WO2021121172A1 - 一种电致变色器件及其制备方法和应用 - Google Patents

一种电致变色器件及其制备方法和应用 Download PDF

Info

Publication number
WO2021121172A1
WO2021121172A1 PCT/CN2020/136000 CN2020136000W WO2021121172A1 WO 2021121172 A1 WO2021121172 A1 WO 2021121172A1 CN 2020136000 W CN2020136000 W CN 2020136000W WO 2021121172 A1 WO2021121172 A1 WO 2021121172A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
electrochromic device
accommodating
electrode lead
Prior art date
Application number
PCT/CN2020/136000
Other languages
English (en)
French (fr)
Inventor
钟卓洪
何嘉智
Original Assignee
深圳市光羿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光羿科技有限公司 filed Critical 深圳市光羿科技有限公司
Priority to US17/786,178 priority Critical patent/US20230021421A1/en
Priority to KR1020227019309A priority patent/KR20220097977A/ko
Priority to EP20901143.6A priority patent/EP4053626A4/en
Priority to JP2022531530A priority patent/JP2023505095A/ja
Publication of WO2021121172A1 publication Critical patent/WO2021121172A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details

Definitions

  • This application belongs to the field of electrochromic technology, and relates to an electrochromic device and a preparation method and application thereof, in particular to a gradual discoloration electrochromic device and a preparation method and application thereof.
  • Electrochromism refers to the phenomenon that the optical properties of materials (reflectivity, transmittance, absorptivity, etc.) undergo stable and reversible color changes under the action of an external electric field, and appear as reversible changes in color and transparency in appearance.
  • Materials with electrochromic properties are called electrochromic materials, and devices made of electrochromic materials are called electrochromic devices.
  • Electrochromic devices can produce stable and reversible color and/or transmittance changes under an external electric field, and have huge application markets in smart homes and consumer electronics.
  • An electrochromic device generally includes a first conductive layer, an electrochromic layer, an electrolyte layer, an ion storage layer, and a second conductive layer.
  • the existing electrochromic device usually connects the electrode leads to the conductive layer by displacing the two conductive layers to connect the electrochromic device to the power supply; this setting method needs to be based on the specific size of the device. After cutting the first conductive layer and the second conductive layer separately, they are manually aligned and attached manually, that is, the electrochromic devices need to be attached one by one. This leads to the waste of conductive materials, the production cost and labor cost are also greatly increased, and it is not conducive to mass production and the improvement of product yield, which greatly limits the production capacity.
  • the existing electrochromic devices have a relatively single color change effect, and it is difficult to give users a rich and varied visual experience of gradual color change during the color change process.
  • the electrochromic device that does not require the dislocation of the conductive layer, and the electrochromic device can achieve a gradual discoloration effect by changing certain conditions.
  • the purpose of this application is to provide an electrochromic device and its preparation method and application.
  • the electrochromic device provided by the present application can realize the application of the electrochromic device under the premise that the two conductive layers are not positioned properly, and the electrochromic device provided by the present application realizes electrochromic by changing the power supply voltage And/or the size of the current can achieve the technical effect of gradual discoloration.
  • the present application provides an electrochromic device, which includes a first conductive layer, a color changing layer, and a second conductive layer arranged in sequence.
  • At least one first electrode lead is connected to the first conductive layer, and the first electrode lead passes through the color changing layer and the second conductive layer.
  • At least one second electrode lead is connected to the second conductive layer, and the second electrode lead passes through the color changing layer and the first conductive layer.
  • the two conductive layers can be connected under the premise that the two conductive layers are not properly connected.
  • Use of color changing devices in this way, in the production process, large-scale electrochromic devices with aligned layers can be produced in large quantities, and then the large-size electrochromic devices can be cut into small-size electrochromic devices according to the size requirements of specific products. The device greatly improves production efficiency and product yield.
  • the color changing layer and the second conductive layer are provided with a first accommodating portion through which the first electrode lead can pass.
  • the color changing layer and the first conductive layer are provided with a second accommodating portion through which the second electrode lead can pass.
  • the shapes of the first accommodating part and the second accommodating part are the same or different, and are any regular or irregular shape, selected from a polygonal shape, an oval shape, a sector shape, or a circular shape.
  • the color-changing layer and the second conductive layer are punched, and then the first electrode lead is passed through the hole to realize the connection between the first electrode lead and the first conductive layer, and the second electrode lead is connected to the first conductive layer in the same way. Connection of the second conductive layer.
  • the main function of the receiving part is to realize the connection between the electrode lead and the conductive layer, we do not specifically limit the shape of the hole (receiving part). Any regular or irregular shape of the receiving part can realize the application. For application purposes, such as circles, triangles, quadrilaterals, pentagons, etc., in view of the ease of operability, circular holes are preferred. Similarly, we do not make specific restrictions on the size of the receiving part, and specifically design the size of the electrochromic device in actual application, and it can be more coordinated with the size of the device.
  • the application adopts the following technical solutions, when the voltage and/or current of the power supply connected to the electrode lead is small, the color change and use of the electrochromic device can be realized, and when the power supply voltage and/or current is large, it can be realized
  • the technical effect of the gradual discoloration, the threshold value of the voltage and/or current for realizing the discoloration or the gradual discoloration needs to be analyzed according to the different materials and the different area sizes of the electrochromic device. Debug to obtain the size of the specific limit value.
  • the axes of all the first accommodating parts and the second accommodating parts are located on the same plane, the same bending surface, the same arc surface or the same cylindrical surface.
  • all the holes can be connected in a straight line, or in a plan view, all the first accommodating parts are connected to form
  • the straight line connected with the second accommodating part can be overlapped; in this case, the gradual color change of the electrochromic device can be realized.
  • the entire electrochromic device changes from dark to bright, and the discoloration process extends from the ground where the electrode leads are set to other places, that is, the linear area formed by the receiving part First it becomes brighter, and then the rest gradually turns from darker to brighter.
  • the entire electrochromic device changes from bright to dark, and the color change process is also determined by the place where the electrode lead is set. Expand to other places.
  • the bending surface may be Shape, it can also be Shape etc. That is, if the electrochromic device is a quadrilateral device, the first and second accommodating portions can be distributed on two sides of the quadrilateral. When the electrochromic device is viewed from above, the fold line formed by all the first accommodating portions is connected to the first accommodating portion. The fold lines formed by the connection of the two accommodating parts can overlap. After the power supply is connected, the effect of gradual discoloration can also be achieved; the discoloration effect is extended from the ground of the electrode lead to other places, that is, the broken line area connected by the receiving part changes first, and then the rest gradually changes.
  • the color changing effect can be achieved from the edge Discoloration to the middle; if the cylindrical surface is located near the center of the electrochromic device, the discoloration effect can be changed from the middle to the edge.
  • the axes of all the first accommodating parts and the second accommodating parts are located on at least two planes, and each plane includes a part of the first accommodating part and a part of the second accommodating part.
  • the axes of all the first accommodating parts and the second accommodating parts are located on two planes, and the axes of part of the first accommodating parts and part of the second accommodating parts are all located on the first plane, and the rest The axes of the first accommodating part and the remaining second accommodating parts are all located on the second plane.
  • the color changing effect can be realized from the two sides of symmetry; or, the two planes can also be arranged in a staggered manner. In practical applications When, you can choose the positional relationship between the two planes according to the actual situation.
