WO2021121185A1 - 一种高强高韧抗氧化铁镍基高温合金及其制备方法 - Google Patents

一种高强高韧抗氧化铁镍基高温合金及其制备方法 Download PDF

Info

Publication number
WO2021121185A1
WO2021121185A1 PCT/CN2020/136131 CN2020136131W WO2021121185A1 WO 2021121185 A1 WO2021121185 A1 WO 2021121185A1 CN 2020136131 W CN2020136131 W CN 2020136131W WO 2021121185 A1 WO2021121185 A1 WO 2021121185A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
strength
weight percentage
toughness
oxidation
Prior art date
Application number
PCT/CN2020/136131
Other languages
English (en)
French (fr)
Inventor
袁勇
严靖博
张鹏
周永莉
尹宏飞
党莹樱
杨珍
黄锦阳
鲁金涛
谷月峰
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2021121185A1 publication Critical patent/WO2021121185A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the invention relates to the technical field of high-temperature metal structural materials, in particular to a high-strength, high-toughness, oxidation-resistant iron-nickel-based high-temperature alloy and a preparation method thereof.
  • thermal power units In the field of coal power, the use of high-parameter large-capacity thermal power units is one of the most direct, economical and effective measures to achieve clean and efficient use of coal.
  • A-USC advanced ultra-supercritical
  • the 700°C ultra-supercritical power generation technology poses a great challenge to high-temperature materials, and there is no mature high-temperature material system.
  • the nickel-based superalloy is still in the research and development and verification stage.
  • High-temperature structural materials are the most important material foundation for realizing advanced ultra-supercritical power generation technology.
  • the service environment requires them to have excellent high-temperature strength, toughness, steam oxidation resistance, smoke corrosion resistance, and structural stability.
  • For the 650°C ultra-supercritical unit its key high-temperature components, such as the final superheater and reheater, main steam pipe, header and high-temperature section rotor, have reached or exceeded the service temperature of austenitic heat-resistant steel
  • materials with higher temperature-bearing capacity must be selected.
  • the key high-temperature component material system of the 650°C ultra-supercritical unit is not mature yet, and the candidate materials are mainly Sanicro25, Inconel617, HR6W, etc.
  • the new iron-nickel-based superalloy has higher temperature bearing capacity than austenitic heat-resistant steel, good high-temperature performance, and the material cost is limited compared with high-grade austenitic heat-resistant steel (such as HR3C), and the overall cost-effectiveness is high. It is applied to the key high-temperature components of 650°C ultra-supercritical units, but there is no mature iron-nickel-based superalloy system in the prior art that can meet the requirements of 650°C units.
  • the present invention provides a high-strength, high-toughness, oxidation-resistant iron and nickel -Based superalloy and its preparation method have reasonable composition design, high high-temperature strength, excellent toughness, good steam oxidation resistance, easy processing and forming, and high cost performance.
  • a high-strength, high-toughness, oxidation-resistant iron-nickel-based superalloy which includes the following components in weight percentages: Fe 35-45%, Cr 15-21%, Mo 0.5-1.4%, W 0.1-0.8%, Ti 1.8-2.5 %, Al 0.8-2.5%, Mn ⁇ 1.0%, Nb ⁇ 0.1%, Co ⁇ 2%, Si ⁇ 0.05%, C 0.03-0.10%, B 0.001-0.005%, P ⁇ 0.01%, the balance is Ni; The weight percentage of Cr+Ni is greater than 50%, and the weight percentage of W+Mo is 0.6-1.5%.
  • the weight percentage of Cr is 15-18%, and the weight percentage of C is 0.03-0.08%.
  • the weight percentage of Mo is 0.6-1.2%, and the weight percentage of W is 0.1-0.5%.
  • the weight percentage of Fe is 37-45%.
  • the weight percentage of Ti is 1.8-2.3%, and the weight percentage of Al is 1.0-2.1%.
  • the weight percentage of Mn is ⁇ 0.5%, and the weight percentage of Nb is ⁇ 0.08%.
  • the weight percentage of Si is ⁇ 0.04%.
  • the weight percentage of B is 0.001-0.003%.
  • a preparation method of high-strength, high-toughness and oxidation-resistant iron-nickel-based superalloy includes the following steps:
  • Step 1 Melt the raw materials of the components described in any one of the above schemes under vacuum and cast them into alloy ingots;
  • Step 2 Homogenize the alloy ingot at 1100-1170°C for 30-50 hours, and then heat the homogenized alloy ingot at 1020-1120°C. The total deformation is 60-80%, and the final deformation is not low. At 25%;
  • Step 3 The hot deformed alloy is solution treated at 1080-1120°C for 30-60 minutes, then air-cooled, and then aged at 650-800°C for 8-20 hours, and water-cooled to obtain a high-strength, high-toughness, oxidation-resistant Fe-Ni-based high temperature alloy.
  • the matrix is austenite with a disordered face-centered cubic structure, the main strengthening phase is ⁇ ', and M 23 C 6 is present at the grain boundary; when the grain size is 70-125 ⁇ m, The yield strength at 650°C and 700°C is greater than 500MPa, and the elongation is greater than 10%.
  • the present invention has the following beneficial technical effects:
  • the iron-nickel-based high-temperature alloy of the present invention improves the steam oxidation resistance and smoke corrosion resistance through the alloy containing higher Cr; an appropriate amount of Mo and W play a solid solution strengthening effect; an appropriate amount of Ni, Ti and Al can form a dispersed strengthening phase ⁇ 'in the grain; an appropriate amount of Co can improve the durability of the material; Cr and C can form discontinuous carbides at the grain boundary to strengthen the grain boundary; B and P can reduce the grain boundary The coarsening rate of the carbide at the location can also reduce the interfacial energy of the grain boundary, increase the bonding strength of the grain boundary, and improve the toughness of the alloy; the optimization of the alloy composition makes the alloy have both high strength and high toughness at 600-700°C, as well as an excellent structure Stability and resistance to steam oxidation.
