to suppress plane distortion and warpage. It is not preferable. The average cooling rate at the center of the glass ribbon in the first cooling step is more preferably 8 ° C./second to 16.5 ° C./second.
The average cooling rate of the glass ribbon in the second cooling step (thermal shrinkage reduction treatment step) is preferably 0.5 to 5.5 ° C./second. When the average cooling rate at the central portion of the glass ribbon in the second cooling step is less than 0.5 ° C./second, the slow cooling device becomes long, the manufacturing equipment becomes huge, and the productivity decreases. On the other hand, at 5.5 ° C./second or more, the heat shrinkage rate cannot be sufficiently reduced. The average cooling rate at the center of the glass ribbon in the second cooling step is more preferably 0.5 ° C./second to 5.5 ° C./second.
On the other hand, the cooling rate of the central portion of the glass ribbon in the third cooling step is not particularly limited, but is preferably 1.5 ° C./second to 7 ° C./second. If the cooling rate of the central part of the glass ribbon in the third cooling step is less than 1.5 ° C./second, the productivity is lowered. On the other hand, at 7 ° C./second or more, the glass ribbon may be cracked due to excessive quenching of the glass ribbon. From the above, the cooling rate of the central portion of the glass ribbon in the third cooling step is preferably 1.5 ° C./second to 7 ° C./second, more preferably 2 ° C./second to 5.5 ° C./second. It is.
The cooling rate in the flow direction of the glass ribbon affects the heat shrinkage of the glass plate to be manufactured. However, in the slow cooling step, by setting the cooling rate, it is possible to obtain a glass plate having a suitable heat shrinkage rate while improving the production amount of the glass plate.
Such a cooling rate is performed by controlling the temperature using a heater (not shown) provided in the furnace internal space.
In addition, a thermal contraction rate can also be made small by providing a thermal contraction reduction process (offline annealing) process separately after a slow cooling process. However, if an offline annealing step is provided separately from the slow cooling step, there is a problem that productivity is lowered and costs are increased. Therefore, as described above, it is preferable to keep the thermal shrinkage rate within a predetermined range by performing a thermal shrinkage reduction process (online annealing) in which the cooling rate of the glass plate is controlled in the slow cooling step. That is, the slow cooling process preferably includes a heat shrinkage reduction process. In addition, the said 2nd cooling process corresponds to a thermal contraction reduction process process among slow cooling processes.
(ガラス板)
 本実施形態のガラス板に用いるガラスは、例えば、ボロシリケートガラス、アルミノシリケートガラス、アルミノボロシリケートガラス、ソーダライムガラス、アルカリシリケートガラス、アルカリアルミノシリケートガラス、アルカリアルミノゲルマネイトガラスなどを適用することができる。なお、本発明に適用できるガラスは上記に限定されるものではない。
(Glass plate)
As the glass used for the glass plate of the present embodiment, for example, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, alkali aluminogermanate glass, etc. can be applied. it can. The glass applicable to the present invention is not limited to the above.
(ガラス組成1)
 本実施形態で用いるガラス板のガラス組成は例えば以下のものを挙げることができる。
以下示す組成の含有率表示は、質量%である。
SiO:40~70%、
Al:2~25%、
:0~20%、
MgO:0~10%、
CaO:0~15%、
SrO:0~10%、
BaO:0~15%、
ZnO:0~10%、
ZrO:0~10%、
清澄剤:0~2%、
の無アルカリガラスである。
(Glass composition 1)
Examples of the glass composition of the glass plate used in the present embodiment include the following.
The content rate display of the composition shown below is mass%.
SiO 2 : 40 to 70%,
Al 2 O 3 : 2 to 25%,
B 2 O 3 : 0 to 20%,
MgO: 0 to 10%,
CaO: 0 to 15%,
SrO: 0 to 10%,
BaO: 0 to 15%,
ZnO: 0 to 10%,
ZrO 2 : 0 to 10%,
Refiner: 0-2%,
It is an alkali-free glass.
(ガラス組成2)
 また、下記組成の無アルカリガラスも例示される。以下の括弧内の表示は各成分の好ましい含有率であり、後ろに記載されるものほど好ましい。
SiO:50~70%(55~65%,57~64%,58~62%)、
Al:2~25%(10~20%,12~18%,15~18%)、
:0~20%(5~15%,6~13%,7~12%)。
 このとき、任意成分として下記の成分を含んでもよい。
MgO:0~10%(下限は0.01%,下限は0.5%,上限は5%,上限は4%,上限は2%)、
CaO:0~20%(下限は1%、下限は3%、下限は4%、上限は9%、上限は8%、
上限は7%、上限は6%)、
SrO:0~20%(下限は0.5%、下限は3%、上限は9%、上限は8%、上限は7%%、上限は6%)、
BaO:0~10%(上限は8%、上限は3%、上限は1%、上限は0.2%)、
ZrO2:0~10%(0~5%,0~4%,0~1%,0~0.1%)。
(Glass composition 2)
Moreover, the alkali free glass of the following composition is also illustrated. The indications in parentheses below are the preferred contents of each component, and the ones described later are more preferred.
SiO 2 : 50 to 70% (55 to 65%, 57 to 64%, 58 to 62%),
Al 2 O 3 : 2 to 25% (10 to 20%, 12 to 18%, 15 to 18%),
B 2 O 3 : 0 to 20% (5 to 15%, 6 to 13%, 7 to 12%).
At this time, the following components may be included as optional components.
MgO: 0 to 10% (lower limit is 0.01%, lower limit is 0.5%, upper limit is 5%, upper limit is 4%, upper limit is 2%),
CaO: 0 to 20% (lower limit is 1%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%,
Upper limit is 7%, upper limit is 6%),
SrO: 0 to 20% (lower limit is 0.5%, lower limit is 3%, upper limit is 9%, upper limit is 8%, upper limit is 7 %%, upper limit is 6%),
BaO: 0 to 10% (upper limit is 8%, upper limit is 3%, upper limit is 1%, upper limit is 0.2%),
ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
(ガラス組成3)
 特に、
SiO:50~70%、
:5~18%、
Al:0~25%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~20%(ただし、RはMg、Ca、Sr及びBaから選ばれる少なくとも1種であり、ガラス板が含有するものである)、
を含有することが好ましい。
 さらに、R’Oの合計が0.20%を超え2.0%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス板が含有するものである)含むことが好ましい。また、清澄剤を合計で0.05~1.5%含み、As23、Sb23及びPbOを実質的に含まないことが好ましい。また、ガラス中の酸化鉄の含有量が0.01~0.2%であることがさらに好ましい。
(Glass composition 3)
In particular,
SiO 2 : 50 to 70%,
B 2 O 3 : 5 to 18%,
Al 2 O 3 : 0 to 25%,
MgO: 0 to 10%,
CaO: 0-20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: 5 to 20% (where R is at least one selected from Mg, Ca, Sr and Ba, and the glass plate contains),
It is preferable to contain.
Furthermore, the total of R ′ 2 O exceeds 0.20% and is 2.0% or less (provided that R ′ is at least one selected from Li, Na and K, and is contained in the glass plate). It is preferable. Further, it is preferable that the total amount of fining agents is 0.05 to 1.5% and substantially free of As 2 O 3 , Sb 2 O 3 and PbO. More preferably, the iron oxide content in the glass is 0.01 to 0.2%.
(ガラス組成4)
 本実施形態で用いる他のガラス板のガラス組成は例えば以下のものを挙げることができる。ガラス板を以下に示すような組成にすることで、歪点温度を高くすることができ、ガラス板の熱収縮をより低減することができる。このため、下記組成のガラス板は、液晶ディスプレイ用ガラス基板や有機ELディスプレイ用ガラス基板に好適であり、特にポリシリコンTFTを適用するガラス基板に好適である。
 以下示す組成の含有率表示は、質量%である。以下の括弧内の表示は各成分の好ましい含有率であり、後ろに記載されるものほど好ましい。
SiO:57~75%、
Al:8~25%、
:3~11未満%、
CaO:0~20%、
MgO:0~15%、
の無アルカリガラス。
 このとき、下記の数式の何れかあるいは複数を満たすようにすると、耐失透性や熔解性を維持しつつ、歪点温度の向上やガラスの軽量化を実現できるため、よりポリシリコンTFT用ガラス基板に好適となる。
(SiO+Al)/B:8~20%(9~17%,9~15%,9~12%)
SrO+BaO:0~3.3%(0~1.5%、実質的に含まない)
CaO/RO:0.65%以上(0.8~1%,0.9~1%)(ただし、RはMg、Ca、Sr及びBaから選ばれる少なくとも1種であり、ガラス板が含有するものである)
SiO+Al:75%以上(75~90%、79~85%)
CaO/B:0.6%以上(0.9~3%、1.0~2%、1.1~1.5%)
(Glass composition 4)
Examples of the glass composition of the other glass plate used in the present embodiment include the following. By setting the glass plate to the composition shown below, the strain point temperature can be increased, and the thermal contraction of the glass plate can be further reduced. For this reason, the glass plate of the following composition is suitable for the glass substrate for liquid crystal displays and the glass substrate for organic EL displays, and is especially suitable for the glass substrate to which a polysilicon TFT is applied.
The content rate display of the composition shown below is mass%. The indications in parentheses below are the preferred contents of each component, and the ones described later are more preferred.
SiO 2 : 57 to 75%,
Al 2 O 3 : 8 to 25%,
B 2 O 3 : 3 to less than 11%,
CaO: 0-20%,
MgO: 0 to 15%,
Non-alkali glass.
At this time, if one or more of the following mathematical formulas are satisfied, it is possible to improve the strain point temperature and reduce the weight of the glass while maintaining devitrification resistance and meltability. Suitable for substrates.
