WO2021124439A1 - リニアコンベア - Google Patents

リニアコンベア Download PDF

Info

Publication number
WO2021124439A1
WO2021124439A1 PCT/JP2019/049358 JP2019049358W WO2021124439A1 WO 2021124439 A1 WO2021124439 A1 WO 2021124439A1 JP 2019049358 W JP2019049358 W JP 2019049358W WO 2021124439 A1 WO2021124439 A1 WO 2021124439A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
shielding member
linear motor
motor stator
stator
Prior art date
Application number
PCT/JP2019/049358
Other languages
English (en)
French (fr)
Inventor
基範 川内
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2021565199A priority Critical patent/JP7350887B2/ja
Priority to US17/783,534 priority patent/US20230353027A1/en
Priority to DE112019007974.3T priority patent/DE112019007974T5/de
Priority to PCT/JP2019/049358 priority patent/WO2021124439A1/ja
Priority to CN201980103039.7A priority patent/CN114830513A/zh
Publication of WO2021124439A1 publication Critical patent/WO2021124439A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines

Definitions

  • the present invention relates to a linear conveyor, and more particularly to a linear conveyor including a magnetic sensor that detects the position of a slider.
  • a linear conveyor equipped with a magnetic sensor that detects the position of a slider is known.
  • Such a linear conveyor is disclosed, for example, in WO 2018/055709.
  • the International Publication No. 2018/055709 discloses a linear conveyor device (linear conveyor) including a magnetic sensor that detects the position of a slider.
  • the linear conveyor device includes a slider, a linear motor stator, and a guide rail.
  • the slider has a linear motor mover.
  • the linear motor stator includes a core and a coil wound around the core.
  • the core extends in the vertical direction and in the horizontal direction orthogonal to the extending direction of the guide rail.
  • the magnetic sensor detects changes in magnetic flux as the slider moves.
  • the slider of the above-mentioned International Publication No. 2018/055709 is supported by the guide rail in a state where it can be moved in the extending direction of the guide rail.
  • the slider is moved along the extending direction of the guide rail by the linear motor stator and the linear motor mover.
  • the upper surface of the slider is a mounting portion for a work such as a substrate.
  • the work mounting portion is moved to a predetermined position by moving the slider based on the position of the slider detected by the magnetic sensor, so that the work can be mounted on a substrate such as an electronic component. Work is performed.
  • the position of the slider is detected based on the change in magnetic flux detected by the magnetic sensor.
  • this linear conveyor device in order to prevent the magnetic sensor from erroneously detecting the magnetic flux emitted from the linear motor stator, the direction of the magnetic flux detected by the magnetic sensor and the direction of the magnetic flux emitted from the linear motor stator.
  • the magnetic sensor and the linear motor stator are arranged so as to be different from the above. Further, in order to suppress erroneous detection of magnetic flux by the magnetic sensor, in the linear conveyor device, the magnetic sensor and the linear motor stator are arranged so that the distance between the magnetic sensor and the linear motor stator is as large as possible. It is also possible.
  • the linear conveyor device of International Publication No. 2018/055709 in order to suppress erroneous detection of magnetic flux by the magnetic sensor, the direction of the magnetic flux detected by the magnetic sensor and the direction of the magnetic flux emitted from the linear motor stator are used. Since it is necessary to arrange the magnetic sensor and the linear motor stator in the linear conveyor device so as to be different from each other, the degree of freedom in the arrangement position of the magnetic sensor and the linear motor stator is limited. Further, although not disclosed in the linear conveyor device of International Publication No. 2018/055709, the conventional method of increasing the distance between the magnetic sensor and the linear motor stator in order to suppress erroneous detection of magnetic flux by the magnetic sensor.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is the arrangement position of the magnetic sensor and the linear motor stator while suppressing erroneous detection of magnetic flux by the magnetic sensor. It is an object of the present invention to provide a linear conveyor capable of downsizing the linear conveyor by improving the degree of freedom of the above.
  • a linear conveyor is a linear motor stator including a core and a stator having a coil wound around the core, a slider including a linear motor mover having a permanent magnet, and a slider. It includes a guide rail that guides movement, a magnetic sensor that detects the position of the slider, and a magnetic shielding member that is arranged between the magnetic sensor and the linear motor stator and blocks the magnetic flux from the linear motor stator to the magnetic sensor. ..
  • a magnetic shielding member is provided which is arranged between the magnetic sensor and the linear motor stator and blocks the magnetic flux from the linear motor stator to the magnetic sensor.
  • the degree of freedom in the arrangement position of the magnetic sensor and the linear motor stator can be improved by the magnetic shielding member.
  • the linear conveyor can be miniaturized by improving the degree of freedom in the arrangement position of the magnetic sensor and the linear motor stator while suppressing erroneous detection of the magnetic sensor.
  • the magnetic shielding member is configured to shield the magnetic flux from the linear motor stator toward the magnetic sensor by drawing in the magnetic flux emitted from the linear motor stator.
  • the magnetic shielding member is formed in a plate shape extending along the extending direction of the guide rail.
  • the magnetic flux generated from the linear motor stator can be shielded in the extending direction of the guide rail, so that the magnetic flux generated from the linear motor stator can be made difficult to reach the magnetic sensor.
  • the thickness of the magnetic shielding member can be reduced as compared with the case where the magnetic shielding member is formed in a block shape. , It is possible to suppress the increase in size of the linear conveyor.
  • the linear motor stator, the magnetic shielding member, and the magnetic sensor are arranged side by side along the width direction of the guide rail orthogonal to the extending direction of the guide rail, and the core is arranged along the width direction of the guide rail.
  • the plate-shaped magnetic shielding member has a size that covers at least the core of the stator portion in the width direction of the guide rail.
  • the length of the plate-shaped magnetic shielding member is preferably set in the direction orthogonal to the extending direction of the guide rail and the width direction of the guide rail. Greater than the core length.
  • a plurality of stator portions are preferably arranged side by side along the extending direction of the guide rail, and the plate-shaped magnetism is preferably arranged in the extending direction of the guide rail.
  • the shielding member extends outward from the core of the stator portion arranged at the end of the plurality of stator portions.
  • one end of the magnetic shielding member is a plurality of stator portions. It extends to one side of the core of the stator portion arranged at one end, and the other end of the magnetic shielding member is fixed arranged at the other end of the plurality of stators. It extends to the other side of the core of the child part.
  • a fastening member for attaching the magnetic shielding member is further provided, and the magnetic shielding member has an insertion hole into which the fastening member is inserted, and the edge of the insertion hole on the linear motor stator side.
  • the portion has an insertion hole bent portion that is bent toward the linear motor stator side.
  • the fastening member is preferably made of a non-magnetic material.
  • the fastening member is not magnetized, so that the fastening member is magnetized by the magnetic flux generated from the linear motor stator, which is emitted from the fastening member. It is possible to prevent the magnetic flux from reaching the magnetic sensor. As a result, it is possible to make it difficult for the magnetic flux generated from the linear motor stator to reach the magnetic sensor.
  • the magnetic shielding member is configured to draw in the magnetic flux emitted from the linear motor stator toward the magnetic sensor side and discharge it to the linear motor stator side.
  • the magnetic flux drawn into the magnetic shielding member can be emitted to the side opposite to the magnetic sensor side (linear motor stator side), so that the magnetic flux emitted from the magnetic shielding member can be emitted to the magnetic sensor. It can be difficult to reach.
  • one end of the magnetic shielding member faces the linear motor stator side in a direction orthogonal to the extending direction of the guide rail and the width direction of the guide rail orthogonal to the extending direction of the guide rail. It includes at least one of a first bent portion bent in such a manner and a second bent portion bent so that the other end portion faces the linear motor stator side.
  • at least one of the first bent portion and the second bent portion emits the magnetic flux drawn into the magnetic shielding member to the side opposite to the magnetic sensor side (linear motor stator side). Can be done.
  • one end and the other end are linearized along the orthogonal direction (not bent).
  • the member it is possible to suppress the increase in size of the magnetic shielding member in the orthogonal direction. As a result, it is possible to make it difficult for the magnetic flux emitted from the magnetic shielding member to reach the magnetic sensor, and it is possible to suppress the increase in size of the linear conveyor in the orthogonal direction.
  • the magnetic shielding member has such that one end in the extending direction of the guide rail faces the linear motor stator side. It includes at least one of a bent one-sided bend and a other-side bent so that the other end in the extending direction of the guide rail faces the linear motor stator side. With this configuration, at least one of the one-side bent portion and the other-side bent portion emits the magnetic flux drawn into the magnetic shielding member to the side opposite to the magnetic sensor side (linear motor stator side). Can be done.
  • the shielding member it is possible to suppress the increase in size of the magnetic shielding member in the extending direction of the guide rail.
  • the slider is arranged so as to face the magnetic sensor, further includes a magnetic scale that emits the magnetic flux detected by the magnetic sensor, and the core of the stator is the magnetic sensor.
  • the magnetic shield member is arranged between the core and the magnetic sensor and the magnetic scale in the direction in which the magnetic sensor and the magnetic scale face each other.
  • a support member for supporting the linear motor stator and the guide rail is further provided, and the support member is provided between the magnetic sensor and the linear motor stator and projects upward.
  • the magnetic sensor is mounted on the side surface of the mounting wall opposite to the linear motor stator side, and the magnetic shielding member is mounted on the linear motor stator side of the mounting wall common to the magnetic sensor. It is attached to the side of.
  • a plurality of stator portions are arranged side by side along the extending direction of the guide rail, and the plurality of stator portions are provided by dividing them into predetermined sections and separately.
  • a plurality of unit members to be energized are further provided, each of the plurality of unit members includes a magnetic sensor, and the magnetic shielding member is arranged between the magnetic sensor and the stator portion over all of the plurality of unit members. ing.
  • the magnetic shielding member is preferably made of a magnetic material.
  • the magnetic shielding member as a magnetic material is formed of an iron-based material of a magnetic material such as iron or steel.
  • the linear conveyor can be miniaturized by improving the degree of freedom in the arrangement position of the magnetic sensor and the linear motor stator while suppressing erroneous detection of magnetic flux by the magnetic sensor. it can.
  • FIG. 5 is a plan view of the linear conveyor module of the linear conveyor of the first embodiment, in which the end portion on the X1 direction side and the end portion on the X2 direction side with the cover member removed are viewed from the Z1 direction side.
  • FIG. 5 is a plan view of the linear conveyor module of the linear conveyor of the second embodiment, in which the end portion on the X1 direction side and the end portion on the X2 direction side with the cover member removed are viewed from the Z1 direction side.
  • the linear conveyor 101 is laid on the upper surface 102a of the gantry 102.
  • various robots are installed on the gantry 102 to execute work such as transfer of a work such as a substrate and mounting work of electronic components on a substrate.
  • the various robots are arranged along the orbital path 103 of the slider 4, which will be described later.
  • the linear conveyor 101 is configured to move the slider 4 toward the working position of various robots.
  • the linear conveyor 101 includes a plurality of (2) direction changing modules 1, a plurality of (6) recesses 2, a plurality of (6) connecting members 3, a slider 4, and a plurality of (6). Eight) linear conveyor modules 5 are provided.
  • the plurality of direction changing modules 1 and the plurality of linear conveyor modules 5 form an orbital path 103 of the slider 4.
  • the extending direction of the linear conveyor module 5 is the X direction
  • one of the X directions is the X1 direction
  • the other of the X directions is the X2 direction
  • the extending direction of the direction changing module 1 is the Y direction
  • one of the Y directions is the Y1 direction
  • the other of the Y directions is the Y2 direction.
  • the direction orthogonal to the X and Y directions is the Z direction (vertical direction)
  • one of the Z directions is the Z1 direction (upward direction)
  • the other of the Z directions is the Z2 direction (downward direction).
  • the X direction is an example of the "direction in which the guide rail extends" in the claims.
  • the Y direction is an example of the "width direction of the guide rail" in the claims.
  • the Z direction is the "direction in which the guide rail extends and the direction orthogonal to the width direction of the guide rail” and "the direction in which the guide rail extends and the width direction of the guide rail orthogonal to the direction in which the guide rail extends” in the claimed range. This is an example of "direction orthogonal to and".
  • a plurality of (two) direction changing modules 1 are arranged on the X1 direction side and the X2 direction side, respectively. Since the structures of the plurality of direction-changing modules 1 are the same, only the direction-changing module 1 on the X1 direction side will be described.
  • the direction change module 1 is a transfer device that moves the slider 4 in the Y direction.
  • the direction change module 1 includes a guide rail 11, a module main body 12, and a drive mechanism (not shown).
  • the guide rail 11 is laid on the upper surface 102a of the gantry 102.
  • the guide rail 11 extends in the Y direction.
  • the module body 12 is supported by the guide rail 11 so as to be movable in the Y direction.
  • the drive mechanism is configured to move the module body 12 in the Y direction along the guide rail 11.
  • the recess 2 accommodates the connecting member 3 fixed to the gantry 102. That is, when viewed from the Y1 direction side, the connecting member 3 fixed to the gantry 102 is arranged between the inner surface of the recess 2 and the upper surface 102a of the gantry 102.
  • the connecting member 3 is fixed to the gantry 102, connects the plurality of linear conveyor modules 5 to each other, and is configured to position the linear conveyor module 5 in a state of being fixed to the gantry 102.
  • the connecting member 3 is provided across the adjacent linear conveyor modules 5 in the X direction.
  • a plurality (4) of sliders 4 are arranged on the circuit path 103. Since each of the plurality of sliders 4 has the same configuration, one of the plurality of sliders 4 will be described.
  • the slider 4 is configured to slide linearly on the circuit path 103.
  • the slider 4 includes a slider frame 4a, a linear motor mover 4b, a pair of guide blocks 4c, and a magnetic scale 4d.
  • the slider frame 4a is made of a metal material such as aluminum.
  • the upper surface of the slider frame 4a on the Z1 direction side is a mounting surface 4e on which the work is mounted.
  • the slider frame 4a is formed with an insertion space 4f into which the cover member 5a of the linear conveyor module 5 described later is inserted.
  • the linear motor mover 4b has a back yoke 4g and a permanent magnet 4h.
  • the back yoke 4g is a member that holds the permanent magnet 4h and forms a magnetic path, and is made of a magnetic iron-based material such as iron or steel.
  • the back yoke 4g has a portal structure that opens in the Z2 direction.
