WO2021124602A1 - Statistic data generation method, cutting device, and system - Google Patents

Statistic data generation method, cutting device, and system Download PDF

Info

Publication number
WO2021124602A1
WO2021124602A1 PCT/JP2020/026056 JP2020026056W WO2021124602A1 WO 2021124602 A1 WO2021124602 A1 WO 2021124602A1 JP 2020026056 W JP2020026056 W JP 2020026056W WO 2021124602 A1 WO2021124602 A1 WO 2021124602A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
package
unit
statistical data
cutting
Prior art date
Application number
PCT/JP2020/026056
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 和宏
貴俊 尾関
彩香 水田
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Priority to MX2022007395A priority Critical patent/MX2022007395A/en
Priority to CN202080082298.9A priority patent/CN114746232B/en
Priority to KR1020227023378A priority patent/KR20220109463A/en
Publication of WO2021124602A1 publication Critical patent/WO2021124602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/005Computer numerical control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/007Control means comprising cameras, vision or image processing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/24Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising with cutting discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection

Definitions

  • the present invention relates to a statistical data generation method, a cutting device and a system.
  • Patent Document 1 discloses a method for managing the processing result of a wafer.
  • the cutting groove formed in the processing process of the wafer is imaged by the imaging means, and the cutting groove data is generated based on the generated image information.
  • This cutting groove data is cumulatively stored in the storage means in association with the image information and the position information.
  • the stored cutting groove data, image information, and the like are displayed on the display panel (see Patent Document 1).
  • the present invention has been made to solve such a problem, and an object of the present invention is to generate statistical data capable of generating data used for realizing advanced production control in a post-process as compared with the conventional one. To provide methods, cutting devices and systems.
  • the statistical data generation method is based on a step of aggregating inspection data including inspection result information of a package part produced by cutting a package substrate and statistical data based on the aggregated inspection data. Includes steps to generate.
  • the cutting device includes a cutting mechanism, an inspection mechanism, and a calculation unit.
  • the cutting mechanism is configured to produce a plurality of package components by cutting the package substrate.
  • the inspection mechanism is configured to inspect each of a plurality of package parts.
  • the calculation unit is configured to perform a calculation using inspection data including inspection result information by the inspection mechanism.
  • the calculation unit is configured to aggregate inspection data and generate statistical data based on the aggregated inspection data.
  • a system includes the above-mentioned cutting device and a storage device external to the cutting device.
  • the storage device is configured to store inspection data.
  • the present invention it is possible to provide a statistical data generation method, a cutting device and a system capable of generating data used for realizing advanced production control in a post-process as compared with the conventional one.
  • FIG. 1 is a diagram schematically showing a system 100 according to the present embodiment. As shown in FIG. 1, the system 100 includes a cutting device 1 and a storage device 30.
  • the cutting device 1 is configured to separate the package substrate into a plurality of package parts by cutting the package substrate (object to be cut).
  • the substrate on which the semiconductor chip is mounted or the lead frame is resin-sealed.
  • package substrates include BGA (BallGridArray) package substrate, LGA (LandGridArray) package substrate, CSP (ChipSizePackage) package substrate, LED (LightEmittingDiode) package substrate, and QFN (QuadFlatNo-leaded). ) Package substrate can be mentioned.
  • the cutting device 1 is configured to inspect each of a plurality of individualized package parts.
  • an image of each package part is imaged, and each package part is inspected based on the image. Inspection data is generated through the inspection, and each package part is classified as "non-defective" or "defective".
  • the storage device 30 is configured to store the inspection data generated through the inspection in the cutting device 1. Inspection data is sequentially accumulated in the storage device 30. The inspection data does not necessarily have to be stored in the storage device 30, and may be stored in, for example, a memory in the cutting device 1.
  • the cutting device 1 is configured to aggregate inspection data including inspection result information of package parts and generate statistical data based on the aggregated inspection data.
  • statistical data of inspection data including inspection result information of package parts for example, early detection of problems occurring in a post-process can be promoted. That is, according to the cutting device 1, it is possible to generate data (statistical data) used for advanced production control in the post-process as compared with the conventional one.
  • the cutting device 1 according to the present embodiment will be described in detail.
  • FIG. 2 is a plan view schematically showing a cutting device 1 according to the present embodiment.
  • the package substrate P1 is used as the object to be cut, and the package substrate P1 is separated into a plurality of semiconductor packages S1 by the cutting device 1.
  • the resin-sealed surface is referred to as a mold surface, and the surface opposite to the mold surface is referred to as a ball / lead surface.
  • the cutting device 1 includes a cutting module A1 and an inspection / storage module B1 as components.
  • the cutting module A1 is configured to produce a plurality of semiconductor packages S1 by cutting the package substrate P1.
  • the inspection / storage module B1 is configured to inspect each of the plurality of produced semiconductor packages S1 and then store the semiconductor package S1 in a tray.
  • each component is removable and replaceable with respect to other components.
  • the cutting module A1 mainly includes a substrate supply unit 3, a positioning unit 4, a cutting table 5, a spindle unit 6, and a transport unit 7.
  • the substrate supply unit 3 supplies the package substrates P1 to the positioning unit 4 one by one by pushing out the package substrates P1 one by one from the magazine M1 accommodating the plurality of package substrates P1. At this time, the package substrate P1 is arranged with the ball / lead surface facing upward.
  • the positioning unit 4 positions the package substrate P1 by arranging the package substrate P1 extruded from the substrate supply unit 3 on the rail portion 4a. After that, the positioning unit 4 conveys the positioned package substrate P1 to the cutting table 5.
  • the cutting table 5 holds the package substrate P to be cut.
  • a cutting device 1 having a twin cut table configuration having two cutting tables 5 is exemplified.
  • the cutting table 5 includes a holding member 5a, a rotating mechanism 5b, and a moving mechanism 5c.
  • the holding member 5a holds the package substrate P1 by sucking the package substrate P1 conveyed by the positioning unit 4 from below.
  • the rotation mechanism 5b can rotate the holding member 5a in the ⁇ direction in the figure.
  • the moving mechanism 5c can move the holding member 5a along the Y axis in the figure.
  • the spindle portion 6 separates the package substrate P1 into a plurality of semiconductor packages S1 by cutting the package substrate P1.
  • a cutting device 1 having a twin spindle configuration having two spindle portions 6 is exemplified.
  • the spindle portion 6 is movable along the X-axis and the Z-axis in the figure.
  • the cutting device 1 may have a single spindle configuration having one spindle portion 6.
  • FIG. 3 is a side view schematically showing the spindle portion 6.
  • the spindle portion 6 includes a blade 6a, a rotating shaft 6c, a first flange 6d, a second flange 6e, and a fastening member 6f.
  • the blade 6a rotates at high speed to cut the package substrate P1 and separate the package substrate P1 into a plurality of semiconductor packages S1.
  • the blade 6a is mounted on the rotating shaft 6c in a state of being sandwiched by one flange (first flange) 6d and the other flange (second flange) 6e.
  • the first flange 6d and the second flange 6e are fixed to the rotating shaft 6c by a fastening member 6f such as a nut.
  • the first flange 6d is also referred to as a back flange.
  • the second flange 6e is arranged on the fastening member 6f side with the blade 6a interposed therebetween, and is also referred to as an outer flange.
  • the spindle portion 6 has a cutting water nozzle that injects cutting water toward a blade 6a that rotates at high speed, a cooling water nozzle that injects cooling water, and a cleaning water nozzle that injects cleaning water for cleaning cutting debris. (All not shown) and the like are provided.
  • the package substrate P1 is imaged by the first position confirmation camera 5d, and the position of the package substrate P1 is confirmed.
  • the confirmation using the first position confirmation camera 5d is, for example, confirmation of the position of the mark provided on the package substrate P1.
  • the mark indicates, for example, the cutting position of the package substrate P1.
  • the cutting table 5 moves toward the spindle portion 6 along the Y axis in the figure.
  • the package substrate P1 is cut by relatively moving the cutting table 5 and the spindle portion 6.
  • the package substrate P1 is imaged by the second position confirmation camera 6b as necessary, and the position of the package substrate P1 and the like are confirmed.
  • the confirmation using the second position confirmation camera 6b is, for example, confirmation of the cutting position, cutting width, and the like of the package substrate P1.
  • the cutting table 5 moves in a direction away from the spindle portion 6 along the Y axis in the figure in a state where the plurality of fragmented semiconductor packages S1 are adsorbed.
  • the first cleaner 5e cleans and dries the upper surface (ball / lead surface) of the semiconductor package S1.
  • the transport unit 7 attracts the semiconductor package S1 held on the cutting table 5 from above, and transports the semiconductor package S1 to the inspection table 11 of the inspection / storage module B1.
  • the second cleaner 7a cleans and dries the lower surface (mold surface) of the semiconductor package S1.
  • the inspection / storage module B1 mainly includes an inspection table 11, a first optical inspection camera 12, a second optical inspection camera 13, an arrangement unit 14, and an extraction unit 15.
  • the inspection table 11 holds the semiconductor package S1 for optical inspection of the semiconductor package S1.
  • the inspection table 11 can be moved along the X axis in the figure. Further, the inspection table 11 can be turned upside down.
  • the inspection table 11 is provided with a holding member that holds the semiconductor package S1 by adsorbing the semiconductor package S1.
  • the first optical inspection camera 12 and the second optical inspection camera 13 image both surfaces (ball / lead surface and mold surface) of the semiconductor package S1. Various inspections of the semiconductor package S1 are performed based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13.
  • Each of the first optical inspection camera 12 and the second optical inspection camera 13 is arranged so as to take an image of the upper side in the vicinity of the inspection table 11.
  • Each of the first optical inspection camera 12 and the second optical inspection camera 13 is provided with a lighting device (not shown) capable of irradiating light during inspection.
  • the first optical inspection camera 12 may be provided in the cutting module A1.
  • the first optical inspection camera 12 images the molded surface of the semiconductor package S1 transported to the inspection table 11 by the transport unit 7. After that, the transport unit 7 places the semiconductor package S1 on the holding member of the inspection table 11. After the holding member adsorbs the semiconductor package S1, the inspection table 11 is turned upside down. The inspection table 11 moves above the second optical inspection camera 13, and the ball / lead surface of the semiconductor package S1 is imaged by the second optical inspection camera 13. As described above, various inspections of the semiconductor package S1 are performed based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13. The inspection items in this inspection will be described in detail later.
  • the inspected semiconductor package S1 is arranged in the arrangement unit 14.
  • the arrangement portion 14 is movable along the Y axis in the figure.
  • the inspected semiconductor package S1 is arranged in the arrangement unit 14.
  • the extraction unit 15 transfers the semiconductor package S1 arranged in the arrangement unit 14 to the tray.
  • the semiconductor package S1 is classified into a "non-defective product" or a "defective product” based on the results of inspections using the first optical inspection camera 12 and the second optical inspection camera 13.
  • the extraction unit 15 transfers each semiconductor package S1 to the non-defective product tray 15a or the defective product tray 15b based on the result of sorting. That is, the non-defective product is stored in the non-defective product tray 15a, and the defective product is stored in the defective product tray 15b.
  • the non-defective product tray 15a and the defective product tray 15b is filled with the semiconductor package S1, it is replaced with a new tray.
  • the cutting device 1 further includes a computer 50.
  • the computer 50 controls the operation of each part of the cutting module A1 and the inspection / storage module B1.
  • the operation of unit 15 is controlled.
  • the computer 50 performs various inspections of the semiconductor package S1 based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13, for example.
  • the computer 50 aggregates the inspection data generated through various inspections in the storage device 30 (FIG. 1), and generates statistical data based on the aggregated inspection data. Next, the computer 50 will be described in detail.
  • FIG. 4 is a diagram schematically showing a hardware configuration of the computer 50.
  • the computer 50 includes a calculation unit 70, an input / output I / F (interface) 90, a communication I / F 91, and a storage unit 80, and each configuration is electrically connected via a bus. Is connected.
  • the calculation unit 70 includes a CPU (Central Processing Unit) 72, a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, and the like.
  • the calculation unit 70 is configured to control each component in the computer 50 and each component in the cutting device 1 according to information processing.
  • the input / output I / F 90 is configured to communicate with each component included in the cutting device 1 via a signal line.
  • the input / output I / F 90 is used for transmitting data from the computer 50 to each component in the cutting device 1 and receiving data transmitted from each component in the cutting device 1 to the computer 50.
  • the communication I / F 91 is configured to communicate with an external device (for example, a storage device 30 (FIG. 1)) provided outside the disconnecting device 1 via the Internet.
  • the communication I / F91 is composed of, for example, a wired LAN (Local Area Network) module or a wireless LAN module.
  • the storage unit 80 is, for example, an auxiliary storage device such as a hard disk drive or a solid state drive.
  • the storage unit 80 is configured to store, for example, the control program 81.
  • the storage unit 80 may store the inspection data generated through the inspection using the first optical inspection camera 12 and the second optical inspection camera 13.
  • FIG. 5 is a diagram showing the relationship of each function realized by the computer 50.
  • the calculation unit 70 expands the control program 81 stored in the storage unit 80 into the RAM 74. Then, the calculation unit 70 interprets and executes the control program 81 expanded in the RAM 74 by the CPU 72, so that the computer 50 controls each component in the cutting device 1. As shown in FIG. 5, the computer 50 operates as an image acquisition unit 52, an inspection unit 54, a statistical data generation unit 56, and an image generation unit 58.
  • the image acquisition unit 52 sends an imaging instruction to the first optical inspection camera 12 and the second optical inspection camera 13.
  • the imaging instruction includes, for example, information for specifying an imaging range on the package substrate P1.
  • the image acquisition unit 52 sequentially changes the imaging range. As a result, both sides of all the semiconductor packages S1 included in the package substrate P1 are imaged.
  • the image acquisition unit 52 acquires the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13 via the input / output I / F 90.
  • the inspection unit 54 analyzes the image data acquired by the image acquisition unit 52 to perform various inspections of each semiconductor package S1 included in the image data.
  • inspection items include "number of terminals (Lead Pad Number)", “Die Pad Defect”, and "Mark Angle” in QFN.
  • FIG. 6 is a diagram for explaining the inspection of the number of terminals in QFN.
  • the image ID 1 is an image included in the image captured by the second optical inspection camera 13. That is, the image ID 1 is an image showing a surface (ball / lead surface) opposite to the mold surface of the package component 60.
  • a die pad 61 is arranged at the center of the package component 60, and a plurality of terminals (electrode pads) 62 are arranged around the package component 60.