(SiO 2 + Al 2 O 3 ) / B 2 O 3 : 8 to 20% (9 to 17%, 9 to 15%, 9 to 12%)
SrO + BaO: 0 to 3.3% (0 to 1.5%, substantially free)
CaO / RO: 0.65% or more (0.8 to 1%, 0.9 to 1%) (However, R is at least one selected from Mg, Ca, Sr and Ba, and is contained in the glass plate) )
SiO 2 + Al 2 O 3 : 75% or more (75 to 90%, 79 to 85%)
CaO / B 2 O 3 : 0.6% or more (0.9 to 3%, 1.0 to 2%, 1.1 to 1.5%)
 なお、上記各実施形態では無アルカリガラスとしたが、ガラス板はアルカリ金属を微量含んでいてもよい。アルカリ金属を含有させる場合、R’Oの合計が0.20%を超え2.0%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス板が含有するものである)含むことが好ましい。また、清澄剤を合計で0.05~1.5%含み、As23、Sb23及びPbOを実質的に含まないことが好ましい。また、ガラスの熔解を容易にするために、比抵抗を低下させるという観点から、ガラス中の酸化鉄の含有率が0.01~0.2%であることがさらに好ましい。 In addition, although it was set as the alkali free glass in each said embodiment, the glass plate may contain a trace amount of alkali metals. When the alkali metal is contained, the total of R ′ 2 O exceeds 0.20% and is 2.0% or less (provided that R ′ is at least one selected from Li, Na, and K, and is contained in the glass plate). It is preferable to contain. Further, it is preferable that the total amount of fining agents is 0.05 to 1.5% and substantially free of As 2 O 3 , Sb 2 O 3 and PbO. In order to facilitate melting of the glass, the content of iron oxide in the glass is more preferably 0.01 to 0.2% from the viewpoint of reducing the specific resistance.
(ガラス組成5)
 化学強化を施した後、カバーガラスや太陽電池用のガラス板に適用されるガラス板としては、例えば、ガラス板が質量%表示で、以下の成分を含むものが例示される。
SiO2:50~70%(55~65%,57~64%,57~62%)、
Al23:5~20%(9~18%,12~17%)、
Na2O:6~30%(7~20%,8~18%,10~15%)。
 このとき、任意成分として、下記の組成を含んでもよい。
Li2O:0~8%(0~6%,0~2%,0~0.6%,0~0.4%,0~0.2%)、
23:0~5%(0~2%,0~1%,0~0.8%)、
2O:0~10%(下限は1%、下限は2%、上限は6%、上限は5%、上限は4%)。
MgO:0~10%(下限は1%、下限は2%、下限は3%、下限は4%、上限は9%、上限は8%、上限は7%)、
CaO:0~20%(下限は0.1%、下限は1%、下限は2%、上限は10%、上限は5%、上限は4%、上限は3%)、
ZrO2:0~10%(0~5%,0~4%,0~1%,0~0.1%)。
(Glass composition 5)
Examples of the glass plate applied to the cover glass or the glass plate for solar cell after chemical strengthening include those in which the glass plate is in mass% and contains the following components.
SiO 2 : 50 to 70% (55 to 65%, 57 to 64%, 57 to 62%),
Al 2 O 3 : 5 to 20% (9 to 18%, 12 to 17%),
Na 2 O: 6-30% (7-20%, 8-18%, 10-15%).
At this time, the following composition may be included as an optional component.
Li 2 O: 0 to 8% (0 to 6%, 0 to 2%, 0 to 0.6%, 0 to 0.4%, 0 to 0.2%),
B 2 O 3 : 0 to 5% (0 to 2%, 0 to 1%, 0 to 0.8%),
K 2 O: 0 to 10% (lower limit is 1%, lower limit is 2%, upper limit is 6%, upper limit is 5%, upper limit is 4%).
MgO: 0 to 10% (lower limit is 1%, lower limit is 2%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, upper limit is 7%),
CaO: 0 to 20% (lower limit is 0.1%, lower limit is 1%, lower limit is 2%, upper limit is 10%, upper limit is 5%, upper limit is 4%, upper limit is 3%),
ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
(ガラス組成6)
 近年さらなるフラットパネルディスプレイの組み立ての高精細化を実現するために、アモルファスシリコンTFT(Thin Film Transistor)ではなく、ポリシリコン(低温ポリシリコン)TFTや酸化物半導体を用いたフラットパネルディスプレイが求められている。ここで、ポリシリコンTFTや酸化物半導体を用いたフラットパネル製造工程では、アモルファスシリコンTFTを用いたフラットパネル製造工程よりも高温な熱処理工程が存在する。そのため、ポリシリコンTFTや酸化物半導体が形成されるガラス板には、熱収縮率が小さいことが求められている。熱収縮率を小さくするためには、ガラス板の徐冷条件と、ガラスの歪点温度を高くすることが好ましい。特に、ポリシリコンTFTや酸化物半導体には、ガラスの歪点温度が675℃以上(歪点温度675℃~750℃)のガラス板が好適であり、歪点温度680℃以上(歪点温度680℃~750℃)のガラス板がさらに好適であり、歪点温度690℃以上(歪点温度690℃~750℃)のガラス板が特に好適である。
 ガラスの歪点温度が675℃以上のガラス板の組成としては、例えば、ガラス板が質量%表示で、以下の成分を含むものが例示される。
SiO2:52~78%、
Al23:3~25%、
23:3~15%、
RO(但し、ROはMgO、CaO、SrO及びBaOうち、ガラス板に含有される全成分のの合量):3~20%、
質量比(SiO2+Al23)/B23は7~20の範囲であるガラス板。
 この場合、SrO及びBaOの合計含有率が8質量%未満であることが軽量化及び熱膨張係数を小さくする点で好ましい。SrO及びBaOの合計含有率は、0~7%であることが好ましく、より好ましくは、0~5%であり、さらに好ましくは、0~3%であり、より一層好ましくは0~1%であり、特に、ガラス板の密度を低下させる場合には、SrO及びBaOを実質的に含有させないことが好ましい。実質的に含有させないとは、意図的に含有しないことを意味し、不可避的に不純物としてSrO及びBaOが混入することは排除しない。
 さらに、歪点温度をより上昇させるために、質量比(SiO2+Al23)/ROは7.5以上であることが好ましい。さらに、歪点温度を上昇させるために、β-OH値を0.1~0.3[mm-1]とすることが好ましい。他方、溶解時に溶融ガラスではなく溶解槽201に電流が流れないようにするために、ガラス板は、R2O(但し、R2Oは、Li2O、Na2O及びK2Oのうち、ガラス板に含有される全成分の合量)を0.01~0.8質量%含有することが、ガラスの比抵抗を低下させる点で好ましい。あるいは、ガラスの比抵抗を低下させるために、Fe23を0.01~1質量%含有することが好ましい。さらに、ガラス板は、高い歪点温度を実現しつつ失透温度の上昇を防止するためにCaO/ROは0.65以上とすることが好ましい。失透温度を1250℃以下とすることにより、オーバーフローダウンドロー法の適用が可能となる。また、モバイル通信端末のようなモバイル機器などに適用されることを考慮すると、軽量化の観点からはSrO及びBaOの合計含有率が0%以上2%未満であることが好ましい。
(Glass composition 6)
In recent years, flat panel displays that use polysilicon (low-temperature polysilicon) TFTs and oxide semiconductors instead of amorphous silicon TFTs (Thin Film Transistors) have been demanded in order to achieve further high-definition flat panel display assembly. Yes. Here, in the flat panel manufacturing process using the polysilicon TFT or the oxide semiconductor, there is a heat treatment process at a higher temperature than the flat panel manufacturing process using the amorphous silicon TFT. Therefore, a glass plate on which a polysilicon TFT or an oxide semiconductor is formed is required to have a low thermal shrinkage rate. In order to reduce the thermal shrinkage rate, it is preferable to increase the annealing conditions of the glass plate and the strain point temperature of the glass. In particular, for polysilicon TFTs and oxide semiconductors, a glass plate having a glass strain point temperature of 675 ° C. or higher (strain point temperature of 675 ° C. to 750 ° C.) is preferable, and a strain point temperature of 680 ° C. or higher (strain point temperature of 680 ° C.). A glass plate having a strain point temperature of 690 ° C. or higher (a strain point temperature of 690 ° C. to 750 ° C.) is particularly preferable.
As a composition of the glass plate whose strain point temperature of glass is 675 degreeC or more, for example, a glass plate is a mass% display and includes the following components.
SiO 2 : 52 to 78%,
Al 2 O 3 : 3 to 25%,
B 2 O 3 : 3 to 15%,
RO (where RO is the total amount of all components contained in the glass plate among MgO, CaO, SrO and BaO): 3 to 20%,
A glass plate having a mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 in the range of 7 to 20.
In this case, it is preferable that the total content of SrO and BaO is less than 8% by mass in terms of reducing weight and reducing the thermal expansion coefficient. The total content of SrO and BaO is preferably 0 to 7%, more preferably 0 to 5%, still more preferably 0 to 3%, still more preferably 0 to 1%. In particular, when reducing the density of the glass plate, it is preferable that SrO and BaO are not substantially contained. The fact that it is not substantially contained means that it is not intentionally contained, and it is not excluded that SrO and BaO are inevitably mixed as impurities.
Furthermore, in order to further increase the strain point temperature, the mass ratio (SiO 2 + Al 2 O 3 ) / RO is preferably 7.5 or more. Further, in order to increase the strain point temperature, the β-OH value is preferably set to 0.1 to 0.3 [mm −1 ]. On the other hand, in order to prevent current from flowing into the melting tank 201 instead of molten glass at the time of melting, the glass plate is made of R 2 O (where R 2 O is Li 2 O, Na 2 O and K 2 O). The total amount of all components contained in the glass plate is preferably 0.01 to 0.8% by mass from the viewpoint of reducing the specific resistance of the glass. Alternatively, it is preferable to contain 0.01 to 1% by mass of Fe 2 O 3 in order to reduce the specific resistance of the glass. Further, the glass plate preferably has a CaO / RO of 0.65 or more in order to prevent an increase in the devitrification temperature while realizing a high strain point temperature. By setting the devitrification temperature to 1250 ° C. or lower, the overflow downdraw method can be applied. In consideration of application to mobile devices such as mobile communication terminals, the total content of SrO and BaO is preferably 0% or more and less than 2% from the viewpoint of weight reduction.
(各成分の説明)
 SiOはガラス板のガラスの骨格をなす成分であり、ガラスの化学的耐久性と歪点温度を高める効果を有している。SiOの含有率が低すぎる場合には化学的耐久性と耐熱性の効果が十分に得られない。さらに、歪点温度が低下し、熱膨張係数が増大するため、熱収縮率が大きくなる。SiOの含有率が高すぎるとガラスが失透を起こしやすくなり、成形が困難になるとともに、粘性が上昇してガラスの均質化が困難になる。また、ガラスの比抵抗を増大させるので、熔解が困難となる。
(Description of each component)
SiO 2 is a component constituting the glass skeleton of the glass plate, and has the effect of increasing the chemical durability and strain point temperature of the glass. When the content of SiO 2 is too low, the effects of chemical durability and heat resistance cannot be obtained sufficiently. Furthermore, since the strain point temperature decreases and the thermal expansion coefficient increases, the thermal contraction rate increases. If the content of SiO 2 is too high, the glass tends to be devitrified, making molding difficult, and increasing the viscosity, making it difficult to homogenize the glass. Moreover, since the specific resistance of glass is increased, melting becomes difficult.