  • the permanent magnet 4h is arranged so that the north pole and the south pole face each other in the Y direction.
  • a plurality of N poles and S poles are alternately arranged side by side along the X direction. In such an arrangement, the permanent magnets 4h are held by the back yoke 4g.
  • the back yoke 4g is arranged so as to cover all the permanent magnets 4h in the X direction.
  • the guide block 4c is configured to engage with the guide rail 5e of the linear conveyor module 5 described later and to be movable along the extending direction (X direction) of the guide rail 5e.
  • the guide block 4c includes a bearing that rolls in contact with the guide rail 5e.
  • a pair of guide blocks 4c are arranged in the Y direction. The end of the guide block 4c on the Z1 direction side is attached to the slider frame 4a.
  • the magnetic scale 4d is arranged so as to face the magnetic sensor 152, which will be described later, in the Y direction, and is configured to emit the magnetic flux detected by the magnetic sensor 152.
  • the magnetic scale 4d has a scale substrate 41 and a holder 42.
  • the scale substrate 41 is held by the holder 42.
  • the scale substrate 41 includes permanent magnets (not shown) arranged in the X direction so that N poles and S poles appear alternately on the surface facing the magnetic sensor unit 5d.
  • the permanent magnet of the scale substrate 41 is arranged so as to face the magnetic sensor 152 (see FIG. 4) of the magnetic sensor unit 5d in the Y direction.
  • the plurality of linear conveyor modules 5 are linearly connected in the X direction.
  • Four of the plurality of linear conveyor modules 5 are arranged on the Y1 direction side.
  • Four of the plurality of linear conveyor modules 5 are arranged on the Y2 direction side. Since the structures of the plurality of linear conveyor modules 5 are the same, the linear conveyor modules 5 (of the K portion in FIG. 1) are arranged on the Y1 direction side and on the X1 direction side of the central portion in the X direction. Will be described.
  • 2 to 7 linear conveyor modules 5 and 9 or more linear conveyor modules 5 may be arranged on the gantry 102.
  • the linear conveyor module 5 is a conveyor that moves the slider 4 in the X direction. That is, the linear conveyor module 5 is configured to stop the slider 4 at the working position of the robot and move the slider 4 toward the working position of the next robot after the work.
  • the linear conveyor module 5 is a linear module having a length of about 0.2 to about 1.0 [m].
  • the linear conveyor module 5 includes a cover member 5a, a support member 5b, a fastening member 5c, a magnetic sensor unit 5d, a guide rail 5e, and a linear motor fixing. It includes a child 5f, a unit member 5g (see FIG. 6), and a magnetic shielding member 5h.
  • the cover member 5a is made of a metal such as aluminum.
  • the cover member 5a is configured to cover the upper surface 51a (the surface on the Z1 direction side) of the support member 5b. That is, the cover member 5a covers the linear motor stator 5f, the guide rail 5e, and the magnetic sensor unit 5d attached to the support member 5b from the Z1 direction side.
  • the cover member 5a is fixed to the end portion of the support member 5b on the Z1 direction side by a fastening member (not shown).
  • the cover member 5a has a shape that can be inserted into the insertion space 4f of the slider frame 4a. That is, the cover member 5a has a substantially T-shape in a cross section along the Y direction.
  • the support member 5b supports the guide rail 5e and the linear motor stator 5f.
  • the support member 5b is made of a metal such as aluminum. As described above, the support member 5b is a metal frame.
  • the support member 5b has a substantially U-shape in a cross section along the Y direction.
  • the support member 5b has an upper wall portion 51, a pair of side wall portions 52, a flange portion 53, and a mounting wall 54.
  • the upper wall portion 51 has a rectangular shape elongated in the X direction.
  • a linear motor stator 5f, a guide rail 5e, and a magnetic sensor unit 5d are installed on the upper surface 51a of the upper wall portion 51.
  • the side wall portion 52 has a rectangular shape that extends long in the X direction.
  • a pair of side wall portions 52 are provided so as to face each other in the Y direction.
  • the flange portion 53 projects outward in the Y direction from the end portion of the side wall portion 52 on the Z2 direction side.
  • the flange portion 53 has a rectangular shape that extends long in the X direction.
  • the mounting wall 54 is integrally provided on the upper wall portion 51. That is, the mounting wall 54 is provided between the magnetic sensor 152 and the linear motor stator 5f, and projects upward.
  • the mounting wall 54 has an upper surface 54a, a motor side side surface 54b, a sensor side side surface 54c, and a through hole 54d.
  • the motor side side surface 54b is an example of the "side surface on the linear motor stator side of the mounting wall” in the claims.
  • the sensor side side surface 54c is an example of the "side surface of the mounting wall opposite to the linear motor stator side” in the claims.
  • the upper surface 54a is a surface of the mounting wall 54 on the Z1 direction side.
  • a cover member 5a is attached to the upper surface 54a.
  • the motor side side surface 54b is a surface on the Y1 direction side.
  • a magnetic shielding member 5h is attached to the side surface 54b on the motor side.
  • the sensor side side surface 54c is a surface on the Y2 direction side.
  • a magnetic sensor unit 5d is attached to the side surface 54c on the sensor side. As described above, the magnetic sensor 152 is attached to the sensor side side surface 54c, and the magnetic shielding member 5h is attached to the motor side side surface 54b on the mounting wall 54 common to the magnetic sensor 152.
  • the through hole 54d penetrates the mounting wall 54 along the Y direction.
  • the through hole 54d is a counterbore hole into which the fastening member 5c is inserted.
  • the through holes 54d are formed in a plurality (4) mounting walls 54 along the X direction.
  • the plurality of through holes 54d are formed in the central portion of the mounting wall 54 in the Z direction.
  • the number of through holes 54d may be 1 to 3 and 5 or more.
  • the fastening member 5c has a magnetic shielding member 5h attached to the support member 5b. Specifically, the fastening member 5c is screwed into the magnetic shielding member 5h in a state of being inserted into the through hole 54d, thereby fixing the magnetic shielding member 5h to the mounting wall 54.
  • the fastening member 5c is made of a non-magnetic material. Specifically, the fastening member 5c is made of austenitic stainless steel.
  • a plurality (4) fastening members 5c are arranged in accordance with a plurality (4) through holes 54d. That is, the fastening member 5c is arranged at the central portion of the mounting wall 54 in the Z direction in accordance with the through hole 54d.
  • the number of fastening members 5c may be the same as the number of through holes 54d, and may be 1 to 3 or 5 or more.
  • a plurality (3 pieces) of magnetic sensor units 5d are arranged at a predetermined pitch in the X direction.
  • a plurality of magnetic sensor units 5d may not be arranged at a predetermined pitch in the X direction.
  • the number of magnetic sensor units 5d may be 1 and 2, or 4 or more.
  • the magnetic sensor unit 5d has a sensor substrate 151, a magnetic sensor 152, and a housing 153.
  • the magnetic sensor 152 is configured to detect the position of the slider 4. Specifically, the magnetic sensor 152 is configured to detect the position of the slider 4 in the X direction.
  • a plurality (three) magnetic sensors 152 are attached to the sensor substrate 151 along the Z direction. That is, a plurality (three) magnetic sensors 152 are arranged along the projecting direction of the mounting wall 54. The number of magnetic sensors 152 may be 1, 2, or 4 or more.
  • the magnetic sensor 152 is, for example, a Hall element, an MR (Magnet Resistive) element, or the like.
  • the magnetic sensor 152 generates a signal of an output voltage corresponding to the magnetic flux density by detecting the magnetic flux of the magnetic scale 4d of the slider 4.
  • the housing 153 holds the sensor substrate 151.
  • the housing 153 is fixed to the mounting wall 54 of the support member 5b by a fastening member (not shown).
  • the guide rail 5e has a function of guiding the slider 4.
  • a pair of guide rails 5e are provided so as to face each other in the Y direction.
  • the guide rail 5e extends in the X direction.
  • the linear motor stator 5f is composed of a plurality of electromagnets. That is, the linear motor stator 5f has a stator portion 251 and a holder 252.
  • the stator portion 251 has a core 251a and a coil 251b wound around the core 251a.
  • the linear motor stator 5f is formed by arranging the stator portions 251 as unit electromagnets in a row in the X direction.
  • the core 251a is an iron core arranged so as to extend along a direction (Y direction) in which the magnetic sensor 152 and the magnetic scale 4d face each other.
  • the holder 252 holds the core 251a and the coil 251b.
  • the holder 252 is attached to the upper wall portion 51 of the support member 5b.
  • the holder 252 accommodates a plurality of stator portions 251 arranged in the X direction.
  • the linear conveyor 101 as described above has a linear motor, a linear guide, and a linear scale.
  • the linear motor is composed of a linear motor mover 4b and a linear motor stator 5f.
  • the linear guide is composed of a guide rail 5e and a guide block 4c.
  • the linear scale is composed of a magnetic sensor unit 5d and a magnetic scale 4d.
  • the magnetic flux generated in the coil 251b when the current of any of the U phase, V phase, and W phase having different phases is supplied to the linear motor stator 5f, and the linear motor mover 4b
  • a magnetic propulsion force is generated by the interaction with the magnetic flux of the permanent magnet 4h provided. That is, the slider 4 can move in the X1 direction or the X2 direction by the above-mentioned propulsive force.
  • the unit member 5g constitutes one control section in the control system of the linear conveyor 101. That is, the unit member 5g is provided by dividing a plurality of (18) stator portions 251 for each control section, and is configured to be separately energized and controlled. Specifically, the unit member 5g is configured to control the current supplied to the plurality (six) stator portions 251 assigned to each control section.
  • a control section is an example of a "predetermined section" of the claims. Further, the number of the plurality of stator portions 251 may be 2 to 17 and 19 or more. Further, the number of stator portions 251 assigned to each control section may be 2 to 5 and 7 or more.
  • a plurality (three) of such unit members 5g are arranged side by side in the X direction in the linear conveyor module 5.
  • the unit member 5g arranged on the X1 direction side is the first unit member 351 and the unit member 5g adjacent to the first unit member 351 on the X2 direction side is the second unit member 352.
  • the unit member 5g adjacent to the second unit member 352 on the X2 direction side is referred to as the third unit member 353.
  • the number of unit members 5g may be two or four or more.
  • the first unit member 351 includes the magnetic sensor 152, a plurality (six) of the stator portions 251 and a motor controller (hereinafter referred to as the first motor controller 351a).
  • the second unit member 352 also has the magnetic sensor 152, a plurality (six) of the stator portions 251 and a motor controller (hereinafter referred to as the second motor controller 352a).
  • the third unit member 353 also has the magnetic sensor 152, a plurality (six) of the stator portions 251 and a motor controller (hereinafter referred to as the third motor controller 353a).
  • the linear conveyor 101 is configured to control the movement and stop of the slider 4 by the first motor controller 351a, the second motor controller 352a, and the third motor controller 353a based on the position of the slider 4. Specifically, the linear conveyor 101 synchronizes the plurality of unit members 5g based on the detection of the magnetic scale 4d by the magnetic sensors 152 of the plurality of unit members 5g while the slider 4 is moving. It is configured to control all the currents of the plurality of stator portions 251 of the member 5 g.
  • the magnetic flux of the portion where the linear motor mover 4b is located is attracted to the permanent magnet 4h having the opposite polarity to the stator portion 251 side due to the polarity of the permanent magnet 4h, but the magnetic flux not attracted to the permanent magnet 4h is finally drawn. Is drawn into the back yoke 4g.
  • the magnetic flux outside the linear motor mover 4b is discharged as it is without acting on the linear motor mover 4b.
  • the magnetic shielding member 5h of the present embodiment is a member that suppresses the magnetic influence of the magnetic flux emitted as it is on the magnetic sensor 152 without acting on the linear motor mover 4b. That is, the magnetic shielding member 5h is arranged between the magnetic sensor 152 and the linear motor stator 5f, and is configured to shield the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152.
  • the magnetic shielding member 5h is also arranged between the core 251a and the magnetic sensor 152 and the magnetic scale 4d in the direction (Y direction) in which the magnetic sensor 152 and the magnetic scale 4d face each other.
  • the magnetic shielding member 5h is a member that suppresses the magnetic influence of the magnetic flux emitted as it is on the magnetic scale 4d without acting on the linear motor mover 4b.
  • the linear motor stator 5f, the magnetic shielding member 5h, and the magnetic sensor 152 are arranged side by side in the Y direction.
  • the magnetic shielding member 5h shields the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 by drawing in the magnetic flux emitted from the linear motor stator 5f. It is configured in. That is, the magnetic shielding member 5h is configured to be magnetized by the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152.
  • the magnetic shielding member 5h is made of a magnetic material. Specifically, the magnetic shielding member 5h as a magnetic material is made of iron or steel.
  • the magnetic shielding member 5h is formed in a plate shape extending along the X direction. Specifically, the magnetic shielding member 5h is formed in a thin plate shape having a thickness in the direction along the Y direction.
  • the cross-sectional shape of the magnetic shielding member 5h along the Y direction is a substantially C-shape bent toward the linear motor stator 5f side.
  • the plate-shaped magnetic shielding member 5h has a size that covers at least the core 251a of the stator portion 251 in the Y direction. That is, the plate-shaped magnetic shielding member 5h and the core 251a of the stator portion 251 overlap each other when viewed from the Y1 direction side (see FIG. 5). Specifically, in the Z direction, the length L1 of the plate-shaped magnetic shielding member 5h is larger than the length L2 of the core 251a. In the Z direction, a stator portion 251 is arranged between the upper end portion (end portion on the Z1 direction side) and the lower end portion (end portion on the Z2 direction side) of the plate-shaped magnetic shielding member 5h.
  • At least the core 251a is arranged between the upper end portion and the lower end portion of the plate-shaped magnetic shielding member 5h. Further, in the Z direction, the main portions of the plurality of magnetic sensors 152 arranged side by side in the Z direction are arranged between the upper end portion and the lower end portion of the plate-shaped magnetic shielding member 5h. Further, in the Z direction, a main portion of the scale substrate 41 of the magnetic scale 4d is arranged between the upper end portion and the lower end portion of the plate-shaped magnetic shielding member 5h.
  • the plate-shaped magnetic shielding member 5h in the X direction, is outside the core 251a of the stator portion 251 arranged at the end portion S of the plurality of stator portions 251. Extends to. Specifically, in the X direction, the end portion S1 (one side end portion S1) of the magnetic shielding member 5h on the X1 direction side is the stator portion 251 arranged at the one side end portion S1 of the plurality of stator portions 251. It extends in the X1 direction from the core 251a of the above.
  • the end portion S2 (other side end portion S2) of the magnetic shielding member 5h on the X2 direction side is X2 more than the core 251a of the stator portion 251 arranged at the other side end portion S2 of the plurality of stator portions 251. It extends in the direction. That is, the one-sided end S1 of the magnetic shielding member 5h is located near the end E1 on the X1 direction side of the linear conveyor module 5. The other end S2 of the magnetic shielding member 5h is located near the end E2 on the X2 direction side of the linear conveyor module 5.
  • the plate-shaped magnetic shielding member 5h extends from the end E1 on the X1 direction side of the linear conveyor module 5 to substantially the entire end E2 on the X2 direction side. That is, the magnetic shielding member 5h is arranged between the magnetic sensor 152 and the stator portion 251 over all of the plurality of unit members 5g. Specifically, the magnetic shielding member 5h is a single plate extending from the vicinity of the end E1 on the X1 direction side of the linear conveyor module 5 to the vicinity of the end E2 on the X2 direction side of the linear conveyor module 5 without interruption.