  • the inspection unit 54 In the inspection of the number of terminals of the package component 60, the inspection unit 54 detects the number of terminals (number of lead pads) on each side through image analysis. The inspection unit 54 determines whether or not the number of terminals on each side is a predetermined number. The inspection unit 54 determines that the package component 60 is a non-defective product with respect to the "number of terminals" when the number of terminals on each side is a predetermined number, and packages the package with respect to the "number of terminals" when the number of terminals on each side is not a predetermined number. It is determined that the part 60 is a defective product.
  • the inspection unit 54 stores the detected number of terminals on each side and the determination result of a non-defective product / defective product in the storage device 30 in association with the position information of the package component 60 on the package substrate. That is, depending on the inspection item, the inspection unit 54 not only determines the non-defective product / defective product but also the measured value of the measurement target (“number of terminals” in this example) obtained through image analysis as a package component on the package substrate. It is stored in the storage device 30 in association with the position information of the 60.
  • FIG. 7 is a diagram for explaining the inspection of die pad defects in QFN.
  • the image ID 2 is an image included in the image captured by the second optical inspection camera 13. That is, the image ID 2 is an image showing a surface (ball / lead surface) opposite to the mold surface of the package component 60.
  • the inspection unit 54 detects a foreign substance on the die pad 61 through image analysis. In addition, the inspection unit 54 determines whether or not the level of the foreign matter existing on the die pad 61 is within a predetermined range. When the level of the foreign matter existing on the die pad 61 is within the predetermined range, the inspection unit 54 determines that the package component 60 is a non-defective product with respect to the die pad defect, and the level of the foreign matter existing on the die pad 61 is within the predetermined range. If it does not fit inside, it is determined that the package component 60 is a defective product with respect to the die pad defect. The inspection unit 54 stores the determination result of the non-defective product / defective product in the storage device 30 in association with the position information of the package component 60 on the package substrate.
  • FIG. 8 is a diagram for explaining the inspection of the mark angle in QFN.
  • the image ID 3 is an image included in the image captured by the first optical inspection camera 12. That is, the image ID 3 is an image showing the mold surface of the package component 60.
  • the brand mark of the package part 60 is printed on the mold surface of the package part 60.
  • the inspection unit 54 determines whether or not the inclination of the mark Mk1 printed on the surface of the package component 60 is within a predetermined range through image analysis.
  • the inspection unit 54 determines that the package component 60 is a non-defective product with respect to the mark angle when the inclination of the mark Mk1 is within a predetermined range, and when the inclination of the mark Mk1 is out of the predetermined range, the package component 60 with respect to the mark angle Determined to be defective.
  • the inspection unit 54 stores the determination result of the non-defective product / defective product in the storage device 30 in association with the position information of the package component 60 on the package substrate.
  • the inspection unit 54 can perform inspections of various other inspection items.
  • Table 1 below shows an example of inspection items that can be inspected by the inspection unit 54.
  • the inspection items corresponding to BGA show the inspection items on the ball / lead surface of BGA. Further, the inspection items corresponding to the QFN indicate the inspection items on the ball / lead surface of the QFN. In addition, the inspection items that correspond in common indicate the inspection items on the mold surface of BGA and QFN.
  • Examples of inspections specific to package parts are “Lead Pad Offset”, “Lead Pad Number”, “Lead Pad Size”, “Lead Pad Pitch”, “Lead Pad Defect”, “Die Pad Size”, “Die Pad Defect”, “Die Pad Number”, “Lead Pad Side”, “Mark Offset”, “No Marking”, “Mark Angle”, “Broken Mark”, “Broken Character”, “ “Splash Character” and “Wrong Character”.
  • the inspection unit 54 measures the deviation of each terminal (lead) 62 from the predetermined position and determines whether the deviation is within the predetermined range. In the "Lead Pad Number”, the inspection unit 54 determines whether the number of terminals 62 is as predetermined. In “Lead Pad Size”, the inspection unit 54 determines whether the size of each terminal 62 is within a predetermined range. In the “Lead Pad Pitch”, the inspection unit 54 determines whether the length between the terminals 62 is within a predetermined range. In the “Lead Pad Defect”, the inspection unit 54 determines the presence or absence of foreign matter on the terminal 62.
  • the inspection unit 54 determines whether the size of the die pad 61 exposed to the outside is within a predetermined range. In the “Die Pad Defect”, the inspection unit 54 determines the presence or absence of foreign matter on the die pad 61. In the “Die Pad Number”, the inspection unit 54 determines whether the number of die pads 61 is as predetermined. In the “Lead Pad Side”, the inspection unit 54 determines whether the state of the cut surface (side surface of the package component 60) of the terminal is appropriate. In “Mark Offset”, the inspection unit 54 measures the deviation of the mark Mk1 (brand mark, etc.) from the predetermined position, and determines whether the deviation is within the predetermined range.
  • the mark Mk1 brand mark, etc.
  • the inspection unit 54 detects that there is no mark Mk1 that should originally exist.
  • the inspection unit 54 determines whether the inclination of the mark Mk1 on the package component is within a predetermined range.
  • the inspection unit 54 determines whether or not a part of the characters constituting the mark Mk1 is missing.
  • the inspection unit 54 detects that a part of the characters constituting the mark Mk1 is not sufficiently printed.
  • the inspection unit 54 determines whether or not the bleeding of a part of the characters constituting the mark Mk1 is within a predetermined range.
  • the inspection unit 54 detects that some of the characters constituting the mark Mk1 are different characters.
  • the inspection data including the inspection result information by the inspection unit 54 is stored in the storage device 30.
  • a plurality of inspection data are aggregated and managed on the database DB1.
  • FIG. 9 is a diagram showing an example of the database DB1.
  • each row in the database DB1 shows inspection data for each package component 60.
  • the result information for each "lot”, “No.”, "frame No.”, "position”, and "inspection item” is associated.
  • the package component 60 whose "No.” is “2” is “2" on the X coordinate and “1" on the Y coordinate in the package substrate (frame) P1 whose "frame No.” is “1". It exists in the position of.
  • the frame containing the package component 60 is included in the "lot” of "0000".
  • a "lot” is a unit including a plurality of frames (package substrate P1).
  • the result is "1 (for example, defective product)” for the inspection item "0”
  • the result is "0 (for example, non-defective product)” for the inspection item "1”
  • the inspection item " Regarding "2” the result is "5.005 (measured value)”.
  • the user of the system 100 can acquire statistical data from the system 100 regarding the production status of the semiconductor package S1.
  • This statistical data is generated based on the data stored in the database DB1.
  • the user can analyze problems related to the production of the semiconductor package S1 by referring to the statistical data.
  • the user specifies the range of data used to generate the statistical data according to the statistical data to be acquired.
  • the user specifies a range of data by inputting through the image 200 (FIG. 10) described later.
  • statistical data is generated using the data within the specified range.
  • the statistical data generation unit 56 acquires the inspection data from the storage device 30 according to the instruction from the user, and generates the statistical data by aggregating the acquired inspection data.
  • the statistical data generation unit 56 generates, for example, statistical data in which each position in the package substrate P1 is associated with the good / bad status of the semiconductor package S1. Further, the statistical data generation unit 56 generates defects for each position of the package substrate P1 from data indicating the good / bad status of the semiconductor package S1 for each position in each of the plurality of package substrates P1 included in a specific lot. Generate statistical data showing the rate.
  • the image generation unit 58 generates image data that visualizes the statistical data generated by the statistical data generation unit 56.
  • FIG. 10 is a diagram showing an example of an image 200 generated by the image generation unit 58.
  • the image 200 includes a type selection unit 202, an instruction unit 214, a region T1, and a region T2.
  • the user selects whether the type of the package substrate to be analyzed is BGA or QFN via the type selection unit 202. Further, the user gives an instruction to output statistical data by pressing the instruction unit 214 with a cursor (mouse pointer) or the like.
  • the area T1 is an area for displaying an image that visualizes statistical data on a specific package substrate (frame).
  • the area T2 is an area for displaying an image that visualizes statistical data in a specific lot.
  • the area T1 includes an input unit 204, a selection unit 206, and a result output unit 208, 210, 212.
  • the user inputs the "frame No.” of the package substrate (frame) P1 to be analyzed via the input unit 204. Further, the user selects the "inspection item" to be analyzed via the selection unit 206.
  • the result output unit 208 outputs a rectangular image as a whole.
  • This rectangular image contains multiple blocks.
  • This rectangular image corresponds to the package substrate P1, and each of the plurality of blocks corresponds to the semiconductor package S1.
  • the upper left block of the rectangular image shows the coordinates (1,1).
  • the X coordinate exists from “1" to "14” from the left to the right, and the Y coordinate exists from "1" to "48” from the top to the bottom.
  • the corresponding blocks are color-coded according to the degree of defect of each package component 60. The user can visually recognize the defect occurrence status for each position in the package substrate by referring to the image output to the result output unit 208.
  • the result output unit 210 outputs, for example, the total number of semiconductor packages S1 included in the package substrate P1 to be analyzed, the number of non-defective products, and the number of defective products.
  • the result output unit 212 outputs, for example, the number of defective products and the occurrence rate of defective products.
  • Region T2 includes result output units 220, 224, 226 and selection unit 222.
  • the user selects the "inspection item" to be analyzed via the selection unit 222.
  • the result output unit 224 outputs an image showing the total result of the defective product occurrence positions on the plurality of package substrates P1 included in the lot.
  • the meanings of the X coordinate and the Y coordinate are the same as the image output by the result output unit 208.
  • the Z coordinate indicates the total number of defective products generated at that position. The user can visually recognize the defect occurrence status for each position in the package substrate by referring to the image output to the result output unit 224.
  • the result output unit 220 outputs, for example, the total number of package substrates P1 included in the lot to be analyzed, the total number of semiconductor packages S1, the number of non-defective products, and the number of defective products.
  • the result output unit 226 outputs, for example, the number of defective products and the occurrence rate of defective products.
  • the image generated by the image generation unit 58 is displayed on the monitor 20 included in the cutting device 1.
  • the user can statistically grasp the production status of the semiconductor package S1 by referring to the image displayed on the monitor 20.
  • FIG. 11 is a flowchart showing a procedure for accumulating the inspection results of the semiconductor package S1 in the storage device 30. The process shown in this flowchart is executed by the computer 50 at predetermined cycles.
  • the computer 50 instructs the first optical inspection camera 12 and the second optical inspection camera 13 to sequentially image a predetermined range of the package substrate P1 on the inspection table 11 (step S100).
  • the computer 50 sequentially acquires the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13 (step S110).
  • the computer 50 performs various inspections on each semiconductor package S1 through the analysis of the acquired image data (step S120).
  • the computer 50 updates the database DB1 so as to add the inspection data generated through the inspection (step S130).
  • FIG. 12 is a flowchart showing a procedure for outputting statistical data. The process shown in this flowchart is executed by the computer 50 at predetermined cycles.
  • the computer 50 determines whether or not the user has instructed to output statistical data (step S200). For example, the computer 50 determines whether or not the indicator 214 (FIG. 10) has been pressed by the user. If it is determined that there is no statistical data output instruction (NO in step S200), the process shifts to "return".
  • the computer 50 reads out the inspection data matching the instruction content from the user from the storage device 30 (database DB1) (step S210).
  • the computer 50 generates statistical data by aggregating the read inspection data (step S220).
  • the computer 50 generates image data in which the statistical data is visually represented (step S230).
  • the computer 50 controls the monitor 20 (FIG. 5) to display the generated image (step S240).
  • the user can statistically grasp the production status of the semiconductor package S1 by referring to the image displayed on the monitor 20.
  • the cutting device 1 is configured to aggregate inspection data including inspection result information of package parts and generate statistical data based on the aggregated inspection data.
  • statistical data of inspection data including inspection result information of package parts for example, early detection of problems occurring in a post-process can be promoted. That is, according to the cutting device 1, it is possible to generate data (statistical data) used for advanced production control in the subsequent process as compared with the conventional one.
  • the inspection data includes the position information of the semiconductor package S1 to be inspected on the package substrate P1. Therefore, according to the cutting device 1, the inspection result information of the semiconductor package S1 can be managed in association with the position information of the semiconductor package S1 on the package substrate P1, so that more useful statistical data can be generated.
  • the computer 50 controls the entire cutting device 1.
  • the control of the cutting device 1 does not necessarily have to be performed by one computer.
  • the control of the cutting device 1 may be executed by a plurality of computers.
  • the control of the cutting device 1 by the plurality of computers is realized by communicating between the plurality of computers.
  • an image showing the generated statistical data is displayed on the monitor 20.
  • the generated statistical data does not necessarily have to be displayed on the monitor 20.
  • the generated statistical data may only be sent to other devices.
  • cutting of the package substrate P1, inspection of the semiconductor package S1, and generation of statistical data based on the inspection data are performed in the same cutting device 1. However, they do not necessarily have to be performed on the same device. For example, each may be run by a different device.
  • the position information of the semiconductor package S1 on the package substrate P1 and the result information of each inspection item are associated and managed on the database DB1.
  • the database DB1 does not necessarily have to include the position information of the semiconductor package S1 on the package substrate P1.
  • the cutting device 1 includes a first optical inspection camera 12 and a second optical inspection camera 13 that image the mold surface and the ball / lead surface of the semiconductor package S1, respectively.
  • the optical inspection camera included in the cutting device 1 is not limited to the first optical inspection camera 12 and the second optical inspection camera 13.
  • the cutting device 1 may further include an optical inspection camera that inspects the cut surface (side surface of the package component 60) of the terminal.
  • the optical inspection camera for inspecting the cut surface is provided, for example, between the arrangement portion 14 and the non-defective tray 15a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Forests & Forestry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Mining & Mineral Resources (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Details Of Cutting Devices (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Dicing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Complex Calculations (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This statistic data generation method comprises a step of aggregating inspection data including result information of an inspection of a package component produced by cutting a package substrate, and a step of generating statistic data on the basis of the inspection data thus aggregated.