 Alはガラスの骨格をなす成分であり、ガラスの化学的耐久性と歪点温度を高める効果を有している。また、エッチング速度を高める効果を有している。Alの含有率が低すぎる場合にはガラスの化学的耐久性と耐熱性の効果が十分に得られない。また、歪点温度及びヤング率が低下する。一方、Alの含有率が高すぎると、ガラスの粘性が上昇して溶解が困難になるとともに、耐酸性が低下する。また、ガラスの比抵抗を増大させるので、熔解が困難となる。 Al 2 O 3 is a component forming a glass skeleton, and has an effect of increasing the chemical durability and strain point temperature of the glass. It also has the effect of increasing the etching rate. When the content of Al 2 O 3 is too low, the effects of chemical durability and heat resistance of the glass cannot be obtained sufficiently. In addition, the strain point temperature and Young's modulus are reduced. On the other hand, when the content ratio of Al 2 O 3 is too high, the viscosity of the glass increases to make it difficult to dissolve, and the acid resistance decreases. Moreover, since the specific resistance of glass is increased, melting becomes difficult.
 Bはガラスの粘性を下げて、ガラスの熔解及び清澄を促進する成分である。Bの含有率が低すぎると、熔解が困難となり、また、ガラスの耐酸性が低下する。また、耐失透性が低下し、熱膨張係数が増加する。他方、Bの含有率が高すぎると、歪点温度が低下するので、耐熱性が低下する。また、ヤング率が低下する。また、ガラス熔解時のBの揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる B 2 O 3 is a component that lowers the viscosity of the glass and promotes melting and clarification of the glass. If the content of B 2 O 3 is too low, melting becomes difficult, and the acid resistance of the glass decreases. Moreover, devitrification resistance falls and a thermal expansion coefficient increases. On the other hand, if the content of B 2 O 3 is too high, the strain point temperature is lowered, so that the heat resistance is lowered. In addition, Young's modulus decreases. Moreover, due to the volatilization of B 2 O 3 during glass melting, glass non-uniformity becomes prominent and striae are likely to occur.
 MgO及びCaOは、ガラスの粘性を下げて、ガラスの熔解及び清澄を促進する成分である。また、Mg及びCaは、アルカリ土類金属の中ではガラスの密度を上昇させる割合が小さいため、得られるガラスを軽量化しつつ熔解性を向上するためには有利な成分である。ただしそのMgO及びCaOの含有率が高くなりすぎると、歪点温度を低下させる。さらに、ガラスの化学的耐久性が低下する。なお、CaOは、比抵抗を低下させ、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのに有効な成分である。そのため、高歪点温度のガラスでは含有させることが好ましい。また、MgOは、ガラスの失透温度を上昇させるため、失透温度を低下させる場合には、実質的に含有させないことが好ましい。 MgO and CaO are components that lower the viscosity of the glass and promote glass melting and fining. Further, Mg and Ca are advantageous components for improving the meltability while reducing the weight of the obtained glass because the ratio of increasing the density of the glass is small in the alkaline earth metal. However, if the content of MgO and CaO becomes too high, the strain point temperature is lowered. Furthermore, the chemical durability of the glass is reduced. CaO is an effective component for reducing the specific resistance and improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. Therefore, it is preferable to contain in the glass of high strain point temperature. Moreover, since MgO raises the devitrification temperature of glass, when reducing a devitrification temperature, it is preferable not to contain substantially.
 SrO及びBaOは、ガラスの粘性を下げて、ガラスの熔解及び清澄を促進する成分である。また、ガラス原料の酸化性を高めて清澄性を高める成分でもある。ただし、SrO及びBaOの含有率が高くなりすぎると、ガラスの密度が上昇し、ガラス板の軽量化が図れないととともに、ガラスの化学的耐久性が低下する。なお、BaOは、環境負荷を軽減するためには、実質的に含有させないことが好ましい。なお、本明細書において、BaOを実質的に含まないとは、0.01%質量未満であって不純物を除き意図的に含有させないことを意味する。 SrO and BaO are components that lower the viscosity of the glass and promote glass melting and fining. Moreover, it is also a component which improves the oxidizability of a glass raw material and improves clarity. However, if the content of SrO and BaO becomes too high, the density of the glass increases, the weight of the glass plate cannot be reduced, and the chemical durability of the glass decreases. In order to reduce the environmental burden, BaO is preferably not substantially contained. In the present specification, “substantially free of BaO” means less than 0.01% by mass and is not intentionally contained except for impurities.
 LiO、NaO及びKOは、ガラスの粘度を低下させて、ガラスの熔解性や成形性を向上させる成分である。LiO、NaOやKOの含有率が低すぎる場合にはガラスの熔解性が低下し、熔解のためのコストが高くなる。他方、LiO、NaOやKOの含有率が高くなり過ぎると、ガラスバランスの悪化による耐失透性低下が生じる。 Li 2 O, Na 2 O, and K 2 O are components that reduce the viscosity of the glass and improve the meltability and moldability of the glass. When Li 2 O, Na 2 O and K 2 O content is too low it reduces the melting properties of the glass, the higher the cost for the melting. On the other hand, if the content of Li 2 O, Na 2 O, or K 2 O becomes too high, devitrification resistance decreases due to deterioration of the glass balance.
 なお、LiO,NaO,K2Oは、ガラスから溶出してTFTの特性を劣化させ、また、ガラスの熱膨張係数を大きくして熱処理時に基板を破損させる虞のある成分であることから、液晶ディスプレイ用ガラス基板や有機ELディスプレイ用ガラス基板として適用する場合には、実質的に含まないことが好ましい。しかし、ガラス中に上記成分を敢えて特定量含有させることによって、TFTの特性の劣化やガラスの熱膨張を一定範囲内に抑制しつつ、ガラスの塩基性度を高め、価数変動する金属の酸化を容易にして、清澄性を発揮させることが可能である。そこで、LiO,NaO,KOの合量は0~2.0%であり、0.1~1.0%がより好ましく、0.2~0.5%がさらに好ましい。なお、LiO,NaOは含有させずに、上記成分中でも、最もガラスから溶出してTFTの特性を劣化させ難いK2Oを含有させることが好ましい。KOの含有率は、0~2.0%であり、0.1~1.0%がより好ましく、0.2~0.5%がさらに好ましい。 Note that Li 2 O, Na 2 O, and K 2 O are components that may be eluted from the glass to deteriorate the TFT characteristics, and may increase the thermal expansion coefficient of the glass and damage the substrate during heat treatment. Therefore, when applied as a glass substrate for a liquid crystal display or a glass substrate for an organic EL display, it is preferably substantially not contained. However, by deliberately containing the above-mentioned components in the glass, the basicity of the glass is increased while the deterioration of the TFT characteristics and the thermal expansion of the glass are suppressed within a certain range, and the oxidation of the metal whose valence fluctuates. It is possible to make clear and exhibit clarity. Therefore, the total amount of Li 2 O, Na 2 O and K 2 O is 0 to 2.0%, more preferably 0.1 to 1.0%, and still more preferably 0.2 to 0.5%. Incidentally, Li 2 O, without Na 2 O is allowed to contain, in the component, most glass eluted from be contained hardly K 2 O which deteriorates the characteristics of the TFT are preferred. The content of K 2 O is 0 to 2.0%, more preferably 0.1 to 1.0%, and further preferably 0.2 to 0.5%.
 ZrOは、ガラスの失透温度付近の粘性や歪点温度を高くする成分である。また、ZrOは、ガラスの耐熱性を向上させる成分でもある。しかし、ZrOの含有率が高くなりすぎると、失透温度が上昇し、耐失透性が低下する。 ZrO 2 is a component that increases the viscosity near the devitrification temperature of glass and the strain point temperature. ZrO 2 is also a component that improves the heat resistance of the glass. However, if the content of ZrO 2 becomes too high, the devitrification temperature increases and the devitrification resistance decreases.
 TiOは、ガラスの高温粘度を低下させる成分である。しかし、TiOの含有率が高くなり過ぎると、耐失透性が低下してしまう。さらに、ガラスが着色し、電子機器の表示画面のカバーガラスなどへの適用は好ましくない。また、ガラスが着色することから、紫外線透過率が低下するので、紫外線硬化樹脂を使用した処理を行う場合に、紫外線硬化樹脂を十分に硬化することができないという不都合が生じる。 TiO 2 is a component that lowers the high temperature viscosity of the glass. However, when the content of TiO 2 becomes too high, the devitrification resistance is lowered. Furthermore, since the glass is colored, application to a cover glass of a display screen of an electronic device is not preferable. Further, since the glass is colored, the ultraviolet transmittance is reduced, and therefore, when the treatment using the ultraviolet curable resin is performed, there is a disadvantage that the ultraviolet curable resin cannot be sufficiently cured.
 ガラス板のガラスにおいて、ガラス中の気泡を脱泡させる成分として清澄剤を添加することができる。清澄剤としては、環境負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、酸化スズ、酸化鉄、酸化セリウム、酸化テルビウム、酸化モリブデン及び酸化タングステンといった金属酸化物から選ばれる少なくとも1種を挙げることができる。 In the glass of the glass plate, a clarifier can be added as a component for defoaming bubbles in the glass. The fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties. For example, from a metal oxide such as tin oxide, iron oxide, cerium oxide, terbium oxide, molybdenum oxide and tungsten oxide. There may be mentioned at least one selected.
 なお、As、Sb及びPbOは、溶融ガラス中で価数変動を伴う反応を生じ、ガラスを清澄する効果を有する物質であるが、As、Sb及びPbOは環境負荷が大きい物質であることから、実質的に含まないことが好ましい。なお、本明細書において、As、Sb及びPbOを実質的に含まないとは、0.01%質量未満であって不純物を除き意図的に含有させないことを意味する。 Note that As 2 O 3 , Sb 2 O 3 and PbO are substances having an effect of clarifying the glass by causing a reaction with valence fluctuation in the molten glass, but As 2 O 3 , Sb 2 O 3 and Since PbO is a substance having a large environmental load, it is preferable that PbO is not substantially contained. In the present specification, “substantially not containing As 2 O 3 , Sb 2 O 3 and PbO” means less than 0.01% by mass and intentionally not containing impurities.