  • the axes of all the first accommodating parts and the second accommodating parts are located on three planes, and the axes of the first accommodating part of the first part and the second accommodating part of the first part are all located on the first plane, The axes of the first accommodating part of the second part and the second accommodating part of the second part are all located on the second plane, and the axes of the remaining first accommodating parts and the remaining second accommodating parts are all located on the first accommodating part.
  • the three planes On the three planes.
  • the color change effect of the electrochromic device finally obtained is from the electrode area to other areas;
  • the electrode area mentioned in this application refers to all the first accommodating parts
  • the distance between two adjacent first and second accommodating parts is not specifically limited either. As long as they do not affect the opening of the first accommodating part and the second accommodating part.
  • This application also does not limit the shape of the electrochromic device, because the electrochromic device provided in this application does not require the dislocation of two conductive layers, so the electrochromic device provided in this application can be in various shapes, such as circular, Triangles, quadrilaterals, pentagons, etc.
  • both the first conductive layer and the second conductive layer are transparent conductive layers.
  • the transparent conductive layer does not make too many restrictions on the transparent conductive layer, as long as it meets the requirements of transparency and does not affect the color change effect of the color change layer; for example, a conductive material is vapor-deposited on a thin film substrate that is frequently used at present to obtain a transparent layer.
  • Conductive layer At this time, the transparent conductive layer includes two layers, one is a transparent substrate layer, and the other is a conductive material layer.
  • the color-changing layer is not too limited, and any color-changing layer in the prior art that meets the conditions for opening the receiving portion can be applied to this application.
  • the color changing layer described in this application can be electrochromic or other dimming technology.
  • the color changing layer is composed of an electrochromic layer, an electrolyte layer and an ion storage layer arranged in sequence.
  • the electrochromic layer is located on the side close to the first conductive layer or the second conductive layer.
  • the description of the first conductive layer and the second conductive layer in this application is only for distinction, not for limitation.
  • a layer of materials commonly used at present, that is, the composition of the color-changing layer includes electrolyte, electrochromic material and ion storage material.
  • Liquid crystal composite layer that is, the composition of the color-changing layer includes liquid crystal suspended particles.
  • the color-changing layer can undergo processes such as conversion from opaque to transparent.
  • Nano-composite layer that is, the composition of the color-changing layer includes nano-suspended particles.
  • the color-changing layer can undergo processes such as conversion from opaque to transparent.
  • This application takes the most commonly used type I color changing layer as an example for description.
  • the electrode lead is also not too limited.
  • the materials of the first electrode lead and the second electrode lead are the same or different, and are selected from copper foil, aluminum foil, nickel foil, alloy conductive foil, Conductive silver paste or conductive graphene.
  • the first transparent protective layer covers the outer side of the first conductive layer
  • the second transparent protective layer covers the outer side of the second conductive layer.
  • transparent protective layer its role is transparency and protection, so its material is still not too limited.
  • transparent glass, or other transparent plastic materials such as acrylic, PE, PP, PU, etc., can meet the application requirements.
  • it further includes a first shielding layer covering the outside of the first conductive layer.
  • the shielding layer directly covers the outside of the conductive layer; when the electrochromic device includes a protective layer, the shielding layer can be located between the conductive layer and the protective layer, or on the side of the protective layer. Outside.
  • the function of the shielding layer of the present application is that on the one hand, it can divide the color-changing area to make the electrochromic device produce a visual effect of separation and color change; on the other hand, it can play the role of shielding the electrode wiring area, making the electrochromic device visually More beautiful; for example, when the electrode area is located in the edge area of the electrochromic device (all the receiving parts are located at the edge), at this time, the first shielding layer can be designed to be black in the edge area and transparent in the rest area, so that it can play The effect of shielding the circuit does not affect the color change effect of the electrochromic device (gradient color change effect).
  • the present application provides a method for manufacturing the electrochromic device according to the first aspect, and the manufacturing method includes the following steps:
  • At least one first accommodating part is opened on the color-changing layer and the second conductive layer of the electrochromic device, and then the first electrode lead is connected to the first conductive layer through the first accommodating part;
  • At least one second accommodating part is opened on the color changing layer and the first conductive layer of the electrochromic device, and then the second electrode lead is passed through the second accommodating part and connected to the second conductive layer to obtain the electric Color-induced devices.
  • the method for opening the receiving portion includes a mechanical cutting method or a laser cutting method.
  • the accommodating part includes all accommodating parts including the first accommodating part and the second accommodating part.
  • the method for opening the receiving portion includes first using mechanical cutting or laser cutting, and then performing mechanical cleaning or laser cleaning to obtain the receiving portion.
  • the method for connecting the electrode lead to the conductive layer includes pasting or dispensing.
  • the dispensing described in this application refers to dispensing conductive glue on the conductive layer by means of dispensing, and pasting refers to applying a conductive thin paste to the conductive layer.
  • the above-mentioned electrode lead is connected to the conductive layer specifically that the first electrode lead is connected to the first conductive layer, and the second electrode lead is connected to the second conductive layer.
  • the present application provides an electrochromic component, which is formed by splicing at least two electrochromic devices described in the first aspect.
  • it further includes a third transparent protective layer and a fourth transparent protective layer, the third transparent protective layer covering the outside of the first conductive layer, and the fourth transparent protective layer covering the outside of the second conductive layer.
  • it further includes a second shielding layer covering the outside of the first conductive layer.
  • the second shielding layer covers the outside of the third transparent protective layer.
  • the application provides the use of the electrochromic device according to the first aspect or the electrochromic component according to the third aspect in architectural glass, automobile glass, automobile rearview mirror, high-speed rail glass, aircraft glass, subway glass , Consumer electronics or glasses and other fields.
  • the electrochromic can be realized on the premise that the two conductive layers are connected in the right position.
  • the use of devices can improve production efficiency and product yield;
  • FIG. 1 is a schematic diagram of a cross-sectional structure of an electrochromic device provided in Embodiment 1.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of an electrochromic device provided in Embodiment 1.
  • 1-first conductive layer 11-first transparent substrate layer; 12-first conductive material layer; 2-electrochromic layer; 3-electrolyte layer; 4-ion storage layer; 5-second conductive layer 51-Second transparent substrate layer; 52-Second conductive material layer; 71-First electrode lead; 72-Second electrode lead.
  • FIG. 2 is a schematic diagram of the structure of the specific positions of the first receiving portion and the second receiving portion in Embodiment 1.
  • FIG. 2 is a schematic diagram of the structure of the specific positions of the first receiving portion and the second receiving portion in Embodiment 1.
  • FIG. 3 is a schematic structural diagram of the specific positions of the first receiving part and the second receiving part in the second embodiment.
  • FIG. 4 is a schematic structural diagram of the specific positions of the first receiving part and the second receiving part in the third embodiment.
  • FIG. 5 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 4.
  • FIG. 5 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 4.
  • FIG. 6 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 5.
  • FIG. 6 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 5.