Description

統計データ生成方法、切断装置及びシステムStatistical data generation method, cutting device and system
 本発明は、統計データ生成方法、切断装置及びシステムに関する。 The present invention relates to a statistical data generation method, a cutting device and a system.
 特開2008-4806号公報(特許文献1)は、ウエーハの加工結果管理方法を開示する。この方法においては、ウエーハの加工過程で形成された切削溝が撮像手段によって撮像され、生成された画像情報に基づいて切削溝データが生成される。この切削溝データは、画像情報及び位置情報と関連付けて記憶手段に累積的に記憶される。記憶された切削溝データ及び画像情報等は、表示パネルに表示される(特許文献1参照)。 Japanese Unexamined Patent Publication No. 2008-4806 (Patent Document 1) discloses a method for managing the processing result of a wafer. In this method, the cutting groove formed in the processing process of the wafer is imaged by the imaging means, and the cutting groove data is generated based on the generated image information. This cutting groove data is cumulatively stored in the storage means in association with the image information and the position information. The stored cutting groove data, image information, and the like are displayed on the display panel (see Patent Document 1).
特開2008-4806号公報Japanese Unexamined Patent Publication No. 2008-4806
 上記特許文献1に開示されているように、半導体の生産工程のうちのウエーハプロセスにおいては、高度な生産管理が行なわれている。一方、半導体の生産工程のうちの後工程においては、高度な生産管理が行なわれていない。しかしながら、パッケージ部品の小型化等に起因して、後工程においても従来に比べて高度な生産管理を行なうことが求められている。 As disclosed in Patent Document 1, advanced production control is performed in the wafer process in the semiconductor production process. On the other hand, in the post-process of the semiconductor production process, advanced production control is not performed. However, due to the miniaturization of package parts and the like, it is required to perform higher production control than before even in the post-process.
 本発明は、このような問題を解決するためになされたものであって、その目的は、後工程における従来に比べて高度な生産管理の実現のために用いられるデータを生成可能な統計データ生成方法、切断装置及びシステムを提供することである。 The present invention has been made to solve such a problem, and an object of the present invention is to generate statistical data capable of generating data used for realizing advanced production control in a post-process as compared with the conventional one. To provide methods, cutting devices and systems.
 本発明のある局面に従う統計データ生成方法は、パッケージ基板を切断することによって生産されたパッケージ部品の検査の結果情報を含む検査データを集約するステップと、集約された検査データに基づいて、統計データを生成するステップとを含む。 The statistical data generation method according to a certain aspect of the present invention is based on a step of aggregating inspection data including inspection result information of a package part produced by cutting a package substrate and statistical data based on the aggregated inspection data. Includes steps to generate.
 また、本発明の他の局面に従う切断装置は、切断機構と、検査機構と、演算部とを備えている。切断機構は、パッケージ基板を切断することによって複数のパッケージ部品を生産するように構成されている。検査機構は、複数のパッケージ部品の各々を検査するように構成されている。演算部は、検査機構による検査の結果情報を含む検査データを用いた演算を行なうように構成されている。演算部は、検査データを集約し、集約された検査データに基づいて、統計データを生成するように構成されている。 Further, the cutting device according to another aspect of the present invention includes a cutting mechanism, an inspection mechanism, and a calculation unit. The cutting mechanism is configured to produce a plurality of package components by cutting the package substrate. The inspection mechanism is configured to inspect each of a plurality of package parts. The calculation unit is configured to perform a calculation using inspection data including inspection result information by the inspection mechanism. The calculation unit is configured to aggregate inspection data and generate statistical data based on the aggregated inspection data.
 また、本発明の他の局面に従うシステムは、上記切断装置と、該切断装置の外部の記憶装置とを備えている。記憶装置は、検査データを記憶するように構成されている。 Further, a system according to another aspect of the present invention includes the above-mentioned cutting device and a storage device external to the cutting device. The storage device is configured to store inspection data.
 本発明によれば、後工程における従来に比べて高度な生産管理の実現のために用いられるデータを生成可能な統計データ生成方法、切断装置及びシステムを提供することができる。 According to the present invention, it is possible to provide a statistical data generation method, a cutting device and a system capable of generating data used for realizing advanced production control in a post-process as compared with the conventional one.
システムを模式的に示す図である。It is a figure which shows the system schematically. 切断装置を模式的に示す平面図である。It is a top view which shows typically the cutting apparatus. スピンドル部を模式的に示す側面図である。It is a side view which shows typically the spindle part. コンピュータのハードウェア構成を模式的に示す図である。It is a figure which shows typically the hardware composition of a computer. コンピュータによって実現される各機能の関係を示す図である。It is a figure which shows the relationship of each function realized by a computer. QFNにおけるパッケージサイズの検査について説明するための図である。It is a figure for demonstrating the inspection of a package size in QFN. QFNにおけるコーナーアングルの検査について説明するための図である。It is a figure for demonstrating the inspection of a corner angle in QFN. QFNにおけるバッドマークの検査について説明するための図である。It is a figure for demonstrating the inspection of a bad mark in QFN. データベースの一例を示す図である。It is a figure which shows an example of a database. 画像生成部によって生成される画像の一例を示す図である。It is a figure which shows an example of the image generated by an image generation part. 半導体パッケージの検査の結果を記憶装置に蓄積する手順を示すフローチャートである。It is a flowchart which shows the procedure of storing the inspection result of a semiconductor package in a storage device. 統計データを出力する手順を示すフローチャートである。It is a flowchart which shows the procedure which outputs the statistical data.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 [1.システムの構成]
 図1は、本実施の形態に従うシステム100を模式的に示す図である。図1に示されるように、システム100は、切断装置1と、記憶装置30とを含んでいる。
[1. System configuration]
FIG. 1 is a diagram schematically showing a system 100 according to the present embodiment. As shown in FIG. 1, the system 100 includes a cutting device 1 and a storage device 30.
 切断装置1は、パッケージ基板(切断対象物)を切断することによって、該パッケージ基板を複数のパッケージ部品に個片化するように構成されている。パッケージ基板においては、半導体チップが装着された基板又はリードフレームが樹脂封止されている。 The cutting device 1 is configured to separate the package substrate into a plurality of package parts by cutting the package substrate (object to be cut). In the package substrate, the substrate on which the semiconductor chip is mounted or the lead frame is resin-sealed.
 パッケージ基板の一例としては、BGA(Ball Grid Array)パッケージ基板、LGA(Land Grid Array)パッケージ基板、CSP(Chip Size Package)パッケージ基板、LED(Light Emitting Diode)パッケージ基板、QFN(Quad Flat No-leaded)パッケージ基板が挙げられる。 Examples of package substrates include BGA (BallGridArray) package substrate, LGA (LandGridArray) package substrate, CSP (ChipSizePackage) package substrate, LED (LightEmittingDiode) package substrate, and QFN (QuadFlatNo-leaded). ) Package substrate can be mentioned.
 また、切断装置1は、個片化された複数のパッケージ部品の各々を検査するように構成されている。切断装置1においては、各パッケージ部品の画像が撮像され、該画像に基づいて各パッケージ部品の検査が行なわれる。該検査を通じて検査データが生成され、各パッケージ部品は「良品」又は「不良品」に分類される。 Further, the cutting device 1 is configured to inspect each of a plurality of individualized package parts. In the cutting device 1, an image of each package part is imaged, and each package part is inspected based on the image. Inspection data is generated through the inspection, and each package part is classified as "non-defective" or "defective".
 記憶装置30は、切断装置1における検査を通じて生成された検査データを記憶するように構成されている。記憶装置30には、検査データが順次蓄積される。なお、検査データは、必ずしも記憶装置30に記憶される必要はなく、たとえば、切断装置1内のメモリ等に記憶されてもよい。 The storage device 30 is configured to store the inspection data generated through the inspection in the cutting device 1. Inspection data is sequentially accumulated in the storage device 30. The inspection data does not necessarily have to be stored in the storage device 30, and may be stored in, for example, a memory in the cutting device 1.
 一般的に、半導体の生産工程のうちのウエーハプロセスにおいては、高度な生産管理が行なわれている。一方、半導体の生産工程のうちの後工程においては、高度な生産管理が行なわれていない。しかしながら、パッケージ部品の小型化等に起因して、後工程においても高度な生産管理を行なうことが求められている。 Generally, in the wafer process of the semiconductor production process, advanced production control is performed. On the other hand, in the post-process of the semiconductor production process, advanced production control is not performed. However, due to the miniaturization of package parts and the like, it is required to perform advanced production control even in the post-process.
 本実施の形態に従う切断装置1は、パッケージ部品の検査の結果情報を含む検査データを集約し、集約された検査データに基づいて統計データを生成するように構成されている。パッケージ部品の検査の結果情報を含む検査データの統計データを用いることによって、たとえば、後工程において生じている問題の早期発見が促進され得る。すなわち、切断装置1によれば、後工程における従来に比べて高度な生産管理に用いられるデータ(統計データ)を生成することができる。以下、本実施の形態に従う切断装置1について詳細に説明する。 The cutting device 1 according to the present embodiment is configured to aggregate inspection data including inspection result information of package parts and generate statistical data based on the aggregated inspection data. By using statistical data of inspection data including inspection result information of package parts, for example, early detection of problems occurring in a post-process can be promoted. That is, according to the cutting device 1, it is possible to generate data (statistical data) used for advanced production control in the post-process as compared with the conventional one. Hereinafter, the cutting device 1 according to the present embodiment will be described in detail.
 [2.切断装置の構成]
 (2-1.切断装置の全体構成)
 図2は、本実施の形態に従う切断装置1を模式的に示す平面図である。本実施の形態においては、切断対象物としてパッケージ基板P1が用いられ、切断装置1によってパッケージ基板P1が複数の半導体パッケージS1に個片化される。以下では、パッケージ基板P1の両面のうち、樹脂封止された面をモールド面と称し、モールド面と反対の面をボール/リード面と称する。
[2. Configuration of cutting device]
(2-1. Overall configuration of cutting device)
FIG. 2 is a plan view schematically showing a cutting device 1 according to the present embodiment. In the present embodiment, the package substrate P1 is used as the object to be cut, and the package substrate P1 is separated into a plurality of semiconductor packages S1 by the cutting device 1. In the following, of the two surfaces of the package substrate P1, the resin-sealed surface is referred to as a mold surface, and the surface opposite to the mold surface is referred to as a ball / lead surface.
 図2に示されるように、切断装置1は、構成要素として、切断モジュールA1と、検査・収納モジュールB1とを含んでいる。切断モジュールA1は、パッケージ基板P1を切断することによって複数の半導体パッケージS1を生産するように構成されている。検査・収納モジュールB1は、生産された複数の半導体パッケージS1の各々を検査し、その後、半導体パッケージS1をトレイに収納するように構成されている。切断装置1において、各構成要素は、他の構成要素に対して着脱可能かつ交換可能である。 As shown in FIG. 2, the cutting device 1 includes a cutting module A1 and an inspection / storage module B1 as components. The cutting module A1 is configured to produce a plurality of semiconductor packages S1 by cutting the package substrate P1. The inspection / storage module B1 is configured to inspect each of the plurality of produced semiconductor packages S1 and then store the semiconductor package S1 in a tray. In the cutting device 1, each component is removable and replaceable with respect to other components.
 切断モジュールA1は、主として、基板供給部3と、位置決め部4と、切断テーブル5と、スピンドル部6と、搬送部7とを含んでいる。 The cutting module A1 mainly includes a substrate supply unit 3, a positioning unit 4, a cutting table 5, a spindle unit 6, and a transport unit 7.
 基板供給部3は、複数のパッケージ基板P1を収容するマガジンM1からパッケージ基板P1を1つずつ押し出すことによって、パッケージ基板P1を1つずつ位置決め部4へ供給する。このとき、パッケージ基板P1は、ボール/リード面を上に向けて配置されている。 The substrate supply unit 3 supplies the package substrates P1 to the positioning unit 4 one by one by pushing out the package substrates P1 one by one from the magazine M1 accommodating the plurality of package substrates P1. At this time, the package substrate P1 is arranged with the ball / lead surface facing upward.
 位置決め部4は、基板供給部3から押し出されたパッケージ基板P1をレール部4a上に配置することによって、パッケージ基板P1の位置決めを行う。その後、位置決め部4は、位置決めされたパッケージ基板P1を切断テーブル5へ搬送する。 The positioning unit 4 positions the package substrate P1 by arranging the package substrate P1 extruded from the substrate supply unit 3 on the rail portion 4a. After that, the positioning unit 4 conveys the positioned package substrate P1 to the cutting table 5.
 切断テーブル5は、切断されるパッケージ基板Pを保持する。本実施の形態においては、2個の切断テーブル5を有するツインカットテーブル構成の切断装置1が例示されている。切断テーブル5は、保持部材5aと、回転機構5bと、移動機構5cとを含んでいる。保持部材5aは、位置決め部4によって搬送されたパッケージ基板P1を下方から吸着することによって、パッケージ基板P1を保持する。回転機構5bは、保持部材5aを図のθ方向に回転させることが可能である。移動機構5cは、保持部材5aを図のY軸に沿って移動させることが可能である。 The cutting table 5 holds the package substrate P to be cut. In the present embodiment, a cutting device 1 having a twin cut table configuration having two cutting tables 5 is exemplified. The cutting table 5 includes a holding member 5a, a rotating mechanism 5b, and a moving mechanism 5c. The holding member 5a holds the package substrate P1 by sucking the package substrate P1 conveyed by the positioning unit 4 from below. The rotation mechanism 5b can rotate the holding member 5a in the θ direction in the figure. The moving mechanism 5c can move the holding member 5a along the Y axis in the figure.
 スピンドル部6は、パッケージ基板P1を切断することによって、パッケージ基板P1を複数の半導体パッケージS1に個片化する。本実施の形態においては、2個のスピンドル部6を有するツインスピンドル構成の切断装置1が例示されている。スピンドル部6は、図のX軸及びZ軸に沿って移動可能である。なお、切断装置1は、一個のスピンドル部6を有するシングルスピンドル構成としてもよい。 The spindle portion 6 separates the package substrate P1 into a plurality of semiconductor packages S1 by cutting the package substrate P1. In the present embodiment, a cutting device 1 having a twin spindle configuration having two spindle portions 6 is exemplified. The spindle portion 6 is movable along the X-axis and the Z-axis in the figure. The cutting device 1 may have a single spindle configuration having one spindle portion 6.
 図3は、スピンドル部6を模式的に示す側面図である。図3に示されるように、スピンドル部6は、ブレード6aと、回転軸6cと、第1フランジ6dと、第2フランジ6eと、締結部材6fとを含んでいる。 FIG. 3 is a side view schematically showing the spindle portion 6. As shown in FIG. 3, the spindle portion 6 includes a blade 6a, a rotating shaft 6c, a first flange 6d, a second flange 6e, and a fastening member 6f.
 ブレード6aは、高速回転することによって、パッケージ基板P1を切断し、パッケージ基板P1を複数の半導体パッケージS1に個片化する。ブレード6aは、一方のフランジ(第1フランジ)6d及び他方のフランジ(第2フランジ)6eにより挟持された状態で、回転軸6cに装着される。第1フランジ6d及び第2フランジ6eは、ナット等の締結部材6fによって回転軸6cに固定される。第1フランジ6dは、奥フランジとも称される。第2フランジ6eは、ブレード6aを挟んで締結部材6f側に配置され、外フランジとも称される。 The blade 6a rotates at high speed to cut the package substrate P1 and separate the package substrate P1 into a plurality of semiconductor packages S1. The blade 6a is mounted on the rotating shaft 6c in a state of being sandwiched by one flange (first flange) 6d and the other flange (second flange) 6e. The first flange 6d and the second flange 6e are fixed to the rotating shaft 6c by a fastening member 6f such as a nut. The first flange 6d is also referred to as a back flange. The second flange 6e is arranged on the fastening member 6f side with the blade 6a interposed therebetween, and is also referred to as an outer flange.
 スピンドル部6には、高速回転するブレード6aに向かって切削水を噴射する切削水用ノズル、冷却水を噴射する冷却水用ノズル、切断屑などを洗浄する洗浄水を噴射する洗浄水用ノズル(いずれも不図示)等が設けられる。 The spindle portion 6 has a cutting water nozzle that injects cutting water toward a blade 6a that rotates at high speed, a cooling water nozzle that injects cooling water, and a cleaning water nozzle that injects cleaning water for cleaning cutting debris. (All not shown) and the like are provided.