  • the iron-nickel-based high-temperature alloy of the present invention forms a continuous, uniform, dense and stable Cr-rich oxide layer on the surface under water vapor conditions of 650°C-700°C, which protects the substrate; it has good thermal processing performance and is easy to form. It can be used to manufacture parts that serve in high temperature, high pressure, ultra-supercritical water vapor and corrosive flue gas environments, such as the main steam pipe, header and high-temperature section rotor of a 650°C ultra-supercritical thermal power unit boiler; the cost performance is superior Similar alloys, such as Sanicro25, Inconel617, HR6W, etc.
  • Fig. 1 The microstructure characteristics of the iron-nickel-based superalloy prepared in Example 1 of the present invention.
  • Figure 2 The ⁇ 'morphology of the intragranular precipitation strengthening phase of the Fe-Ni-based superalloy prepared in Example 1 of the present invention.
  • the iron-nickel-based superalloy obtained in the present invention has the characteristics of high strength, high toughness and resistance to steam oxidation.
  • Its matrix is austenite ( ⁇ ) with a disordered face-centered cubic structure, the main strengthening phase is ⁇ ', and the grain boundary has M 23 C 6 , when the grain size range is 70-125 ⁇ m, the yield strength at 650°C and 700°C is greater than 500MPa, and the elongation is greater than 10%.
  • Table 1 shows the chemical composition of Example 1 of the present invention.
  • the test alloy 1# is the iron-nickel-based superalloy of Example 1 of the present invention.
  • the table In order to compare with the current austenitic heat-resistant steel Sanicro25 alloy (developed by Sandvik, Sweden), the table also lists Sanicro25 Ingredients.
  • Example 1 of the present invention and the comparative example (Sanicro25) (wt%, the balance is Ni)
  • weight percentage Fe 35-45%, Cr 15-21%, Mo 0.5-1.4%, W 0.1-0.8%, Ti 1.8-2.5%, Al 0.8-2.5%, Mn ⁇ 1.0%, Nb ⁇ 0.1%, Co ⁇ 2%, Si ⁇ 0.05%, C 0.03-0.10%, B 0.001-0.005%, P ⁇ 0.01%, the balance is Ni, the weight percentage of Cr+Ni is greater than 50%, and the weight percentage of W+Mo is 0.6 -1.5%, added to the vacuum induction furnace for smelting and pouring into alloy ingots.
  • Example 1# alloy Homogenize the alloy ingot at 1100-1170°C for 30-50 hours, then heat the homogenized alloy ingot at 1020-1120°C (hot forging or hot rolling), the total deformation is 60-80%, the last pass The deformation is not less than 25%.
  • the hot workability of Example 1# alloy is good, and there are no defects such as cracks during hot work.
  • the hot-deformed alloy is solution treated at 1080-1120°C for 30-60 minutes, then air-cooled, then aged at 650-800°C for 8-20 hours, and water-cooled to obtain a high-strength, high-toughness, oxidation-resistant Fe-Ni-based superalloy.
  • the grain size range of the alloy is 70-125 ⁇ m, and its typical structure characteristics are shown in Figure 1. There are a small amount of primary carbides in the grains and grain boundaries, the main strengthening phase in the grains is ⁇ 'precipitated during aging heat treatment, and there is a discontinuous carbide M 23 C 6 phase at the grain boundaries.
  • Example 1# alloy The room temperature tensile properties of Example 1# alloy are all better than the index of Sanicro 25 (Material Handbook of Sandvik, Sweden). With the increase of temperature, the yield strength of Fe-Ni-based superalloys did not decrease significantly, and the tensile strength decreased significantly, but it was still greater than 700 MPa at 700°C. At 650°C and 700°C, the yield strength and tensile strength of Example 1# alloy are much higher than Sanicro 25's 199MPa and 550MPa at 600°C. It shows that the example alloy has excellent room temperature and high temperature strength. (The performance data of Sanicro 25 comes from Sandvik's material performance manual)
  • Example 1# alloy The room temperature impact energy of Example 1# alloy is shown in Table 3 after heat exposure at 700°C for 1000 hours.
  • the impact energy of Example 1# alloy after heat exposure is 66J/cm 2 , which is about 35% higher than the 49J/cm 2 of Sanicro 25.
  • Example 1# alloy has higher endurance strength at 700°C and 750°C.
  • Table 4 shows that under three different stress conditions of 700°C and 750°C, the endurance life of Example 1# alloy and Sanicro 25 is compared, and the endurance strength of Example 1# alloy is much better than that of Sanicro 25.
  • the iron-nickel-based superalloy of the present invention has good hot workability, easy forming, lower cost, and excellent high-temperature strength, high toughness, and high-temperature structural stability compared with Sanicro 25 from Sandvik, Sweden.
  • the iron-nickel-based superalloy of the present invention is suitable for making parts that work under high temperature, high pressure, and ultra-supercritical water vapor conditions at 650°C and above, such as those in ultra-supercritical coal-fired generator sets (A-USC) at 650°C and above Main steam pipes, headers and high temperature section rotors, etc.
  • Table 5 shows the chemical composition of the alloys described in Examples 2-9 of the present invention.
  • the content of Example 1 is added to facilitate statistical comparison, and they are all measured by weight percentage.
  • Example 1 2 3 4 5 6 7 8 9 Fe 40 35 38 42 45 41 39 37 36 Cr 16 19 20 twenty one twenty one 19 18 17 15 Mo 0.6 1.2 1.0 0.6 1.0 1.3 1.0 1.4 0.5 W 0.3 0.1 0.5 0.8 0.1 0.2 0.4 0.1 0.1 Ti 1.8 2.0 2.1 2.3 2.0 2.1 2.4 2.5 1.9 Al 1.6 1.8 2.0 1.0 0.9 2.1 2.2 0.8 2.5 Mn 0.1 0.2 0.2 0.5 0.1 0.1 0.2 1.0 0.8 Nb 0.05 0.05 0.06 0.06 0.03 0.03 0.04 0.08 0.1 Si 0.025 0.03 0.03 0.02 0.02 0.03 0.04 0.05 0.01 C 0.05 0.06 0.06 0.08 0.08 0.09 0.10 0.04 0.03 B 0.002 0.003 0.003 0.004 0.003 0.005 0.003 0.002 0.001 P ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 ⁇ 0.01 Co 1 1.5
  • the present invention optimizes the composition of the alloy to maintain the high-temperature strength of the alloy while maintaining good toughness and steam oxidation resistance.