  • FIG. 7 is a schematic structural diagram of the specific positions of the first receiving part and the second receiving part in the sixth embodiment.
  • FIG. 8 is a schematic structural diagram of the specific positions of the first receiving part and the second receiving part in the seventh embodiment.
  • FIG. 9 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 8.
  • FIG. 9 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 8.
  • FIG. 10 is a schematic structural diagram of the specific positions of the first receiving portion and the second receiving portion in Embodiment 9.
  • FIG. 11 is a schematic structural diagram of the specific positions of the first accommodating part and the second accommodating part in the tenth embodiment.
  • 61-the first accommodating part 62-the second accommodating part.
  • FIG. 12 is a schematic diagram of the structure of the electrochromic component provided in Application Example 1.
  • FIG. 12 is a schematic diagram of the structure of the electrochromic component provided in Application Example 1.
  • FIG. 13 is a schematic diagram of another structure of the electrochromic component provided in Application Example 1.
  • FIG. 13 is a schematic diagram of another structure of the electrochromic component provided in Application Example 1.
  • 81 the third transparent glass layer
  • 82 the fourth transparent glass layer
  • 100 the electrochromic device provided in Example 1.
  • FIG. 14 is a schematic diagram of a structure of the electrochromic component provided in Application Example 2.
  • 15 is a schematic diagram of another structure of the electrochromic component provided in Application Example 2.
  • 91-shielding layer 911-black part.
  • This embodiment provides an electrochromic device, as shown in FIG. 1, which includes a first conductive layer 1, an electrochromic layer 2, an electrolyte layer 3, an ion storage layer 4 and a second conductive layer 5 arranged in sequence.
  • the first conductive layer 1 is composed of a first transparent substrate layer 11 and a first conductive material layer 12, and is transparent ITO conductive glass with a thickness of 0.125 mm.
  • the color changing layer is composed of an electrochromic layer, an electrolyte layer and an ion storage layer.
  • the electrochromic layer 2 is 15KDa poly(ethylhexane)propyldioxythiophene, with a thickness of 200nm.
  • the electrolyte layer 3 is 25wt% LiClO 4 dissolved PEO, and the thickness is 10 ⁇ m.
  • the ion storage layer 4 is tungsten trioxide with a thickness of 200 nm.
  • the second conductive layer 5 is composed of a second transparent substrate layer 51 and a second conductive material layer 52, and is transparent ITO conductive glass with a thickness of 0.180 mm.
  • first accommodating parts are opened on the electrochromic layer 2, the electrolyte layer 3, the ion storage layer 4 and the second conductive layer 5, and then the first electrode lead 71 is passed through the first accommodating part and the first conductive layer 1Connect.
  • all the first receiving parts and the second receiving parts are circular with a diameter of 5 mm, and their axes are located on the same plane, and the plane is located 10 mm on one side of the electrochromic device close to the edge.
  • the first electrode lead is connected to the positive pole of the power supply, and the second electrode lead is connected to the negative pole of the power supply. After the power is turned on, the entire electrochromic device changes from dark to bright. The connected linear area first becomes brighter, and then the rest gradually turns from dark to bright.
  • the first electrode lead is connected to the negative electrode of the power supply
  • the second electrode lead is connected to the positive electrode of the power supply.
  • Embodiment 1 The only difference from Embodiment 1 is that all the receiving parts in this embodiment are square with a side length of 10 mm.
  • the conductive layer is PET/ITO
  • the electrochromic layer is WO 3
  • the electrolyte layer is LiTaO 3
  • the ion storage layer is NiO x .
  • the conductive layer is glass/ITO
  • the electrochromic layer is WO 3
  • the electrolyte layer is polyvinyl butyral containing 25 vol.% of propylene carbonate
  • the ion storage layer is NiO x .
  • the conductive layer is PET/ITO
  • the electrochromic layer is P3HT
  • the electrolyte layer is PEO dissolved in LiClO 4
  • the ion storage layer is poly-4-methacrylic acid-2,2,6,6-tetramethylpiperidine- 1-Nitrogen free radicals.
  • Embodiment 3 is provided with five first receiving portions and five second receiving portions, and the axes of all the first receiving portions and the second receiving portions are located on the same bending surface. Above, the bending surface is located near the edge of the two sides of the electrochromic device.
  • Embodiment 2 The difference from Embodiment 2 is that, as shown in Figure 4, this embodiment is provided with 8 first receiving portions and 8 second receiving portions, and the axes of all the first receiving portions and the second receiving portions are located on the same bending surface. Above, the bending surface is located near the edge of the three sides of the electrochromic device.
  • this embodiment is provided with 9 first receiving portions and 9 second receiving portions, and the axes of all the first receiving portions and the second receiving portions are located on the same bending surface. Above, the bending surface is located near the edge of the four sides of the electrochromic device.
  • Embodiment 2 The difference from Embodiment 1 is that, as shown in FIG. 6, this embodiment is provided with 6 first accommodating parts and 6 second accommodating parts, and the axes of all the first accommodating parts and the second accommodating parts are in the same cylindrical shape. On the surface, the cylindrical surface is located near the edge of the electrochromic device.
  • Embodiment 5 The difference from Embodiment 5 is that, as shown in FIG. 7, the axes of all the first accommodating parts and the second accommodating parts are located on the same cylindrical surface, and the cylindrical surface is located near the center of the electrochromic device.
  • Embodiment 5 The difference from Embodiment 5 is that, as shown in FIG. 8, the electrochromic device of this embodiment is a circular device.
  • Embodiment 1 The difference from Embodiment 1 is that, as shown in FIG. 9, this embodiment is provided with 6 first accommodating parts and 6 second accommodating parts, and the axes of all the first accommodating parts and the second accommodating parts are located in two planes respectively. Above, two straight line segments formed by the projection of the first and second accommodating parts on the surface of the electrochromic device on the surface of the electrochromic device are respectively located at positions close to the edges of the two sides of the electrochromic device, and are arranged side by side.
  • Embodiment 8 The difference from Embodiment 8 is that, as shown in FIG. 10, this embodiment is provided with 4 first accommodating parts and 4 second accommodating parts, and the axes of all the first accommodating parts and the second accommodating parts are located on two planes. , The two linear segments formed by the projection of the first accommodating part and the second accommodating part on the surface of the electrochromic device on the surface of the electrochromic device are respectively located at positions close to the edges of the two sides of the electrochromic device, and are arranged in a staggered manner.
  • Embodiment 1 The difference from Embodiment 1 is that, as shown in FIG. 11, this embodiment is provided with 9 first accommodating parts and 9 second accommodating parts, and the axes of all the first accommodating parts and the second accommodating parts are located on three planes. , The three planes are arranged oppositely, and are respectively located at the positions close to the edges of the two sides of the electrochromic device and the middle position of the electrochromic device.
  • An electrochromic component as shown in FIG. 12, is formed by splicing four electrochromic devices 100 provided in Embodiment 1.
  • FIG. 13 it also includes a third transparent glass layer 81 and a fourth transparent glass layer 82.
  • the third transparent glass layer 81 is bonded to the first conductive layer by a transparent film, and is located outside the first conductive layer.
  • the four transparent glass layer 82 is bonded to the first conductive layer by using a transparent film, and is located outside the second conductive layer.
  • the preparation method is: placing a transparent film on the fourth transparent glass layer 82, placing a plurality of electrochromic devices 100 as close as possible, arranging them into a structure as shown in FIG. 12, and then placing them on the spliced electrochromic device 100 A layer of transparent film is placed on the surface, and a third transparent glass layer 81 is placed on the surface and pressed together.
  • the difference from Application Example 1 is that, as shown in FIG. 14, it also includes a shielding layer 91 that covers the outside of the third transparent glass layer, and the two layers are bonded by transparent film.
  • the shielding layer 91 is composed of a black part 911 and a transparent part, wherein the black part functions to block the splicing line of the electrochromic device and has the effect of visual division.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种电致变色器件及其制备方法和应用,包括依次设置的第一导电层(1)、变色层和第二导电层(5),第一导电层(1)上连接有至少一个第一电极引线(71),第一电极引线(71)穿过变色层和第二导电层(5);其中,第二导电层(5)上连接有至少一个第二电极引线(72),第二电极引线(72)穿过变色层和第一导电层(1)。电致变色器件可以在两个导电层不错位设置的前提下实现电致变色器件的应用,并且在实现电致变色的基础上,通过改变电源电压和/或电流的大小,可以实现渐变式变色的技术效果。