 再び図2を参照して、切断テーブル5がパッケージ基板P1を吸着した後、第1位置確認カメラ5dによってパッケージ基板P1が撮像され、パッケージ基板P1の位置が確認される。第1位置確認カメラ5dを用いた確認は、たとえば、パッケージ基板P1上に設けられたマークの位置の確認である。該マークは、たとえば、パッケージ基板P1の切断位置を示す。 With reference to FIG. 2 again, after the cutting table 5 attracts the package substrate P1, the package substrate P1 is imaged by the first position confirmation camera 5d, and the position of the package substrate P1 is confirmed. The confirmation using the first position confirmation camera 5d is, for example, confirmation of the position of the mark provided on the package substrate P1. The mark indicates, for example, the cutting position of the package substrate P1.
 その後、切断テーブル5は、図のY軸に沿いスピンドル部6に向かって移動する。切断テーブル5がスピンドル部6の下方に移動した後、切断テーブル5とスピンドル部6とを相対的に移動させることによって、パッケージ基板P1が切断される。その後、必要に応じて第2位置確認カメラ6bによってパッケージ基板P1が撮像され、パッケージ基板P1の位置等が確認される。第2位置確認カメラ6bを用いた確認は、たとえば、パッケージ基板P1の切断位置及び切断幅等の確認である。 After that, the cutting table 5 moves toward the spindle portion 6 along the Y axis in the figure. After the cutting table 5 moves below the spindle portion 6, the package substrate P1 is cut by relatively moving the cutting table 5 and the spindle portion 6. After that, the package substrate P1 is imaged by the second position confirmation camera 6b as necessary, and the position of the package substrate P1 and the like are confirmed. The confirmation using the second position confirmation camera 6b is, for example, confirmation of the cutting position, cutting width, and the like of the package substrate P1.
 切断テーブル5は、パッケージ基板P1の切断が完了した後、個片化された複数の半導体パッケージS1を吸着した状態で、図のY軸に沿ってスピンドル部6から離れる方向に移動する。この移動過程において、第1クリーナ5eによって、半導体パッケージS1の上面(ボール/リード面面)の洗浄及び乾燥が行なわれる。 After the cutting of the package substrate P1 is completed, the cutting table 5 moves in a direction away from the spindle portion 6 along the Y axis in the figure in a state where the plurality of fragmented semiconductor packages S1 are adsorbed. In this moving process, the first cleaner 5e cleans and dries the upper surface (ball / lead surface) of the semiconductor package S1.
 搬送部7は、切断テーブル5に保持された半導体パッケージS1を上方から吸着し、半導体パッケージS1を検査・収納モジュールB1の検査テーブル11へ搬送する。この搬送過程において、第2クリーナ7aによって、半導体パッケージS1の下面(モールド面)の洗浄及び乾燥が行なわれる。 The transport unit 7 attracts the semiconductor package S1 held on the cutting table 5 from above, and transports the semiconductor package S1 to the inspection table 11 of the inspection / storage module B1. In this transport process, the second cleaner 7a cleans and dries the lower surface (mold surface) of the semiconductor package S1.
 検査・収納モジュールB1は、主として、検査テーブル11と、第1光学検査カメラ12と、第2光学検査カメラ13と、配置部14と、抽出部15とを含んでいる。 The inspection / storage module B1 mainly includes an inspection table 11, a first optical inspection camera 12, a second optical inspection camera 13, an arrangement unit 14, and an extraction unit 15.
 検査テーブル11は、半導体パッケージS1の光学的な検査のために、半導体パッケージS1を保持する。検査テーブル11は、図のX軸に沿って移動可能である。また、検査テーブル11は、上下反転することができる。検査テーブル11には、半導体パッケージS1を吸着することによって半導体パッケージS1を保持する保持部材が設けられている。 The inspection table 11 holds the semiconductor package S1 for optical inspection of the semiconductor package S1. The inspection table 11 can be moved along the X axis in the figure. Further, the inspection table 11 can be turned upside down. The inspection table 11 is provided with a holding member that holds the semiconductor package S1 by adsorbing the semiconductor package S1.
 第1光学検査カメラ12及び第2光学検査カメラ13は、半導体パッケージS1の両面(ボール/リード面及びモールド面)を撮像する。第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データに基づいて、半導体パッケージS1の各種検査が行なわれる。第1光学検査カメラ12及び第2光学検査カメラ13の各々は、検査テーブル11の近傍において、上方を撮像するように配置されている。第1光学検査カメラ12及び第2光学検査カメラ13の各々には、検査時に光を照射可能な照明装置(不図示)が設けられている。なお、第1光学検査カメラ12は、切断モジュールA1に設けられていてもよい。 The first optical inspection camera 12 and the second optical inspection camera 13 image both surfaces (ball / lead surface and mold surface) of the semiconductor package S1. Various inspections of the semiconductor package S1 are performed based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13. Each of the first optical inspection camera 12 and the second optical inspection camera 13 is arranged so as to take an image of the upper side in the vicinity of the inspection table 11. Each of the first optical inspection camera 12 and the second optical inspection camera 13 is provided with a lighting device (not shown) capable of irradiating light during inspection. The first optical inspection camera 12 may be provided in the cutting module A1.
 第1光学検査カメラ12は、搬送部7によって検査テーブル11へ搬送される半導体パッケージS1のモールド面を撮像する。その後、搬送部7は、検査テーブル11の保持部材上に半導体パッケージS1を載置する。保持部材が半導体パッケージS1を吸着した後、検査テーブル11は上下反転する。検査テーブル11は第2光学検査カメラ13の上方へ移動し、半導体パッケージS1のボール/リード面が第2光学検査カメラ13によって撮像される。上述のように、第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データに基づいて、半導体パッケージS1の各種検査が行なわれる。この検査における検査項目に関しては、後程詳しく説明する。 The first optical inspection camera 12 images the molded surface of the semiconductor package S1 transported to the inspection table 11 by the transport unit 7. After that, the transport unit 7 places the semiconductor package S1 on the holding member of the inspection table 11. After the holding member adsorbs the semiconductor package S1, the inspection table 11 is turned upside down. The inspection table 11 moves above the second optical inspection camera 13, and the ball / lead surface of the semiconductor package S1 is imaged by the second optical inspection camera 13. As described above, various inspections of the semiconductor package S1 are performed based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13. The inspection items in this inspection will be described in detail later.
 配置部14には、検査済みの半導体パッケージS1が配置される。配置部14は、図のY軸に沿って移動可能である。検査テーブル11は、検査済みの半導体パッケージS1を配置部14に配置する。 The inspected semiconductor package S1 is arranged in the arrangement unit 14. The arrangement portion 14 is movable along the Y axis in the figure. In the inspection table 11, the inspected semiconductor package S1 is arranged in the arrangement unit 14.
 抽出部15は、配置部14に配置された半導体パッケージS1をトレイに移送する。半導体パッケージS1は、第1光学検査カメラ12及び第2光学検査カメラ13を用いた検査の結果に基づいて、「良品」又は「不良品」に分別される。抽出部15は、分別の結果に基づいて、各半導体パッケージS1を良品用トレイ15a又は不良品用トレイ15bに移送する。すなわち、良品は良品用トレイ15aに収納され、不良品は不良品用トレイ15bに収納される。良品用トレイ15a及び不良品用トレイ15bの各々は、半導体パッケージS1で満たされると、新たなトレイに取り換えられる。 The extraction unit 15 transfers the semiconductor package S1 arranged in the arrangement unit 14 to the tray. The semiconductor package S1 is classified into a "non-defective product" or a "defective product" based on the results of inspections using the first optical inspection camera 12 and the second optical inspection camera 13. The extraction unit 15 transfers each semiconductor package S1 to the non-defective product tray 15a or the defective product tray 15b based on the result of sorting. That is, the non-defective product is stored in the non-defective product tray 15a, and the defective product is stored in the defective product tray 15b. When each of the non-defective product tray 15a and the defective product tray 15b is filled with the semiconductor package S1, it is replaced with a new tray.
 切断装置1は、さらにコンピュータ50を含んでいる。コンピュータ50は、切断モジュールA1及び検査・収納モジュールB1の各部の動作を制御する。コンピュータ50によって、たとえば、基板供給部3、位置決め部4、切断テーブル5、スピンドル部6、搬送部7、検査テーブル11、第1光学検査カメラ12、第2光学検査カメラ13、配置部14及び抽出部15の動作が制御される。 The cutting device 1 further includes a computer 50. The computer 50 controls the operation of each part of the cutting module A1 and the inspection / storage module B1. By the computer 50, for example, the substrate supply unit 3, the positioning unit 4, the cutting table 5, the spindle unit 6, the transport unit 7, the inspection table 11, the first optical inspection camera 12, the second optical inspection camera 13, the arrangement unit 14, and the extraction unit. The operation of unit 15 is controlled.
 また、コンピュータ50は、たとえば、第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データに基づいて、半導体パッケージS1の各種検査を行なう。コンピュータ50は、各種検査を通じて生成された検査データを記憶装置30(図1)に集約し、集約された検査データに基づいて統計データを生成する。次に、コンピュータ50について詳細に説明する。 Further, the computer 50 performs various inspections of the semiconductor package S1 based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13, for example. The computer 50 aggregates the inspection data generated through various inspections in the storage device 30 (FIG. 1), and generates statistical data based on the aggregated inspection data. Next, the computer 50 will be described in detail.
 (2-2.コンピュータのハードウェア構成)
 図4は、コンピュータ50のハードウェア構成を模式的に示す図である。図4に示されるように、コンピュータ50は、演算部70と、入出力I/F(interface)90と、通信I/F91と、記憶部80とを含み、各構成は、バスを介して電気的に接続されている。
(2-2. Computer hardware configuration)
FIG. 4 is a diagram schematically showing a hardware configuration of the computer 50. As shown in FIG. 4, the computer 50 includes a calculation unit 70, an input / output I / F (interface) 90, a communication I / F 91, and a storage unit 80, and each configuration is electrically connected via a bus. Is connected.
 演算部70は、CPU(Central Processing Unit)72、RAM(Random Access Memory)74及びROM(Read Only Memory)76等を含んでいる。演算部70は、情報処理に応じて、コンピュータ50内の各構成要素及び切断装置1内の各構成要素を制御するように構成されている。 The calculation unit 70 includes a CPU (Central Processing Unit) 72, a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, and the like. The calculation unit 70 is configured to control each component in the computer 50 and each component in the cutting device 1 according to information processing.
 入出力I/F90は、信号線を介して、切断装置1に含まれる各構成要素と通信するように構成されている。入出力I/F90は、コンピュータ50から切断装置1内の各構成要素へのデータの送信、切断装置1内の各構成要素からコンピュータ50へ送信されるデータの受信に用いられる。 The input / output I / F 90 is configured to communicate with each component included in the cutting device 1 via a signal line. The input / output I / F 90 is used for transmitting data from the computer 50 to each component in the cutting device 1 and receiving data transmitted from each component in the cutting device 1 to the computer 50.
 通信I/F91は、インターネットを介して、切断装置1の外部に設けられた外部装置(たとえば、記憶装置30(図1))と通信するように構成されている。通信I/F91は、たとえば、有線LAN(Local Area Network)モジュールや無線LANモジュールで構成される。 The communication I / F 91 is configured to communicate with an external device (for example, a storage device 30 (FIG. 1)) provided outside the disconnecting device 1 via the Internet. The communication I / F91 is composed of, for example, a wired LAN (Local Area Network) module or a wireless LAN module.
 記憶部80は、たとえば、ハードディスクドライブ、ソリッドステートドライブ等の補助記憶装置である。記憶部80は、たとえば、制御プログラム81を記憶するように構成されている。記憶部80は、第1光学検査カメラ12及び第2光学検査カメラ13を用いた検査を通じて生成された検査データを記憶してもよい。 The storage unit 80 is, for example, an auxiliary storage device such as a hard disk drive or a solid state drive. The storage unit 80 is configured to store, for example, the control program 81. The storage unit 80 may store the inspection data generated through the inspection using the first optical inspection camera 12 and the second optical inspection camera 13.
 (2-3.パッケージ部品の検査に関するソフトウェア構成)
 図5は、コンピュータ50によって実現される各機能の関係を示す図である。演算部70は、記憶部80に記憶された制御プログラム81をRAM74に展開する。そして、演算部70がRAM74に展開された制御プログラム81をCPU72によって解釈及び実行することによって、コンピュータ50は切断装置1内の各構成要素を制御する。図5に示されるように、コンピュータ50は、画像取得部52、検査部54、統計データ生成部56及び画像生成部58として動作する。
(2-3. Software configuration for inspection of package parts)
FIG. 5 is a diagram showing the relationship of each function realized by the computer 50. The calculation unit 70 expands the control program 81 stored in the storage unit 80 into the RAM 74. Then, the calculation unit 70 interprets and executes the control program 81 expanded in the RAM 74 by the CPU 72, so that the computer 50 controls each component in the cutting device 1. As shown in FIG. 5, the computer 50 operates as an image acquisition unit 52, an inspection unit 54, a statistical data generation unit 56, and an image generation unit 58.
 画像取得部52は、第1光学検査カメラ12及び第2光学検査カメラ13に撮像指示を送る。撮像指示には、たとえば、パッケージ基板P1における撮像範囲を特定する情報が含まれる。なお、画像取得部52は、撮像範囲を順次変更する。これにより、パッケージ基板P1に含まれる全ての半導体パッケージS1の両面が撮像される。画像取得部52は、第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データを入出力I/F90を介して取得する。 The image acquisition unit 52 sends an imaging instruction to the first optical inspection camera 12 and the second optical inspection camera 13. The imaging instruction includes, for example, information for specifying an imaging range on the package substrate P1. The image acquisition unit 52 sequentially changes the imaging range. As a result, both sides of all the semiconductor packages S1 included in the package substrate P1 are imaged. The image acquisition unit 52 acquires the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13 via the input / output I / F 90.
 検査部54は、画像取得部52によって取得された画像データを解析することによって、画像データに含まれる各半導体パッケージS1の各種検査を行なう。検査項目の一例としては、QFNにおける「端子数(Lead Pad Number)」、「ダイパッド欠陥(Die Pad Defect)」、「マークアングル(Mark Angle)」が挙げられる。 The inspection unit 54 analyzes the image data acquired by the image acquisition unit 52 to perform various inspections of each semiconductor package S1 included in the image data. Examples of inspection items include "number of terminals (Lead Pad Number)", "Die Pad Defect", and "Mark Angle" in QFN.
 図6は、QFNにおける端子数の検査について説明するための図である。図6を参照して、画像ID1は、第2光学検査カメラ13によって撮像された画像に含まれる画像である。すなわち、画像ID1は、パッケージ部品60のモールド面と反対の面(ボール/リード面)を示す画像である。パッケージ部品60の中央部にはダイパッド61が配置され、パッケージ部品60の周囲には複数の端子(電極パッド)62が配置されている。 FIG. 6 is a diagram for explaining the inspection of the number of terminals in QFN. With reference to FIG. 6, the image ID 1 is an image included in the image captured by the second optical inspection camera 13. That is, the image ID 1 is an image showing a surface (ball / lead surface) opposite to the mold surface of the package component 60. A die pad 61 is arranged at the center of the package component 60, and a plurality of terminals (electrode pads) 62 are arranged around the package component 60.
 パッケージ部品60の端子数の検査において、検査部54は、画像解析を通じて、各辺における端子数(リードパッド数)を検出する。検査部54は、各辺における端子数が所定数であるか否かを判定する。検査部54は、各辺における端子数が所定数である場合に「端子数」に関してパッケージ部品60が良品であると判定し、各辺における端子数が所定数でない場合に「端子数」に関してパッケージ部品60が不良品であると判定する。検査部54は、検出された各辺の端子数、及び、良品/不良品の判定結果を、パッケージ基板におけるパッケージ部品60の位置情報と対応付けて記憶装置30に記憶させる。すなわち、検査部54は、検査項目次第では、良品/不良品の判定結果のみならず、画像解析を通じて得られた測定対象の測定値(この例では、「端子数」)もパッケージ基板におけるパッケージ部品60の位置情報と対応付けて記憶装置30に記憶させる。 In the inspection of the number of terminals of the package component 60, the inspection unit 54 detects the number of terminals (number of lead pads) on each side through image analysis. The inspection unit 54 determines whether or not the number of terminals on each side is a predetermined number. The inspection unit 54 determines that the package component 60 is a non-defective product with respect to the "number of terminals" when the number of terminals on each side is a predetermined number, and packages the package with respect to the "number of terminals" when the number of terminals on each side is not a predetermined number. It is determined that the part 60 is a defective product. The inspection unit 54 stores the detected number of terminals on each side and the determination result of a non-defective product / defective product in the storage device 30 in association with the position information of the package component 60 on the package substrate. That is, depending on the inspection item, the inspection unit 54 not only determines the non-defective product / defective product but also the measured value of the measurement target (“number of terminals” in this example) obtained through image analysis as a package component on the package substrate. It is stored in the storage device 30 in association with the position information of the 60.