 本実施形態のガラス板の厚さは、例えば0.1mm~1.5mmである。好ましくは0.1~1.2mm、より好ましくは0.3~1.0mm、さらにより好ましくは0.3~0.8mm、特に好ましくは0.3~0.5mmである。ここで、薄いガラス板ほど、ガラスの保有熱量が小さいため、成形炉40および徐冷炉50におけるガラス温度分布の制御が難しくなる。そのため、厚さ0.5mm以下のガラス板は、炉内部空間の温度を安定化させることができる本実施形態の方法を適用することで、ガラス板の変形、反り、平面歪のばらつき及び熱収縮のばらつきを抑制するといった効果が大きい。 The thickness of the glass plate of this embodiment is, for example, 0.1 mm to 1.5 mm. The thickness is preferably 0.1 to 1.2 mm, more preferably 0.3 to 1.0 mm, even more preferably 0.3 to 0.8 mm, and particularly preferably 0.3 to 0.5 mm. Here, the thinner the glass plate, the smaller the amount of heat held by the glass, making it difficult to control the glass temperature distribution in the forming furnace 40 and the slow cooling furnace 50. Therefore, a glass plate having a thickness of 0.5 mm or less is applied to the method of the present embodiment, which can stabilize the temperature of the furnace internal space, so that the glass plate is deformed, warped, and variations in plane distortion and heat shrinkage. This has a great effect of suppressing the variation of the image.
 本実施形態のガラス板の幅方向の長さは、例えば500mm~3500mmであり、1000mm~3500mmであることが好ましく、2000mm~3500mmであることがより好ましい。一方、ガラス板の縦方向の長さも、例えば500mm~3500mmであり、1000mm~3500mmであることが好ましく、2000mm~3500mmであることがより好ましい。
 なお、ガラス板が大型化すると、ガラス板の大きさに対応してガラス製造装置も大型化することになる。つまり、ガラス板が大型化すると、成形炉40や徐冷炉50を含む炉も大型化することになる。このため、炉内部空間は広くなり、炉外部空間から炉内部空間に、低温の空気が流入した際に、ガラスリボンGの冷却に与える影響はガラスリボンGの幅方向で異なる。したがって、ガラスリボンGの徐冷点温度~歪点温度に対応する領域がガラスリボンGの幅方向においてばらつき、ガラスリボンGが上記徐冷点温度~歪点温度を通過する時間がばらつく場合がある。この結果、ガラスリボンGの熱収縮も幅方向でばらつく。よって、ガラス板の幅方向の長さが2000mm以上の場合、本実施形態の効果、すなわちガラス板の変形、反り、平面歪のばらつき及び熱収縮のばらつきを抑制するといった効果が大きくなる。さらに、ガラス板の幅方向の長さが2500mm以上、3000mm以上となるほど、本実施形態の効果は顕著となる。
The length in the width direction of the glass plate of the present embodiment is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm. On the other hand, the length of the glass plate in the vertical direction is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
In addition, when a glass plate enlarges, a glass manufacturing apparatus will also be enlarged corresponding to the magnitude | size of a glass plate. That is, when the glass plate is enlarged, the furnace including the forming furnace 40 and the slow cooling furnace 50 is also enlarged. For this reason, the furnace internal space is widened, and when low-temperature air flows from the furnace external space into the furnace internal space, the influence on the cooling of the glass ribbon G differs in the width direction of the glass ribbon G. Accordingly, the region corresponding to the annealing point temperature to the strain point temperature of the glass ribbon G varies in the width direction of the glass ribbon G, and the time for the glass ribbon G to pass the annealing point temperature to the strain point temperature may vary. . As a result, the thermal contraction of the glass ribbon G also varies in the width direction. Therefore, when the length in the width direction of the glass plate is 2000 mm or more, the effect of the present embodiment, that is, the effect of suppressing the deformation, warpage, plane distortion variation, and thermal shrinkage variation of the glass plate is increased. Furthermore, the effect of this embodiment becomes remarkable, so that the length of the glass plate in the width direction is 2500 mm or more and 3000 mm or more.
(ガラス板の特性:熱収縮率)
 本実施形態で製造されるガラス板において、550℃の温度雰囲気に2時間放置した際の熱収縮率が、110ppm以下、80ppm以下、50ppm以下、好ましくは40ppm以下であり、より好ましくは35ppm以下であり、さらに好ましくは30ppm以下、特に好ましくは20ppm以下である。特に、ポリシリコンTFTを形成するガラス板では、50ppm以下であることが好ましい。なお、熱収縮率は、熱収縮量/初期の長さ×10(ppm)にて算出される。熱収縮率の測定方法として、以下の方法が例示される。
1.ガラス板の両端にダイヤモンドペンを用いて平行なケガキ線を入れる。
2.ガラス板をケガキ線に対して垂直方向に半分に切断し、その1つを熱処理する(上記では、550℃2時間)。
3.熱処理後のガラス板と、他方のガラス板とをつき合わせて、ケガキ線のズレ量を測定する。
(Characteristics of glass plate: thermal shrinkage)
In the glass plate produced in the present embodiment, the thermal shrinkage rate when left in a temperature atmosphere at 550 ° C. for 2 hours is 110 ppm or less, 80 ppm or less, 50 ppm or less, preferably 40 ppm or less, more preferably 35 ppm or less. Yes, more preferably 30 ppm or less, particularly preferably 20 ppm or less. In particular, in a glass plate for forming a polysilicon TFT, it is preferably 50 ppm or less. The heat shrinkage rate is calculated by heat shrinkage / initial length × 10 6 (ppm). The following methods are exemplified as a method for measuring the heat shrinkage rate.
1. Put parallel marking lines on both ends of the glass plate using a diamond pen.
2. The glass plate is cut in half in a direction perpendicular to the marking line, and one of them is heat-treated (in the above, 550 ° C. for 2 hours).
3. The glass plate after the heat treatment and the other glass plate are put together to measure the amount of deviation of the marking line.
(ガラス板の特性:熱収縮率のばらつき)
 熱収縮率のばらつきは、特に、ディスプレイの作製においてガラス板にTFTを形成する場合、熱収縮率の高低よりも、ディスプレイパネルにおける表示不良の原因になり易い。この点で、熱収縮率のばらつきを抑えることは重要である。なお、ガラス板の熱収縮率のばらつきは、±3.05%以下であることが好ましい。ここで熱収縮率のばらつきとは、ガラス板の幅方向の3箇所の位置(例えば、中央部の位置及び幅方向の両端部近傍の位置)において上記方法で熱収縮率を測定したとき、これらの位置における測定値が、これらの平均値に対して変動する上限(+)及び下限(-)をいう。このガラス板の熱収縮のばらつきは、好ましくは±3.0%以下、より好ましくは±2.85%以下、さらに好ましくは±2.7%以下、さらに好ましくは±2.65%以下である。特に、熱収縮率を低減するガラス組成を選択して製造した高歪点ガラスでは、熱収縮率のばらつきは、±3.0%以下であることが好ましい。好ましくは±2.8%以下、より好ましくは±2.7%以下、さらに好ましくは±2.6%以下である。ここで、本明細書において、高歪点ガラスとは、歪点温度が680℃以上のガラスを示す。
(Characteristics of glass plate: variation in thermal shrinkage)
The variation in the heat shrinkage rate is more likely to cause a display defect in the display panel than when the heat shrinkage rate is high or low, particularly when a TFT is formed on a glass plate in the production of a display. In this respect, it is important to suppress variations in the heat shrinkage rate. In addition, it is preferable that the dispersion | variation in the thermal contraction rate of a glass plate is +/- 3.05% or less. Here, the variation in the heat shrinkage rate means that when the heat shrinkage rate is measured by the above method at three positions in the width direction of the glass plate (for example, the position of the central portion and the position in the vicinity of both end portions in the width direction). The upper limit (+) and lower limit (−) at which the measured value at the position fluctuates with respect to the average value. The variation in thermal shrinkage of the glass plate is preferably ± 3.0% or less, more preferably ± 2.85% or less, still more preferably ± 2.7% or less, and further preferably ± 2.65% or less. . In particular, in a high strain point glass manufactured by selecting a glass composition that reduces the thermal shrinkage rate, the variation in the thermal shrinkage rate is preferably ± 3.0% or less. Preferably, it is ± 2.8% or less, more preferably ± 2.7% or less, and further preferably ± 2.6% or less. Here, in this specification, high strain point glass refers to glass having a strain point temperature of 680 ° C. or higher.
(ガラス板の特性:平面歪)
 また、ガラス板の平面歪の最大値(リターデーション値の最大値)は、1.7nm以下であることが好ましい。好ましくは、1.3nm以下、より好ましくは、1.0nm以下、さらに好ましくは、0.7nm以下である。なお、平面歪は、例えば、ユニオプト社製の複屈折測定装置によって測定される。ここで、液晶ディスプレイは高精度な組立が求められているため、ガラス板の平面歪を低減させることができる本実施形態の方法は、液晶ディスプレイ用ガラス基板の製造に特に好適に用いられる。
(Characteristics of glass plate: plane strain)
Moreover, it is preferable that the maximum value (flat value of retardation value) of the plane distortion of a glass plate is 1.7 nm or less. Preferably, it is 1.3 nm or less, More preferably, it is 1.0 nm or less, More preferably, it is 0.7 nm or less. The plane strain is measured by, for example, a birefringence measuring device manufactured by UNIOPT. Here, since the liquid crystal display is required to be assembled with high accuracy, the method of the present embodiment capable of reducing the plane distortion of the glass plate is particularly preferably used for manufacturing a glass substrate for a liquid crystal display.
(ガラス板:反り)
 ガラス板の反りは、以下の方法で測定を行った場合に、反りの最大値が0から0.2mmまでの範囲であり、好ましくは0~0.15mmであり、より好ましく0~0.1mm以下であり、さらに好ましくは0~0.05mm以下であり、特に好ましくは0~0.05mm以下である。
 反りの測定は、
1.まず、ガラス板から複数枚の小板(約400mm四方の矩形板)を切り出す。
2.次に、各小板につき、角4箇所と中央部4箇所との反りを、表裏のそれぞれにおいて測定する(すなわち、計16箇所の反りを測定する)。例えば、小板8枚の反りを測定した場合、16箇所×8枚で128箇所の反りの測定データが得られる。
3.2で得られた測定データの中の最大値が、上述の範囲であるか否かを確認する。なお、本実施形態では、複数の小板で測定した反りの最大値を、ガラス板の反りとする。
(Glass plate: Warpage)
The warpage of the glass plate, when measured by the following method, has a maximum warpage in the range of 0 to 0.2 mm, preferably 0 to 0.15 mm, more preferably 0 to 0.1 mm. Or less, more preferably 0 to 0.05 mm or less, and particularly preferably 0 to 0.05 mm or less.