  • the magnetic shielding member 5h has an insertion hole 451 into which the fastening member 5c is inserted.
  • a female threaded portion into which the threaded portion of the fastening member 5c is screwed is formed in a portion of the insertion hole 451 on the linear motor stator 5f side.
  • the insertion hole 451 is formed by subjecting the plate-shaped magnetic shielding member 5h to a burring process. Therefore, the insertion hole 451 has a shape protruding toward the linear motor stator 5f in the Y direction.
  • the edge portion of the insertion hole 451 on the linear motor stator 5f side has an insertion hole bending portion 451a bent toward the linear motor stator 5f side.
  • the insertion hole bending portion 451a is formed in a circular shape when viewed from the Y1 direction side.
  • the insertion hole bending portion 451a is curved toward the center side of the insertion hole 451 toward the linear motor stator 5f side in the Y direction.
  • the magnetic shielding member 5h is configured to change the direction of the magnetic flux emitted from the linear motor stator 5f toward the magnetic sensor 152 side. That is, the magnetic shielding member 5h is configured to draw in the magnetic flux emitted from the linear motor stator 5f toward the magnetic sensor 152 side and discharge it to the linear motor stator 5f side.
  • the magnetic shielding member 5h has an upper bending portion 452 and a lower bending portion 453.
  • the upper bent portion 452 is an example of the "first bent portion” in the claims.
  • the lower bent portion 453 is an example of the "second bent portion” in the claims.
  • the upper bent portion 452 is bent so that the upper end portion of the magnetic shielding member 5h faces the linear motor stator 5f side.
  • the upper bent portion 452 is inclined toward the Z1 direction toward the linear motor stator 5f side in the Y direction.
  • the magnetic shielding member 5h is bent in order to form the upper bent portion 452.
  • the lower bent portion 453 is bent so that the lower end portion of the magnetic shielding member 5h faces the linear motor stator 5f side.
  • the lower bent portion 453 extends along the Y direction.
  • the magnetic shielding member 5h is bent in order to form the lower bending portion 453.
  • the magnetic shielding member 5h is bent in order to form the upper bending portion 452 and the lower bending portion 453, but the surface of the magnetic shielding member 5h on the magnetic sensor 152 side is the upper bending portion.
  • the 452 and the lower bent portion 453 have an R shape (a rounded and smooth shape) instead of a corner.
  • a magnetic shielding member 5h is provided which is arranged between the magnetic sensor 152 and the linear motor stator 5f and blocks the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152.
  • the magnetic shielding member 5h can improve the degree of freedom in the arrangement position of the magnetic sensor 152 and the linear motor stator 5f.
  • the linear conveyor 101 can be miniaturized by improving the degree of freedom in the arrangement position of the magnetic sensor 152 and the linear motor stator 5f while suppressing erroneous detection of magnetic flux by the magnetic sensor 152.
  • the magnetic shielding member 5h is configured to block the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 by drawing in the magnetic flux emitted from the linear motor stator 5f. To do. As a result, the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 is drawn by the magnetic shielding member 5h, so that the magnetic flux cannot easily reach the magnetic sensor 152. Therefore, the position of the slider 4 can be detected by the magnetic sensor 152. Accuracy can be ensured.
  • the magnetic shielding member 5h is formed in a plate shape extending along the X direction.
  • the magnetic flux generated from the linear motor stator 5f can be shielded in the X direction, so that the magnetic flux generated from the linear motor stator 5f can be made difficult to reach the magnetic sensor 152.
  • the thickness of the magnetic shielding member 5h in the Y direction is reduced as compared with the case where the magnetic shielding member 5h is formed in a block shape. Therefore, it is possible to suppress the increase in size of the linear conveyor 101 in the Y direction.
  • the linear motor stator 5f, the magnetic shielding member 5h, and the magnetic sensor 152 are arranged side by side along the Y direction.
  • the core 251a is extended along the Y direction.
  • the plate-shaped magnetic shielding member 5h is provided in the Y direction so as to cover at least the core 251a of the stator portion 251.
  • the portion where the largest amount of magnetic flux is emitted can be at least covered by the magnetic shielding member 5h, so that the magnetic flux emitted from the linear motor stator 5f by the magnetic shielding member 5h is effective. Can be blocked.
  • the length of the plate-shaped magnetic shielding member 5h is made larger than the length of the core 251a in the Z direction. As a result, a wider range in the Z direction than the core 251a can be covered by the magnetic shielding member 5h, so that the magnetic flux extending from the linear motor stator 5f toward the magnetic sensor 152 can be more reliably shielded.
  • the plate-shaped magnetic shielding member 5h is extended to the outside of the core 251a of the stator portion 251 arranged at the end of the plurality of stator portions 251. As a result, it is possible to cover the core 251a of the stator portions 251 arranged side by side in the X direction, so that the magnetic flux emitted from the linear motor stator 5f to the magnetic shielding member 5h can be effectively blocked. ..
  • the core 251a of the stator portions 251 arranged side by side along the X direction can be covered by the magnetic shielding member 5h from the one side end portion S1 to the other side end portion S2 in the X direction method, so that the linear The magnetic flux from the motor stator 5f toward the magnetic sensor 152 can be more reliably shielded.
  • the magnetic shielding member 5h is provided with an insertion hole 451 into which the fastening member 5c is inserted.
  • An insertion hole bending portion 451a bent toward the linear motor stator 5f side is provided at the edge of the insertion hole 451 on the linear motor stator 5f side.
  • the fastening member 5c is made of a non-magnetic material. As a result, unlike the case where the fastening member 5c is a magnetic material, the fastening member 5c is not magnetized. Therefore, the fastening member 5c is magnetized by the magnetic flux generated from the linear motor stator 5f, so that the fastening member 5c is emitted from the fastening member 5c. It is possible to prevent the magnetic flux from reaching the magnetic sensor 152. As a result, the magnetic flux generated from the linear motor stator 5f can be made difficult to reach the magnetic sensor 152.
  • the magnetic shielding member 5h draws in the magnetic flux emitted from the linear motor stator 5f toward the magnetic sensor 152 side and discharges the magnetic flux to the linear motor stator 5f side.
  • the magnetic flux drawn into the magnetic shielding member 5h can be discharged to the side opposite to the magnetic sensor 152 side (linear motor stator 5f side), so that the magnetic flux emitted from the magnetic shielding member 5h can be discharged to the magnetic sensor 152. Can be made difficult to reach.
  • the magnetic shielding member 5h has an upper bent portion 452 bent so that the upper end portion faces the linear motor stator 5f side, and the lower end portion is linear.
  • a lower bending portion 453 bent so as to face the motor stator 5f side is provided.
  • the upper bending portion 452 and the lower bending portion 453 can emit the magnetic flux drawn into the magnetic shielding member 5h to a location away from the magnetic sensor 152.
  • the magnetic shielding member 5h is compared with the magnetic shielding member 5h when the upper end portion and the lower end portion are linearized along the vertical direction (when not bent).
  • the slider 4 is provided with a magnetic scale 4d which is arranged so as to face the magnetic sensor 152 and emits the magnetic flux detected by the magnetic sensor 152.
  • the magnetic shielding member 5h is arranged between the core 251a and the magnetic sensor 152 and the magnetic scale 4d in the Y direction.
  • the support member 5b is provided with a mounting wall 54 provided between the magnetic sensor 152 and the linear motor stator 5f and protruding in the Z1 direction.
  • the magnetic sensor 152 is attached to the sensor side side surface 54c on the mounting wall 54 opposite to the linear motor stator 5f side.
  • the magnetic shielding member 5h is attached to the motor side side surface 54b on the linear motor stator 5f side of the mounting wall 54 common to the magnetic sensor 152.
  • the linear conveyor 101 is provided with a plurality of unit members 5g which are provided by dividing the plurality of stator portions 251 for each control section and are separately energized and controlled.
  • the magnetic shielding member 5h is arranged between the magnetic sensor 152 and the stator portion 251 over all of the plurality of unit members 5g.
  • the magnetic shielding member 5h is made of a magnetic material.
  • the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 magnetizes the magnetic shielding member 5h, so that the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 can be drawn by the magnetic shielding member 5h.
  • the magnetic shielding member 5h as a magnetic material is formed of iron or steel.
  • the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 can easily magnetize the magnetic shielding member 5h, so that the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 can be reliably magnetized by the magnetic shielding member 5h. Can be pulled in.
  • the linear conveyor 501 of the second embodiment is different from the linear conveyor 101 of the first embodiment in which bending portions are not provided at both ends of the magnetic shielding member 5h in the X direction. Bending portions are provided at both ends in the X direction.
  • the same reference numerals are given to the same configurations as those in the first embodiment, and the description thereof will be omitted.
  • the linear conveyor module 505 of the linear conveyor 501 of the second embodiment includes a cover member 5a (see FIG. 3), a support member 5b, and a fastening member 5c (not shown). It includes a magnetic sensor unit 5d, a guide rail 5e, a linear motor stator 5f, a unit member 5g (see FIG. 6), and a magnetic shielding member 505h.
  • the magnetic shielding member 505h of the second embodiment is configured to draw in the magnetic flux emitted from the linear motor stator 5f toward the magnetic sensor 152 side and discharge it to the linear motor stator 5f side.
  • the magnetic shielding member 505h has a one-side bending portion 654 and a other-side bending portion 655.
  • the one-side bending portion 654 is provided at the end portion of the plate-shaped magnetic shielding member 505h on the X1 direction side.
  • the one-side bent portion 654 is bent so that the end portion (one-side end portion S1) on the X1 direction side in the X direction faces the linear motor stator 5f side.
  • the other side bending portion 655 is bent so that the end portion on the X2 direction side in the X direction (the other side end portion S2) faces the linear motor stator 5f side.
  • the magnetic shielding member 505h transmits both the magnetic flux emitted from the end on the X1 direction side in the X direction and the magnetic flux emitted from the end on the X2 direction side in the X direction to the linear motor stator 5f side. It is configured to be releaseable.
  • the other configurations of the second embodiment are the same as the configurations of the first embodiment.
  • the magnetic shielding member 505h is provided between the magnetic sensor 152 and the linear motor stator 5f and shields the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152.
  • the linear conveyor 101 can be miniaturized by improving the degree of freedom in the arrangement position of the magnetic sensor 152 and the linear motor stator 5f while suppressing erroneous detection of magnetic flux by the magnetic sensor 152.
  • the magnetic shielding member 505h is provided with a one-sided bending portion 654 bent so that the one-sided end portion S1 in the X direction faces the linear motor stator 5f side.
  • the magnetic shielding member 505h is provided with the other side bending portion 655 bent so that the other side end portion S2 in the X direction faces the linear motor stator 5f side.
  • the magnetic flux drawn into the magnetic shielding member 505h can be discharged to the side opposite to the magnetic sensor 152 side (linear motor stator 5f side) by the one-side bending portion 654 and the other-side bending portion 655.
  • the one-side bending portion 654 and the other-side bending portion 655 it is compared with the magnetic shielding member 505h when the one-side end portion and the other-side end portion are linearized along the X direction (when not bent). Therefore, it is possible to suppress the increase in size of the magnetic shielding member 505h in the X direction. As a result, it is possible to make it difficult for the magnetic flux emitted from the magnetic shielding member 505h to reach the magnetic sensor 152, and it is possible to suppress the increase in size of the linear conveyor 101 in the X direction.
  • the other effects of the second embodiment are the same as the effects of the first embodiment.
  • the fastening member 5c is made of austenitic stainless steel, but the present invention is not limited to this.
  • the fastening member may be formed of another non-magnetic metal.
  • the magnetic shielding member 5h (505h) as a magnetic material is formed of iron or steel is shown, but the present invention is not limited to this.
  • the magnetic shielding member may be a metal material which is another magnetic material.
  • the magnetic shielding member 5h has an upper bending portion 452 (first bending portion) and a lower bending portion 453 (second bending portion).
  • first bending portion first bending portion
  • second bending portion second bending portion
  • the present invention is not limited to this.
  • the magnetic shielding member may not have both the first bent portion and the second bent portion, and may not have any one of the first bent portion and the second bent portion. May be good.
  • the magnetic shielding member 505h shows an example including both the one-side bending portion 654 and the other-side bending portion 655, but the present invention is not limited to this.
  • the magnetic shielding member may not include both the one-sided bending portion and the other-side bending portion, or may include any one of the one-side bending portion and the other-side bending portion. ..
  • the magnetic shielding member 5h is formed in a plate shape extending along the X direction (the direction in which the guide rail 5e extends). Is not limited to this. In the present invention, the magnetic shielding member may be formed in a block shape or the like.
  • the magnetic shielding member 5h (505h) shields the magnetic flux from the linear motor stator 5f toward the magnetic sensor 152 by drawing in the magnetic flux emitted from the linear motor stator 5f.
  • the magnetic shielding member may be configured to shield the magnetic flux from the linear motor stator toward the magnetic sensor by reflecting the magnetic flux emitted from the linear motor stator.
  • the magnetic shielding member 5h (505h) is attached to the side surface of the mounting wall 54 common to the magnetic sensor 152 on the linear motor stator 5f side.
  • the invention is not limited to this.
  • the magnetic shielding member may be attached to a place different from the magnetic sensor.
  • a plurality of linear conveyor modules 5 having the same length in the X direction are arranged in the X direction, but the present invention is not limited to this.
  • linear conveyor modules having different lengths in the X direction may be arranged in the X direction.
  • the magnetic shielding member 5h (505h) is located from the vicinity of the end E1 on the X1 direction side of the linear conveyor module 5 (505) to the X2 direction side of the linear conveyor module 5 (505).
  • the magnetic shielding member may be divided into a plurality of parts.
  • the magnetic shielding member 5h (505h) is attached to the support member 5b by the fastening member 5c, but the present invention is not limited to this.
  • the magnetic shielding member may be attached to the support member by an adhesive or the like.
  • the fastening member 5c is arranged in the central portion of the mounting wall 54 in the Z direction (vertical direction), but the present invention is not limited to this. .. In the present invention, the fastening member may be arranged above or below the central portion of the mounting wall in the vertical direction.
  • the magnetic sensor 152 is attached to the sensor side side surface 54c, and the magnetic shielding member 5h (505) is attached to the motor side side surface on the mounting wall 54 common to the magnetic sensor 152.
  • the example attached to 54b is shown, the present invention is not limited to this.
  • the magnetic sensor may be mounted directly on the surface of the magnetic shielding member opposite to the linear motor stator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Linear Motors (AREA)