Description

一种电致变色器件及其制备方法和应用 技术领域
本申请属于电致变色技术领域,涉及一种电致变色器件及其制备方法和应用,特别涉及一种渐变式变色的电致变色器件及其制备方法和应用。
背景技术
电致变色是指材料的光学属性(反射率、透过率、吸收率等)在外加电场的作用下发生稳定、可逆的颜色变化的现象,在外观上表现为颜色和透明度的可逆变化。具有电致变色性能的材料称为电致变色材料,用电致变色材料做成的器件称为电致变色器件。
电致变色器件,可以在外加电场下发生稳定可逆的颜色和/或透过率的变化,在智能家居、消费电子方面有巨大的应用市场。电致变色器件通常包括第一导电层、电致变色层、电解质层、离子储存层和第二导电层。
目前现有的电致变色器件通常是通过设置两个导电层错位的方式来使电极引线分别连接导电层,进而实现电致变色器件与电源连接;此种设置方式需要先按照器件的具体尺寸,先分别裁切第一导电层和第二导电层后,再人工手动对齐贴合,即需要一个一个去贴合电致变色器件。这就导致了导电材料的浪费,生产成本和人力成本也大大提高,而且不利于批量化生产和产品良率的提高,大大限制了产能。
而且现有的电致变色器件,变色效果较为单一,难以在变色过程中给用户以丰富多样的渐变式变色的视觉感受。
因此,想要开发一种不需要导电层错位设置的电致变色器件,并且此电致变色器件通过改变一定的条件可以实现渐变式变色的效果。
发明内容
本申请的目的在于提供一种电致变色器件及其制备方法和应用。本申请提供的电致变色器件可以在两个导电层不错位设置的前提下实现电致变色器件的应用,并且本申请提供的电致变色器件在实现电致变色的基础上,通过改变电源电压和/或电流的大小,可以实现渐变式变色的技术效果。
第一方面,本申请提供了一种电致变色器件,包括依次设置的第一导电层、变色层和第二导电层。
其中,所述第一导电层上连接有至少一个第一电极引线,所述第一电极引线穿过所述变色层和第二导电层。
其中,所述第二导电层上连接有至少一个第二电极引线,所述第二电极引线穿过所述变色层和第一导电层。
本申请通过将电极引线穿过不包括其中一层的导电层在内的其余两层,然后再与导电层相连接的方式,可以在两个导电层不错位设置连接的前提下,实现电致变色器件的使用。这样在生产过程中,可以先大批量地制作各层均对齐的大尺寸的电致变色器件,再根据具体产品的尺寸需求,将大尺寸的电致变色器件进行裁切成小尺寸电致变色器件,大大提高了生产效率和产品良率。
在本申请中,所述变色层和第二导电层上设置有供所述第一电极引线穿过的第一容纳部。
所述变色层和第一导电层上设置有供所述第二电极引线穿过的第二容纳部。
优选地,所述第一容纳部和所述第二容纳部的形状相同或不同,为任意规则或不规则形状,选自多边形、椭圆形、扇形或圆形。
本申请通过在变色层和第二导电层上打孔,然后使第一电极引线从孔中穿过,实现第一电极引线与第一导电层的连接,采用同样的方式实现第二电极引线与第二导电层的连接。
因为容纳部的最主要的作用就是实现电极引线与导电层的相连接,所以对于孔(容纳部)的形状,我们并不做具体限定,任何规则或不规则形状的容纳部均可以实现本申请的申请目的,例如圆形、三角形、四边形、五边形等,鉴于操作性的难易程度,优选圆形孔。同样,对于容纳部的大小我们也不进行具体限定,针对于实际应用中的电致变色器件的大小来具体设计,与器件的大小较为协调即可。
对于孔的具体位置,存在以下几种方式:
本申请采用下述几种技术方案时,当电极引线连接的电源的电压和/或电流较小时,可以实现电致变色器件的变色以及使用,当电源电压和/或电流较大时,可以实现渐变式变色的技术效果,对于实现变色还是渐变式变色的电压和/或电 流的界限值的大小,需要根据电致变色器件所选用的不同的材质、不同的面积大小等因素具体分析,通过具体调试获得具体界限值的大小。
在本申请的下述描述中,并不再进行对电致变色器件的变色以及使用进行描述,仅对渐变式变色的技术效果进行简要描述分析。
优选地,所有的所述第一容纳部和第二容纳部的轴线位于同一平面、同一弯折面、同一弧形面或同一圆筒形面上。
当所有的所述第一容纳部和第二容纳部的轴线位于同一平面时,即在俯视图中,所有的孔可以连成一条直线,或者说在俯视时,所有的第一容纳部连接成的直线与第二容纳部连接成的直线可以重合;此时,可以实现电致变色器件的渐变式变色。当第一电极引线与第二电极引线与电源正极/负极相连时,整个电致变色器件由暗变亮,变色过程由设置电极引线的地方向其他地方扩展,即容纳部所连成的直线区域先变亮,然后其余部分逐渐由暗变亮。
而当第一电极引线与第二电极引线与电源负极/正极相连时(与第一种情况的连接方式相反),则整个电致变色器件由亮变暗,变色过程同样由设置电极引线的地方向其他地方扩展。
当所有的所述第一容纳部和第二容纳部的轴线位于同一弯折面时,弯折面可以是
Figure PCTCN2020136000-appb-000001
形状,也可以是
Figure PCTCN2020136000-appb-000002
形状等。即若电致变色器件为四边形器件,则第一容纳部和第二容纳部可分布于四边形的两条边上,在俯视电致变色器件时,所有的第一容纳部连接成的折线与第二容纳部连接成的折线可以重合。在于电源相连接后,同样可以实现渐变式变色的效果;变色效果由设置电极引线的地方向其他地方扩展,即容纳部所连成的折线区域先变化,然后其余部分逐渐变化。
当所有的所述第一容纳部和第二容纳部的轴线位于同一圆筒形面上时,若此圆筒形面在处于电致变色器件的靠近边缘的位置,则可以实现变色效果由边缘向中间变色;若圆筒形面在处于电致变色器件的靠近中心的位置,则可实现变色效果由中间向边缘变色。
作为另一种设置孔的方式:
优选地,所有的所述第一容纳部和第二容纳部的轴线位于至少两个平面上,每个平面上均包括部分第一容纳部和部分第二容纳部。
优选地,所有的所述第一容纳部和第二容纳部的轴线位于两个平面上,部 分所述第一容纳部和部分所述第二容纳部的轴线均位于第一平面上,其余的所述第一容纳部和其余的所述第二容纳部的轴线均位于第二平面上。
当所有的第一容纳部和第二容纳部的轴线位于两个平面上时,若平面相对设置,则可实现变色效果由对称两侧开始;或者,两个平面也可以错位设置,在实际应用时,可以根据实际情况选择两个平面的位置关系。