The measurement of warpage is
1. First, a plurality of small plates (about 400 mm square plates) are cut out from a glass plate.
2. Next, for each of the small plates, the warpage of the four corners and the four central portions is measured on each of the front and back sides (that is, a total of 16 warpages are measured). For example, when the warpage of 8 small plates is measured, measurement data of 128 warpages is obtained at 16 locations × 8.
Check whether the maximum value in the measurement data obtained in 3.2 is within the above range. In the present embodiment, the maximum value of warpage measured with a plurality of small plates is taken as the warpage of the glass plate.
実験1Experiment 1
 本実施形態の効果を確認するために、ガラス板の製造方法を種々変更してガラス板を製造し、さらに、液晶ディスプレイを作製するときと同じ条件で熱処理を行って上述した方法で熱収縮率及び平面歪を測り、さらにそれぞれの熱収縮率のばらつきを求めた。 In order to confirm the effect of the present embodiment, the glass plate is manufactured by variously changing the manufacturing method of the glass plate, and further heat treatment is performed under the same conditions as when the liquid crystal display is manufactured, and the heat shrinkage rate is obtained by the method described above In addition, the plane strain was measured, and the variation of the thermal shrinkage rate was obtained.
1.実施例1
 炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ方向の同じ位置に対応する炉外部空間と、の気圧差が5Pa(詳細には3~7Pa)となるように、炉外部空間の気圧を調整した。
 製造したガラス板は液晶ディスプレイ用ガラス基板であり、大きさは2200mm×2500mm、厚さは0.7mmである。ガラス板のガラス組成は以下のとおりであった。含有率は質量%表示である。
 SiO2 60%
 Al23 19.5%
 B23 10%
 CaO 5%
 SrO 5%
 SnO2 0.5%
1. Example 1
In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space corresponding to the same position in the height direction of this region is 5 Pa (in detail) Was adjusted to 3 to 7 Pa).
The manufactured glass plate is a glass substrate for a liquid crystal display, and has a size of 2200 mm × 2500 mm and a thickness of 0.7 mm. The glass composition of the glass plate was as follows. The content rate is expressed by mass%.
SiO 2 60%
Al 2 O 3 19.5%
B 2 O 3 10%
CaO 5%
SrO 5%
SnO 2 0.5%
2.実施例2
 実施例1と同様に、炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が5Pa(詳細には3~7Pa)となるように、炉外部空間の気圧を調整した。
 製造したガラス板の厚さは実施例1と同じであるが、ガラス組成が下記の通りである(含有率は質量%表示である)。なお、ガラス板の大きさは、1100mm×1300mmである。このガラス板は、ポリシリコンTFTを形成する液晶ディスプレイ用ガラス基板として用いられる。
 SiO 66%
 Al 17.5%
 B 7.5%
 CaO 8.5%
 SnO 0.5%
2. Example 2
As in Example 1, the pressure difference between the region in the furnace internal space where the temperature of the glass ribbon G is between the annealing point temperature and the strain point temperature and the space outside the furnace corresponding to the height position of this region is The pressure in the external space of the furnace was adjusted so as to be 5 Pa (specifically, 3 to 7 Pa).
Although the thickness of the manufactured glass plate is the same as Example 1, glass composition is as follows (a content rate is a mass% display). In addition, the magnitude | size of a glass plate is 1100 mm x 1300 mm. This glass plate is used as a glass substrate for a liquid crystal display for forming a polysilicon TFT.
SiO 2 66%
Al 2 O 3 17.5%
B 2 O 3 7.5%
CaO 8.5%
SnO 2 0.5%
3.実施例3
 炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が20Pa(詳細には18~22Pa)である以外は、実施例1と同様の方法で液晶ディスプレイ用ガラス基板の製造を行った。
3. Example 3
In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space of the furnace corresponding to the height position of this region is 20 Pa (specifically, 18 to A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that the pressure was 22 Pa).
4.実施例4
 炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が20Pa(詳細には18~22Pa)である以外は、実施例2と同様の方法でポリシリコンTFTを形成する液晶ディスプレイ用ガラス基板の製造を行った。
4). Example 4
In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space of the furnace corresponding to the height position of this region is 20 Pa (specifically, 18 to The glass substrate for liquid crystal display which forms a polysilicon TFT was manufactured by the method similar to Example 2 except being 22Pa).
5.実施例5
炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が35Pa(詳細には33~37Pa)である以外は、実施例1と同様の方法で液晶ディスプレイ用ガラス基板の製造を行った。
5. Example 5
In the interior space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the space outside the furnace corresponding to the height position of this region is 35 Pa (specifically 33 to A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that the pressure was 37 Pa).
6.実施例6
 炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が35Pa(詳細には33~37Pa)である以外は、実施例2と同様の方法でポリシリコンTFTを形成する液晶ディスプレイ用ガラス基板の製造を行った。
6). Example 6
In the interior space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the space outside the furnace corresponding to the height position of this region is 35 Pa (specifically 33 to The glass substrate for liquid crystal display which forms a polysilicon TFT by the method similar to Example 2 except having been 37 Pa) was manufactured.
7.実施例7
 炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が60Pa(詳細には55~65Pa)である以外は、実施例1と同様の方法で液晶ディスプレイ用ガラス基板の製造を行った。
7). Example 7
In the inner space of the furnace, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the outer space of the furnace corresponding to the height position of this region is 60 Pa (specifically 55 to A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that the pressure was 65 Pa).
8.比較例
 炉内部空間のうち、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間と、の気圧差が-5Pa(詳細には、-6~-4Pa)(つまり、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域よりも、この領域の高さ位置に対応する炉外部空間の方が気圧が高い)である以外は、実施例1と同様の方法で液晶ディスプレイ用ガラス基板の製造を行った。
8). Comparative Example In the furnace internal space, the pressure difference between the region where the temperature of the glass ribbon G is between the annealing point temperature and the strain point temperature and the space outside the furnace corresponding to the height position of this region is −5 Pa (in detail) Is −6 to −4 Pa) (that is, the pressure in the external space corresponding to the height position of this region is higher than that in the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature) A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that.
 下記表1は、実施例1~7と比較例の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the evaluation results of Examples 1 to 7 and Comparative Example.
Figure JPOXMLDOC01-appb-T000001
 上記表より、本実施形態の方法の効果は明らかである。 From the above table, the effect of the method of the present embodiment is clear.
実験2Experiment 2
 また、ガラス原料を溶解して溶融ガラスとし、清澄、攪拌を行った後、成形装置200に溶融ガラスを供給して、オーバーフローダウンドロー法によりガラス板を製造した。その後、ガラス板を切断し、長手方向1100mm、幅方向1300mm、厚さ0.5mmのガラス板を製造した。このとき、炉外部空間の気圧は、下記表2に示すように上流側ほど高くなるように制御されていた。なお、溶融ガラスに含まれる各成分の含有率は、以下の通りである。 Further, after melting the glass raw material to obtain molten glass, clarification and stirring were performed, the molten glass was supplied to the forming apparatus 200, and a glass plate was produced by the overflow down draw method. Thereafter, the glass plate was cut to produce a glass plate having a longitudinal direction of 1100 mm, a width direction of 1300 mm, and a thickness of 0.5 mm. At this time, the atmospheric pressure in the furnace outer space was controlled to be higher toward the upstream side as shown in Table 2 below. In addition, the content rate of each component contained in a molten glass is as follows.
 SiO2 60%
 Al23 19.5%
 B23 10%
 CaO 5%
 SrO 5%
 SnO2 0.5%
SiO 2 60%
Al 2 O 3 19.5%
B 2 O 3 10%
CaO 5%
SrO 5%
SnO 2 0.5%
 このとき、実施例8~12で製造されたガラス板の最大歪(リターデーションの最大値)は、1.6nm以下であった。また、ガラス板の反りは、0.18mm以下であった。特に、実施例9~11で製造されたガラス板の最大歪(リターデーションの最大値)は、1.0nm以下であった。また、ガラス板の反りは、0.15mm以下であった。 At this time, the maximum strain (maximum value of retardation) of the glass plates produced in Examples 8 to 12 was 1.6 nm or less. Moreover, the curvature of the glass plate was 0.18 mm or less. In particular, the maximum strain (maximum retardation value) of the glass plates produced in Examples 9 to 11 was 1.0 nm or less. Moreover, the curvature of the glass plate was 0.15 mm or less.
 実施例8~12では、図3に示す炉外部空間S3a,S3bを連通させて1つの空間として気圧を制御した。その際、ガラスリボンGの温度が徐冷点温度~歪点温度となる領域と、この領域の高さ位置に対応する炉外部空間S3a,S3bと、の気圧差が10~20Paとなるように炉外部空間の気圧を調整した。炉外部空間S3cにおける気圧と炉内部空間の対応する位置における気圧差は5Pa(詳細には3~7Pa)となるように炉外部空間S3cの気圧を調整した。下記表2は、実施例8~12の条件と評価結果を示す。 In Examples 8 to 12, the furnace external spaces S3a and S3b shown in FIG. 3 were connected to control the atmospheric pressure as one space. At that time, the pressure difference between the region where the temperature of the glass ribbon G is the annealing point temperature to the strain point temperature and the furnace external space S3a, S3b corresponding to the height position of this region is 10 to 20 Pa. The pressure in the space outside the furnace was adjusted. The air pressure in the furnace external space S3c was adjusted so that the difference between the air pressure in the furnace external space S3c and the pressure in the corresponding position in the furnace internal space was 5 Pa (specifically, 3 to 7 Pa). Table 2 below shows the conditions and evaluation results of Examples 8 to 12.
 P1:成形炉外部上方空間S1の気圧[Pa]
 P2:炉外部空間S2の気圧[Pa]
 P3:炉外部空間S3a,S3bの気圧[Pa]
 P4:空間S4の気圧[Pa]
P1: Air pressure [Pa] in the upper space S1 outside the forming furnace
P2: Pressure in the furnace outer space S2 [Pa]
P3: Pressure in the furnace outer space S3a, S3b [Pa]
P4: Pressure in space S4 [Pa]
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、炉外部空間の気圧は、ガラスリボンGの流れの上流側ほど高くなるように制御されることが、最大歪および反り低減する点で好ましいことがわかる。 From Table 2, it can be seen that it is preferable to control the atmospheric pressure in the outside space of the furnace so that the upstream side of the flow of the glass ribbon G becomes higher in terms of reducing the maximum strain and warpage.