Abstract

このリニアコンベア(101、501)は、コア(251a)と、コイル(251b)とを有する固定子部(251)を含むリニアモータ固定子(5e)と、スライダ(4)の位置を検出する磁気センサ(152)と、磁気センサ(152)とリニアモータ固定子(5e)との間に配置され、リニアモータ固定子(5e)から磁気センサ(152)に向かう磁束を遮る磁気遮蔽部材(5h、505h)とを備える。

Description

リニアコンベア
 この発明は、リニアコンベアに関し、特に、スライダの位置を検出する磁気センサを備えるリニアコンベアに関する。
 従来、スライダの位置を検出する磁気センサを備えるリニアコンベアが知られている。このようなリニアコンベアは、たとえば、国際公開第2018/055709号に開示されている。
 上記国際公開第2018/055709号には、スライダの位置を検出する磁気センサを備えるリニアコンベア装置(リニアコンベア)が開示されている。リニアコンベア装置は、スライダと、リニアモータ固定子と、ガイドレールとを含んでいる。スライダは、リニアモータ可動子を有している。リニアモータ固定子は、コアと、コアに巻き回されたコイルとを含んでいる。コアは、上下方向およびガイドレールの延びる方向に直交する左右方向に延びている。磁気センサは、スライダの移動に伴う磁束の変化を検出する。
 上記国際公開第2018/055709号のスライダは、ガイドレールの延びる方向に移動可能な状態でガイドレールに支持されている。スライダは、リニアモータ固定子およびリニアモータ可動子により、ガイドレールの延びる方向に沿って移動する。スライダの上面は、基板などのワークの載置部である。
 このように、リニアコンベア装置では、磁気センサにより検出されるスライダの位置に基づいて、スライダを移動させることによりワークの載置部を所定位置まで移動させることによって、電子部品などの基板への実装作業が実行される。
 上記国際公開第2018/055709号のリニアコンベア装置では、磁気センサにより検出された磁束変化に基づいてスライダの位置が検出される。ここで、このリニアコンベア装置では、磁気センサがリニアモータ固定子において発せられる磁束を誤検出することを抑制するため、磁気センサにより検出する磁束の方向と、リニアモータ固定子から発せられる磁束の方向とが異なるように、磁気センサとリニアモータ固定子とが配置されている。また、磁気センサによる磁束の誤検出を抑制するために、リニアコンベア装置では、磁気センサとリニアモータ固定子との間隔を可能な限り大きくなように、磁気センサとリニアモータ固定子とを配置することも考えられる。
国際公開第2018/055709号
 しかしながら、上記国際公開第2018/055709号のリニアコンベア装置では、磁気センサによる磁束の誤検出を抑制するために、磁気センサにより検出する磁束の方向と、リニアモータ固定子から発せられる磁束の方向とが異なるように、磁気センサとリニアモータ固定子とをリニアコンベア装置内に配置する必要があるので、磁気センサおよびリニアモータ固定子の配置位置の自由度が制限される。また、上記国際公開第2018/055709号のリニアコンベア装置には開示されていないが、磁気センサによる磁束の誤検出を抑制するために、磁気センサとリニアモータ固定子との間隔を大きくする従来のリニアコンベア装置の場合でも、磁気センサとリニアモータ固定子との間隔に起因して磁気センサおよびリニアモータ固定子の配置位置の自由度が制限される。これらのため、上記国際公開第2018/055709号のリニアコンベア装置では、磁気センサによる磁束の誤検出を抑制しつつ、磁気センサおよびリニアモータ固定子の配置位置の自由度を向上させることにより、リニアコンベア装置(リニアコンベア)を小型化することが望まれている。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、磁気センサによる磁束の誤検出を抑制しつつ、磁気センサおよびリニアモータ固定子の配置位置の自由度を向上させることにより、リニアコンベアを小型化することが可能なリニアコンベアを提供することである。
 この発明の一の局面によるリニアコンベアは、コアと、コアに巻き回されたコイルとを有する固定子部を含むリニアモータ固定子と、永久磁石を有するリニアモータ可動子を含むスライダと、スライダの移動をガイドするガイドレールと、スライダの位置を検出する磁気センサと、磁気センサとリニアモータ固定子との間に配置され、リニアモータ固定子から磁気センサに向かう磁束を遮る磁気遮蔽部材とを備える。
 この発明の一の局面によるリニアコンベアでは、上記のように、磁気センサとリニアモータ固定子との間に配置され、リニアモータ固定子から磁気センサに向かう磁束を遮る磁気遮蔽部材を設ける。これにより、磁気遮蔽部材によりリニアモータ固定子から放出される磁束を遮ることによって、リニアモータ固定子から放出される磁束に起因する磁気センサの誤検出を抑制することができる。したがって、リニアモータ固定子において発せられる磁束の方向と磁気センサにより検出する磁束の方向とを異ならせるように、磁気センサとリニアモータ固定子とを配置する必要がないとともに、磁気センサとリニアモータ固定子との間隔を大きくする必要がない。これにより、磁気遮蔽部材により、磁気センサおよびリニアモータ固定子の配置位置の自由度を向上させることができる。これらの結果、磁気センサの誤検出を抑制しつつ、磁気センサおよびリニアモータ固定子の配置位置の自由度を向上させることにより、リニアコンベアを小型化することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、磁気遮蔽部材は、リニアモータ固定子から発せられる磁束を引き込むことにより、リニアモータ固定子から磁気センサに向かう磁束を遮るように構成されている。このように構成すれば、リニアモータ固定子から磁気センサに向かう磁束を磁気遮蔽部材により引き込むことによって、磁気センサに磁束が到達しにくくすることができるので、リニアモータ固定子から発せられる磁束に起因する磁気センサによるスライダの位置の検出精度を容易に確保することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、磁気遮蔽部材は、ガイドレールの延びる方向に沿って延びる板状に形成されている。このように構成すれば、ガイドレールの延びる方向において、リニアモータ固定子から発せられる磁束を遮蔽することができるので、リニアモータ固定子から発せられる磁束を磁気センサに到達しにくくすることができる。また、磁気遮蔽部材をガイドレールの延びる方向に沿って延びる板状に形成することにより、磁気遮蔽部材をブロック状に形成する場合と比較して、磁気遮蔽部材の厚みを小さくすることができるので、リニアコンベアの大型化を抑制することができる。
 この場合、好ましくは、リニアモータ固定子、磁気遮蔽部材および磁気センサは、ガイドレールの延びる方向に直交するガイドレールの幅方向に沿って並んで配置され、コアは、ガイドレールの幅方向に沿って延びており、板状の磁気遮蔽部材は、ガイドレールの幅方向において、少なくとも固定子部のコアを覆う大きさを有している。このように構成すれば、磁束が最も多く放出される箇所(固定子部のコア)を磁気遮蔽部材により少なくとも覆うことができるので、磁気遮蔽部材によりリニアモータ固定子から発せられる磁束を効果的に遮ることができる。
 上記少なくともコアを覆う板状の磁気遮蔽部材を備えるリニアコンベアにおいて、好ましくは、ガイドレールの延びる方向と、ガイドレールの幅方向とに直交する方向において、板状の磁気遮蔽部材の長さは、コアの長さより大きい。このように構成すれば、コアよりも上記直交する方向の広い範囲を磁気遮蔽部材により覆うことができるので、リニアモータ固定子から広がりながら磁気センサに向かう磁束をより効果的に遮蔽することができる。
 上記少なくともコアを覆う板状の磁気遮蔽部材を備えるリニアコンベアにおいて、好ましくは、固定子部は、ガイドレールの延びる方向に沿って複数並んで配置され、ガイドレールの延びる方向において、板状の磁気遮蔽部材は、複数の固定子部のうち端部に配置された固定子部のコアよりも外側に延びている。このように構成すれば、ガイドレールの延びる方向に沿って複数並んで配置される固定子部のコアを覆うことができるので、リニアモータ固定子から磁気遮蔽部材に発せられる磁束を効果的に遮ることができる。
 上記ガイドレールの延びる方向に沿って複数並んで配置される固定子部を備えるリニアコンベアにおいて、好ましくは、ガイドレールの延びる方向において、磁気遮蔽部材の一方側端部は、複数の固定子部のうち一方側端部に配置された固定子部のコアよりも一方側に延びているとともに、磁気遮蔽部材の他方側端部は、複数の固定子部のうち他方側端部に配置された固定子部のコアよりも他方側に延びている。このように構成すれば、ガイドレールの延びる方向に沿って複数並んで配置される固定子部のコアを磁気遮蔽部材によりガイドレールの延びる方向の一方端部側から他方端部側にわたって覆うことができるので、リニアモータ固定子から磁気センサに向かう磁束をより確実に遮蔽することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、磁気遮蔽部材を取り付ける締結部材をさらに備え、磁気遮蔽部材は、締結部材が挿入される挿入孔を有し、挿入孔のリニアモータ固定子側の縁部は、リニアモータ固定子側に向かって曲げられた挿入孔曲げ部を有する。このように構成すれば、磁気遮蔽部材により遮蔽され挿入孔の縁から放出される磁束を挿入孔曲げ部に沿ってリニアモータ固定子側に放出することができるので、磁気遮蔽部材から放出される磁束を磁気センサに到達しにくくすることができる。
 この場合、好ましくは、締結部材は、非磁性体により構成されている。このように構成すれば、締結部材が磁性体である場合と異なり、締結部材が磁化しないので、リニアモータ固定子から発せられる磁束により締結部材が磁化されることに起因して締結部材から発せられる磁束が磁気センサに到達してしまうことを抑制することができる。その結果、リニアモータ固定子から発せられる磁束を磁気センサに到達しにくくすることができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、磁気遮蔽部材は、リニアモータ固定子から磁気センサ側に向かって発せられる磁束を引き込むとともに、リニアモータ固定子側に放出するように構成されている。このように構成すれば、磁気遮蔽部材に引き込まれた磁束を磁気センサ側とは反対側(リニアモータ固定子側)に放出することができるので、磁気遮蔽部材から放出された磁束を磁気センサに到達しにくくすることができる。
 この場合、好ましくは、ガイドレールの延びる方向と、ガイドレールの延びる方向に直交するガイドレールの幅方向とに直交する方向において、磁気遮蔽部材は、一方の端部がリニアモータ固定子側に向くように曲げられた第1曲げ部、および、他方の端部がリニアモータ固定子側に向くように曲げられた第2曲げ部のうち少なくともいずれかを含む。このように構成すれば、第1曲げ部および第2曲げ部の少なくともいずれかにより、磁気センサ側とは反対側(リニアモータ固定子側)に、磁気遮蔽部材に引き込まれた磁束を放出することができる。また、第1曲げ部および第2曲げ部のうち少なくともいずれかを設けることにより、一方の端部および他方の端部を上記直交する方向に沿って直線状にした場合(曲げない)の磁気遮蔽部材と比較して、磁気遮蔽部材の上記直交する方向への大型化を抑制することができる。これらの結果、磁気遮蔽部材から放出された磁束を磁気センサに到達しにくくすることができるとともに、リニアコンベアの上記直交する方向への大型化を抑制することができる。
 上記引き込んだ磁束をリニアモータ固定子側に放出する磁気遮蔽部材を備えるリニアコンベアにおいて、好ましくは、磁気遮蔽部材は、ガイドレールの延びる方向の一方側端部がリニアモータ固定子側に向くように曲げられた一方側曲げ部、および、ガイドレールの延びる方向の他方側端部がリニアモータ固定子側に向くように曲げられた他方側曲げ部のうち少なくともいずれかを含む。このように構成すれば、一方側曲げ部および他方側曲げ部の少なくともいずれかにより、磁気センサ側とは反対側(リニアモータ固定子側)に、磁気遮蔽部材に引き込まれた磁束を放出することができる。また、一方側曲げ部および他方側曲げ部のうち少なくともいずれかを設けることにより、一方側端部および他方側端部をガイドレールの延びる方向に沿って直線状にした場合(曲げない)の磁気遮蔽部材と比較して、磁気遮蔽部材のガイドレールの延びる方向への大型化を抑制することができる。これらの結果、磁気遮蔽部材から放出された磁束を磁気センサに到達しにくくすることができるとともに、リニアコンベアのガイドレールの延びる方向への大型化を抑制することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、スライダは、磁気センサに対向するように配置され、磁気センサにより検出される磁束を放出する磁気スケールをさらに含み、固定子部のコアは、磁気センサと磁気スケールとが対向する方向に沿って延びて配置され、磁気遮蔽部材は、磁気センサと磁気スケールとが対向する方向において、コアと、磁気センサおよび磁気スケールとの間に配置されている。このように構成すれば、リニアモータ固定子から磁気スケールに向かう磁束を磁気遮蔽部材により遮蔽することによって、磁気スケールに磁束が到達しにくくすることができるので、リニアモータ固定子から発せられる磁束から磁気スケールを保護することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、リニアモータ固定子およびガイドレールを支持する支持部材をさらに備え、支持部材は、磁気センサとリニアモータ固定子との間に設けられ、上方向に突出した取付壁を有し、磁気センサは、取付壁におけるリニアモータ固定子側とは反対側の側面に取り付けられているとともに、磁気遮蔽部材は、磁気センサと共通の取付壁におけるリニアモータ固定子側の側面に取り付けられている。このように構成すれば、磁気センサと磁気遮蔽部材とを共通の取付壁に取り付けることにより、支持部材の構造の複雑化および大型化を抑制することができるので、リニアコンベアの構造の複雑化および大型化を抑制することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、固定子部は、ガイドレールの延びる方向に沿って複数並んで配置され、複数の固定子部を所定の区間ごとに分けることにより設けられ、別個に通電制御される複数のユニット部材をさらに備え、複数のユニット部材の各々は、磁気センサを含み、磁気遮蔽部材は、複数のユニット部材の全てにわたって、磁気センサと固定子部との間に配置されている。このように構成すれば、2個以上のユニット部材にまたがって通電制御が行われて固定子部から磁束が発せられる場合であっても、磁気遮蔽部材により確実に磁束を遮蔽することができるので、磁気センサによるスライダの位置の検出精度を確保することができる。