 図7は、QFNにおけるダイパッド欠陥の検査について説明するための図である。図7を参照して、画像ID2は、第2光学検査カメラ13によって撮像された画像に含まれる画像である。すなわち、画像ID2は、パッケージ部品60のモールド面と反対の面(ボール/リード面)を示す画像である。 FIG. 7 is a diagram for explaining the inspection of die pad defects in QFN. With reference to FIG. 7, the image ID 2 is an image included in the image captured by the second optical inspection camera 13. That is, the image ID 2 is an image showing a surface (ball / lead surface) opposite to the mold surface of the package component 60.
 パッケージ部品60のダイパッド欠陥の検査において、検査部54は、画像解析を通じて、ダイパッド61上の異物を検出する。加えて、検査部54は、ダイパッド61上に存在する異物のレベルが所定範囲内に収まっているか否かを判定する。検査部54は、ダイパッド61上に存在する異物のレベルが所定範囲内に収まっている場合にダイパッド欠陥に関してパッケージ部品60が良品であると判定し、ダイパッド61上に存在する異物のレベルが所定範囲内に収まっていない場合にダイパッド欠陥に関しパッケージ部品60が不良品であると判定する。検査部54は、良品/不良品の判定結果を、パッケージ基板におけるパッケージ部品60の位置情報と対応付けて記憶装置30に記憶させる。 In the inspection of the die pad defect of the package component 60, the inspection unit 54 detects a foreign substance on the die pad 61 through image analysis. In addition, the inspection unit 54 determines whether or not the level of the foreign matter existing on the die pad 61 is within a predetermined range. When the level of the foreign matter existing on the die pad 61 is within the predetermined range, the inspection unit 54 determines that the package component 60 is a non-defective product with respect to the die pad defect, and the level of the foreign matter existing on the die pad 61 is within the predetermined range. If it does not fit inside, it is determined that the package component 60 is a defective product with respect to the die pad defect. The inspection unit 54 stores the determination result of the non-defective product / defective product in the storage device 30 in association with the position information of the package component 60 on the package substrate.
 図8は、QFNにおけるマークアングルの検査について説明するための図である。図8を参照して、画像ID3は、第1光学検査カメラ12によって撮像された画像に含まれる画像である。すなわち、画像ID3は、パッケージ部品60のモールド面を示す画像である。 FIG. 8 is a diagram for explaining the inspection of the mark angle in QFN. With reference to FIG. 8, the image ID 3 is an image included in the image captured by the first optical inspection camera 12. That is, the image ID 3 is an image showing the mold surface of the package component 60.
 パッケージ部品60のモールド面上には、たとえば、パッケージ部品60のブランドマーク等がプリントされる。パッケージ部品60のマークアングルの検査において、検査部54は、画像解析を通じて、パッケージ部品60の表面にプリントされたマークMk1の傾きが所定範囲内であるか否かを判定する。検査部54は、マークMk1の傾きが所定範囲内である場合にマークアングルに関してパッケージ部品60が良品であると判定し、マークMk1の傾きが所定範囲外である場合にマークアングルに関しパッケージ部品60が不良品であると判定する。検査部54は、良品/不良品の判定結果を、パッケージ基板におけるパッケージ部品60の位置情報と対応付けて記憶装置30に記憶させる。 For example, the brand mark of the package part 60 is printed on the mold surface of the package part 60. In the inspection of the mark angle of the package component 60, the inspection unit 54 determines whether or not the inclination of the mark Mk1 printed on the surface of the package component 60 is within a predetermined range through image analysis. The inspection unit 54 determines that the package component 60 is a non-defective product with respect to the mark angle when the inclination of the mark Mk1 is within a predetermined range, and when the inclination of the mark Mk1 is out of the predetermined range, the package component 60 with respect to the mark angle Determined to be defective. The inspection unit 54 stores the determination result of the non-defective product / defective product in the storage device 30 in association with the position information of the package component 60 on the package substrate.
 検査部54は、他にも様々な検査項目の検査を実行可能である。検査部54によって検査可能な検査項目の一例を以下の表1に示す。 The inspection unit 54 can perform inspections of various other inspection items. Table 1 below shows an example of inspection items that can be inspected by the inspection unit 54.
Figure JPOXMLDOC01-appb-T000001
 表1において、BGAに対応する検査項目は、BGAのボール/リード面における検査項目を示す。また、QFNに対応する検査項目は、QFNのボール/リード面における検査項目を示す。また、共通に対応する検査項目は、BGA及びQFNのモールド面における検査項目を示す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the inspection items corresponding to BGA show the inspection items on the ball / lead surface of BGA. Further, the inspection items corresponding to the QFN indicate the inspection items on the ball / lead surface of the QFN. In addition, the inspection items that correspond in common indicate the inspection items on the mold surface of BGA and QFN.
 表1に含まれる各種検査項目のうち、パッケージ部品特有の検査の一例は、「Lead Pad Offset」、「Lead Pad Number」、「Lead Pad Size」、「Lead Pad Pitch」、「Lead Pad Defect」、「Die Pad Size」、「Die Pad Defect」、「Die Pad Number」、「Lead Pad Side」、「Mark Offset」、「No Marking」、「Mark Angle」、「Broken Mark」、「Broken Character」、「Splash Character」、「Wrong Character」である。 Among the various inspection items included in Table 1, examples of inspections specific to package parts are "Lead Pad Offset", "Lead Pad Number", "Lead Pad Size", "Lead Pad Pitch", "Lead Pad Defect", "Die Pad Size", "Die Pad Defect", "Die Pad Number", "Lead Pad Side", "Mark Offset", "No Marking", "Mark Angle", "Broken Mark", "Broken Character", " "Splash Character" and "Wrong Character".
 「Lead Pad Offset」において、検査部54は、各端子(リード)62の所定位置からのずれを測定し、ずれが所定範囲内かを判定する。「Lead Pad Number」において、検査部54は、端子62の数が所定通りかを判定する。「Lead Pad Size」において、検査部54は、各端子62の大きさが所定範囲内かを判定する。「Lead Pad Pitch」において、検査部54は、端子62間の長さが所定範囲内かを判定する。「Lead Pad Defect」において、検査部54は、端子62上における異物の有無を判定する。「Die Pad Size」において、検査部54は、外部に露出しているダイパッド61の大きさが所定範囲内かを判定する。「Die Pad Defect」において、検査部54は、ダイパッド61上における異物の有無を判定する。「Die Pad Number」において、検査部54は、ダイパッド61の数が所定通りかを判定する。「Lead Pad Side」において、検査部54は、端子の切断面(パッケージ部品60の側面)の状態が適切かを判定する。Mark Offset」において、検査部54は、マークMk1(ブランドマーク等)の所定位置からのずれを測定し、ずれが所定範囲内かを判定する。「No Marking」において、検査部54は、本来存在すべきマークMk1がないことを検出する。「Mark Angle」において、検査部54は、パッケージ部品上におけるマークMk1の傾きが所定範囲内かを判定する。「Broken Mark」において、検査部54は、マークMk1を構成する文字の一部が欠落しているかを判定する。「Broken Character」において、検査部54は、マークMk1を構成する文字の一部が十分にプリントされていないことを検出する。「Splash Character」において、検査部54は、マークMk1を構成する文字の一部の滲みが所定範囲内かを判定する。「Wrong Character」において、検査部54は、マークMk1を構成する文字の一部が異なる文字になっていることを検出する。 In the "Lead Pad Offset", the inspection unit 54 measures the deviation of each terminal (lead) 62 from the predetermined position and determines whether the deviation is within the predetermined range. In the "Lead Pad Number", the inspection unit 54 determines whether the number of terminals 62 is as predetermined. In "Lead Pad Size", the inspection unit 54 determines whether the size of each terminal 62 is within a predetermined range. In the "Lead Pad Pitch", the inspection unit 54 determines whether the length between the terminals 62 is within a predetermined range. In the "Lead Pad Defect", the inspection unit 54 determines the presence or absence of foreign matter on the terminal 62. In the "Die Pad Size", the inspection unit 54 determines whether the size of the die pad 61 exposed to the outside is within a predetermined range. In the "Die Pad Defect", the inspection unit 54 determines the presence or absence of foreign matter on the die pad 61. In the "Die Pad Number", the inspection unit 54 determines whether the number of die pads 61 is as predetermined. In the "Lead Pad Side", the inspection unit 54 determines whether the state of the cut surface (side surface of the package component 60) of the terminal is appropriate. In "Mark Offset", the inspection unit 54 measures the deviation of the mark Mk1 (brand mark, etc.) from the predetermined position, and determines whether the deviation is within the predetermined range. In "No Marking", the inspection unit 54 detects that there is no mark Mk1 that should originally exist. In the "Mark Angle", the inspection unit 54 determines whether the inclination of the mark Mk1 on the package component is within a predetermined range. In the "Broken Mark", the inspection unit 54 determines whether or not a part of the characters constituting the mark Mk1 is missing. In the "Broken Character", the inspection unit 54 detects that a part of the characters constituting the mark Mk1 is not sufficiently printed. In the "Splash Character", the inspection unit 54 determines whether or not the bleeding of a part of the characters constituting the mark Mk1 is within a predetermined range. In the "Wrong Character", the inspection unit 54 detects that some of the characters constituting the mark Mk1 are different characters.
 再び図5を参照して、検査部54による検査の結果情報を含む検査データは、記憶装置30に記憶される。記憶装置30においては、複数の検査データが、集約され、データベースDB1上で管理される。 With reference to FIG. 5 again, the inspection data including the inspection result information by the inspection unit 54 is stored in the storage device 30. In the storage device 30, a plurality of inspection data are aggregated and managed on the database DB1.
 図9は、データベースDB1の一例を示す図である。図9を参照して、データベースDB1における各行は、各パッケージ部品60の検査データを示す。各行においては、「ロット」、「No.」、「フレームNo.」、「位置」、及び「検査項目」毎の結果情報が対応付けられている。 FIG. 9 is a diagram showing an example of the database DB1. With reference to FIG. 9, each row in the database DB1 shows inspection data for each package component 60. In each line, the result information for each "lot", "No.", "frame No.", "position", and "inspection item" is associated.
 たとえば、「No.」が「2」であるパッケージ部品60は、「フレームNo.」が「1」であるパッケージ基板(フレーム)P1において、X座標上で「2」かつY座標上で「1」の位置に存在する。このパッケージ部品60が含まれているフレームは、「0000」の「ロット」に含まれている。「ロット」は、複数のフレーム(パッケージ基板P1)を含む単位である。このパッケージ部品60に関し、検査項目「0」に関しては結果が「1(たとえば、不良品)」であり、検査項目「1」に関しては結果が「0(たとえば、良品)」であり、検査項目「2」に関しては結果が「5.005(測定値)」である。 For example, the package component 60 whose "No." is "2" is "2" on the X coordinate and "1" on the Y coordinate in the package substrate (frame) P1 whose "frame No." is "1". It exists in the position of. The frame containing the package component 60 is included in the "lot" of "0000". A "lot" is a unit including a plurality of frames (package substrate P1). Regarding the package part 60, the result is "1 (for example, defective product)" for the inspection item "0", the result is "0 (for example, non-defective product)" for the inspection item "1", and the inspection item " Regarding "2", the result is "5.005 (measured value)".
 システム100(図1)のユーザは、半導体パッケージS1の生産状況に関し、システム100から統計データを取得することができる。この統計データは、データベースDB1に格納されているデータに基づいて生成される。たとえば、ユーザは、統計データを参照することによって、半導体パッケージS1の生産に関する問題点を分析することができる。ユーザは、取得したい統計データに応じて、統計データの生成に用いるデータの範囲を指定する。たとえば、ユーザは、後述の画像200(図10)を介した入力を行なうことによって、データの範囲を指定する。システム100においては、指定された範囲内のデータを用いて統計データが生成される。 The user of the system 100 (FIG. 1) can acquire statistical data from the system 100 regarding the production status of the semiconductor package S1. This statistical data is generated based on the data stored in the database DB1. For example, the user can analyze problems related to the production of the semiconductor package S1 by referring to the statistical data. The user specifies the range of data used to generate the statistical data according to the statistical data to be acquired. For example, the user specifies a range of data by inputting through the image 200 (FIG. 10) described later. In the system 100, statistical data is generated using the data within the specified range.
 再び図5を参照して、統計データ生成部56は、ユーザからの指示に従って、記憶装置30から検査データを取得し、取得された検査データを集約することによって、統計データを生成する。統計データ生成部56は、たとえば、パッケージ基板P1内の各位置と半導体パッケージS1の良/不良状況とを対応付けた統計データを生成する。また、統計データ生成部56は、たとえば、特定のロットに含まれる複数のパッケージ基板P1の各々における位置毎の半導体パッケージS1の良/不良状況を示すデータから、パッケージ基板P1の位置毎の不良発生率を示す統計データを生成する。 With reference to FIG. 5 again, the statistical data generation unit 56 acquires the inspection data from the storage device 30 according to the instruction from the user, and generates the statistical data by aggregating the acquired inspection data. The statistical data generation unit 56 generates, for example, statistical data in which each position in the package substrate P1 is associated with the good / bad status of the semiconductor package S1. Further, the statistical data generation unit 56 generates defects for each position of the package substrate P1 from data indicating the good / bad status of the semiconductor package S1 for each position in each of the plurality of package substrates P1 included in a specific lot. Generate statistical data showing the rate.
 画像生成部58は、統計データ生成部56によって生成された統計データを可視化した画像データを生成する。 The image generation unit 58 generates image data that visualizes the statistical data generated by the statistical data generation unit 56.
 図10は、画像生成部58によって生成される画像200の一例を示す図である。図10に示されるように、画像200は、種類選択部202と、指示部214と、領域T1と、領域T2とを含んでいる。ユーザは、種類選択部202を介して、分析対象のパッケージ基板の種類がBGAであるかQFNであるかを選択する。また、ユーザは、指示部214をカーソル(マウスポインタ)等で押下することによって、統計データの出力指示を行なう。領域T1は、特定のパッケージ基板(フレーム)における統計データを可視化した画像を表示する領域である。領域T2は、特定のロットにおける統計データを可視化した画像を表示する領域である。 FIG. 10 is a diagram showing an example of an image 200 generated by the image generation unit 58. As shown in FIG. 10, the image 200 includes a type selection unit 202, an instruction unit 214, a region T1, and a region T2. The user selects whether the type of the package substrate to be analyzed is BGA or QFN via the type selection unit 202. Further, the user gives an instruction to output statistical data by pressing the instruction unit 214 with a cursor (mouse pointer) or the like. The area T1 is an area for displaying an image that visualizes statistical data on a specific package substrate (frame). The area T2 is an area for displaying an image that visualizes statistical data in a specific lot.
 領域T1は、入力部204と、選択部206と、結果出力部208,210,212とを含んでいる。ユーザは、入力部204を介して、分析対象のパッケージ基板(フレーム)P1の「フレームNo.」を入力する。また、ユーザは、選択部206を介して、分析対象の「検査項目」を選択する。 The area T1 includes an input unit 204, a selection unit 206, and a result output unit 208, 210, 212. The user inputs the "frame No." of the package substrate (frame) P1 to be analyzed via the input unit 204. Further, the user selects the "inspection item" to be analyzed via the selection unit 206.