 以上まとめると、本明細書は、以下の形態を開示する。 In summary, the present specification discloses the following forms.
(開示1)
 ダウンドロー法によるガラス板の製造方法であって、
 ガラス原料を溶解して溶融ガラスを得る溶解工程と、
 前記溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンを成形し、前記ガラスリボンの流れを作る成形工程と、
 前記ガラスリボンを、徐冷炉内に設けられたローラで牽引して前記徐冷炉内で冷却する徐冷工程と、
 冷却された前記ガラスリボンを切断空間で切断する切断工程と、を含み、
 前記成形体が設けられた前記成形炉の内部空間および前記ローラが設けられた前記徐冷炉の内部空間を炉内部空間とし、前記成形炉および前記徐冷炉の外部空間を炉外部空間としたとき、前記炉外部空間は、大気圧雰囲気に対して隔壁で区切られた空間であり、前記炉外部空間の少なくとも一部分の気圧は、前記ガラスリボンの流れ方向の同じ位置における、前記炉内部空間の気圧に対して低くなるように、気圧の調整がされている、ことを特徴とするガラス板の製造方法。
(Disclosure 1)
A method for producing a glass plate by a downdraw method,
A melting step of melting glass raw material to obtain molten glass;
Forming the glass ribbon by supplying the molten glass to a molded body provided in a molding furnace, and forming a flow of the glass ribbon;
A slow cooling step of cooling the glass ribbon in the slow cooling furnace by pulling with a roller provided in the slow cooling furnace;
Cutting the cooled glass ribbon in a cutting space, and
When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon. A method for producing a glass plate, wherein the atmospheric pressure is adjusted so as to be low.
(開示2)
 前記炉外部空間の気圧は、前記ガラスリボンの徐冷点温度に対応する前記徐冷炉内の位置と、前記ガラスリボンの歪点温度に対応する前記徐冷炉内の位置との間の領域において、前記炉内部空間の同じ位置における気圧に対して低くなるように、気圧の調整がされている、開示1に記載のガラス板の製造方法。
(Disclosure 2)
The pressure in the outer space of the furnace is in the region between the position in the slow cooling furnace corresponding to the slow cooling point temperature of the glass ribbon and the position in the slow cooling furnace corresponding to the strain point temperature of the glass ribbon. The manufacturing method of the glass plate of Claim 1 by which the atmospheric pressure is adjusted so that it may become low with respect to the atmospheric pressure in the same position of internal space.
(開示3)
 前記炉外部空間の前記少なくとも一部分の気圧について、前記ガラスリボンの流れ方向の同じ位置において、前記炉内部空間の気圧と前記炉外部空間の気圧との差分が40Pa以下である、開示1または2に記載のガラス板の製造方法。
(Disclosure 3)
Disclosure 1 or 2, wherein the difference between the atmospheric pressure in the furnace internal space and the atmospheric pressure in the furnace external space is 40 Pa or less at the same position in the flow direction of the glass ribbon with respect to the atmospheric pressure of the at least part of the furnace external space. The manufacturing method of the glass plate of description.
(開示4)
 前記炉外部空間の気圧は大気圧に対して高くなるように調整されている、開示1~3のいずれかに記載のガラス板の製造方法。
(Disclosure 4)
The method for producing a glass plate according to any one of disclosures 1 to 3, wherein the pressure in the space outside the furnace is adjusted to be higher than the atmospheric pressure.
(開示5)
 前記炉外部空間は、前記成形炉の前記内部空間の天井面に対して上方に位置する上部空間を有し、前記上部空間は、前記上部空間から前記炉内部空間に空気が流入しないように、前記上部空間の気圧は調整されている、開示1~4のいずれかに記載のガラス板の製造方法。
(Disclosure 5)
The furnace outer space has an upper space located above the ceiling surface of the inner space of the molding furnace, and the upper space does not allow air to flow from the upper space into the furnace inner space. The method for producing a glass plate according to any one of disclosures 1 to 4, wherein the pressure in the upper space is adjusted.
(開示6)
 前記ガラスリボンの流れ方向は鉛直方向であり、
 前記成形炉は前記徐冷炉に対して鉛直上方に設けられ、
 前記炉外部空間は、鉛直方向に複数の部分空間に区分けされ、
 前記部分空間のそれぞれの気圧と、当該部分空間の鉛直方向の同じ位置における前記炉内部空間の気圧との差分を、前記部分空間のうち最上部の部分空間と最下部の部分空間と間で比較したとき、前記最上部における前記差分は、前記最下部における前記差分に比べて大きくなるように、気圧が調整されている、開示1~5のいずれかに記載のガラス板の製造方法。
(Disclosure 6)
The flow direction of the glass ribbon is a vertical direction,
The molding furnace is provided vertically above the slow cooling furnace,
The furnace outer space is divided into a plurality of partial spaces in the vertical direction,
The difference between each atmospheric pressure in the partial space and the atmospheric pressure in the furnace internal space at the same position in the vertical direction of the partial space is compared between the uppermost partial space and the lowermost partial space. The method for producing a glass sheet according to any one of claims 1 to 5, wherein the atmospheric pressure is adjusted so that the difference at the uppermost portion is larger than the difference at the lowermost portion.
(開示7)
 前記部分空間の前記気圧の前記差分は、上方に行くほど大きくなる、開示6に記載のガラス板の製造方法。
(Disclosure 7)
The manufacturing method of the glass plate of Claim 6 with which the said difference of the said atmospheric | air pressure of the said partial space becomes large, so that it goes upwards.
(開示8)
 前記ガラス板は、TFT(Thin Film Transistor)を表面に形成する液晶ディスプレイ用ガラス基板である、開示1~7のいずれかに記載のガラス板の製造方法。
(Disclosure 8)
The glass plate manufacturing method according to any one of disclosures 1 to 7, wherein the glass plate is a glass substrate for a liquid crystal display on which a TFT (Thin Film Transistor) is formed.
(開示9)
 前記炉外部空間が、前記ガラスリボンの流れ方向において、前記成形体と同じ位置にある第1部分空間を含むとき、前記第1部分空間の気圧と前記ガラスリボンの流れ方向の同じ位置における前記炉内部空間の気圧の差分は、0より大きく40Pa以下である、開示1~8のいずれかに記載のガラス板の製造方法。
(Disclosure 9)
When the outer space of the furnace includes a first partial space at the same position as the formed body in the flow direction of the glass ribbon, the furnace at the same position in the flow direction of the glass ribbon and the atmospheric pressure of the first partial space The method for producing a glass plate according to any one of disclosures 1 to 8, wherein a difference in atmospheric pressure in the internal space is greater than 0 and 40 Pa or less.
(開示10)
 前記炉外部空間は、前記ガラスリボンの流れ方向において、前記徐冷炉と同じ位置にある第2部分空間を含み、前記徐冷炉の炉内部空間の気圧と前記第2部分空間の気圧の差分は、0より大きく40Pa以下である、開示1~9のいずれかに記載のガラス板の製造方法。
(Disclosure 10)
The furnace outer space includes a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the difference between the atmospheric pressure of the furnace internal space of the slow cooling furnace and the atmospheric pressure of the second partial space is 0 The method for producing a glass plate according to any one of Disclosures 1 to 9, which is largely 40 Pa or less.
(開示11)
 前記炉外部空間は、前記ガラスリボンの流れ方向において、前記成形体と同じ位置にある第1部分空間と、前記徐冷炉と同じ位置にある第2部分空間を含み、前記第1部分空間と前記第2部分空間が壁により仕切られて隣り合うとき、前記炉外部空間の前記第1部分空間の気圧は前記第2部分空間の気圧に比べて大きく、前記第1部分空間の気圧と前記前記第2部分空間の気圧の差分が20Paより小さい、開示1~10のいずれかに記載のガラス板の製造方法。
(Disclosure 11)
The furnace external space includes a first partial space located at the same position as the formed body and a second partial space located at the same position as the slow cooling furnace in the flow direction of the glass ribbon, and the first partial space and the first When two partial spaces are separated by a wall and adjacent to each other, the atmospheric pressure in the first partial space of the furnace external space is larger than the atmospheric pressure in the second partial space, and the atmospheric pressure in the first partial space and the second The method for producing a glass plate according to any one of disclosures 1 to 10, wherein the difference in atmospheric pressure in the partial space is less than 20 Pa.
(開示12)
 前記炉外部空間が、前記徐冷炉と同じ位置にある複数の第2部分空間を含み、複数の前記第2部分空間は、前記溶融ガラスの流れ方向の上流側ほど気圧が高くなっている、開示1~11のいずれかに記載のガラス板の製造方法。
(Disclosure 12)
The furnace exterior space includes a plurality of second partial spaces at the same position as the slow cooling furnace, and the plurality of the second partial spaces have a higher atmospheric pressure toward the upstream side in the flow direction of the molten glass. 12. A method for producing a glass plate according to any one of.
(開示13)
 前記徐冷工程は、
 前記ガラスリボンの幅方向の中央部に、前記ガラスリボンの流れ方向に引張り応力が働くように、
 少なくとも、前記ガラスリボンの徐冷点温度に150℃を足した温度から、前記ガラスリボンの歪点温度から200℃引いた温度までの温度領域において、
 前記ガラスリボンの幅方向の中央部の冷却速度は前記両端部の冷却速度よりも速く、
 前記ガラスリボンの幅方向の中央部の温度が前記両端部よりも高い状態から前記中央部の温度が前記両端部よりも低い状態へ前記ガラスリボンを変化させる、開示1~12のいずれかに記載のガラス板の製造方法。
(Disclosure 13)
The slow cooling step includes
In the central part of the width direction of the glass ribbon, so that a tensile stress works in the flow direction of the glass ribbon,
At least in a temperature range from a temperature obtained by adding 150 ° C. to the annealing point temperature of the glass ribbon to a temperature obtained by subtracting 200 ° C. from the strain point temperature of the glass ribbon,
The cooling rate of the central part in the width direction of the glass ribbon is faster than the cooling rate of the both end parts,
The disclosure 1 to 12, wherein the glass ribbon is changed from a state in which a temperature in a central portion in the width direction of the glass ribbon is higher than the both end portions to a state in which the temperature in the central portion is lower than the both end portions. Manufacturing method of glass plate.