 上記一の局面によるリニアコンベアにおいて、好ましくは、磁気遮蔽部材は、磁性体により構成されている。このように構成すれば、リニアモータ固定子から磁気センサに向かう磁束により磁気遮蔽部材を磁化させることによって、リニアモータ固定子から磁気センサに向かう磁束を磁気遮蔽部材により引き込むことができる。その結果、磁気センサに磁束が到達しにくくすることができるので、磁気センサによるスライダの位置の検出精度を確保することができる。
 この場合、好ましくは、磁性体としての磁気遮蔽部材は、鉄または鋼などの磁性体の鉄系材料により形成されている。このように構成すれば、リニアモータ固定子から磁気センサに向かう磁束により磁気遮蔽部材を容易に磁化させることができるので、リニアモータ固定子から磁気センサに向かう磁束を磁気遮蔽部材により確実に引き込むことができる。
 本発明によれば、上記のように、磁気センサによる磁束の誤検出を抑制しつつ、磁気センサおよびリニアモータ固定子の配置位置の自由度を向上させることにより、リニアコンベアを小型化することができる。
第1実施形態のリニアコンベアを架台に設置した状態を示した斜視図である。 第1実施形態のリニアコンベアのリニアコンベアモジュールおよびスライダを示した斜視図である。 図2の100-100線に沿った断面図である。 第1実施形態のリニアコンベアのリニアコンベアモジュールにおいてカバー部材を外した状態をY2方向側から視た斜視図である。 第1実施形態のリニアコンベアのリニアコンベアモジュールにおいてカバー部材を外した状態をY1方向側から視た斜視図である。 第1実施形態のリニアコンベアのリニアコンベアモジュールにおいてカバー部材を外した状態をZ1方向側から視た平面図である。 第1実施形態のリニアコンベアのリニアコンベアモジュールにおいて磁気遮蔽部材付近を示した部分断面図である。 第1実施形態のリニアコンベアの磁気遮蔽部材を示した斜視図である。 第1実施形態のリニアコンベアのリニアコンベアモジュールにおいてカバー部材を外した状態のX1方向側の端部およびX2方向側の端部をZ1方向側から視た平面図である。 第2実施形態のリニアコンベアのリニアコンベアモジュールにおいてX1方向側付近を示した部分斜視図である。 第2実施形態のリニアコンベアのリニアコンベアモジュールにおいてカバー部材を外した状態のX1方向側の端部およびX2方向側の端部をZ1方向側から視た平面図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
[第1実施形態]
 図1~図9を参照して、架台102上に設置される第1実施形態のリニアコンベア101について説明する。
(リニアコンベアの構成)
 図1および図2に示すように、リニアコンベア101は、架台102の上面102aに敷設されている。また、図示はしないが、架台102には、基板などのワークの移載、電子部品などの基板への実装作業などを実行する各種ロボットが設置されている。各種ロボットは、後述するスライダ4の周回経路103に沿って配置されている。
 リニアコンベア101は、各種ロボットの作業位置に向けてスライダ4を移動させるように構成されている。具体的には、リニアコンベア101は、複数(2個)の方向転換用モジュール1と、複数(6個)の凹部2と、複数(6個)の連結部材3と、スライダ4と、複数(8個)のリニアコンベアモジュール5とを備えている。複数の方向転換用モジュール1および複数のリニアコンベアモジュール5は、スライダ4の周回経路103を形成している。
 ここで、リニアコンベアモジュール5の延びる方向をX方向とし、X方向のうち一方をX1方向とし、X方向のうちの他方をX2方向とする。方向転換用モジュール1の延びる方向をY方向とし、Y方向のうち一方をY1方向とし、Y方向のうちの他方をY2方向とする。X方向およびY方向に直交する方向をZ方向(上下方向)とし、Z方向のうち一方をZ1方向(上方向)とし、Z方向のうちの他方をZ2方向(下方向)とする。なお、X方向は、請求の範囲の「ガイドレールの延びる方向」の一例である。また、Y方向は、請求の範囲の「ガイドレールの幅方向」の一例である。また、Z方向は、請求の範囲の「ガイドレールの延びる方向と、ガイドレールの幅向に直交する方向」および「ガイドレールの延びる方向と、ガイドレールの延びる方向に直交するガイドレールの幅方向とに直交する方向」の一例である。
 複数(2個)の方向転換用モジュール1は、それぞれ、X1方向側およびX2方向側に配置されている。複数の方向転換用モジュール1の各々の構造は、同じであるので、X1方向側の方向転換用モジュール1についてのみ説明する。
 方向転換用モジュール1は、スライダ4をY方向へ移動させる搬送装置である。
 方向転換用モジュール1は、ガイドレール11と、モジュール本体12と、駆動機構(図示せず)とを含む。ガイドレール11は、架台102の上面102aに敷設されている。ガイドレール11は、Y方向に延びている。モジュール本体12は、ガイドレール11にY方向に移動可能に支持されている。駆動機構は、モジュール本体12をガイドレール11に沿ってY方向に移動させるように構成されている。
 凹部2には、架台102に固定された状態の連結部材3が収容されている。すなわち、Y1方向側から視て、凹部2の内面と、架台102の上面102aとの間には、架台102に固定された状態の連結部材3が配置されている。
 連結部材3は、架台102に固定され、複数のリニアコンベアモジュール5同士を互いに連結するとともに、架台102に固定された状態でリニアコンベアモジュール5を位置決めするように構成されている。ここで、連結部材3は、X方向において、隣接するリニアコンベアモジュール5にまたがって設けられている。
 図1に示すように、スライダ4は、周回経路103上に複数(4個)配置されている。複数のスライダ4はいずれも同じ構成を有しているので、複数のスライダ4のうちの1つについて説明する。
 スライダ4は、周回経路103上を直線的にスライド移動するように構成されている。具体的には、図2および図3に示すように、スライダ4は、スライダフレーム4aと、リニアモータ可動子4bと、一対のガイドブロック4cと、磁気スケール4dとを含んでいる。
 スライダフレーム4aは、アルミニウムなどの金属材料により形成されている。スライダフレーム4aのZ1方向側の上面は、ワークを載置する載置面4eである。スライダフレーム4aには、後述するリニアコンベアモジュール5のカバー部材5aが挿入される挿入空間4fが形成されている。
 リニアモータ可動子4bは、バックヨーク4gと、永久磁石4hとを有している。バックヨーク4gは、永久磁石4hを保持するとともに磁路を形成する部材であり、鉄または鋼などの磁性体の鉄系材料で形成されている。バックヨーク4gは、Z2方向に向けて開口する門型構造を有している。永久磁石4hは、Y方向において、N極とS極とが対向するように配置されている。永久磁石4hは、X方向に沿って複数N極とS極が交互に並んで配置されている。このような配列で永久磁石4hは、バックヨーク4gに保持されている。バックヨーク4gはX方向において永久磁石4hをすべて覆うように配置されている。
 ガイドブロック4cは、後述するリニアコンベアモジュール5のガイドレール5eに係合するとともに、ガイドレール5eの延びる方向(X方向)に沿って移動可能に構成されている。ガイドブロック4cは、ガイドレール5eに接して転動するベアリングを備えている。ガイドブロック4cは、Y方向において、一対配置されている。ガイドブロック4cのZ1方向側の端部は、スライダフレーム4aに取り付けられている。
 磁気スケール4dは、後述する磁気センサ152にY方向に対向するように配置され、磁気センサ152により検出される磁束を放出するように構成されている。具体的には、磁気スケール4dは、スケール基板41と、ホルダ42とを有している。スケール基板41は、ホルダ42に保持されている。スケール基板41は、磁気センサユニット5dとの対向面に、N極とS極とが交互に現れるようにX方向に配列された永久磁石(図示せず)を含んでいる。図示はしないが、スケール基板41の永久磁石は、磁気センサユニット5dの磁気センサ152(図4参照)にY方向において対向するように、配置されている。
 複数のリニアコンベアモジュール5は、X方向に直線状に連結されている。複数のリニアコンベアモジュール5は、Y1方向側に4個配置されている。複数のリニアコンベアモジュール5は、Y2方向側に4個配置されている。複数のリニアコンベアモジュール5の各々の構造は、同じであるので、Y1方向側であり、かつ、X方向の中央部分のX1方向側に配置された(図1のK部分の)リニアコンベアモジュール5について説明する。なお、リニアコンベアモジュール5は、2~7個および9個以上架台102に配置されてもよい。
 リニアコンベアモジュール5は、スライダ4をX方向へ移動させる搬送装置である。すなわち、リニアコンベアモジュール5は、ロボットの作業位置でスライダ4を停止させるとともに、作業後に次のロボットの作業位置へ向けてスライダ4を移動させるように構成されている。また、リニアコンベアモジュール5は、約0.2~約1.0[m]の長さを有する直線的なモジュールである。
 具体的には、図2および図3に示すように、リニアコンベアモジュール5は、カバー部材5aと、支持部材5bと、締結部材5cと、磁気センサユニット5dと、ガイドレール5eと、リニアモータ固定子5fと、ユニット部材5g(図6参照)と、磁気遮蔽部材5hとを含んでいる。
 カバー部材5aは、アルミニウムなどの金属により形成されている。カバー部材5aは、支持部材5bの上面51a(Z1方向側の面)を覆うように構成されている。すなわち、カバー部材5aは、支持部材5bに取り付けられたリニアモータ固定子5f、ガイドレール5eおよび磁気センサユニット5dをZ1方向側から覆っている。カバー部材5aは、締結部材(図示せず)により、支持部材5bのZ1方向側の端部に固定されている。カバー部材5aは、スライダフレーム4aの挿入空間4fに挿入可能な形状を有している。すなわち、カバー部材5aは、Y方向に沿った断面において、略T字形状を有している。
 支持部材5bは、ガイドレール5eおよびリニアモータ固定子5fを支持している。支持部材5bは、アルミニウムなどの金属により形成されている。このように、支持部材5bは、金属製のフレームである。支持部材5bは、Y方向に沿った断面において、略U字形状を有している。支持部材5bは、上壁部51と、一対の側壁部52と、フランジ部53と、取付壁54とを有している。
 図3および図4に示すように、上壁部51は、X方向に長く延びた長方形形状を有している。上壁部51の上面51aには、リニアモータ固定子5f、ガイドレール5eおよび磁気センサユニット5dが設置されている。側壁部52は、X方向に長く延びた長方形形状を有している。側壁部52は、Y方向において対向するように一対設けられている。フランジ部53は、側壁部52のZ2方向側の端部からY方向において外側に突出している。フランジ部53は、X方向に長く延びた長方形形状を有している。
 取付壁54は、上壁部51に一体的に設けられている。すなわち、取付壁54は、磁気センサ152とリニアモータ固定子5fとの間に設けられ、上方向に突出している。取付壁54は、上面54aと、モータ側側面54bと、センサ側側面54cと、貫通孔54dとを有している。なお、モータ側側面54bは、請求の範囲の「取付壁におけるリニアモータ固定子側の側面」の一例である。なお、センサ側側面54cは、請求の範囲の「取付壁におけるリニアモータ固定子側とは反対側の側面」の一例である。
 上面54aは、取付壁54のZ1方向側の面である。上面54aには、カバー部材5aが取り付けられている。モータ側側面54bは、Y1方向側の面である。モータ側側面54bには、磁気遮蔽部材5hが取り付けられている。センサ側側面54cは、Y2方向側の面である。センサ側側面54cには、磁気センサユニット5dが取り付けられている。このように、磁気センサ152は、センサ側側面54cに取り付けられているとともに、磁気遮蔽部材5hは、磁気センサ152と共通の取付壁54におけるモータ側側面54bに取り付けられている。貫通孔54dは、取付壁54をY方向に沿って貫通している。貫通孔54dは、締結部材5cが挿入されるざぐり孔である。貫通孔54dは、X方向に沿って複数(4個)取付壁54に形成されている。複数の貫通孔54dは、Z方向において、取付壁54の中央部分に形成されている。なお、貫通孔54dの数は、1~3個および5個以上であってもよい。
 締結部材5cは、支持部材5bに磁気遮蔽部材5hを取り付けている。詳細には、締結部材5cは、貫通孔54dに挿入された状態で、磁気遮蔽部材5hに螺合されることにより、取付壁54に磁気遮蔽部材5hを固定している。締結部材5cは、非磁性体により構成されている。詳細には、締結部材5cは、オーステナイト系ステンレス鋼により形成されている。締結部材5cは、複数(4個)の貫通孔54dに合わせて複数(4個)配置されている。すなわち、締結部材5cは、貫通孔54dに合わせて、Z方向において、取付壁54の中央部分に配置されている。なお、締結部材5cの数は、貫通孔54dの数と同じであればよく、1~3個および5個以上であってもよい。
 磁気センサユニット5dは、X方向に所定ピッチで複数個(3個)配列されている。なお、磁気センサユニット5dは、X方向に所定ピッチで複数個配列されていなくてもよく、たとえば、磁気センサユニット同士のセンサ間ピッチを設定し、図示しない制御部の記憶部に記憶させることにより、磁気センサユニット同士のセンサ間ピッチを異ならせて、磁気センサユニットを複数個配列することが可能である。また、磁気センサユニット5dの数は、1および2個、または、4個以上であってもよい。
 磁気センサユニット5dは、センサ基板151と、磁気センサ152と、ハウジング153とを有している。
 磁気センサ152は、スライダ4の位置を検出するように構成されている。具体的には、磁気センサ152は、スライダ4のX方向の位置を検出するように構成されている。磁気センサ152は、センサ基板151にZ方向に沿って複数(3個)取り付けられている。すなわち、磁気センサ152は、取付壁54の突出する方向に沿って複数(3個)配置されている。なお、磁気センサ152の数は、1および2個、または、4個以上であってもよい。磁気センサ152は、たとえば、ホール素子およびMR(Magnet Resistive)素子などである。磁気センサ152は、スライダ4の磁気スケール4dの磁束を検出することにより、磁束密度に応じた出力電圧の信号を発生する。ハウジング153は、センサ基板151を保持している。ハウジング153は、締結部材(図示せず)により、支持部材5bの取付壁54に固定されている。