Abstract

一种高强高韧抗氧化铁镍基高温合金及其制备方法,其中,所述铁镍基高温合金的成分按重量百分比计包括,Fe 35-45%,Cr 15-21%,Mo 0.5-1.4%,W 0.1-0.8%,Ti 1.8-2.5%,Al 0.8-2.5%,Mn≤1.0%,Nb≤0.1%,Co≤2%,Si≤0.05%,C 0.03-0.10%,B 0.001-0.005%,P≤0.01%,余量为Ni。Cr+Ni的重量百分比大于50%,W+Mo的重量百分比为0.6-1.5%。该铁镍基高温合金,持久强度高,冲击韧性高,抗蒸汽氧化性能良好;γ'相和M 23C 6是主要的强化相;与现有技术比较,其加工性能相当,材料成本低,且具有更优异的组织结构稳定性、高温强度和冲击韧性,可用于制造650℃及以上超超临界火电机组的主蒸汽管道、集箱和高温段转子等高温部件。

Description

一种高强高韧抗氧化铁镍基高温合金及其制备方法 技术领域
本发明涉及高温金属结构材料技术领域,具体为一种高强高韧抗氧化铁镍基高温合金及其制备方法。
背景技术
在煤电领域,采用高参数大容量火电机组是实现煤炭的清洁高效利用最直接、经济、有效的措施之一。目前,世界各发达国家及中国、印度都在积极研发700℃先进超超临界(A-USC)燃煤发电技术。然而,700℃超超临界发电技术对高温材料的挑战很大,均没有成熟的高温材料体系,镍基高温合金尚处于研发和验证阶段。
由于700℃超超临界机组所需的镍基高温合金需要较高的制备技术,且价格昂贵,综合考虑电厂效率、成本和制备能力、机组安全运行和维护等因素,今后的重点发展方向是利用优化或新研发的耐热钢以及高性价比的铁镍基高温合金,将商业化电厂机组参数逐步提高至650℃,其热效率可达50%左右。
高温结构材料是实现先进超超临界发电技术最重要的材料基础,服役环境要求其具有优异的高温强度、韧性、抗蒸汽氧化性能、抗烟气腐蚀性能、组织结构稳定性等。对于650℃超超临界机组而言,其关键高温部件,如末级过热器和再热器、主蒸汽管道、集箱和高温段转子等,已达到或超出奥氏体耐热钢的服役温度上限,必须选择承温能力更高的材料。目前,650℃超超临界机组的关键高温部件材料体系还不成熟,候选材料主要是Sanicro25、Inconel617、HR6W等。
新型铁镍基高温合金比奥氏体耐热钢的承温能力更高,高温性能良好,且材料成本相比于高等级奥氏体耐热钢(如HR3C)增加有限,综合性价比高,有望应用于650℃超超临界机组的关键高温部件,但是现有技术中还没 有成熟的铁镍基高温合金体系能够满足650℃机组的要求。
发明内容
针对下一代高参数(650℃)超超临界火电机组关键高温部件的服役需求,以及商用的高等级奥氏体耐热钢承温能力的不足,本发明提供一种高强高韧抗氧化铁镍基高温合金及其制备方法,成分设计合理,高温强度高,韧性优异,抗蒸汽氧化性能良好,易加工成型,性价比高。
本发明是通过以下技术方案来实现:
一种高强高韧抗氧化铁镍基高温合金,按重量百分比计包括如下组分,Fe 35-45%,Cr 15-21%,Mo 0.5-1.4%,W 0.1-0.8%,Ti 1.8-2.5%,Al 0.8-2.5%,Mn≤1.0%,Nb≤0.1%,Co≤2%,Si≤0.05%,C 0.03-0.10%,B 0.001-0.005%,P≤0.01%,余量为Ni;所述的Cr+Ni的重量百分比大于50%,W+Mo的重量百分比为0.6-1.5%。
优选的,所述的Cr的重量百分比为15-18%,所述的C的重量百分比为0.03-0.08%。
优选的,所述的Mo的重量百分比为0.6-1.2%,所述的W的重量百分比为0.1-0.5%。
优选的,所述的Fe的重量百分比为37-45%。
优选的,所述的Ti的重量百分比为1.8-2.3%,所述的Al的重量百分比为1.0-2.1%。
优选的,所述的Mn的重量百分比为≤0.5%,所述的Nb的重量百分比为≤0.08%。
优选的,所述的Si的重量百分比为≤0.04%。
优选的,B的重量百分比为0.001-0.003%。
一种高强高韧抗氧化铁镍基高温合金的制备方法,包括如下步骤,
步骤1,将上述方案中任意一项所述组分的原料在真空下熔炼,浇注成 合金锭;