 結果出力部208は、全体として長方形状の画像を出力する。この長方形状の画像は、複数のブロックを含んでいる。この長方形状の画像はパッケージ基板P1に対応しており、複数のブロックの各々は半導体パッケージS1に対応している。この例においては、長方形状の画像の左上のブロックが座標(1,1)を示す。X座標は左方から右方に向かって「1」から「14」まで存在し、Y座標は上方から下方に向かって「1」から「48」まで存在する。この例においては、たとえば、各パッケージ部品60の不良の程度に応じて、対応する各ブロックの色分けが行なわれている。ユーザは、結果出力部208に出力される画像を参照することによって、パッケージ基板内の位置毎の不良発生状況を視覚的に認識することができる。 The result output unit 208 outputs a rectangular image as a whole. This rectangular image contains multiple blocks. This rectangular image corresponds to the package substrate P1, and each of the plurality of blocks corresponds to the semiconductor package S1. In this example, the upper left block of the rectangular image shows the coordinates (1,1). The X coordinate exists from "1" to "14" from the left to the right, and the Y coordinate exists from "1" to "48" from the top to the bottom. In this example, for example, the corresponding blocks are color-coded according to the degree of defect of each package component 60. The user can visually recognize the defect occurrence status for each position in the package substrate by referring to the image output to the result output unit 208.
 結果出力部210は、たとえば、分析対象のパッケージ基板P1に含まれる半導体パッケージS1の総数、良品の数、不良品の数を出力する。結果出力部212は、たとえば、不良品の数、及び、不良品の発生率を出力する。 The result output unit 210 outputs, for example, the total number of semiconductor packages S1 included in the package substrate P1 to be analyzed, the number of non-defective products, and the number of defective products. The result output unit 212 outputs, for example, the number of defective products and the occurrence rate of defective products.
 領域T2は、結果出力部220,224,226と、選択部222とを含んでいる。ユーザは、選択部222を介して、分析対象の「検査項目」を選択する。 Region T2 includes result output units 220, 224, 226 and selection unit 222. The user selects the "inspection item" to be analyzed via the selection unit 222.
 結果出力部224は、ロットに含まれる複数のパッケージ基板P1における不良品発生位置の集計結果を示す画像を出力する。この画像において、X座標及びY座標が示す意味は、結果出力部208によって出力される画像と同じである。Z座標は、その位置において発生した不良品の総数を示す。ユーザは、結果出力部224に出力される画像を参照することによって、パッケージ基板内の位置毎の不良発生状況を視覚的に認識することができる。 The result output unit 224 outputs an image showing the total result of the defective product occurrence positions on the plurality of package substrates P1 included in the lot. In this image, the meanings of the X coordinate and the Y coordinate are the same as the image output by the result output unit 208. The Z coordinate indicates the total number of defective products generated at that position. The user can visually recognize the defect occurrence status for each position in the package substrate by referring to the image output to the result output unit 224.
 結果出力部220は、たとえば、分析対象のロットに含まれるパッケージ基板P1の総数、半導体パッケージS1の総数、良品の数、不良品の数を出力する。結果出力部226は、たとえば、不良品の数、及び、不良品の発生率を出力する。 The result output unit 220 outputs, for example, the total number of package substrates P1 included in the lot to be analyzed, the total number of semiconductor packages S1, the number of non-defective products, and the number of defective products. The result output unit 226 outputs, for example, the number of defective products and the occurrence rate of defective products.
 再び図5を参照して、画像生成部58によって生成された画像は、切断装置1に含まれるモニタ20に表示される。ユーザは、モニタ20に表示された画像を参照することによって、半導体パッケージS1の生産状況を統計的に把握することができる。 With reference to FIG. 5 again, the image generated by the image generation unit 58 is displayed on the monitor 20 included in the cutting device 1. The user can statistically grasp the production status of the semiconductor package S1 by referring to the image displayed on the monitor 20.
 [3.動作]
 (3-1.検査結果の蓄積動作)
 図11は、半導体パッケージS1の検査の結果を記憶装置30に蓄積する手順を示すフローチャートである。このフローチャートに示される処理は、コンピュータ50によって所定サイクル毎に実行される。
[3. motion]
(3-1. Accumulation of test results)
FIG. 11 is a flowchart showing a procedure for accumulating the inspection results of the semiconductor package S1 in the storage device 30. The process shown in this flowchart is executed by the computer 50 at predetermined cycles.
 図11を参照して、コンピュータ50は、検査テーブル11上のパッケージ基板P1の所定範囲を順次撮像するように第1光学検査カメラ12及び第2光学検査カメラ13に指示する(ステップS100)。コンピュータ50は、第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データを順次取得する(ステップS110)。コンピュータ50は、取得された画像データの解析を通じて、各半導体パッケージS1について各種検査を行なう(ステップS120)。コンピュータ50は、検査を通じて生成された検査データを追加するように、データベースDB1を更新する(ステップS130)。 With reference to FIG. 11, the computer 50 instructs the first optical inspection camera 12 and the second optical inspection camera 13 to sequentially image a predetermined range of the package substrate P1 on the inspection table 11 (step S100). The computer 50 sequentially acquires the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13 (step S110). The computer 50 performs various inspections on each semiconductor package S1 through the analysis of the acquired image data (step S120). The computer 50 updates the database DB1 so as to add the inspection data generated through the inspection (step S130).
 ステップS100-S130を繰り返すことによって、各半導体パッケージS1の検査データが順次データベースDB1に追加される。 By repeating steps S100-S130, the inspection data of each semiconductor package S1 is sequentially added to the database DB1.
 (3-2.統計データの出力動作)
 図12は、統計データを出力する手順を示すフローチャートである。このフローチャートに示される処理は、コンピュータ50によって所定サイクル毎に実行される。
(3-2. Statistical data output operation)
FIG. 12 is a flowchart showing a procedure for outputting statistical data. The process shown in this flowchart is executed by the computer 50 at predetermined cycles.
 図12を参照して、コンピュータ50は、ユーザから統計データの出力指示があったか否かを判定する(ステップS200)。たとえば、コンピュータ50は、ユーザによって指示部214(図10)が押下されたか否かを判定する。統計データの出力指示がないと判定されると(ステップS200においてNO)、処理は「リターン」に移行する。 With reference to FIG. 12, the computer 50 determines whether or not the user has instructed to output statistical data (step S200). For example, the computer 50 determines whether or not the indicator 214 (FIG. 10) has been pressed by the user. If it is determined that there is no statistical data output instruction (NO in step S200), the process shifts to "return".
 一方、統計データの出力指示があったと判定されると(ステップS200においてYES)、コンピュータ50は、ユーザからの指示内容に合致した検査データを記憶装置30(データベースDB1)から読み出す(ステップS210)。コンピュータ50は、読み出された検査データを集約することによって統計データを生成する(ステップS220)。コンピュータ50は、統計データが視覚的に表現された画像データを生成する(ステップS230)。コンピュータ50は、生成された画像を表示するようにモニタ20(図5)を制御する(ステップS240)。 On the other hand, if it is determined that the statistical data output instruction has been given (YES in step S200), the computer 50 reads out the inspection data matching the instruction content from the user from the storage device 30 (database DB1) (step S210). The computer 50 generates statistical data by aggregating the read inspection data (step S220). The computer 50 generates image data in which the statistical data is visually represented (step S230). The computer 50 controls the monitor 20 (FIG. 5) to display the generated image (step S240).
 ユーザは、モニタ20に表示された画像を参照することによって、半導体パッケージS1の生産状況を統計的に把握することができる。 The user can statistically grasp the production status of the semiconductor package S1 by referring to the image displayed on the monitor 20.
 [4.特徴]
 以上のように、本実施の形態に従う切断装置1は、パッケージ部品の検査の結果情報を含む検査データを集約し、集約された検査データに基づいて統計データを生成するように構成されている。パッケージ部品の検査の結果情報を含む検査データの統計データを用いることによって、たとえば、後工程において生じている問題の早期発見が促進され得る。すなわち、切断装置1によれば、後工程における従来に比べて高度な生産管理に用いられるデータ(統計データ)を生成することができる。
[4. Features]
As described above, the cutting device 1 according to the present embodiment is configured to aggregate inspection data including inspection result information of package parts and generate statistical data based on the aggregated inspection data. By using statistical data of inspection data including inspection result information of package parts, for example, early detection of problems occurring in a post-process can be promoted. That is, according to the cutting device 1, it is possible to generate data (statistical data) used for advanced production control in the subsequent process as compared with the conventional one.
 また、切断装置1において、検査データは、検査対象の半導体パッケージS1のパッケージ基板P1における位置情報を含む。したがって、切断装置1によれば、半導体パッケージS1の検査の結果情報をパッケージ基板P1における半導体パッケージS1の位置情報と対応付けて管理できるため、より有用な統計データを生成することができる。 Further, in the cutting device 1, the inspection data includes the position information of the semiconductor package S1 to be inspected on the package substrate P1. Therefore, according to the cutting device 1, the inspection result information of the semiconductor package S1 can be managed in association with the position information of the semiconductor package S1 on the package substrate P1, so that more useful statistical data can be generated.
 [5.他の実施の形態]
 上記実施の形態の思想は、以上で説明された実施の形態に限定されない。以下、上記実施の形態の思想を適用できる他の実施の形態の一例について説明する。
[5. Other embodiments]
The idea of the above-described embodiment is not limited to the embodiment described above. Hereinafter, an example of another embodiment to which the idea of the above embodiment can be applied will be described.
 (5-1)
 上記実施の形態においては、コンピュータ50が切断装置1全体を制御することとした。しかしながら、切断装置1の制御は、必ずしも1つのコンピュータで実行される必要はない。たとえば、切断装置1の制御は、複数のコンピュータで実行されてもよい。この場合には、複数のコンピュータ間で通信することによって、複数のコンピュータによる切断装置1の制御が実現される。
(5-1)
In the above embodiment, the computer 50 controls the entire cutting device 1. However, the control of the cutting device 1 does not necessarily have to be performed by one computer. For example, the control of the cutting device 1 may be executed by a plurality of computers. In this case, the control of the cutting device 1 by the plurality of computers is realized by communicating between the plurality of computers.
 (5-2)
 上記実施の形態においては、生成された統計データを示す画像がモニタ20に表示された。しかしながら、生成された統計データは必ずしもモニタ20に表示されなくてもよい。たとえば、生成された統計データは、他のデバイスに送信されるだけであってもよい。
(5-2)
In the above embodiment, an image showing the generated statistical data is displayed on the monitor 20. However, the generated statistical data does not necessarily have to be displayed on the monitor 20. For example, the generated statistical data may only be sent to other devices.
 (5-3)
 上記実施の形態においては、パッケージ基板P1の切断と、半導体パッケージS1の検査と、検査データに基づく統計データの生成とが同一の切断装置1において実行された。しかしながら、これらは必ずしも同一の装置で実行される必要はない。たとえば、各々が別の装置によって実行されてもよい。
(5-3)
In the above embodiment, cutting of the package substrate P1, inspection of the semiconductor package S1, and generation of statistical data based on the inspection data are performed in the same cutting device 1. However, they do not necessarily have to be performed on the same device. For example, each may be run by a different device.
 (5-4)
 上記実施の形態においては、半導体パッケージS1のパッケージ基板P1における位置情報と、各検査項目の結果情報とが対応付けてデータベースDB1上で管理された。しかしながら、データベースDB1は、必ずしも半導体パッケージS1のパッケージ基板P1における位置情報を含む必要はない。
(5-4)
In the above embodiment, the position information of the semiconductor package S1 on the package substrate P1 and the result information of each inspection item are associated and managed on the database DB1. However, the database DB1 does not necessarily have to include the position information of the semiconductor package S1 on the package substrate P1.
 (5-5)
 上記実施の形態において、切断装置1は、半導体パッケージS1のモールド面及びボール/リード面をそれぞれ撮像する第1光学検査カメラ12及び第2光学検査カメラ13を備えていた。しかしながら、切断装置1が備える光学検査カメラは、第1光学検査カメラ12及び第2光学検査カメラ13に限定されない。たとえば、切断装置1は、端子の切断面(パッケージ部品60の側面)を検査する光学検査カメラをさらに備えてもよい。この場合、切断面検査用の光学検査カメラは、たとえば、配置部14と良品用トレイ15aとの間に設けられる。
(5-5)
In the above embodiment, the cutting device 1 includes a first optical inspection camera 12 and a second optical inspection camera 13 that image the mold surface and the ball / lead surface of the semiconductor package S1, respectively. However, the optical inspection camera included in the cutting device 1 is not limited to the first optical inspection camera 12 and the second optical inspection camera 13. For example, the cutting device 1 may further include an optical inspection camera that inspects the cut surface (side surface of the package component 60) of the terminal. In this case, the optical inspection camera for inspecting the cut surface is provided, for example, between the arrangement portion 14 and the non-defective tray 15a.
 以上、本発明の実施の形態について例示的に説明した。すなわち、例示的な説明のために、詳細な説明及び添付の図面が開示された。よって、詳細な説明及び添付の図面に記載された構成要素の中には、課題解決のために必須でない構成要素が含まれることがある。したがって、それらの必須でない構成要素が詳細な説明及び添付の図面に記載されているからといって、それらの必須でない構成要素が必須であると直ちに認定されるべきではない。 The embodiments of the present invention have been exemplified above. That is, for illustrative purposes, detailed description and accompanying drawings have been disclosed. Therefore, some of the components described in the detailed description and the attached drawings may include components that are not essential for solving the problem. Therefore, just because those non-essential components are described in the detailed description and accompanying drawings should not be immediately determined to be essential.
 また、上記実施の形態は、あらゆる点において本発明の例示にすぎない。上記実施の形態は、本発明の範囲内において、種々の改良や変更が可能である。すなわち、本発明の実施にあたっては、実施の形態に応じて具体的構成を適宜採用することができる。 Moreover, the above-described embodiment is merely an example of the present invention in all respects. The above-described embodiment can be improved or modified in various ways within the scope of the present invention. That is, in carrying out the present invention, a specific configuration can be appropriately adopted according to the embodiment.
 1 切断装置、3 基板供給部、4 位置決め部、4a レール部、5 切断テーブル、5a 保持部材、5b 回転機構、5c 移動機構、5d 第1位置確認カメラ、5e 第1クリーナ、6 スピンドル部、6a ブレード、6b 第2位置確認カメラ、6c 回転軸、6d 第1フランジ、6e 第2フランジ、6f 締結部材、7 搬送部、7a 第2クリーナ、11 検査テーブル、12 第1光学検査カメラ、13 第2光学検査カメラ、14 配置部、15 抽出部、15a 良品用トレイ、15b 不良品用トレイ、20 モニタ、30 記憶装置、50 コンピュータ、52 画像取得部、54 検査部、56 統計データ生成部、58 画像生成部、60 パッケージ部品、61 ダイパッド、62 端子、70 演算部、72 CPU、74 RAM、76 ROM、80 記憶部、81 制御プログラム、90 入出力I/F、91 通信I/F、100 システム、200,ID1,ID2,ID3 画像、202 種類選択部、204 入力部、206,222 選択部、208,210,212,220,224,226 結果出力部、214 指示部、A1 切断モジュール、B1 検査・収納モジュール、DB1 データベース、M1 マガジン、Mk1 マーク、P1 パッケージ基板、S1 半導体パッケージ、T1,T2,T3 領域。 1 Cutting device, 3 Board supply part, 4 Positioning part, 4a Rail part, 5 Cutting table, 5a Holding member, 5b Rotating mechanism, 5c Moving mechanism, 5d 1st position confirmation camera, 5e 1st cleaner, 6 Spindle part, 6a Blade, 6b 2nd position confirmation camera, 6c rotating shaft, 6d 1st flange, 6e 2nd flange, 6f fastening member, 7 transport part, 7a 2nd cleaner, 11 inspection table, 12 1st optical inspection camera, 13 2nd Optical inspection camera, 14 placement unit, 15 extraction unit, 15a good product tray, 15b defective product tray, 20 monitor, 30 storage device, 50 computer, 52 image acquisition unit, 54 inspection unit, 56 statistical data generation unit, 58 image Generation unit, 60 package parts, 61 die pad, 62 terminals, 70 arithmetic unit, 72 CPU, 74 RAM, 76 ROM, 80 storage unit, 81 control program, 90 input / output I / F, 91 communication I / F, 100 system, 200, ID1, ID2, ID3 image, 202 type selection unit, 204 input unit, 206,222 selection unit, 208,210,212,220,224,226 result output unit, 214 indicator unit, A1 cutting module, B1 inspection Storage module, DB1 database, M1 magazine, Mk1 mark, P1 package board, S1 semiconductor package, T1, T2, T3 area.