(開示14)
 前記徐冷工程は、第1の冷却工程と、第2の冷却工程と、第3の冷却工程と、を含み、
 前記第1の冷却工程は、ガラスリボンの幅方向の中央部の温度が、徐冷点温度になるまで、第1の平均冷却速度で冷却する工程であり、
 前記第2の冷却工程は、ガラスリボンの幅方向の中央部の温度が、徐冷点温度から歪点温度-50℃になるまで、第2の平均冷却速度で冷却する工程であり、
 前記第3の冷却工程は、ガラスリボンの幅方向の中央部の温度が、歪点温度-50℃から歪点温度-200℃になるまで、第3の平均冷却速度で冷却する工程であり、
 前記第1の平均冷却速度は、5.0℃/秒以上であり、前記第1の平均冷却速度は、前記第3の平均冷却速度より速く、前記第3の平均冷却速度は、前記第2の平均冷却速度より速くする、開示1~13のいずれかに記載のガラス板の製造方法。
(Disclosure 14)
The slow cooling step includes a first cooling step, a second cooling step, and a third cooling step,
The first cooling step is a step of cooling at the first average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the annealing point temperature,
The second cooling step is a step of cooling at the second average cooling rate until the temperature of the central portion in the width direction of the glass ribbon reaches the strain point temperature of −50 ° C. from the annealing point temperature,
The third cooling step is a step of cooling at a third average cooling rate until the temperature of the central portion in the width direction of the glass ribbon becomes a strain point temperature of −50 ° C. to a strain point temperature of −200 ° C.
The first average cooling rate is 5.0 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is the second 14. The method for producing a glass plate according to any one of disclosures 1 to 13, wherein the glass plate is made faster than the average cooling rate.
(開示15)
 前記第1冷却工程におけるガラスリボンの中央部の平均冷却速度は、5.5℃/秒~50.0℃/秒である、開示14に記載のガラス板の製造方法。
(Disclosure 15)
The method for producing a glass sheet according to disclosure 14, wherein an average cooling rate of a central portion of the glass ribbon in the first cooling step is 5.5 ° C / second to 50.0 ° C / second.
(開示16)
 前記第2冷却工程におけるガラスリボンの平均冷却速度は、0.5~5.5℃/秒未満である、開示14に記載のガラス板の製造方法。
(Disclosure 16)
The method for producing a glass plate according to disclosure 14, wherein an average cooling rate of the glass ribbon in the second cooling step is 0.5 to less than 5.5 ° C / second.
(開示17)
 前記ガラス板は、ポリシリコンTFTあるいは酸化物半導体を形成するガラス基板であり、ガラスの歪点温度は675℃以上である、開示1~16のいずれかに記載のガラス板の製造方法。
(Disclosure 17)
The method for producing a glass plate according to any one of disclosures 1 to 16, wherein the glass plate is a glass substrate on which a polysilicon TFT or an oxide semiconductor is formed, and a strain point temperature of the glass is 675 ° C. or higher.
(開示18)
 ダウンドロー法によるガラス板の製造装置であって、
 ガラス原料を溶解して溶融ガラスを得る溶解装置と、
 前記溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンを成形し、前記ガラスリボンの流れを作り、前記ガラスリボンを、徐冷炉内に設けられたローラで牽引して前記徐冷炉内で冷却する成形装置と、
 冷却された前記ガラスリボンを切断空間で切断する切断装置と、を含み、
 前記成形体が設けられた前記成形炉の内部空間および前記ローラが設けられた前記徐冷炉の内部空間を炉内部空間とし、前記成形炉および前記徐冷炉の外部空間を炉外部空間としたとき、前記炉外部空間は、大気圧雰囲気に対して隔壁で区切られた空間であり、前記炉外部空間の少なくとも一部分の気圧は、前記ガラスリボンの流れ方向の同じ位置における、前記炉内部空間の気圧に対して低くなるように、気圧の調整をする気圧制御装置が前記成形装置に設けられている、ことを特徴とするガラス板の製造装置。
(Disclosure 18)
An apparatus for producing a glass plate by a downdraw method,
A melting apparatus for melting glass raw material to obtain molten glass;
The molten glass is supplied to a molded body provided in a molding furnace to form a glass ribbon, the flow of the glass ribbon is created, and the glass ribbon is pulled by a roller provided in the slow cooling furnace, and the slow cooling furnace A molding device for cooling inside,
A cutting device for cutting the cooled glass ribbon in a cutting space,
When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon. An apparatus for producing a glass plate, characterized in that an atmospheric pressure control device for adjusting the atmospheric pressure is provided in the molding apparatus so as to be lowered.
(開示19)
 前記気圧制御装置は、前記炉外部空間の気圧を制御するために、大気との間で空気の流入を調整する装置である、開示18に記載のガラス板の製造装置。
(Disclosure 19)
The glass plate manufacturing apparatus according to disclosure 18, wherein the atmospheric pressure control device is a device that adjusts the inflow of air to and from the atmosphere in order to control the atmospheric pressure in the furnace exterior space.
 以上、本発明のガラス板の製造方法及び製造装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method and manufacturing apparatus of the glass plate of this invention were demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, even if various improvement and a change are carried out. Of course it is good.
30 炉
40 成形炉
50 徐冷炉
200 溶解装置
201 溶解槽
202 清澄槽
203 攪拌槽
204 第1配管
205 第2配管
300 成形装置
310 成形体
311 供給口
312 溝
313 下方端部
320 雰囲気仕切り部材
330 冷却ローラ
340 冷却ユニット
350a~350h 搬送ローラ
355,360a,360b,360c,415,416,417a,417b,417c,418 圧力センサ
400 切断装置
411,412,413a,413b,413c,414 床面
421,422,423a,423b,423c,424 送風機
500 制御装置
510 駆動ユニット
30 furnace 40 molding furnace 50 slow cooling furnace 200 melting apparatus 201 melting tank 202 clarification tank 203 stirring tank 204 first pipe 205 second pipe 300 molding apparatus 310 molded body 311 supply port 312 groove 313 lower end 320 atmosphere partition member 330 cooling roller 340 Cooling units 350a to 350h Conveying rollers 355, 360a, 360b, 360c, 415, 416, 417a, 417b, 417c, 418 Pressure sensor 400 Cutting devices 411, 412, 413a, 413b, 413c, 414 Floor surfaces 421, 422, 423a, 423b, 423c, 424 Blower 500 Controller 510 Drive unit

Claims (10)

  1.  ダウンドロー法によるガラス板の製造方法であって、
     ガラス原料を溶解して溶融ガラスを得る溶解工程と、
     前記溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンを成形し、前記ガラスリボンの流れを作る成形工程と、
     前記ガラスリボンを、徐冷炉内に設けられたローラで牽引して前記徐冷炉内で冷却する徐冷工程と、
     冷却された前記ガラスリボンを切断空間で切断する切断工程と、を含み、
     前記成形体が設けられた前記成形炉の内部空間および前記ローラが設けられた前記徐冷炉の内部空間を炉内部空間とし、前記成形炉および前記徐冷炉の外部空間を炉外部空間としたとき、前記炉外部空間は、大気圧雰囲気に対して隔壁で区切られた空間であり、前記炉外部空間の少なくとも一部分の気圧は、前記ガラスリボンの流れ方向の同じ位置における、前記炉内部空間の気圧に対して低くなるように、気圧の調整がされている、ことを特徴とするガラス板の製造方法。
    A method for producing a glass plate by a downdraw method,
    A melting step of melting glass raw material to obtain molten glass;
    Forming the glass ribbon by supplying the molten glass to a molded body provided in a molding furnace, and forming a flow of the glass ribbon;
    A slow cooling step of cooling the glass ribbon in the slow cooling furnace by pulling with a roller provided in the slow cooling furnace;
    Cutting the cooled glass ribbon in a cutting space, and
    When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon. A method for producing a glass plate, wherein the atmospheric pressure is adjusted so as to be low.
  2.  前記炉外部空間の気圧は、前記ガラスリボンの徐冷点温度に対応する前記徐冷炉内の位置と、前記ガラスリボンの歪点温度に対応する前記徐冷炉内の位置との間の領域において、前記炉内部空間の同じ位置における気圧に対して低くなるように、気圧の調整がされている、請求項1に記載のガラス板の製造方法。 The pressure in the outer space of the furnace is in the region between the position in the slow cooling furnace corresponding to the annealing temperature of the glass ribbon and the position in the annealing furnace corresponding to the strain temperature of the glass ribbon. The manufacturing method of the glass plate of Claim 1 by which adjustment of atmospheric pressure is carried out so that it may become low with respect to the atmospheric pressure in the same position of internal space.
  3.  前記炉外部空間の前記少なくとも一部分の気圧について、前記ガラスリボンの流れ方向の同じ位置において、前記炉内部空間の気圧と前記炉外部空間の気圧との差分が40Pa以下である、請求項1または2に記載のガラス板の製造方法。 3. The difference between the pressure in the furnace internal space and the pressure in the furnace external space is 40 Pa or less at the same position in the flow direction of the glass ribbon with respect to the pressure of the at least a part of the furnace external space. The manufacturing method of the glass plate of description.
  4.  前記炉外部空間の気圧は大気圧に対して高くなるように調整されている、請求項1~3のいずれか1項に記載のガラス板の製造方法。 The method for producing a glass sheet according to any one of claims 1 to 3, wherein the pressure in the space outside the furnace is adjusted to be higher than the atmospheric pressure.
  5.  
     
     前記炉外部空間は、前記成形炉の前記内部空間の天井面に対して上方に位置する上部空間を有し、前記上部空間は、前記上部空間から前記炉内部空間に空気が流入しないように、前記上部空間の気圧は調整されている、請求項1~4のいずれか1項に記載のガラス板の製造方法。


    The furnace outer space has an upper space located above the ceiling surface of the inner space of the molding furnace, and the upper space does not allow air to flow from the upper space into the furnace inner space. The method for producing a glass plate according to any one of claims 1 to 4, wherein an air pressure in the upper space is adjusted.