步骤2,将合金锭在1100-1170℃均匀化30-50小时,然后将均匀化后的合金锭在1020-1120℃进行热变形,总变形量60-80%,最后一道次变形量不低于25%;
步骤3,将热变形后的合金在1080-1120℃进行30-60分钟固溶处理,随后空冷,然后在650-800℃时效8-20小时,水冷得到高强高韧抗氧化的铁镍基高温合金。
优选的,所述的铁镍基高温合金,基体为无序面心立方结构的奥氏体,主要强化相为γ',晶界处有M 23C 6;晶粒尺寸为70-125μm时,在650℃和700℃的屈服强度均大于500MPa,延伸率大于10%。
与现有技术相比,本发明具有以下有益的技术效果:
本发明所述的铁镍基高温合金,通过合金中含有较高的Cr,以提高抗蒸汽氧化和抗烟气腐蚀能力;适量的Mo和W起到固溶强化作用;适量的Ni、Ti和Al可以在晶内形成弥散分布的强化相γ';适量的Co可以提高材料的持久性能;Cr和C可在晶界处形成不连续的碳化物以强化晶界;B、P可以降低晶界处碳化物的粗化速率,还可以降低晶界界面能,提高晶界结合强度,改善合金韧性;合金成分的优化使得合金在600-700℃同时具有高强度和高韧性,以及优异的组织结构稳定性和抗蒸汽氧化性能。本发明所述的铁镍基高温合金在650℃-700℃水蒸汽条件下,表面形成连续、均匀、致密、稳定的富Cr氧化物层,对基体形成保护;热加工性能良好,易于成型,能够适用于制造在高温、高压、超超临界水蒸汽和腐蚀性烟气环境下服役的部件,如650℃超超临界火电机组锅炉的主蒸汽管道、集箱和高温段转子等;性价比优于同类合金,如Sanicro25、Inconel617、HR6W等。
附图说明
图1本发明实施例1制备的铁镍基高温合金的组织特征。
图2本发明实施例1制备的铁镍基高温合金的晶内析出强化相γ'形貌。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明得到的铁镍基高温合金,具有高强高韧和抗蒸汽氧化的特性,其基体为无序面心立方结构的奥氏体(γ),主要强化相为γ',晶界处有M 23C 6,当晶粒尺寸范围为70-125μm时,在650℃和700℃时的屈服强度大于500MPa,延伸率大于10%。
实施例1
1.合金的成分
表1给出的是本发明实施例1的化学成分组成。试验用合金1#是本发明实施例1的铁镍基高温合金,为了和目前承温能力最高的奥氏体耐热钢Sanicro25合金(瑞典Sandvik公司开发)进行比较,表中也列出了Sanicro25的成分。
表1本发明实施例1与比较例(Sanicro25)的化学成分(重量%,余量为Ni)
合金 Fe Cr Mo W Ti Al Mn Nb Si C B
1# 40 16 0.6 0.3 1.8 1.6 0.1 0.05 0.025 0.05 0.002
Sanicro25 42.9 22.5 - 3.6 - - 0.5 0.5 0.2 ≤0.1- -
  P N Cu Co              
1# ≤0.01 - - 1.0             -
Sanicro25 ≤0.025- 0.23 3.0 1.5              
2.合金的熔炼和热变形
按重量百分比将Fe 35-45%,Cr 15-21%,Mo 0.5-1.4%,W 0.1-0.8%, Ti 1.8-2.5%,Al 0.8-2.5%,Mn≤1.0%,Nb≤0.1%,Co≤2%,Si≤0.05%,C 0.03-0.10%,B 0.001-0.005%,P≤0.01%,余量为Ni,Cr+Ni的重量百分比大于50%,W+Mo的重量百分比为0.6-1.5%,加入到真空感应炉中熔炼,浇注成合金锭。
将合金锭在1100-1170℃均匀化30-50小时,然后将均匀化后的合金锭在1020-1120℃进行热变形(热锻或热轧),总变形量60-80%,最后一道次变形量不低于25%。实施例1#合金的热加工性能良好,热加工过程中没有出现裂纹等缺陷。
3.合金的热处理
将热变形后的合金在1080-1120℃进行30-60分钟固溶处理,随后空冷,然后在650-800℃时效8-20小时,水冷得到高强高韧抗氧化的铁镍基高温合金。