优选地,所有的所述第一容纳部和第二容纳部的轴线位于三个平面上,第一部分所述第一容纳部和第一部分所述第二容纳部的轴线均位于第一平面上,第二部分所述第一容纳部和第二部分所述第二容纳部的轴线均位于第二平面上,其余的所述第一容纳部和其余的所述第二容纳部的轴线均位于第三平面上。
总而言之,无论怎样设置第一容纳部和第二容纳部,最后得到的电致变色器件的变色效果均为由电极区域向其他区域变色;本申请所述的电极区域指的是所有的第一容纳部和第二容纳部的轴线所处的面(包括平面、弯折面、弧形面或圆筒形面等)在电致变色器件上的投影区域。
在本申请中,对于相邻的两个第一容纳部和第二容纳部之间的距离(相邻的第一容纳部和第二容纳部的轴线的直线距离)我们也不进行具体限定,只要相互之间不影响第一容纳部和第二容纳部的开设即可。
对于所有的第一容纳部和第二容纳部的轴线所位于的无论是一个平面,还是至少两个平面,还是曲面或圆筒形面等,其到电致变色器件边缘的距离我们也不进行具体限定;只要可以满足应用要求即可。
本申请也不对电致变色器件的形状进行限定,因为本申请提供的电致变色器件不需要两个导电层错位设置,所以本申请提供的电致变色器件可以为各种形状,例如圆形、三角形、四边形、五边形等等。
在本申请中,所述第一导电层和第二导电层均为透明导电层。
本申请并不对透明导电层做过多的限定,只要其满足透明性的要求,不影响变色层的变色效果即可;示例性的,目前经常使用的薄膜基材上蒸镀导电材料,得到透明导电层,此时,透明导电层包括两层,一层为透明基材层,一层为导电材料层。
同理,对于变色层均不进行过多限定,任何现有技术中具备开设容纳部条件的变色层均可以应用于本申请。本申请所述的变色层既可以为电致变色,也可以为其他的调光技术。以下为几种示例性的变色层。
I、目前常用的三层材料,即变色层由依次设置的电致变色层、电解质层和离子储存层组成,至于电致变色层是位于靠近第一导电层还是第二导电层的一侧,其实并没有本质差别,本申请对于第一导电层和第二导电层的表述仅是为了区分,而非限定。
II、目前常用的一层材料,即变色层的组成成分包括电解质、电致变色材料和离子存储材料。
III、液晶类复合层(PDLC),即变色层的组成成分包括液晶悬浮颗粒,在通电时,变色层可以发生由不透明向透明转化等过程。
IV、纳米类复合层(SPD),即变色层的组成成分包括纳米悬浮颗粒,在通电时,变色层可以发生由不透明向透明转化等过程。
本申请以最常用的第I种变色层为例进行描述。
在本申请中,对于电极引线同样不进行过多限定,示例性的,所述第一电极引线和第二电极引线的材质相同或不同,选自铜箔、铝箔、镍箔、合金导电箔、导电银浆或导电石墨烯。
还包括第一透明保护层和第二透明保护层,所述第一透明保护层覆盖于所述第一导电层的外侧,所述第二透明保护层覆盖于所述第二导电层的外侧。
对于透明保护层,所起的作用就是透明、保护的作用,因此对其材质仍不进行过多限定,例如透明玻璃,或者亚克力、PE、PP、PU等其它透明塑料材料均可以满足应用要求。
优选地,还包括第一遮挡层,所述第一遮挡层覆盖于所述第一导电层的外侧。
当电致变色器件不包括保护层时,遮挡层直接覆盖于导电层外侧;当电致变色器件包括保护层时,则遮挡层既可以位于导电层与保护层之间,也可以位于保护层的外侧。
本申请的遮挡层的作用,一方面是可以对变色区域进行划分,使电致变色器件产生分隔变色的视觉效果;另一方面可以起到遮挡电极布线区域的作用,使电致变色器件视觉上更加美观;例如当电极区域位于电致变色器件的边缘区域(所有容纳部均位于边缘),此时,第一遮挡层可以设计为边缘区域为黑色,其余区域为透明色,这样既可以起到遮挡电路的效果,又不影响电致变色器件的变色效果(渐变式变色效果)。
第二方面,本申请提供了根据第一方面所述的电致变色器件的制备方法,所述制备方法包括如下步骤:
(1)在电致变色器件的变色层和第二导电层上开设至少一个第一容纳部,然后将第一电极引线穿过所述第一容纳部与第一导电层连接;
(2)在电致变色器件的变色层和第一导电层上开设至少一个第二容纳部,然后将第二电极引线穿过所述第二容纳部与第二导电层连接,得到所述电致变色器件。
优选地,在制备方法中,开设容纳部的方法包括机械裁除法或激光裁除法。
所述的容纳部包括第一容纳部和第二容纳部在内的所有的容纳部。
优选地,所述开设容纳部的方法包括先利用机械裁除或激光裁除,然后进行机械清洗或激光清洗,得到所述容纳部。
优选地,在制备方法中,电极引线与导电层相连的方法包括贴覆或点胶。
本申请所述的点胶指的是通过点胶的方式将导电胶点胶在导电层,贴覆指的是将导电薄贴敷在导电层中。
上述的电极引线与导电层相连具体为第一电极引线与第一导电层相连,第二电极引线与第二导电层相连。
第三方面,本申请提供了一种电致变色组件,所述电致变色组件由至少两个第一方面所述的电致变色器件拼接而成。
优选地,还包括第三透明保护层和第四透明保护层,所述第三透明保护层覆盖于第一导电层的外侧,所述第四透明保护层覆盖于第二导电层的外侧。
优选地,还包括第二遮挡层,所述第二遮挡层覆盖于第一导电层的外侧。
优选地,所述第二遮挡层覆盖于所述第三透明保护层的外侧。
第四方面,本申请提供了根据第一方面所述的电致变色器件或第三方面所述的电致变色组件在建筑玻璃、汽车玻璃、汽车后视镜、高铁玻璃、飞机玻璃、地铁玻璃、消费电子或眼镜等领域中的应用。
相对于现有技术,本申请具有以下有益效果:
(1)本申请通过将电极引线穿过不包括导电层在内的其余四层,然后再与导电层相连接的方式,可以在两个导电层不错位设置连接的前提下,实现电致变色器件的使用,并且可以提高生产效率和产品良率;
(2)本申请通过限定容纳部的具体位置,并且通过调控电极引线连接的电 源的电压和/或者电流的大小,可以实现电致变色器件的普通变色或者渐变式变色的不同的技术效果的相互转化,有效地满足消费者多样化需求。
附图说明
图1是实施例1提供的电致变色器件的剖面结构示意图。
其中,1-第一导电层;11-第一透明基材层;12-第一导电材料层;2-电致变色层;3-电解质层;4-离子储存层;5-第二导电层;51-第二透明基材层;52-第二导电材料层;71-第一电极引线;72-第二电极引线。
图2是实施例1中的第一容纳部和第二容纳部的具体位置的结构示意图。
图3是实施例2中的第一容纳部和第二容纳部的具体位置的结构示意图。
图4是实施例3中的第一容纳部和第二容纳部的具体位置的结构示意图。
图5是实施例4中的第一容纳部和第二容纳部的具体位置的结构示意图。
图6是实施例5中的第一容纳部和第二容纳部的具体位置的结构示意图。