  6.  前記ガラスリボンの流れ方向は鉛直方向であり、
     前記成形炉は前記徐冷炉に対して鉛直上方に設けられ、
     前記炉外部空間は、鉛直方向に複数の部分空間に区分けされ、
     前記部分空間のそれぞれの気圧と、当該部分空間の鉛直方向の同じ位置における前記炉内部空間の気圧との差分を、前記部分空間のうち最上部の部分空間と最下部の部分空間と間で比較したとき、前記最上部における前記差分は、前記最下部における前記差分に比べて大きくなるように、気圧が調整されている、請求項1~5のいずれか1項に記載のガラス板の製造方法。
    The flow direction of the glass ribbon is a vertical direction,
    The molding furnace is provided vertically above the slow cooling furnace,
    The furnace outer space is divided into a plurality of partial spaces in the vertical direction,
    The difference between each atmospheric pressure in the partial space and the atmospheric pressure in the furnace internal space at the same position in the vertical direction of the partial space is compared between the uppermost partial space and the lowermost partial space. The method for producing a glass sheet according to any one of claims 1 to 5, wherein the atmospheric pressure is adjusted so that the difference at the uppermost portion is larger than the difference at the lowermost portion. .
  7.  前記部分空間の前記気圧の前記差分は、上方に行くほど大きくなる、請求項6に記載のガラス板の製造方法。 The method for producing a glass plate according to claim 6, wherein the difference in the atmospheric pressure in the partial space increases as it goes upward.
  8.  前記ガラス板は、TFT(Thin Film Transistor)を表面に形成する液晶ディスプレイ用ガラス基板である、請求項1~7のいずれか1項に記載のガラス板の製造方法。 The method for producing a glass plate according to any one of claims 1 to 7, wherein the glass plate is a glass substrate for a liquid crystal display on which a TFT (Thin Film Transistor) is formed.
  9.  ダウンドロー法によるガラス板の製造装置であって、
     ガラス原料を溶解して溶融ガラスを得る溶解装置と、
     前記溶融ガラスを、成形炉内に設けられた成形体に供給してガラスリボンを成形し、前記ガラスリボンの流れを作り、前記ガラスリボンを、徐冷炉内に設けられたローラで牽引して前記徐冷炉内で冷却する成形装置と、
     冷却された前記ガラスリボンを切断空間で切断する切断装置と、を含み、
     前記成形体が設けられた前記成形炉の内部空間および前記ローラが設けられた前記徐冷炉の内部空間を炉内部空間とし、前記成形炉および前記徐冷炉の外部空間を炉外部空間としたとき、前記炉外部空間は、大気圧雰囲気に対して隔壁で区切られた空間であり、前記炉外部空間の少なくとも一部分の気圧は、前記ガラスリボンの流れ方向の同じ位置における、前記炉内部空間の気圧に対して低くなるように、気圧の調整をする気圧制御装置が前記成形装置に設けられている、ことを特徴とするガラス板の製造装置。
    An apparatus for producing a glass plate by a downdraw method,
    A melting apparatus for melting glass raw material to obtain molten glass;
    The molten glass is supplied to a molded body provided in a molding furnace to form a glass ribbon, the flow of the glass ribbon is created, and the glass ribbon is pulled by a roller provided in the slow cooling furnace, and the slow cooling furnace A molding device for cooling inside,
    A cutting device for cutting the cooled glass ribbon in a cutting space,
    When the internal space of the molding furnace provided with the molded body and the internal space of the slow cooling furnace provided with the roller are furnace internal spaces, and the external space of the molding furnace and the slow cooling furnace is a furnace external space, the furnace The external space is a space partitioned by a partition with respect to the atmospheric pressure atmosphere, and the atmospheric pressure of at least a part of the furnace external space is relative to the atmospheric pressure of the furnace internal space at the same position in the flow direction of the glass ribbon. An apparatus for producing a glass plate, characterized in that an atmospheric pressure control device for adjusting the atmospheric pressure is provided in the molding apparatus so as to be lowered.
  10.  前記気圧制御装置は、前記炉外部空間の気圧を制御するために、前記外部空間との間で空気の流入を調整する装置である、請求項9に記載のガラス板の製造装置。
     
    The said atmospheric | air pressure control apparatus is an apparatus which adjusts inflow of air between the said exterior spaces, in order to control the atmospheric | air pressure of the said furnace exterior space, The manufacturing apparatus of the glass plate of Claim 9.
PCT/JP2012/004231 2011-06-30 2012-06-29 Glass plate manufacturing method and glass plate manufacturing device WO2013001834A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127020852A KR101300934B1 (en) 2011-06-30 2012-06-29 Method and apparatus for making glass sheet
JP2012530008A JP5235249B1 (en) 2011-06-30 2012-06-29 Glass plate manufacturing method and glass plate manufacturing apparatus
KR1020127034182A KR101442384B1 (en) 2011-06-30 2012-06-29 Method and apparatus for making glass sheet
CN201280002970.4A CN103108840B (en) 2011-06-30 2012-06-29 Glass plate manufacturing method and glass plate manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146719 2011-06-30
JP2011146719 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013001834A1 true WO2013001834A1 (en) 2013-01-03

Family

ID=47423751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004231 WO2013001834A1 (en) 2011-06-30 2012-06-29 Glass plate manufacturing method and glass plate manufacturing device

Country Status (5)

Country Link
JP (3) JP5235249B1 (en)
KR (2) KR101442384B1 (en)
CN (2) CN103253848B (en)
TW (2) TW201328997A (en)
WO (1) WO2013001834A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395253A (en) * 2013-03-29 2015-03-04 安瀚视特控股株式会社 Glass substrate manufacturing method and glass substrate manufacturing device
WO2017079546A1 (en) * 2015-11-05 2017-05-11 Corning Incorporated Glass manufacturing method for reduced particle adhesion
WO2021124801A1 (en) * 2019-12-18 2021-06-24 日本電気硝子株式会社 Glass article manufacturing method and glass article manufacturing device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944748B (en) * 2014-03-31 2017-10-20 安瀚视特控股株式会社 The manufacture method of glass substrate and the manufacture device of glass substrate
JP6007277B2 (en) * 2014-03-31 2016-10-12 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR101798305B1 (en) * 2014-04-30 2017-11-15 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
JP2016210630A (en) * 2015-04-28 2016-12-15 旭硝子株式会社 Support roll, and production method of glass sheet
JP6623836B2 (en) * 2016-02-29 2019-12-25 日本電気硝子株式会社 Glass plate manufacturing equipment and glass plate manufacturing method
US9758418B1 (en) * 2016-04-06 2017-09-12 Corning Incorporated Methods of producing glass ribbon
JP6834379B2 (en) * 2016-11-11 2021-02-24 日本電気硝子株式会社 Flat glass manufacturing method and flat glass manufacturing equipment
TW201904892A (en) * 2017-06-14 2019-02-01 美商康寧公司 Glass forming apparatuses with moveable end block assemblies
KR102139863B1 (en) * 2017-09-29 2020-07-31 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate
EP3704046B1 (en) * 2017-10-30 2023-02-15 Corning Incorporated Systems and methods for processing thin glass ribbons
KR102569274B1 (en) 2017-12-20 2023-08-22 니폰 덴키 가라스 가부시키가이샤 Manufacturing method of glass plate
JP7372601B2 (en) * 2018-12-21 2023-11-01 日本電気硝子株式会社 Glass plate manufacturing method and its manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171567A (en) * 1997-07-31 1999-06-29 Owens Brockway Glass Container Inc Method for delivering case glass stream and apparatus therefor
JP2008266098A (en) * 2007-04-24 2008-11-06 Nippon Electric Glass Co Ltd Glass plate manufacturing method and glass plate manufacturing equipment
JP2009173525A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE757057A (en) * 1969-10-06 1971-04-05 Corning Glass Works METHOD AND APPARATUS FOR CHECKING THE THICKNESS OF A NEWLY STRETCHED SHEET OF GLASS
JPH02149438A (en) * 1988-11-30 1990-06-08 Hoya Corp Glass plate production device
CN101374778B (en) * 2005-12-15 2012-12-12 康宁股份有限公司 Overflow downdraw glass forming method and apparatus
JP5428287B2 (en) * 2007-12-25 2014-02-26 日本電気硝子株式会社 Glass plate manufacturing method and manufacturing equipment
US20110094267A1 (en) * 2009-10-28 2011-04-28 Kenneth William Aniolek Methods of producing glass sheets
US8707737B2 (en) * 2009-11-30 2014-04-29 Corning Incorporated Method and apparatus for pressure control of glass-making thickness-control zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171567A (en) * 1997-07-31 1999-06-29 Owens Brockway Glass Container Inc Method for delivering case glass stream and apparatus therefor
JP2008266098A (en) * 2007-04-24 2008-11-06 Nippon Electric Glass Co Ltd Glass plate manufacturing method and glass plate manufacturing equipment
JP2009173525A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395253A (en) * 2013-03-29 2015-03-04 安瀚视特控股株式会社 Glass substrate manufacturing method and glass substrate manufacturing device
CN104395253B (en) * 2013-03-29 2016-12-14 安瀚视特控股株式会社 Method for manufacturing glass substrate and glass substrate manufacture device
WO2017079546A1 (en) * 2015-11-05 2017-05-11 Corning Incorporated Glass manufacturing method for reduced particle adhesion
WO2021124801A1 (en) * 2019-12-18 2021-06-24 日本電気硝子株式会社 Glass article manufacturing method and glass article manufacturing device

Also Published As

Publication number Publication date
KR101300934B1 (en) 2013-08-27
JP2016006007A (en) 2016-01-14
KR101442384B1 (en) 2014-09-22
TW201305069A (en) 2013-02-01
JPWO2013001834A1 (en) 2015-02-23
KR20140017417A (en) 2014-02-11
KR20130035252A (en) 2013-04-08
JP5235249B1 (en) 2013-07-10
CN103253848B (en) 2016-08-17
JP6125572B2 (en) 2017-05-10
CN103108840B (en) 2015-02-25
JP2013126946A (en) 2013-06-27
TWI417255B (en) 2013-12-01
TW201328997A (en) 2013-07-16
TWI561482B (en) 2016-12-11
JP5778196B2 (en) 2015-09-16
CN103253848A (en) 2013-08-21
CN103108840A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP6125572B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP5189224B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
US8322160B2 (en) Process and apparatus for producing glass sheet
JP5288388B1 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
TWI422539B (en) Manufacturing method and apparatus for glass plate
US10822264B2 (en) Alkali-free glass substrate and method for manufacturing alkali-free glass substrate
WO2012132309A1 (en) Production method for glass plate and glass plate production device
JP5848329B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP5508466B2 (en) Manufacturing method of glass substrate
TWI618679B (en) Glass plate manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280002970.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127020852

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803593

Country of ref document: EP

Kind code of ref document: A1