WO2021121092A1 - 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 - Google Patents
一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 Download PDFInfo
- Publication number
- WO2021121092A1 WO2021121092A1 PCT/CN2020/134809 CN2020134809W WO2021121092A1 WO 2021121092 A1 WO2021121092 A1 WO 2021121092A1 CN 2020134809 W CN2020134809 W CN 2020134809W WO 2021121092 A1 WO2021121092 A1 WO 2021121092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- bearing
- displacement
- compensation
- vibration
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
Definitions
- the invention belongs to the technical field of numerical control machine tools, and relates to a method for real-time compensation of the interference force suffered by a rotor in a magnetic suspension bearing system.
- Magnetic bearing is a new type of bearing that uses electromagnetic force to achieve non-contact, and is often used in occasions where the rotor speed is high.
- the magnetic bearing control system basically adopts the control strategy based on the rotor vibration displacement error, that is, the displacement sensor is used to detect the real-time vibration displacement of the rotor, and the displacement error is obtained by comparing with the reference displacement, and then through the controller, power amplifier, and magnetic bearing stator Generate the corresponding electromagnetic force to eliminate the displacement error.
- the controller can control the displacement error only when it is reflected on the rotor vibration displacement, and there is a certain hysteresis. This hysteresis makes the rotor inevitably produce corresponding vibration displacement after the interference force is applied, which greatly limits the application of magnetic bearings in some occasions that require the rotor to have high position control accuracy, such as the magnetic suspension electric spindle used in high-end CNC machine tools.
- the purpose of the present invention is to provide a method for real-time compensation of the disturbance force suffered by the rotor in the magnetic suspension bearing system, which solves the problem of accurately detecting the real-time vibration acceleration of the rotor, and quickly compensating the disturbance force in real time, so as to reduce the influence of external disturbance force on the vibration displacement of the rotor. technical problem.
- a method for real-time compensation of the interference force suffered by the rotor in the magnetic suspension bearing system includes the following steps:
- Step 1 Install a rotor vibration acceleration online detection device on the rotor of the magnetic suspension bearing system.
- the rotor vibration acceleration online detection device includes a ball bearing.
- the inner ring of the ball bearing is fixed on the rotor, and the outer ring of the ball bearing is mounted on a bearing seat.
- the acceleration sensor is arranged on the bearing seat, and the acceleration sensor is used to detect the vibration acceleration of the bearing seat;
- the outer ring of the bearing seat is provided with a base, and there are four linear bearings on the base, and each linear bearing corresponds to one of the limit supports, and the linear bearings are used to limit the displacement of the limit supports;
- Displacement sensors are provided on the rotor of the magnetic bearing system
- Step 2 Establish the interference force online compensation control module, the interference force online compensation control module obtains the displacement data collected by the displacement sensor and the vibration acceleration data collected by the acceleration sensor;
- Step 3 Preset a reference signal u d in the online compensation control module, compare the displacement data with the reference signal u d to obtain a displacement error signal, and output the displacement control voltage through the PID controller;
- Step 4 Preset the coefficient matrix T1 and the coefficient matrix T2 in the online compensation control module, and the vibration acceleration is transformed into the acceleration of the rotor at the position where the electromagnetic force of the magnetic bearing acts through the coefficient matrix T2;
- Step 5 Calculate the compensation current that each electromagnetic coil needs to pass through, and divide it by the amplification factor G A of the power amplifier to obtain the control voltage u 2 required for the compensation current;
- the control voltage u 2 is subtracted from the control voltage corresponding to the control current in the electromagnetic coil at this moment to obtain the required compensation control voltage u 1 .
- the linear bearing is used to limit the displacement of the limit support along the tangent of the rotor rotation.
- a limit gap is provided between the limit support and the linear bearing
- a protective bearing is also provided on the rotor of the magnetic suspension bearing system, and the protective gap of the protective bearing is smaller than the limit gap.
- the interference force online compensation control module is a server or an MCU controller.
- the method for real-time compensation of the interference force suffered by the rotor in the magnetic suspension bearing system of the present invention solves the technology of accurately detecting the real-time vibration acceleration of the rotor, and quickly compensating the interference force in real time, so as to reduce the influence of external interference force on the vibration displacement of the rotor
- the problem is that the present invention can stably and real-time compensate the unbalanced centrifugal force of the rotor, eliminate the influence of unbalanced force on the vibration displacement of the rotor, and improve the position control accuracy of the rotor.
- the present invention can be based on the vibration displacement and acceleration of the rotor after the magnetic bearing system becomes unstable. The signal selects an appropriate control strategy to quickly suppress the rotor vibration, and achieve rapid resuspension without reducing the rotor speed.
- Figure 1 is a top view of the on-line detection device for rotor vibration acceleration of the present invention
- Figure 2 is a side view of the on-line detection device for rotor vibration acceleration
- FIG. 3 is a block diagram of the system control of the present invention.