图7是实施例6中的第一容纳部和第二容纳部的具体位置的结构示意图。
图8是实施例7中的第一容纳部和第二容纳部的具体位置的结构示意图。
图9是实施例8中的第一容纳部和第二容纳部的具体位置的结构示意图。
图10是实施例9中的第一容纳部和第二容纳部的具体位置的结构示意图。
图11是实施例10中的第一容纳部和第二容纳部的具体位置的结构示意图。
其中,61-第一容纳部;62-第二容纳部。
图12是应用例1提供的电致变色组件的一种结构示意图。
图13是应用例1提供的电致变色组件的另一种结构示意图。
其中,81-第三透明玻璃层;82-第四透明玻璃层;100-实施例1提供的电致变色器件。
图14是应用例2提供的电致变色组件的一种结构示意图。
图15是应用例2提供的电致变色组件的另一种结构示意图。
其中,91-遮挡层;911-黑色部。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或 条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购获得的常规产品。
实施例1
本实施例提供一种电致变色器件,如图1所示,包括依次设置的第一导电层1、电致变色层2、电解质层3、离子储存层4和第二导电层5。
其中,第一导电层1由第一透明基材层11和第一导电材料层12组成,为透明ITO导电玻璃,厚度为0.125mm。
其中,变色层由电致变色层、电解质层和离子储存层组成。
电致变色层2为15KDa的聚(乙基己烷)丙基二氧噻吩,厚度为200nm。
其中,电解质层3为25wt%LiClO 4溶解的PEO,厚度为10μm。
其中,离子储存层4为三氧化钨,厚度为200nm。
其中,第二导电层5由第二透明基材层51和第二导电材料层52组成,为透明ITO导电玻璃,厚度为0.180mm。
其中,在电致变色层2、电解质层3、离子储存层4和第二导电层5上开设三个第一容纳部,然后将第一电极引线71穿过第一容纳部与第一导电层1连接。
其中,在离子储存层4、电解质层3、电致变色层2和第一导电层1上开设三个第二容纳部,然后将第二电极引线72穿过第二容纳部与第二导电层5连接。
其中,如图2所示,所有的第一容纳部和第二容纳部均为直径为5mm的圆形,其轴线位于同一平面,且该平面位于电致变色器件的一边靠近边缘10mm的地方。
在应用本实施例提供的电致变色器件时,以渐变式变色的技术效果为例,具体如下:
第一电极引线与电源正极相连,第二电极引线与电源负极相连,接通电源后,整个电致变色器件由暗变亮,变色过程由设置电极引线的地方向其他地方扩展,即容纳部所连成的直线区域先变亮,然后其余部分逐渐由暗变亮。
或者第一电极引线与电源负极相连,第二电极引线与电源正极相连,接通电源后,整个电致变色器件由亮变暗,变色过程由设置电极引线的地方向其他地方扩展,即容纳部所连成的直线区域先变暗,然后其余部分逐渐由亮变暗。
实施例1-2
与实施例1的区别仅在于,本实施例中的所有的容纳部均为正方形,边长 为10mm。
实施例1-3
为了说明本申请的结构适用于目前现有技术中的可满足打孔要求的电致变色器件,进行几种列举:
a、导电层为PET/ITO,电致变色层为WO 3,电解质层为LiTaO 3,离子储存层为NiO x
b、导电层为玻璃/ITO,电致变色层为WO 3,电解质层为聚乙烯醇缩丁醛,其中含有25vol.%的碳酸丙烯酯,离子储存层为NiO x
c、导电层为PET/ITO,电致变色层为P3HT,电解质层为溶解LiClO 4的PEO,离子储存层为聚4-甲基丙烯酸-2,2,6,6-四甲基哌啶-1-氮氧自由基。
实施例2
与实施例1的区别在于,如图3所示,本实施例设置5个第一容纳部和5个第二容纳部,所有的第一容纳部和第二容纳部的轴线位于同一弯折面上,弯折面位于电致变色器件的两条边的靠近边缘的位置。
实施例3
与实施例2的区别在于,如图4所示,本实施例设置8个第一容纳部和8个第二容纳部,所有的第一容纳部和第二容纳部的轴线位于同一弯折面上,弯折面位于电致变色器件的三条边的靠近边缘的位置。
实施例4
与实施例2的区别在于,如图5所示,本实施例设置9个第一容纳部和9个第二容纳部,所有的第一容纳部和第二容纳部的轴线位于同一弯折面上,弯折面位于电致变色器件的四边的靠近边缘的位置。
实施例5
与实施例1的区别在于,如图6所示,本实施例设置6个第一容纳部和6个第二容纳部,所有的第一容纳部和第二容纳部的轴线位于同一圆筒形面上,圆筒形面位于电致变色器件的靠近边缘的位置。
实施例6
与实施例5的区别在于,如图7所示,所有的第一容纳部和第二容纳部的轴线位于同一圆筒形面上,圆筒形面位于电致变色器件的靠近中心的位置。
实施例7
与实施例5的区别在于,如图8所示,本实施例的电致变色器件为圆形器件。
实施例8
与实施例1的区别在于,如图9所示,本实施例设置6个第一容纳部和6个第二容纳部,所有的第一容纳部和第二容纳部的轴线分别位于两个平面上,两个平面的第一容纳部和第二容纳部在电致变色器件表面上投影形成的两条直线段,分别位于电致变色器件的两个边靠近边缘的位置,且并排设置。
实施例9
与实施例8的区别在于,如图10所示,本实施例设置4个第一容纳部和4个第二容纳部,所有的第一容纳部和第二容纳部的轴线位于两个平面上,两个平面的第一容纳部和第二容纳部在电致变色器件表面上投影形成的两条直线段,分别位于电致变色器件的两个边靠近边缘的位置,且错位设置。
实施例10
与实施例1的区别在于,如图11所示,本实施例设置9个第一容纳部和9个第二容纳部,所有的第一容纳部和第二容纳部的轴线位于三个平面上,三个平面相对设置,分别位于电致变色器件的两个边靠近边缘的位置,以及电致变色器件中间位置。
应用例1
一种电致变色组件,如图12所示,由四个实施例1提供的电致变色器件100拼接而成。
其中,如图13所示,还包括第三透明玻璃层81和第四透明玻璃层82,第三透明玻璃层81利用透明胶片粘结于第一导电层,位于第一导电层的外侧,第四透明玻璃层82利用透明胶片粘结于第一导电层,位于第二导电层的外侧。
制备方法为:在第四透明玻璃层82上放置透明胶片,将多块电致变色器件100尽量靠近放置,排布成如图12所示的结构,再在拼接后的电致变色器件100上表面再放置一层透明胶片,放置第三透明玻璃层81,进行压合即可。
应用例2