4.合金的组织结构特征
合金的晶粒尺寸范围为70-125μm,其典型组织特征如图1所示。晶内和晶界有少量的一次碳化物,晶内的主要强化相为时效热处理时析出的γ',晶界处有不连续的碳化物M 23C 6相。
5.合金的力学性能
5.1拉伸性能
实施例1#合金的室温拉伸性能,均优于Sanicro 25的指标(瑞典Sandvik公司的材料手册)。随着温度的升高,铁镍基高温合金的屈服强度没有显著降低,抗拉强度有明显下降,但在700℃仍大于700MPa。在650℃和700℃,实施例1#合金的屈服强度和抗拉强度均大大高于Sanicro 25在600℃时的199MPa和550MPa。表明实施例合金具有优异的室温和高温强度。(Sanicro 25的性能数据来源于Sandvik公司的材料性能手册)
表2实施例1#合金与Sanicro 25的拉伸性能
Figure PCTCN2020136131-appb-000001
5.2室温冲击
实施例1#合金在700℃热暴露1000小时后,其室温冲击功如表3所示。实施例1#合金热暴露后的冲击功为66J/cm 2,高于Sanicro 25的49J/cm 2约35%。
表3实施例1#合金与Sanicro 25热暴露1000小时后的室温冲击功
Figure PCTCN2020136131-appb-000002
5.3持久强度
实施例1#合金在700℃和750℃有较高的持久强度。表4所示为700℃和750℃三个不同的应力条件下,实施例1#合金与Sanicro 25的持久寿命比较,实施例1#合金的持久强度大幅优于Sanicro 25。
表4实施例1#合金与Sanicro 25在700℃的持久寿命(h)
合金 700℃/250MPa 700℃/200MPa 750℃/150MPa
1# 2730 >6000 2936
Sanicro25 600 2000 700
综上所述,本发明的铁镍基高温合金与瑞典Sandvik公司的Sanicro 25 相比,其热加工性能良好,易于成型,成本更低,同时具有优异的高温强度、高韧性和高温组织稳定性。本发明的铁镍基高温合金适用于制作650℃及以上在高温、高压、超超临界水蒸汽条件下工作的部件,如650℃及以上超超临界燃煤发电机组(A-USC)中的主蒸汽管道、集箱和高温段转子等。
实施例2-9
本发明实施例2-9所述合金的化学成分组成,如表5所示。
表5是本发明实施例2-9所述合金的化学成分组成,其中,增加实施例1的内容,便于统计对比,其均以重量百分比计量。
实施例 1 2 3 4 5 6 7 8 9
Fe 40 35 38 42 45 41 39 37 36
Cr 16 19 20 21 21 19 18 17 15
Mo 0.6 1.2 1.0 0.6 1.0 1.3 1.0 1.4 0.5
W 0.3 0.1 0.5 0.8 0.1 0.2 0.4 0.1 0.1
Ti 1.8 2.0 2.1 2.3 2.0 2.1 2.4 2.5 1.9
Al 1.6 1.8 2.0 1.0 0.9 2.1 2.2 0.8 2.5
Mn 0.1 0.2 0.2 0.5 0.1 0.1 0.2 1.0 0.8
Nb 0.05 0.05 0.06 0.06 0.03 0.03 0.04 0.08 0.1
Si 0.025 0.03 0.03 0.02 0.02 0.03 0.04 0.05 0.01
C 0.05 0.06 0.06 0.08 0.08 0.09 0.10 0.04 0.03
B 0.002 0.003 0.003 0.004 0.003 0.005 0.003 0.002 0.001
P ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01
Co 1 1.5 1.8 1.7 0.5 1.5 2.0 0.2 1.3
Ni 余量 余量 余量 余量 余量 余量 余量 余量 余量
由于高温材料的成分、组织结构和性能密切相关,本发明通过合金的成分优化,可以在保持合金的高温强度同时,兼具良好的韧性和抗蒸汽氧化性能。