 ガイドレール5eは、スライダ4をガイドする機能を有している。ガイドレール5eは、Y方向に対向して一対設けられている。ガイドレール5eは、X方向に延びている。
 図3および図5に示すように、リニアモータ固定子5fは、複数の電磁石により構成されている。すなわち、リニアモータ固定子5fは、固定子部251と、ホルダ252とを有している。固定子部251は、コア251aと、コア251aに巻回されたコイル251bとを有している。リニアモータ固定子5fは、X方向に一列に単位電磁石としての固定子部251が配置されることによって形成されている。コア251aは、磁気センサ152と磁気スケール4dとが対向する方向(Y方向)に沿って延びて配置された鉄心である。ホルダ252は、コア251aおよびコイル251bを保持している。ホルダ252は、支持部材5bの上壁部51に取り付けられている。ホルダ252には、X方向に複数並んだ固定子部251が収容されている。
 上記したようなリニアコンベア101は、リニアモータ、リニアガイドおよびリニアスケールを有している。リニアモータは、リニアモータ可動子4bおよびリニアモータ固定子5fにより構成されている。リニアガイドは、ガイドレール5eおよびガイドブロック4cにより構成されている。リニアスケールは、磁気センサユニット5dおよび磁気スケール4dにより構成されている。
 リニアモータでは、互いに位相が異なるU相、V相およびW相のうちのいずれかの相の電流がリニアモータ固定子5fに供給されることによりコイル251bに生じる磁束と、リニアモータ可動子4bが備える永久磁石4hの磁束との相互作用によって、磁気的な推進力が生成されている。すなわち、スライダ4は、上記推進力により、X1方向またはX2方向に移動可能である。
 図6に示すように、ユニット部材5gは、リニアコンベア101の制御システムにおける一制御区間を構成している。すなわち、ユニット部材5gは、複数(18個)の固定子部251を一制御区間ごとに分けることにより設けられ、別個に通電制御されるように構成されている。詳細には、ユニット部材5gは、一制御区間ごとに割り当てられた複数(6個)の固定子部251に供給される電流を制御するように構成されている。なお、一制御区間は、請求の範囲の「所定の区間」の一例である。また、複数の固定子部251の数は、2~17個および19個以上であってもよい。また、一制御区間ごとに割り当てられる固定子部251の数は、2~5個および7個以上であってもよい。
 このようなユニット部材5gは、リニアコンベアモジュール5において、X方向に複数(3個)並んで配置されている。ここで、複数のユニット部材5gのうち最もX1方向側に配置されるユニット部材5gを第1ユニット部材351とし、第1ユニット部材351のX2方向側に隣接するユニット部材5gを第2ユニット部材352とし、第2ユニット部材352のX2方向側に隣接するユニット部材5gを第3ユニット部材353とする。なお、ユニット部材5gの数は、2個、または、4個以上であってもよい。
 具体的には、第1ユニット部材351は、上記磁気センサ152と、複数(6個)の上記固定子部251と、モータコントローラ(以下、第1モータコントローラ351aという)とを有している。なお、第2ユニット部材352も同様に、上記磁気センサ152と、複数(6個)の上記固定子部251と、モータコントローラ(以下、第2モータコントローラ352aという)とを有している。第3ユニット部材353も同様に、上記磁気センサ152と、複数(6個)の上記固定子部251と、モータコントローラ(以下、第3モータコントローラ353aという)とを有している。
 リニアコンベア101は、スライダ4の位置に基づいて、第1モータコントローラ351a、第2モータコントローラ352aおよび第3モータコントローラ353aによりスライダ4の移動および停止を制御するように構成されている。詳細には、リニアコンベア101は、スライダ4の移動中、複数のユニット部材5gの各々の磁気センサ152が磁気スケール4dを検出したことに基づいて、複数のユニット部材5gの同期をとりながら、ユニット部材5gの複数の固定子部251の全ての電流を制御するように構成されている。
 これにより、たとえば、図6に示すように、第2ユニット部材352と第3ユニット部材353とにまたがってスライダ4が位置している場合、第2ユニット部材352の複数の固定子部251の全ての電流が制御されるとともに、第3ユニット部材353の複数の固定子部251の全ての電流が制御される。この際、ハッチングを付した矢印により示すように、固定子部251から磁束が放出される。固定子部251から放出される磁束のうちリニアモータ可動子4bが位置する部分の磁束は、リニアモータ可動子4bの永久磁石4hに作用する。すなわち、リニアモータ可動子4bが位置する部分の磁束は永久磁石4hの極性により固定子部251側と反対の極性の永久磁石4hに引き込まれるが、永久磁石4hに引き込まれない磁束も最終的にはバックヨーク4gに引き込まれる。一方で、固定子部251から放出される磁束のうちリニアモータ可動子4b外の磁束は、リニアモータ可動子4bに作用することなくそのまま放出される。
(磁気遮蔽部材)
 本実施形態の磁気遮蔽部材5hは、リニアモータ可動子4bに作用することなくそのまま放出された上記磁束の磁気センサ152に対する磁気的な影響を抑制する部材である。すなわち、磁気遮蔽部材5hは、磁気センサ152とリニアモータ固定子5fとの間に配置され、リニアモータ固定子5fから磁気センサ152に向かう磁束を遮るように構成されている。ここで、磁気遮蔽部材5hは、磁気センサ152と磁気スケール4dとが対向する方向(Y方向)において、コア251aと、磁気センサ152および磁気スケール4dとの間にも配置されている。これにより、磁気遮蔽部材5hは、リニアモータ可動子4bに作用することなくそのまま放出された上記磁束の磁気スケール4dに対する磁気的な影響も抑制する部材である。このように、リニアモータ固定子5f、磁気遮蔽部材5hおよび磁気センサ152は、Y方向に並んで配置されている。
 具体的には、図7および図8に示すように、磁気遮蔽部材5hは、リニアモータ固定子5fから発せられる磁束を引き込むことにより、リニアモータ固定子5fから磁気センサ152に向かう磁束を遮るように構成されている。すなわち、磁気遮蔽部材5hは、リニアモータ固定子5fから磁気センサ152に向かう磁束により磁化されるように構成されている。磁気遮蔽部材5hは、磁性体により構成されている。詳細には、磁性体としての磁気遮蔽部材5hは、鉄または鋼により形成されている。
 磁気遮蔽部材5hは、X方向に沿って延びる板状に形成されている。詳細には、磁気遮蔽部材5hは、Y方向に沿った方向に厚みを有する薄板状に形成されている。磁気遮蔽部材5hのY方向に沿った断面形状(X方向に直交する面に沿った断面の形状)は、リニアモータ固定子5f側に曲げられた略C字形状である。
 板状の磁気遮蔽部材5hは、Y方向において、少なくとも固定子部251のコア251aを覆う大きさを有している。すなわち、板状の磁気遮蔽部材5hと固定子部251のコア251aとは、Y1方向側から視て、オーバーラップしている(図5参照)。詳細には、Z方向において、板状の磁気遮蔽部材5hの長さL1は、コア251aの長さL2より大きい。Z方向において、板状の磁気遮蔽部材5hの上端部(Z1方向側の端部)と下端部(Z2方向側の端部)との間には、固定子部251が配置されている。すなわち、Z方向において、板状の磁気遮蔽部材5hの上端部と下端部との間には、少なくともコア251aが配置されている。また、Z方向において、板状の磁気遮蔽部材5hの上端部と下端部との間には、Z方向に並んで配置された複数の磁気センサ152の主な部分が配置されている。また、Z方向において、板状の磁気遮蔽部材5hの上端部と下端部との間には、磁気スケール4dのスケール基板41の主な部分が配置されている。
 また、図8および図9に示すように、X方向において、板状の磁気遮蔽部材5hは、複数の固定子部251のうち端部Sに配置された固定子部251のコア251aよりも外側に延びている。詳細には、X方向において、磁気遮蔽部材5hのX1方向側の端部S1(一方側端部S1)は、複数の固定子部251のうち一方側端部S1に配置された固定子部251のコア251aよりもX1方向側に延びている。そして、磁気遮蔽部材5hのX2方向側の端部S2(他方側端部S2)は、複数の固定子部251のうち他方側端部S2に配置された固定子部251のコア251aよりもX2方向側に延びている。すなわち、磁気遮蔽部材5hの一方側端部S1は、リニアコンベアモジュール5のX1方向側の端部E1近傍に位置している。そして、磁気遮蔽部材5hの他方側端部S2は、リニアコンベアモジュール5のX2方向側の端部E2近傍に位置している。
 このように、X方向において、板状の磁気遮蔽部材5hは、リニアコンベアモジュール5のX1方向側の端部E1からX2方向側の端部E2の略全体にわたって延びている。すなわち、磁気遮蔽部材5hは、複数のユニット部材5gの全てにわたって、磁気センサ152と固定子部251との間に配置されている。詳細には、磁気遮蔽部材5hは、リニアコンベアモジュール5のX1方向側の端部E1近傍からリニアコンベアモジュール5のX2方向側の端部E2近傍にわたって途切れることなく延びる一枚板である。
 図7および図8に示すように、磁気遮蔽部材5hは、締結部材5cが挿入される挿入孔451を有している。挿入孔451のリニアモータ固定子5f側の部分には、締結部材5cのおねじ部が螺合されるめねじ部が形成されている。挿入孔451は、板状の磁気遮蔽部材5hにバーリング加工を施すことにより形成されている。したがって、挿入孔451は、Y方向において、リニアモータ固定子5f側に突出した形状を有している。具体的には、挿入孔451のリニアモータ固定子5f側の縁部は、リニアモータ固定子5f側に向かって曲げられた挿入孔曲げ部451aを有している。挿入孔曲げ部451aは、Y1方向側から視て、円状に形成されている。挿入孔曲げ部451aは、Y方向において、リニアモータ固定子5f側に向かうにしたがって、挿入孔451の中心側に湾曲している。
 磁気遮蔽部材5hは、リニアモータ固定子5fから磁気センサ152側に向かって発せられる磁束の向きを変化させるように構成されている。すなわち、磁気遮蔽部材5hは、リニアモータ固定子5fから磁気センサ152側に向かって発せられる磁束を引き込むとともに、リニアモータ固定子5f側に放出するように構成されている。
 具体的には、磁気遮蔽部材5hは、上側曲げ部452と、下側曲げ部453とを有している。なお、上側曲げ部452は、請求の範囲の「第1曲げ部」の一例である。また、下側曲げ部453は、請求の範囲の「第2曲げ部」の一例である。
 上側曲げ部452は、磁気遮蔽部材5hの上端部がリニアモータ固定子5f側に向くように曲げられている。上側曲げ部452は、Y方向において、リニアモータ固定子5f側に向かうにしたがってZ1方向側に傾斜している。ここで、磁気遮蔽部材5hには、上側曲げ部452を形成するために、曲げ加工が施されている。下側曲げ部453は、磁気遮蔽部材5hの下端部がリニアモータ固定子5f側に向くように曲げられている。下側曲げ部453は、Y方向に沿って延びている。ここで、磁気遮蔽部材5hには、下側曲げ部453を形成するために、曲げ加工が施されている。
 このように、磁気遮蔽部材5hには上側曲げ部452および下側曲げ部453を形成するために曲げ加工が施されているが、磁気遮蔽部材5hの磁気センサ152側の面は、上側曲げ部452および下側曲げ部453において、角ではなくR形状(丸みを帯びた滑らかな形状)を有している。
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、磁気センサ152とリニアモータ固定子5fとの間に配置され、リニアモータ固定子5fから磁気センサ152に向かう磁束を遮る磁気遮蔽部材5hを設ける。これにより、磁気遮蔽部材5hによりリニアモータ固定子5fから放出される磁束を遮ることによって、リニアモータ固定子5fから放出される磁束に起因する磁気センサ152の誤検出を抑制することができる。したがって、リニアモータ固定子5fにおいて発せられる磁束の方向と磁気センサ152により検出する磁束の方向とを異ならせるように、磁気センサ152とリニアモータ固定子5fとを配置する必要がないとともに、磁気センサ152とリニアモータ固定子5fとの間隔を大きくする必要がない。これにより、磁気遮蔽部材5hにより、磁気センサ152およびリニアモータ固定子5fの配置位置の自由度を向上させることができる。これらの結果、磁気センサ152による磁束の誤検出を抑制しつつ、磁気センサ152およびリニアモータ固定子5fの配置位置の自由度を向上させることにより、リニアコンベア101を小型化することができる。
 また、第1実施形態では、上記のように、磁気遮蔽部材5hを、リニアモータ固定子5fから発せられる磁束を引き込むことにより、リニアモータ固定子5fから磁気センサ152に向かう磁束を遮るように構成する。これにより、リニアモータ固定子5fから磁気センサ152に向かう磁束を磁気遮蔽部材5hにより引き込むことによって、磁気センサ152に磁束が到達しにくくすることができるので、磁気センサ152によるスライダ4の位置の検出精度を確保することができる。
 また、第1実施形態では、上記のように、磁気遮蔽部材5hを、X方向に沿って延びる板状に形成する。これにより、X方向において、リニアモータ固定子5fから発せられる磁束を遮蔽することができるので、リニアモータ固定子5fから発せられる磁束を磁気センサ152に到達しにくくすることができる。また、磁気遮蔽部材5hをX方向に沿って延びる板状に形成することにより、磁気遮蔽部材5hをブロック状に形成する場合と比較して、Y方向における磁気遮蔽部材5hの厚みを小さくすることができるので、リニアコンベア101のY方向の大型化を抑制することができる。
 また、第1実施形態では、上記のように、リニアモータ固定子5f、磁気遮蔽部材5hおよび磁気センサ152を、Y方向に沿って並んで配置する。コア251aを、Y向に沿って延ばす。板状の磁気遮蔽部材5hを、Y方向において、少なくとも固定子部251のコア251aを覆う大きさに設ける。これにより、磁束が最も多く放出される箇所(固定子部251のコア251a)を磁気遮蔽部材5hにより少なくとも覆うことができるので、磁気遮蔽部材5hによりリニアモータ固定子5fから発せられる磁束を効果的に遮ることができる。
 また、第1実施形態では、上記のように、Z方向において、板状の磁気遮蔽部材5hの長さを、コア251aの長さより大きくする。これにより、コア251aよりもZ方向の広い範囲を磁気遮蔽部材5hにより覆うことができるので、リニアモータ固定子5fから広がりながら磁気センサ152に向かう磁束をより確実に遮蔽することができる。