与应用例1的区别在于,如图14所示,还包括遮挡层91,遮挡层91覆于第三透明玻璃层外侧,两层利用透明胶片粘结。
其中,如图15所示,遮挡层91由黑色部911和透明部组成,其中,黑色部起到遮挡电致变色器件拼接线的作用以及起到视觉分区的效果。
申请人声明,本申请通过上述实施例来说明本申请的电致变色器件及其制备方法和应用,但本申请并不局限于上述工艺步骤,即不意味着本申请必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种电致变色器件,其包括依次设置的第一导电层、变色层和第二导电层;
    其中,所述第一导电层上连接有至少一个第一电极引线,所述第一电极引线穿过所述变色层和第二导电层;
    其中,所述第二导电层上连接有至少一个第二电极引线,所述第二电极引线穿过所述变色层和第一导电层。
  2. 根据权利要求1所述的电致变色器件,其中,所述变色层和第二导电层上设置有供所述第一电极引线穿过的第一容纳部;
    所述变色层和第一导电层上设置有供所述第二电极引线穿过的第二容纳部。
  3. 根据权利要求2所述的电致变色器件,其中,所述第一容纳部和所述第二容纳部的形状相同或不同,各自独立地为任意规则或不规则形状。
  4. 根据权利要求2所述的电致变色器件,其中,所述第一容纳部和所述第二容纳部的形状相同或不同,各自独立地选自多边形、椭圆形、扇形或圆形。
  5. 根据权利要求3或4所述的电致变色器件,其中,所有的所述第一容纳部和第二容纳部的轴线位于同一平面、同一弯折面、同一弧形面或同一圆筒形面上。
  6. 根据权利要求3或4所述的电致变色器件,其中,所有的所述第一容纳部和第二容纳部的轴线位于至少两个平面上,每个平面上均包括部分第一容纳部和部分第二容纳部;或者
    所有的所述第一容纳部和第二容纳部的轴线位于两个平面上,部分所述第一容纳部和部分所述第二容纳部的轴线均位于第一平面上,其余的所述第一容纳部和其余的所述第二容纳部的轴线均位于第二平面上;或者
    所有的所述第一容纳部和第二容纳部的轴线位于三个平面上,第一部分所述第一容纳部和第一部分所述第二容纳部的轴线均位于第一平面上,第二部分所述第一容纳部和第二部分所述第二容纳部的轴线均位于第二平面上,其余的所述第一容纳部和其余的所述第二容纳部的轴线均位于第三平面上。
  7. 根据权利要求1-6中的任一项所述的电致变色器件,其中,所述第一导电层和第二导电层均为透明导电层;和/或
    所述第一电极引线和第二电极引线的材质相同或不同,所述第一电极引线 和第二电极引线分别独立地选自铜箔、铝箔、镍箔、合金导电箔、导电银浆、金属导电丝、导电布或导电石墨烯。
  8. 根据权利要求1-7中的任一项所述的电致变色器件,其中,还包括第一透明保护层和第二透明保护层,所述第一透明保护层覆盖于所述第一导电层的外侧,所述第二透明保护层覆盖于所述第二导电层的外侧。
  9. 根据权利要求1-8中的任一项所述的电致变色器件,其中,所述电致变色器件还包括第一遮挡层,所述第一遮挡层覆盖于所述第一导电层的外侧;
    任选地,所述第一遮挡层覆盖于所述第一透明保护层的外侧。
  10. 根据权利要求1-9中的任一项所述的电致变色器件的制备方法,其包括如下步骤:
    (1)在电致变色器件的变色层和第二导电层上开设至少一个第一容纳部,然后将第一电极引线穿过所述第一容纳部与第一导电层连接;
    (2)在电致变色器件的变色层和第一导电层上开设至少一个第二容纳部,然后将第二电极引线穿过所述第二容纳部与第二导电层连接,得到所述电致变色器件。
  11. 根据权利要求10所述的制备方法,其中,开设容纳部的方法包括机械裁除法或激光裁除法;
    任选地,所述开设容纳部的方法包括先利用机械裁除或激光裁除,然后进行机械清洗或激光清洗,得到所述容纳部。
  12. 根据权利要求11所述的制备方法,其中,在制备方法中,电极引线与导电层相连的方法包括贴覆或点胶。
  13. 一种电致变色组件,其中,所述电致变色组件由至少两个权利要求1-9中的任一项所述的电致变色器件拼接而成。
  14. 根据权利要求13所述的电致变色组件,其中,所述电致变色组件还包括第三透明保护层和第四透明保护层,所述第三透明保护层覆盖于第一导电层的外侧,所述第四透明保护层覆盖于第二导电层的外侧。
  15. 根据权利要求13或14所述的电致变色组件,其中,所述电致变色组件还包括第二遮挡层,所述第二遮挡层覆盖于第一导电层的外侧;
    任选地,所述第二遮挡层覆盖于所述第三透明保护层的外侧。
PCT/CN2020/136000 2019-12-17 2020-12-14 一种电致变色器件及其制备方法和应用 WO2021121172A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/786,178 US20230021421A1 (en) 2019-12-17 2020-12-14 Electrochromic device, preparation method therefor and application thereof
KR1020227019309A KR20220097977A (ko) 2019-12-17 2020-12-14 전기변색 소자 및 그 제조방법과 응용
EP20901143.6A EP4053626A4 (en) 2019-12-17 2020-12-14 ELECTROCHROMIC DEVICE, METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF
JP2022531530A JP2023505095A (ja) 2019-12-17 2020-12-14 エレクトロクロミックデバイス、その製造方法および使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911305012.4 2019-12-17
CN201911305012.4A CN110908208B (zh) 2019-12-17 2019-12-17 一种电致变色器件及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021121172A1 true WO2021121172A1 (zh) 2021-06-24