Claims (10)

  1. 一种高强高韧抗氧化铁镍基高温合金,其特征在于,按重量百分比计包括如下组分,Fe 35-45%,Cr 15-21%,Mo 0.5-1.4%,W 0.1-0.8%,Ti 1.8-2.5%,Al 0.8-2.5%,Mn≤1.0%,Nb≤0.1%,Co≤2%,Si≤0.05%,C 0.03-0.10%,B 0.001-0.005%,P≤0.01%,余量为Ni;所述的Cr+Ni的重量百分比大于50%,W+Mo的重量百分比为0.6-1.5%。
  2. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:所述的Cr的重量百分比为15-18%,所述的C的重量百分比为0.03-0.08%。
  3. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:所述的Mo的重量百分比为0.6-1.2%,所述的W的重量百分比为0.1-0.5%。
  4. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:所述的Fe的重量百分比为37-45%。
  5. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:所述的Ti的重量百分比为1.8-2.3%,所述的Al的重量百分比为1.0-2.1%。
  6. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:所述的Mn的重量百分比为≤0.5%,所述的Nb的重量百分比为≤0.08%。
  7. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:所述的Si的重量百分比为≤0.04%。
  8. 根据权利要求1所述一种高强高韧抗氧化铁镍基高温合金,其特征在于:B的重量百分比为0.001-0.003%。
  9. 一种高强高韧抗氧化铁镍基高温合金的制备方法,其特征在于,包括如下步骤,
    步骤1,将权利要求1-8任意一项所述组分的原料在真空下熔炼,浇注成合金锭;
    步骤2,将合金锭在1100-1170℃均匀化30-50小时,然后将均匀化后的合金锭在1020-1120℃进行热变形,总变形量60-80%,最后一道次变形量不低于25%;
    步骤3,将热变形后的合金在1080-1120℃进行30-60分钟固溶处理,随后空冷,然后在650-800℃时效8-20小时,水冷得到高强高韧抗氧化的铁镍基高温合金。
  10. 根据权利要求9所述的一种高强高韧抗氧化铁镍基高温合金的制备方法,其特征在于,所述的铁镍基高温合金,基体为无序面心立方结构的奥氏体,主要强化相为γ',晶界处有M 23C 6;晶粒尺寸为70-125μm时,在650℃和700℃的屈服强度均大于500MPa,延伸率大于10%。
PCT/CN2020/136131 2019-12-16 2020-12-14 一种高强高韧抗氧化铁镍基高温合金及其制备方法 WO2021121185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911296733.3 2019-12-16
CN201911296733.3A CN110952016B (zh) 2019-12-16 2019-12-16 一种高强高韧抗氧化铁镍基高温合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2021121185A1 true WO2021121185A1 (zh) 2021-06-24