 また、第1実施形態では、上記のように、板状の磁気遮蔽部材5hを、複数の固定子部251のうち端部に配置された固定子部251のコア251aよりも外側に延ばす。これにより、X方向に沿って複数並んで配置される固定子部251のコア251aを覆うことができるので、リニアモータ固定子5fから磁気遮蔽部材5hに発せられる磁束を効果的に遮ることができる。
 また、第1実施形態では、上記のように、X方向において、磁気遮蔽部材5hの一方側端部S1を、複数の固定子部251のうち一方側端部S1に配置された固定子部251のコア251aよりも一方側に延ばす。X方向において、磁気遮蔽部材5hの他方側端部S2を、複数の固定子部251のうち他方側端部S2に配置された固定子部251のコア251aよりも他方側に延ばす。これにより、X方向に沿って複数並んで配置される固定子部251のコア251aを磁気遮蔽部材5hによりX方向法の一方側端部S1から他方側端部S2にわたって覆うことができるので、リニアモータ固定子5fから磁気センサ152に向かう磁束をより確実に遮蔽することができる。
 また、第1実施形態では、上記のように、磁気遮蔽部材5hに、締結部材5cが挿入される挿入孔451を設ける。挿入孔451のリニアモータ固定子5f側の縁部に、リニアモータ固定子5f側に向かって曲げられた挿入孔曲げ部451aを設ける。これにより、磁気遮蔽部材5hにより遮蔽され挿入孔451の縁から放出される磁束を挿入孔曲げ部451aに沿ってリニアモータ固定子5f側に放出することができるので、磁気遮蔽部材5hから放出される磁束を磁気センサ152に到達しにくくすることができる。
 また、第1実施形態では、上記のように、締結部材5cを、非磁性体により構成する。これにより、締結部材5cが磁性体の場合と異なり、締結部材5cが磁化しないので、リニアモータ固定子5fから発せられる磁束により締結部材5cが磁化されることに起因して締結部材5cから発せられる磁束が磁気センサ152に到達してしまうことを抑制することができる。この結果、リニアモータ固定子5fから発せられる磁束を磁気センサ152に到達しにくくすることができる。
 また、第1実施形態では、上記のように、磁気遮蔽部材5hを、リニアモータ固定子5fから磁気センサ152側に向かって発せられる磁束を引き込むとともに、リニアモータ固定子5f側に放出するように構成する。これにより、磁気遮蔽部材5hに引き込まれた磁束を磁気センサ152側とは反対側(リニアモータ固定子5f側)に放出することができるので、磁気遮蔽部材5hから放出された磁束を磁気センサ152に到達しにくくすることができる。
 また、第1実施形態では、上記のように、Z方向において、磁気遮蔽部材5hに、上端部がリニアモータ固定子5f側に向くように曲げられた上側曲げ部452、および、下端部がリニアモータ固定子5f側に向くように曲げられた下側曲げ部453を設ける。これにより、上側曲げ部452および下側曲げ部453により、磁気センサ152から離れた箇所に、磁気遮蔽部材5hに引き込まれた磁束を放出することができる。また、上側曲げ部452および下側曲げ部453を設けることにより、上端部および下端部を上下方向に沿って直線状にした場合(曲げない場合)の磁気遮蔽部材5hと比較して、磁気遮蔽部材5hの上下方向への大型化を抑制することができる。これらの結果、磁気遮蔽部材5hから放出された磁束を磁気センサ152に到達しにくくすることができるとともに、リニアコンベア101のZ方向への大型化を抑制することができる。
 また、第1実施形態では、上記のように、スライダ4に、磁気センサ152に対向するように配置され、磁気センサ152により検出される磁束を放出する磁気スケール4dを設ける。磁気遮蔽部材5hを、Y方向において、コア251aと、磁気センサ152および磁気スケール4dとの間に配置する。これにより、リニアモータ固定子5fから磁気スケール4dに向かう磁束を磁気遮蔽部材5hにより遮蔽することによって、磁気スケール4dに磁束が到達しにくくすることができるので、リニアモータ固定子5fから発せられる磁束から磁気スケール4dを保護することができる。
 また、第1実施形態では、上記のように、支持部材5bに、磁気センサ152とリニアモータ固定子5fとの間に設けられ、Z1方向に突出した取付壁54を設ける。磁気センサ152を、取付壁54におけるリニアモータ固定子5f側とは反対側のセンサ側側面54cに取り付ける。磁気遮蔽部材5hを、磁気センサ152と共通の取付壁54におけるリニアモータ固定子5f側のモータ側側面54bに取り付ける。これにより、磁気センサ152と磁気遮蔽部材5hとを共通の取付壁54に取り付けることにより、支持部材5bの構造の複雑化および大型化を抑制することができるので、リニアコンベア101の構造の複雑化および大型化を抑制することができる。
 また、第1実施形態では、上記のように、リニアコンベア101に、複数の固定子部251を一制御区間ごとに分けることにより設けられ、別個に通電制御される複数のユニット部材5gを設ける。磁気遮蔽部材5hを、複数のユニット部材5gの全てにわたって、磁気センサ152と固定子部251との間に配置する。これにより、2個以上のユニット部材5gにまたがって通電制御が行われて固定子部251から磁束が発せられる場合であっても、磁気遮蔽部材5hにより確実に磁束を遮蔽することができるので、磁気センサ152の位置の検出精度を確保することができる。
 また、第1実施形態では、上記のように、磁気遮蔽部材5hを、磁性体により構成する。これにより、リニアモータ固定子5fから磁気センサ152に向かう磁束により磁気遮蔽部材5hを磁化させることによって、リニアモータ固定子5fから磁気センサ152に向かう磁束を磁気遮蔽部材5hにより引き込むことができる。この結果、磁気センサ152に磁束が到達しにくくすることができるので、磁気センサ152によるスライダ4の位置の検出精度を確保することができる。
 また、第1実施形態では、上記のように、磁性体としての磁気遮蔽部材5hを、鉄または鋼により形成する。これにより、リニアモータ固定子5fから磁気センサ152に向かう磁束により磁気遮蔽部材5hを容易に磁化させることができるので、リニアモータ固定子5fから磁気センサ152に向かう磁束を磁気遮蔽部材5hにより確実に引き込むことができる。
[第2実施形態]
 次に、図10および図11を参照して、第2実施形態のリニアコンベア501について説明する。第2実施形態のリニアコンベア501は、詳細には、磁気遮蔽部材5hのX方向の両端部に曲げ部が設けられていない上記第1実施形態のリニアコンベア101とは異なり、磁気遮蔽部材505hのX方向の両端部に曲げ部が設けられている。なお、第2実施形態において、上記第1実施形態と同様の構成に関しては、同じ符号を付して説明を省略する。
 図10および図11に示すように、第2実施形態のリニアコンベア501のリニアコンベアモジュール505は、カバー部材5a(図3参照)と、支持部材5bと、締結部材5c(図示せず)と、磁気センサユニット5dと、ガイドレール5eと、リニアモータ固定子5fと、ユニット部材5g(図6参照)と、磁気遮蔽部材505hとを含んでいる。
(磁気遮蔽部材)
 第2実施形態の磁気遮蔽部材505hは、リニアモータ固定子5fから磁気センサ152側に向かって発せられる磁束を引き込むとともに、リニアモータ固定子5f側に放出するように構成されている。
 具体的には、磁気遮蔽部材505hは、一方側曲げ部654と、他方側曲げ部655とを有している。一方側曲げ部654は、板状の磁気遮蔽部材505hのX1方向側の端部に設けられている。一方側曲げ部654は、X方向のX1方向側の端部(一方側端部S1)がリニアモータ固定子5f側に向くように曲げられている。他方側曲げ部655は、X方向のX2方向側の端部(他方側端部S2)がリニアモータ固定子5f側に向くように曲げられている。これにより、磁気遮蔽部材505hは、X方向のX1方向側の端部から放出される磁束、および、X方向のX2方向側の端部から放出される磁束の両方をリニアモータ固定子5f側に放出可能に構成されている。なお、第2実施形態のその他の構成は、上記第1実施形態の構成と同様である。
(第2実施形態の効果)
 第2実施形態の効果について説明する。
 第2実施形態では、上記のように、磁気センサ152とリニアモータ固定子5fとの間に配置され、リニアモータ固定子5fから磁気センサ152に向かう磁束を遮る磁気遮蔽部材505hを設ける。これにより、磁気センサ152による磁束の誤検出を抑制しつつ、磁気センサ152およびリニアモータ固定子5fの配置位置の自由度を向上させることにより、リニアコンベア101を小型化することができる。
 また、第2実施形態では、上記のように、磁気遮蔽部材505hに、X方向の一方側端部S1がリニアモータ固定子5f側に向くように曲げられた一方側曲げ部654を設ける。磁気遮蔽部材505hに、X方向の他方側端部S2がリニアモータ固定子5f側に向くように曲げられた他方側曲げ部655を設ける。これにより、一方側曲げ部654および他方側曲げ部655により、磁気センサ152側とは反対側(リニアモータ固定子5f側)に、磁気遮蔽部材505hに引き込まれた磁束を放出することができる。また、一方側曲げ部654および他方側曲げ部655を設けることにより、一方側端部および他方側端部をX方向に沿って直線状にした場合(曲げない場合)の磁気遮蔽部材505hと比較して、磁気遮蔽部材505hのX方向への大型化を抑制することができる。これらの結果、磁気遮蔽部材505hから放出された磁束を磁気センサ152に到達しにくくすることができるとともに、リニアコンベア101のX方向の大型化を抑制することができる。なお、第2実施形態のその他の効果は、上記第1実施形態の効果と同様である。
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、締結部材5cは、オーステナイト系ステンレス鋼により形成されている例を示したが、本発明はこれに限られない。本発明では、締結部材は、他の非磁性体の金属により形成されてもよい。
 また、上記第1および第2実施形態では、磁性体としての磁気遮蔽部材5h(505h)は、鉄または鋼により形成されている例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、他の磁性体である金属材料であってもよい。
 また、上記第1および第2実施形態では、磁気遮蔽部材5h(505h)は、上側曲げ部452(第1曲げ部)と、下側曲げ部453(第2曲げ部)とを有している例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、第1曲げ部および第2曲げ部の両方を有していなくてもよいし、第1曲げ部および第2曲げ部のいずれか1つを有していなくてもよい。
 また、上記第2実施形態では、磁気遮蔽部材505hは、一方側曲げ部654および他方側曲げ部655の両方を含む例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、一方側曲げ部および他方側曲げ部の両方を含んでいなくてもよいし、一方側曲げ部および他方側曲げ部のいずれか1つを含んでいてもよい。
 また、上記第1および第2実施形態では、磁気遮蔽部材5h(505h)は、X方向(ガイドレール5eの延びる方向)に沿って延びる板状に形成されている例を示したが、本発明は、これに限られない。本発明では、磁気遮蔽部材は、ブロック状などに形成されてもよい。
 また、第1および第2実施形態では、磁気遮蔽部材5h(505h)は、リニアモータ固定子5fから発せられる磁束を引き込むことにより、リニアモータ固定子5fから磁気センサ152に向かう磁束を遮るように構成されている例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、リニアモータ固定子から発せられる磁束を反射などさせることにより、リニアモータ固定子から磁気センサに向かう磁束を遮るように構成されていてもよい。
 また、第1および第2実施形態では、磁気遮蔽部材5h(505h)は、磁気センサ152と共通の取付壁54におけるリニアモータ固定子5f側の側面に取り付けられている例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、磁気センサとは異なる箇所に取り付けられてもよい。
 また、上記第1および第2実施形態では、X方向の長さが同じリニアコンベアモジュール5が、X方向に複数並んでいる例を示したが、本発明はこれに限られない。本発明では、X方向の長さの異なるリニアコンベアモジュール同士が、X方向に並んでいてもよい。
 また、上記第1および第2実施形態では、磁気遮蔽部材5h(505h)は、リニアコンベアモジュール5(505)のX1方向側の端部E1近傍からリニアコンベアモジュール5(505)のX2方向側の端部E2近傍にわたって途切れることなく延びる一枚板である例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、複数に分割されていてもよい。
 また、上記第1および第2実施形態では、磁気遮蔽部材5h(505h)は、締結部材5cにより、支持部材5bに取り付けられている例を示したが、本発明はこれに限られない。本発明では、磁気遮蔽部材は、接着剤などにより、支持部材に取り付けられていてもよい。
 また、上記第1および第2実施形態では、締結部材5cは、Z方向(上下方向)において、取付壁54の中央部分に配置されている例を示したが、本発明はこれに限られない。本発明では、締結部材は、上下方向において、取付壁の中央部分よりも上側または下側に配置されていてもよい。
 また、上記第1および第2実施形態では、磁気センサ152は、センサ側側面54cに取り付けられているとともに、磁気遮蔽部材5h(505)は、磁気センサ152と共通の取付壁54におけるモータ側側面54bに取り付けられている例を示したが、本発明はこれに限られない。本発明では、磁気センサが、磁気遮蔽部材のリニアモータ固定子とは反対側の面に直接取り付けられてもよい。
 4 スライダ
 4b リニアモータ可動子
 4d 磁気スケール
 4h 永久磁石
 5b 支持部材
 5c 締結部材
 5e ガイドレール
 5f リニアモータ固定子
 5g ユニット部材
 5h、505h 磁気遮蔽部材
 54 取付壁
 54b モータ側側面(リニアモータ固定子側の側面)
 54c センサ側側面(リニアモータ固定子側とは反対側の側面)
 101、501 リニアコンベア
 152 磁気センサ
 251 固定子部
 251a コア
 251b コイル
 451 挿入孔
 451a 挿入孔曲げ部
 452 上側曲げ部(第1曲げ部)
 453 下側曲げ部(第2曲げ部)
 654 一方側曲げ部
 655 他方側曲げ部
 L1 (磁気遮蔽部材の)長さ
 L2 (コアの)長さ
 S1 (磁気遮蔽部材の)一方側端部
 S2 (磁気遮蔽部材の)他方側端部