Claims (9)

  1.  パッケージ基板を切断することによって生産されたパッケージ部品の検査の結果情報を含む検査データを集約するステップと、
     集約された前記検査データに基づいて、統計データを生成するステップとを含む、統計データ生成方法。
    A step to aggregate inspection data including inspection result information of package parts produced by cutting the package substrate, and
    A method for generating statistical data, which comprises a step of generating statistical data based on the aggregated inspection data.
  2.  前記検査データは、前記パッケージ部品の前記パッケージ基板における位置情報を含む、請求項1に記載の統計データ生成方法。 The statistical data generation method according to claim 1, wherein the inspection data includes position information of the package component on the package substrate.
  3.  前記パッケージ基板を切断することによって生産された複数のパッケージ部品の各々の検査を行なうステップをさらに含む、請求項1又は請求項2に記載の統計データ生成方法。 The statistical data generation method according to claim 1 or 2, further comprising an inspection of each of a plurality of package parts produced by cutting the package substrate.
  4.  前記検査は、前記パッケージ部品の端子に関する検査である、請求項3に記載の統計データ生成方法。 The statistical data generation method according to claim 3, wherein the inspection is an inspection relating to terminals of the package parts.
  5.  前記検査は、前記パッケージ部品のダイパッドに関する検査である、請求項3に記載の統計データ生成方法。 The statistical data generation method according to claim 3, wherein the inspection is an inspection relating to a die pad of the package part.
  6.  前記検査は、前記パッケージ部品の表面に形成されたマークに関する検査である、請求項3に記載の統計データ生成方法。 The statistical data generation method according to claim 3, wherein the inspection is an inspection relating to a mark formed on the surface of the package part.
  7.  前記統計データを示す画像を表示するステップをさらに含み、
     前記画像においては、前記パッケージ部品の前記パッケージ基板における位置と、前記パッケージ部品の検査の結果とが対応付けられている、請求項1から請求項6のいずれか1項に記載の統計データ生成方法。
    It further includes a step of displaying an image showing the statistical data.
    The statistical data generation method according to any one of claims 1 to 6, wherein in the image, the position of the package component on the package substrate and the result of inspection of the package component are associated with each other. ..
  8.  パッケージ基板を切断することによって複数のパッケージ部品を生産するように構成された切断機構と、
     前記複数のパッケージ部品の各々を検査するように構成された検査機構と、
     前記検査機構による検査の結果情報を含む検査データを用いた演算を行なうように構成された演算部とを備え、
     前記演算部は、前記検査データを集約し、集約された前記検査データに基づいて、統計データを生成するように構成されている、切断装置。
    With a cutting mechanism configured to produce multiple package parts by cutting the package substrate,
    An inspection mechanism configured to inspect each of the plurality of package parts,
    It is provided with a calculation unit configured to perform a calculation using inspection data including inspection result information by the inspection mechanism.
    The calculation unit is a cutting device that aggregates the inspection data and generates statistical data based on the aggregated inspection data.
  9.  請求項8に記載の切断装置と、
     前記検査データを記憶するように構成された、前記切断装置の外部の記憶装置とを備える、システム。
    The cutting device according to claim 8 and
    A system comprising an external storage device of the cutting device configured to store the inspection data.
PCT/JP2020/026056 2019-12-16 2020-07-02 Statistic data generation method, cutting device, and system WO2021124602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2022007395A MX2022007395A (en) 2019-12-16 2020-07-02 Statistic data generation method, cutting device, and system.
CN202080082298.9A CN114746232B (en) 2019-12-16 2020-07-02 Statistical data generation method, cutting device and system
KR1020227023378A KR20220109463A (en) 2019-12-16 2020-07-02 Statistical data generation method, cutting device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019226092A JP7377092B2 (en) 2019-12-16 2019-12-16 Statistical data generation method, cutting device and system
JP2019-226092 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021124602A1 true WO2021124602A1 (en) 2021-06-24