Family

ID=69982009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136131 WO2021121185A1 (zh) 2019-12-16 2020-12-14 一种高强高韧抗氧化铁镍基高温合金及其制备方法

Country Status (2)

Country Link
CN (1) CN110952016B (zh)
WO (1) WO2021121185A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952016B (zh) * 2019-12-16 2021-03-30 华能国际电力股份有限公司 一种高强高韧抗氧化铁镍基高温合金及其制备方法
CN111394638B (zh) * 2020-05-08 2021-11-16 华能国际电力股份有限公司 一种火电机组用高强高温合金及其加工工艺
CN112359261B (zh) * 2020-11-10 2021-12-14 华能国际电力股份有限公司 一种高铝耐蚀高温合金的大口径厚壁管材制备加工工艺
CN112375954A (zh) * 2020-11-10 2021-02-19 华能国际电力股份有限公司 一种低成本高强抗氧化铁镍基合金及其制备方法
CN112453101B (zh) * 2020-11-10 2023-03-10 华能国际电力股份有限公司 一种铁基高温合金的大口径厚壁管材成型制备工艺
CN112359296B (zh) * 2020-11-10 2021-12-21 华能国际电力股份有限公司 一种析出强化铁基高温合金及其制备方法
CN113088762A (zh) * 2021-03-31 2021-07-09 华能国际电力股份有限公司 一种高强高韧耐蚀铁镍基高温合金及其制备方法
CN113802041B (zh) * 2021-08-10 2022-09-02 大冶特殊钢有限公司 一种可应用于先进超超临界机组的铁镍基合金无缝管材的制造方法
CN115044818B (zh) * 2022-07-25 2023-05-26 华能国际电力股份有限公司 一种650°c及以上等级汽轮机用转子及其制备方法
CN115198161B (zh) * 2022-07-25 2023-05-05 华能国际电力股份有限公司 一种650℃及以上等级锅炉机组用集箱及其制备方法
CN115772625B (zh) * 2022-11-17 2024-03-19 华能国际电力股份有限公司 一种抗氧化铁镍基高温合金及其制备方法和应用
CN115896582A (zh) * 2022-11-28 2023-04-04 丹阳鑫亿达新材料科技有限公司 一种铁镍基高温合金管材及其制备方法
CN116024481A (zh) * 2023-01-18 2023-04-28 华能国际电力股份有限公司 一种低铬镍铁基高温合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873055A (en) * 1988-12-20 1989-10-10 Carondelet Foundry Company Corrosion resistant Fe-Ni-Cr alloy
CN102994809A (zh) * 2012-12-04 2013-03-27 西安热工研究院有限公司 一种高强耐蚀镍铁铬基高温合金及其制备方法
CN103498076A (zh) * 2013-09-04 2014-01-08 西安热工研究院有限公司 一种低膨胀抗氧化Ni-Fe-Cr基高温合金及其制备方法
CN104630597A (zh) * 2015-01-27 2015-05-20 宝钢特钢有限公司 一种铁镍铬基高温合金及其制造方法
CN107760990A (zh) * 2017-10-24 2018-03-06 上海申江锻造有限公司 核电蒸汽发生器用法兰锻件的锻造方法
CN109280812A (zh) * 2018-11-01 2019-01-29 华能国际电力股份有限公司 一种镍铁基变形高温合金摩擦焊接头的热处理工艺
CN110405380A (zh) * 2019-08-20 2019-11-05 华能国际电力股份有限公司 一种铁基高温合金焊丝
CN110952016A (zh) * 2019-12-16 2020-04-03 华能国际电力股份有限公司 一种高强高韧抗氧化铁镍基高温合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952861B2 (ja) * 2001-06-19 2007-08-01 住友金属工業株式会社 耐メタルダスティング性を有する金属材料
WO2011046055A1 (ja) * 2009-10-14 2011-04-21 独立行政法人科学技術振興機構 Fe基形状記憶合金及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873055A (en) * 1988-12-20 1989-10-10 Carondelet Foundry Company Corrosion resistant Fe-Ni-Cr alloy
CN102994809A (zh) * 2012-12-04 2013-03-27 西安热工研究院有限公司 一种高强耐蚀镍铁铬基高温合金及其制备方法
CN103498076A (zh) * 2013-09-04 2014-01-08 西安热工研究院有限公司 一种低膨胀抗氧化Ni-Fe-Cr基高温合金及其制备方法
CN104630597A (zh) * 2015-01-27 2015-05-20 宝钢特钢有限公司 一种铁镍铬基高温合金及其制造方法
CN107760990A (zh) * 2017-10-24 2018-03-06 上海申江锻造有限公司 核电蒸汽发生器用法兰锻件的锻造方法
CN109280812A (zh) * 2018-11-01 2019-01-29 华能国际电力股份有限公司 一种镍铁基变形高温合金摩擦焊接头的热处理工艺
CN110405380A (zh) * 2019-08-20 2019-11-05 华能国际电力股份有限公司 一种铁基高温合金焊丝
CN110952016A (zh) * 2019-12-16 2020-04-03 华能国际电力股份有限公司 一种高强高韧抗氧化铁镍基高温合金及其制备方法