Claims (17)

  1.  コアと、前記コアに巻き回されたコイルとを有する固定子部を含むリニアモータ固定子と、
     永久磁石を有するリニアモータ可動子を含むスライダと、
     前記スライダの移動をガイドするガイドレールと、
     前記スライダの位置を検出する磁気センサと、
     前記磁気センサと前記リニアモータ固定子との間に配置され、前記リニアモータ固定子から前記磁気センサに向かう磁束を遮る磁気遮蔽部材とを備える、リニアコンベア。
  2.  前記磁気遮蔽部材は、前記リニアモータ固定子から発せられる磁束を引き込むことにより、前記リニアモータ固定子から前記磁気センサに向かう磁束を遮るように構成されている、請求項1に記載のリニアコンベア。
  3.  前記磁気遮蔽部材は、前記ガイドレールの延びる方向に沿って延びる板状に形成されている、請求項1または2に記載のリニアコンベア。
  4.  前記リニアモータ固定子、前記磁気遮蔽部材および前記磁気センサは、前記ガイドレールの延びる方向に直交する前記ガイドレールの幅方向に沿って並んで配置され、
     前記コアは、前記ガイドレールの幅方向に沿って延びており、
     板状の前記磁気遮蔽部材は、前記ガイドレールの幅方向において、少なくとも前記固定子部の前記コアを覆う大きさを有している、請求項3に記載のリニアコンベア。
  5.  前記ガイドレールの延びる方向と、前記ガイドレールの幅方向とに直交する方向において、板状の前記磁気遮蔽部材の長さは、前記コアの長さより大きい、請求項4に記載のリニアコンベア。
  6.  前記固定子部は、前記ガイドレールの延びる方向に沿って複数並んで配置され、
     前記ガイドレールの延びる方向において、板状の前記磁気遮蔽部材は、複数の前記固定子部のうち端部に配置された前記固定子部の前記コアよりも外側に延びている、請求項4または5に記載のリニアコンベア。
  7.  前記ガイドレールの延びる方向において、前記磁気遮蔽部材の一方側端部は、複数の前記固定子部のうち一方側端部に配置された前記固定子部の前記コアよりも一方側に延びているとともに、前記磁気遮蔽部材の他方側端部は、複数の前記固定子部のうち他方側端部に配置された前記固定子部の前記コアよりも他方側に延びている、請求項6に記載のリニアコンベア。
  8.  前記磁気遮蔽部材を取り付ける締結部材をさらに備え、
     前記磁気遮蔽部材は、前記締結部材が挿入される挿入孔を有し、
     前記挿入孔の前記リニアモータ固定子側の縁部は、前記リニアモータ固定子側に向かって曲げられた挿入孔曲げ部を有する、請求項1~7のいずれか1項に記載のリニアコンベア。
  9.  前記締結部材は、非磁性体により構成されている、請求項8に記載のリニアコンベア。
  10.  前記磁気遮蔽部材は、前記リニアモータ固定子から前記磁気センサ側に向かって発せられる磁束を引き込むとともに、前記リニアモータ固定子側に放出するように構成されている、請求項1~9のいずれか1項に記載のリニアコンベア。
  11.  前記ガイドレールの延びる方向と、前記ガイドレールの延びる方向に直交する前記ガイドレールの幅方向とに直交する方向において、前記磁気遮蔽部材は、一方の端部が前記リニアモータ固定子側に向くように曲げられた第1曲げ部、および、他方の端部が前記リニアモータ固定子側に向くように曲げられた第2曲げ部のうち少なくともいずれかを含む、請求項10に記載のリニアコンベア。
  12.  前記磁気遮蔽部材は、前記ガイドレールの延びる方向の一方側端部が前記リニアモータ固定子側に向くように曲げられた一方側曲げ部、および、前記ガイドレールの延びる方向の他方側端部が前記リニアモータ固定子側に向くように曲げられた他方側曲げ部のうち少なくともいずれかを含む、請求項10または11に記載のリニアコンベア。
  13.  前記スライダは、前記磁気センサに対向するように配置され、前記磁気センサにより検出される磁束を放出する磁気スケールをさらに含み、
     前記固定子部の前記コアは、前記磁気センサと前記磁気スケールとが対向する方向に沿って延びて配置され、
     前記磁気遮蔽部材は、前記磁気センサと前記磁気スケールとが対向する方向において、前記コアと、前記磁気センサおよび前記磁気スケールとの間に配置されている、請求項1~12のいずれか1項に記載のリニアコンベア。
  14.  前記リニアモータ固定子および前記ガイドレールを支持する支持部材をさらに備え、
     前記支持部材は、前記磁気センサと前記リニアモータ固定子との間に設けられ、上方向に突出した取付壁を有し、
     前記磁気センサは、前記取付壁における前記リニアモータ固定子側とは反対側の側面に取り付けられているとともに、前記磁気遮蔽部材は、前記磁気センサと共通の前記取付壁における前記リニアモータ固定子側の側面に取り付けられている、請求項1~13のいずれか1項に記載のリニアコンベア。
  15.  前記固定子部は、前記ガイドレールの延びる方向に沿って複数並んで配置され、
     複数の前記固定子部を所定の区間ごとに分けることにより設けられ、別個に通電制御される複数のユニット部材をさらに備え、
     前記複数のユニット部材の各々は、前記磁気センサを含み、
     前記磁気遮蔽部材は、前記複数のユニット部材の全てにわたって、前記磁気センサと前記固定子部との間に配置されている、請求項1~14のいずれか1項に記載のリニアコンベア。
  16.  前記磁気遮蔽部材は、磁性体により構成されている、請求項1~15のいずれか1項に記載のリニアコンベア。
  17.  磁性体としての前記磁気遮蔽部材は、鉄または鋼により形成されている、請求項16に記載のリニアコンベア。
PCT/JP2019/049358 2019-12-17 2019-12-17 リニアコンベア WO2021124439A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021565199A JP7350887B2 (ja) 2019-12-17 2019-12-17 リニアコンベア
US17/783,534 US20230353027A1 (en) 2019-12-17 2019-12-17 Linear conveyor
DE112019007974.3T DE112019007974T5 (de) 2019-12-17 2019-12-17 Linearförderer
PCT/JP2019/049358 WO2021124439A1 (ja) 2019-12-17 2019-12-17 リニアコンベア
CN201980103039.7A CN114830513A (zh) 2019-12-17 2019-12-17 线性输送机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049358 WO2021124439A1 (ja) 2019-12-17 2019-12-17 リニアコンベア

Publications (1)

Publication Number Publication Date
WO2021124439A1 true WO2021124439A1 (ja) 2021-06-24

Family

ID=76477332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049358 WO2021124439A1 (ja) 2019-12-17 2019-12-17 リニアコンベア

Country Status (5)

Country Link
US (1) US20230353027A1 (ja)
JP (1) JP7350887B2 (ja)
CN (1) CN114830513A (ja)
DE (1) DE112019007974T5 (ja)
WO (1) WO2021124439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433567B1 (ja) 2023-06-22 2024-02-19 三菱電機株式会社 位置検出器およびリニア搬送システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191164A (ja) * 2000-12-20 2002-07-05 Yaskawa Electric Corp リニアモータ
JP2002354779A (ja) * 2001-05-22 2002-12-06 Yaskawa Electric Corp リニアモータ
JP2005134408A (ja) * 2005-02-07 2005-05-26 Neomax Co Ltd 寸法測定方法
JP2006320049A (ja) * 2005-05-10 2006-11-24 Iai:Kk リニアモータ
JP2013099208A (ja) * 2011-11-04 2013-05-20 Yamaha Motor Co Ltd リニアコンベア
WO2018055709A1 (ja) * 2016-09-21 2018-03-29 ヤマハ発動機株式会社 リニアコンベア装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339934A (ja) * 2000-05-23 2001-12-07 Sony Corp リニアモータ
JP3954804B2 (ja) * 2001-03-26 2007-08-08 株式会社ケーヒン 電磁アクチュエータ
JP5418558B2 (ja) * 2011-08-23 2014-02-19 株式会社安川電機 リニアモータの固定子およびリニアモータ
JP2015032609A (ja) * 2013-07-31 2015-02-16 キヤノン株式会社 駆動装置、荷電粒子線照射装置、及びデバイスの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191164A (ja) * 2000-12-20 2002-07-05 Yaskawa Electric Corp リニアモータ
JP2002354779A (ja) * 2001-05-22 2002-12-06 Yaskawa Electric Corp リニアモータ
JP2005134408A (ja) * 2005-02-07 2005-05-26 Neomax Co Ltd 寸法測定方法
JP2006320049A (ja) * 2005-05-10 2006-11-24 Iai:Kk リニアモータ
JP2013099208A (ja) * 2011-11-04 2013-05-20 Yamaha Motor Co Ltd リニアコンベア
WO2018055709A1 (ja) * 2016-09-21 2018-03-29 ヤマハ発動機株式会社 リニアコンベア装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433567B1 (ja) 2023-06-22 2024-02-19 三菱電機株式会社 位置検出器およびリニア搬送システム

Also Published As

Publication number Publication date
CN114830513A (zh) 2022-07-29
US20230353027A1 (en) 2023-11-02
JP7350887B2 (ja) 2023-09-26
JPWO2021124439A1 (ja) 2021-06-24
DE112019007974T5 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
US10291085B2 (en) Magnetic assembly for an electric motor
EP2288008A2 (en) Linear and curvilinear motor system
JP5509049B2 (ja) 磁気エンコーダ、アクチュエータ
EP1198055B1 (en) Linear motor, driving and control system thereof and manufacturing method thereof
EP2712070B1 (en) Linear vernier motor
JP5106833B2 (ja) リニアモータおよび一軸アクチュエータ
US5588312A (en) Driving apparatus for needles of knitting machine
WO2021124439A1 (ja) リニアコンベア
EP2555396A2 (en) Linear motor armature and linear motor
JP3430770B2 (ja) ドア開閉用リニアモータ
JP2002354779A (ja) リニアモータ
JP6854158B2 (ja) リニアモータ
US7250696B2 (en) Linear motor and X-Y stage
WO2005062447A1 (ja) ムービングマグネット形リニアアクチュエータ
JP5863361B2 (ja) アクチュエータ
US10958149B2 (en) Dual pole dual bucking magnet linear actuator
JP2002191164A (ja) リニアモータ
JP3488845B2 (ja) リニアモータ
US6975048B2 (en) Drive apparatus and XY table utilizing the same
JP2005065425A (ja) 磁気吸引力相殺形リニアモータ
JP3488847B2 (ja) リニアモータ
JP7433567B1 (ja) 位置検出器およびリニア搬送システム
WO2023032006A1 (ja) 搬送装置
JP2004343874A (ja) リニアモータ式単軸ロボット
JPH03270670A (ja) リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565199

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19956813

Country of ref document: EP

Kind code of ref document: A1