Family

ID=76431522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026056 WO2021124602A1 (en) 2019-12-16 2020-07-02 Statistic data generation method, cutting device, and system

Country Status (6)

Country Link
JP (1) JP7377092B2 (en)
KR (1) KR20220109463A (en)
CN (1) CN114746232B (en)
MX (1) MX2022007395A (en)
TW (1) TWI798610B (en)
WO (1) WO2021124602A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023013000A (en) * 2021-07-15 2023-01-26 Towa株式会社 Processing device and method for manufacturing processed product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590365A (en) * 1991-09-27 1993-04-09 Hitachi Ltd Testing apparatus
JP2000091177A (en) * 1998-09-16 2000-03-31 Sony Corp Data managing device and its method
JP2003179193A (en) * 2001-12-12 2003-06-27 Matsushita Electric Ind Co Ltd Lead frame and manufacturing method thereof, resin- sealed semiconductor device and manufacturing and inspection methods thereof
JP2007152438A (en) * 2005-11-30 2007-06-21 Nec Electronics Corp Manufacturing apparatus and manufacturing method for semiconductor
JP2011210775A (en) * 2010-03-29 2011-10-20 Renesas Electronics Corp Manufacturing method of semiconductor device
JP2016021541A (en) * 2014-07-16 2016-02-04 Towa株式会社 Transporting method of diced article, manufacturing method and manufacturing device
JP2019158389A (en) * 2018-03-08 2019-09-19 株式会社ディスコ Chipping measurement method and chipping measuring device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995030B2 (en) * 1996-09-17 2007-10-24 コグネックス・テクノロジー・アンド・インベストメント・コーポレーション Semiconductor package inspection equipment
JP3055104B2 (en) * 1998-08-31 2000-06-26 亜南半導体株式会社 Manufacturing method of semiconductor package
JP2003042968A (en) * 2001-07-27 2003-02-13 Hitachi Industries Co Ltd Device for displaying substrate inspection result
JP4294265B2 (en) * 2002-06-05 2009-07-08 株式会社ディスコ Chip size package substrate for inspection
JP2004333446A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Appearance inspection method, appearance inspection apparatus, program therefor, and recording medium therefor
WO2005109492A1 (en) 2004-05-07 2005-11-17 Hanmi Semiconductor Co., Ltd Sawing and handler system for manufacturing semiconductor package
JP4537810B2 (en) * 2004-09-14 2010-09-08 アイパルス株式会社 Mounting board inspection data creation method
EP1915240B1 (en) * 2005-06-24 2014-04-30 AEW Delford Systems Limited Two colour vision system
JP4548356B2 (en) * 2006-02-13 2010-09-22 セイコーインスツル株式会社 Automatic thin section specimen preparation device and automatic thin section specimen preparation method
JP5134216B2 (en) 2006-06-23 2013-01-30 株式会社ディスコ Wafer processing result management method
JP5215556B2 (en) * 2006-12-20 2013-06-19 Towa株式会社 Separation device for manufacturing electronic components
KR20110086621A (en) * 2008-11-20 2011-07-28 이 아이 듀폰 디 네모아 앤드 캄파니 Semi-automated reworkability equipment for de-bonding a display
JP2010165876A (en) * 2009-01-15 2010-07-29 Olympus Corp Defect correlation device, substrate inspection system, and method of correlating defects
JP5479855B2 (en) * 2009-11-10 2014-04-23 アピックヤマダ株式会社 Cutting apparatus and cutting method
JP5613463B2 (en) 2010-06-03 2014-10-22 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP2012118038A (en) * 2010-11-30 2012-06-21 Shin King Pay Statistical system and method thereof in detection of defect signal in semiconductor manufacturing
JP6218511B2 (en) * 2013-09-02 2017-10-25 Towa株式会社 Cutting apparatus and cutting method
JP5812555B1 (en) * 2014-06-20 2015-11-17 上野精機株式会社 Electronic component inspection equipment
JP6218686B2 (en) * 2014-07-17 2017-10-25 Towa株式会社 Substrate cutting apparatus and substrate cutting method
US10379155B2 (en) 2014-10-02 2019-08-13 Xilinx, Inc. In-die transistor characterization in an IC
JP6212507B2 (en) * 2015-02-05 2017-10-11 Towa株式会社 Cutting apparatus and cutting method
JP6415411B2 (en) 2015-09-18 2018-10-31 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN116053273A (en) * 2016-04-19 2023-05-02 亚德诺半导体国际无限责任公司 Wear monitoring device
WO2018136970A1 (en) * 2017-01-23 2018-07-26 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
JP6640142B2 (en) 2017-03-31 2020-02-05 Towa株式会社 Cutting apparatus, method of attaching semiconductor package, and method of manufacturing electronic component
TW201917811A (en) * 2017-06-26 2019-05-01 美商特索羅科學有限公司 Light emitting diode (LED) mass-transfer apparatus and method of manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590365A (en) * 1991-09-27 1993-04-09 Hitachi Ltd Testing apparatus
JP2000091177A (en) * 1998-09-16 2000-03-31 Sony Corp Data managing device and its method
JP2003179193A (en) * 2001-12-12 2003-06-27 Matsushita Electric Ind Co Ltd Lead frame and manufacturing method thereof, resin- sealed semiconductor device and manufacturing and inspection methods thereof
JP2007152438A (en) * 2005-11-30 2007-06-21 Nec Electronics Corp Manufacturing apparatus and manufacturing method for semiconductor
JP2011210775A (en) * 2010-03-29 2011-10-20 Renesas Electronics Corp Manufacturing method of semiconductor device
JP2016021541A (en) * 2014-07-16 2016-02-04 Towa株式会社 Transporting method of diced article, manufacturing method and manufacturing device
JP2019158389A (en) * 2018-03-08 2019-09-19 株式会社ディスコ Chipping measurement method and chipping measuring device

Also Published As

Publication number Publication date
TW202125603A (en) 2021-07-01
MX2022007395A (en) 2022-07-13
TWI798610B (en) 2023-04-11
JP2021097093A (en) 2021-06-24
CN114746232B (en) 2024-03-19
CN114746232A (en) 2022-07-12
KR20220109463A (en) 2022-08-04
JP7377092B2 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP4767995B2 (en) Component mounting method, component mounting machine, mounting condition determining method, mounting condition determining apparatus, and program
CN103207187A (en) Appearance Inspection Apparatus And Method
US8290241B2 (en) Analyzing apparatus, program, defect inspection apparatus, defect review apparatus, analysis system, and analysis method
JP2013545266A (en) Individual component backward traceability and semiconductor device forward traceability
JP4922800B2 (en) Manufacturing method of electronic equipment
JP2002299401A (en) Inspection system, inspecting apparatus, semiconductor device manufacturing method and inspection program
US20120221586A1 (en) Inspection system, management server, inspection apparatus and method for managing inspection data
EP3687272A1 (en) Electronic device and method for displaying results of inspection of substrate
WO2021124602A1 (en) Statistic data generation method, cutting device, and system
US7630536B2 (en) Printing inspection apparatus, printing inspection method, printing inspection data generating apparatus, and printing inspection data generating method
US20210404973A1 (en) Method and electronic apparatus for displaying inspection result of board
JP2004235314A (en) Measured result display system and measured result display method for printed circuit board
JP2008046012A (en) Defect detector and defect detection method
WO2023037671A1 (en) Maintenance method and method for manufacturing electronic component
WO2023037670A1 (en) Calibration method and method for manufacturing electronic component
KR100819796B1 (en) Sorting method of semiconductor package
JP2004286532A (en) Device and method for visual inspection
JP5205224B2 (en) Component mounting state inspection device
JP2010085145A (en) Inspection device and method
WO2024034171A1 (en) Cutting device, and method for producing cut product
JP2015146418A (en) Discrete component backward traceability and semiconductor device forward traceability
WO2023062866A1 (en) Cutting device, and method for manufacturing cut product
WO2022157995A1 (en) Inspection management system, inspection management device, inspection management method, and program
JP2021166245A (en) Component mounting method and component mounting system
JP5427841B2 (en) Development support method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023378

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902120

Country of ref document: EP

Kind code of ref document: A1