- Figure 4 is a flow chart of the present invention.
- a method for real-time compensation of the interference force suffered by the rotor in the magnetic suspension bearing system as shown in Fig. 1 to Fig. 4 includes the following steps:
- Step 1 Install a rotor vibration acceleration online detection device on the rotor of the magnetic suspension bearing system.
- the rotor vibration acceleration online detection device includes a ball bearing.
- the inner ring of the ball bearing is fixed on the rotor, and the outer ring of the ball bearing is mounted on a bearing seat.
- the acceleration sensor is arranged on the bearing seat, and the acceleration sensor is used to detect the vibration acceleration of the bearing seat;
- the acceleration sensor detects the vibration acceleration of the rotor indirectly by detecting the vibration acceleration of the bearing housing.
- the ball bearing rotates at a high speed under the drive of the rotor. Although it does not carry the load, it still generates a certain amount of heat. If the high-speed ball heats up severely, this embodiment selects a higher-precision ball bearing or a double-layer ball bearing to reduce the high-speed ball heat.
- the outer ring of the bearing seat is provided with a base, and the base is provided with four linear bearings, each linear bearing corresponds to one of the limit supports, and the linear bearings are used to limit the displacement of the limit supports;
- the linear bearing only restricts the displacement of the limit bearing along the tangential direction of the rotor, and does not restrict its displacement along the radial direction of the rotor, ensuring that the acceleration sensor can detect the vibration signal of the rotor.
- the acceleration sensor in each detection direction is differentially installed to improve non-linearity, sensitivity and anti-interference.
- the acceleration detection device can be installed at both ends of the rotor to detect the radial and axial vibration acceleration of the rotor in real time.
- Displacement sensors are provided on the rotor of the magnetic bearing system
- Step 2 Establish the interference force online compensation control module, the interference force online compensation control module obtains the displacement data collected by the displacement sensor and the vibration acceleration data collected by the acceleration sensor;
- Step 3 Preset a reference signal u d in the online compensation control module, compare the displacement data with the reference signal u d to obtain a displacement error signal, and output the displacement control voltage through the PID controller;
- Step 4 Preset the coefficient matrix T1 and the coefficient matrix T2 in the online compensation control module, and the vibration acceleration is transformed into the acceleration of the rotor at the position where the electromagnetic force of the magnetic bearing acts through the coefficient matrix T2;
- the coefficient matrix T1 and the coefficient matrix T2 are obtained according to the relationship between the axial geometric position of the vibration acceleration installation and the axial geometric position of the magnetic bearing installation.
- Step 5 Calculate the compensation current that each electromagnetic coil needs to pass through, and divide it by the amplification factor G A of the power amplifier to obtain the control voltage u 2 required for the compensation current;
- the control voltage u 2 is subtracted from the control voltage corresponding to the control current in the electromagnetic coil at this moment to obtain the required compensation control voltage u 1 .
- the linear bearing is used to limit the displacement of the limit support along the tangent of the rotor rotation.
- a limit gap is provided between the limit support and the linear bearing
- the rotor of the magnetic suspension bearing system is also provided with a protection bearing, and the protection gap of the protection bearing is smaller than the limit gap, so as not to affect the normal operation of the magnetic suspension bearing and the protection bearing.
- the interference force online compensation control module is a server or an MCU controller.
- the rotor amplitude, vibration frequency, compensation force size, compensation force change rate, compensation control current size and change rate, etc. are evaluated, and the displacement error control channel, compensation control channel and emergency control channel are controlled according to real-time working conditions. On and off.
- the classic PID controller When the magnetic bearing system is working properly, the classic PID controller output displacement error control channel compensation and the compensation control voltage u 1 output from the control channel access to a power amplifier module.
- the disturbance force online compensation control module first evaluates the static suspension effect and anti-interference ability of the rotor, optimizes the relevant control parameters, and then the motor drives the rotor to rotate. When the rotor suspension effect and anti-interference ability are found to be poor but not yet unstable, then the compensation controllability is evaluated. If it is found that the rate of change of the compensation force is greater than the maximum rate of change of the electromagnetic force that the electromagnet can respond, or the compensation force required When the expected current change rate of the control signal is greater than the maximum current change rate that the power amplifier can respond to, the compensation control channel is cut off, and if it is controllable, the relevant control parameters will continue to be optimized.
- the interference force online compensation control module cuts off the displacement error control channel output by the classic PID controller. If the working state evaluation module evaluates and compensates for controllable, it will be connected The compensation control channel 2 output by the compensation control voltage u 2 can quickly suppress the vibration of the rotor. When the working state evaluation module evaluates that the suspension can be restored, the displacement error control channel and the compensation control channel 1 are restored to realize the rotor resuspension.