Also Published As

Publication number Publication date
CN110952016B (zh) 2021-03-30
CN110952016A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021121185A1 (zh) 一种高强高韧抗氧化铁镍基高温合金及其制备方法
WO2020249115A1 (zh) 一种复合强化型耐蚀高温合金及其制备工艺
WO2015123918A1 (zh) 700℃等级超超临界燃煤电站用镍基高温合金及其制备
CN107557616B (zh) 一种镍基耐蚀合金管材及其制造方法
JP7342149B2 (ja) 析出強化型ニッケル基高クロム超合金およびその製造方法
JP7009618B2 (ja) 超々臨界圧火力発電機群用鋼及びその製造方法
CN103556073A (zh) 一种700℃级超超临界火电机组再热器用高温合金铸管材料及其制备方法
CN113088762A (zh) 一种高强高韧耐蚀铁镍基高温合金及其制备方法
CN111471897A (zh) 一种高强镍基高温合金制备成型工艺
CN106893949A (zh) 一种奥氏体耐热钢及其制备方法
CN109898028B (zh) 抗高温氧化的奥氏体耐热不锈钢及其制备方法与用途
CN114622133B (zh) 一种超超临界汽轮机转子锻件用耐热钢及其制备方法
CN109023001B (zh) 一种高强抗氧化Ni-Cr-Fe基耐热合金
JP2014070230A (ja) Ni基超耐熱合金の製造方法
CN112359296B (zh) 一种析出强化铁基高温合金及其制备方法
CN112458369B (zh) 一种析出强化型铁素体耐热钢及其制备方法
JP5265325B2 (ja) クリープ強度に優れる耐熱鋼およびその製造方法
JP2016035104A (ja) ステンレス鋼管の製造方法およびステンレス鋼管
JP2018059135A (ja) Ni基耐熱合金部材およびその製造方法
JP4543380B2 (ja) 燃料電池スタック締結ボルト用合金
CN114622142A (zh) 一种630℃以上超超临界汽轮机锻件用耐热钢及其制备方法
JP2022553970A (ja) 高温酸化抵抗性及び高温強度に優れたクロム鋼板並びにその製造方法
CN114990385B (zh) 一种燃气轮机涡轮机匣用高温合金及其制备方法
CN113667907B (zh) 一种650℃级火电机组用高强耐蚀合金及制备方法
CN115772626B (zh) 一种镍基高温合金及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903807

Country of ref document: EP

Kind code of ref document: A1