Family

ID=69826126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136000 WO2021121172A1 (zh) 2019-12-17 2020-12-14 一种电致变色器件及其制备方法和应用

Country Status (6)

Country Link
US (1) US20230021421A1 (zh)
EP (1) EP4053626A4 (zh)
JP (1) JP2023505095A (zh)
KR (1) KR20220097977A (zh)
CN (1) CN110908208B (zh)
WO (1) WO2021121172A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908208B (zh) * 2019-12-17 2021-11-09 深圳市光羿科技有限公司 一种电致变色器件及其制备方法和应用
CN112363358B (zh) * 2020-11-03 2023-07-07 深圳市光羿科技有限公司 一种导电基材及电致变色器件
CN112558371B (zh) * 2020-12-08 2022-12-16 深圳市光羿科技有限公司 一种变色器件及其控制方法
CN114624934A (zh) * 2020-12-10 2022-06-14 北京小米移动软件有限公司 电致变色模组、壳体及电子设备
CN113759626B (zh) * 2021-07-28 2022-11-29 福耀玻璃工业集团股份有限公司 电致变色膜、装置及其制作方法、电致变色玻璃和车辆
CN116266024A (zh) * 2021-12-17 2023-06-20 光羿智能科技(苏州)有限公司 一种电致变色器件
CN114442394B (zh) * 2021-12-30 2023-12-01 江苏繁华应材科技股份有限公司 一种可分时驱动的异型电致变色玻璃
CN117289517A (zh) * 2022-06-16 2023-12-26 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃
CN117289516A (zh) * 2022-06-16 2023-12-26 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090219466A1 (en) * 2008-03-03 2009-09-03 Hitachi Displays, Ltd. Electro-Optical Device and Display Device
CN105824163A (zh) * 2014-12-10 2016-08-03 泰特博智慧材料股份有限公司 电致变色装置
CN107045243A (zh) * 2016-02-06 2017-08-15 合肥威迪变色玻璃有限公司 电致变色结构及其形成方法
CN107111201A (zh) * 2015-01-05 2017-08-29 伊英克公司 电光显示器以及用于驱动电光显示器的方法
CN108474990A (zh) * 2016-03-07 2018-08-31 力海科技股份有限公司 电致变色装置
CN110908208A (zh) * 2019-12-17 2020-03-24 深圳市光羿科技有限公司 一种电致变色器件及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1437620A1 (en) * 2001-10-05 2004-07-14 Murakami Corporation Liquid type electrochromic element
US8928562B2 (en) * 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US7872791B2 (en) * 2006-07-28 2011-01-18 Chromogenics Sweden Ab Electrochromic device contacting
KR100936121B1 (ko) * 2006-09-06 2010-01-11 주식회사 엘지화학 전기변색층 패턴 형성 방법, 이 방법을 이용한 전기변색소자 제조방법 및 전기변색층 패턴을 구비하는 전기변색소자
CN201886236U (zh) * 2010-12-10 2011-06-29 北京众智同辉科技有限公司 多膜拼接式调光玻璃
US20130222878A1 (en) * 2012-02-28 2013-08-29 Sage Electrochromics, Inc. Multi-zone electrochromic devices
TWI475307B (zh) * 2012-09-24 2015-03-01 Wistron Corp 電致色變面板及控制裝置
CN103901643B (zh) * 2014-03-20 2016-04-13 京东方科技集团股份有限公司 一种显示屏以及拼接显示屏
CN105467711B (zh) * 2015-12-18 2019-03-19 杭州福斯特应用材料股份有限公司 一种变色面积可控的全固态电致变色器件及其制备方法
JP6793855B2 (ja) * 2016-12-22 2020-12-02 セイジ・エレクトロクロミクス,インコーポレイテッド 連続勾配透過状態を維持するように構成されたエレクトロクロミックデバイスを含む装置
CN110032018B (zh) * 2018-01-12 2020-11-24 中国科学院上海硅酸盐研究所 铝锂合金固态离子传导层及其制备方法与电致变色器件
CN208737169U (zh) * 2018-06-12 2019-04-12 合肥威迪变色玻璃有限公司 一种带有电阻层的电致变色玻璃、夹胶玻璃、中空玻璃
CN209149026U (zh) * 2018-12-28 2019-07-23 五邑大学 一种肩并肩结构的电致变色器件与电致变色设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090219466A1 (en) * 2008-03-03 2009-09-03 Hitachi Displays, Ltd. Electro-Optical Device and Display Device
CN105824163A (zh) * 2014-12-10 2016-08-03 泰特博智慧材料股份有限公司 电致变色装置
CN107111201A (zh) * 2015-01-05 2017-08-29 伊英克公司 电光显示器以及用于驱动电光显示器的方法
CN107045243A (zh) * 2016-02-06 2017-08-15 合肥威迪变色玻璃有限公司 电致变色结构及其形成方法
CN108474990A (zh) * 2016-03-07 2018-08-31 力海科技股份有限公司 电致变色装置
CN110908208A (zh) * 2019-12-17 2020-03-24 深圳市光羿科技有限公司 一种电致变色器件及其制备方法和应用

Also Published As

Publication number Publication date
EP4053626A4 (en) 2023-10-18
JP2023505095A (ja) 2023-02-08
CN110908208B (zh) 2021-11-09
CN110908208A (zh) 2020-03-24
US20230021421A1 (en) 2023-01-26
EP4053626A1 (en) 2022-09-07
KR20220097977A (ko) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2021121172A1 (zh) 一种电致变色器件及其制备方法和应用
CN113759626B (zh) 电致变色膜、装置及其制作方法、电致变色玻璃和车辆
US20230034675A1 (en) Electrochromic device and manufacturing method
CN106707653B (zh) 一种用于调光及变色的智能玻璃
WO2011132992A2 (ko) 프라이버시 보호필터 및 그 제조방법
KR102101874B1 (ko) 저항이 낮은 투명전극 구조를 가지는 전기변색소자
JP2018537724A (ja) 異方伝導性を有する表面電極を有している電気的に切り替え可能なグレージング
JP7128119B2 (ja) 放射線の透過を制御するためのデバイス
KR102101866B1 (ko) 플랙서블 전기변색소자의 제조방법
KR20170083802A (ko) 스마트 윈도우
US10599000B2 (en) Smart window
CN108803112A (zh) 双面液晶显示面板、双面显示器
CN113066604A (zh) 一种导电膜及制备方法
CN113376889A (zh) 基于聚合物分散液晶的电致变色装置、制备方法及电子设备
KR102370223B1 (ko) 전기변색소자
JP2019045669A (ja) 調光体
JP6948262B2 (ja) 不透明度切替可能デバイス
CN110133930B (zh) 一种用于汽车上的电致变色玻璃结构
CN111694199A (zh) 一种可调反射率的电致变色器件及包含其的电子终端
CN106328252A (zh) 一种纳米银线导电透明薄膜及其制作方法
JP2020076879A (ja) 調光フィルムおよび駆動回路
JP6852314B2 (ja) 調光素子、開口部装置用パネル、開口部装置、及び調光素子の製造方法
KR102085206B1 (ko) 도전성 유연 기판을 구비한 전기 소자
CN209747526U (zh) 一种太阳能电池
JP2000258758A (ja) 液晶フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531530

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019309

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020901143

Country of ref document: EP

Effective date: 20220602

NENP Non-entry into the national phase

Ref country code: DE