- the emergency control module makes the magnetic bearing only provide electromagnetic force in the direction of gravity to realize the rotor swing at the bottom of the protective bearing.
- the method for real-time compensation of the interference force suffered by the rotor in the magnetic suspension bearing system of the present invention solves the technology of accurately detecting the real-time vibration acceleration of the rotor, and quickly compensating the interference force in real time, so as to reduce the influence of external interference force on the vibration displacement of the rotor
- the problem is that the present invention can stably and real-time compensate the unbalanced centrifugal force of the rotor, eliminate the influence of unbalanced force on the vibration displacement of the rotor, and improve the position control accuracy of the rotor.
- the present invention can be based on the vibration displacement and acceleration of the rotor.
- the signal selects an appropriate control strategy to quickly suppress the rotor vibration, and achieve rapid resuspension without reducing the rotor speed.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一种磁悬浮轴承系统中转子(1)所受干扰力实时补偿的方法,属于数控机床技术领域,包括在磁悬浮轴承系统的转子(1)上设置转子振动加速度在线检测装置,建立干扰力在线补偿控制模块,获取位移传感器(9)所采集到的位移数据和加速度传感器(7)所采集到的震动加速度数据,解决了准确检测转子(1)的实时振动加速度,实时快速补偿干扰力,以降低外部干扰力对转子(1)振动位移的影响的技术问题,该方法能稳定、实时补偿转子(1)不平衡离心力,消除不平衡力对转子(1)振动位移的影响,提高转子(1)的位置控制精度,在磁悬浮轴承系统出现失稳后,可基于转子(1)振动位移和加速度信号选择合适控制策略快速抑制转子(1)振动,实现在不降低转子(1)转速情况下的快速再悬浮。
Description
本发明属于数控机床技术领域,涉及一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法。
磁悬浮轴承是利用电磁力实现无接触的新型轴承,常应用于转子转速较高场合。目前,磁悬浮轴承控制系统基本上均采用基于转子振动位移误差的控制策略,即应用位移传感器检测转子的实时振动位移,与基准位移进行比较得到位移误差,再经过控制器、功率放大器、磁轴承定子产生相应的电磁力来消除位移误差。
在目前的控制策略中,当磁轴承支撑下的高速旋转转子受到转子不平衡干扰力和外界干扰力等作用时,将首先产生转子振动加速度,经过对时间的两次积分才会反映到转子振动位移上,而只有等到反映到转子振动位移上时,控制器才可对位移误差进行控制,存在一定的滞后性。这种滞后性使转子在干扰力施加后必然产生相应振动位移,极大地限制了磁轴承在一些要求转子具有较高位置控制精度的场合中的应用,如高档数控机床中使用的磁悬浮电主轴。
发明内容
本发明的目的是提供一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,解决了准确检测转子的实时振动加速度,实时快速补偿干扰力,以降低外部干扰力对转子振动位移的影响的技术问题。
为实现上述目的,本发明采用如下技术方案:
一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,包括如下步骤:
步骤1:在磁悬浮轴承系统的转子上设置转子振动加速度在线检测装置,转子振动加速度在线检测装置包括滚珠轴承,滚珠轴承的内圈固设在转子上,滚珠轴承外圈安装在一个轴承座上,加速度传感器设于轴承座上,加速度传感器用于检测轴承座的震动加速度;
轴承座上设有四个限位支座,限位支座用于阻止轴承座在滚珠轴承摩擦力矩作用下发生旋转;
轴承座的外圈设有基座,基座上设有四个直线轴承,每一个直线 轴承均对应一个所述限位支座,直线轴承用于限制限位支座的位移;
在磁悬浮轴承系统的转子上设有位移传感器;
步骤2:建立干扰力在线补偿控制模块,干扰力在线补偿控制模块获取位移传感器所采集到的位移数据和加速度传感器所采集到的震动加速度数据;
步骤3:在在线补偿控制模块中预设一个参考信号u
d,位移数据与参考信号u
d比较后,得到位移误差信号,经过PID控制器输出位移控制电压;
步骤4:在在线补偿控制模块中预设系数矩阵T1和系数矩阵T2,震动加速度通过系数矩阵T2转化为转子在磁轴承电磁力作用位置处的加速度;
根据转子动力学模型计算各个自由度上电磁铁需要提供的补偿力,再根据系数矩阵T1计算得的磁轴承电磁力作用位置处的实时转子振动位移;
步骤5:计算各个电磁线圈需要通入的补偿电流,再除以功率放大器的放大系数G
A,得到补偿电流所需的控制电压u
2;
控制电压u
2再减去此刻电磁线圈中的控制电流所对应的控制电压,得到所需的补偿控制电压u
1。
优选的,所述直线轴承用于限制限位支座沿转子转动切线上的的位移。
优选的,所述限位支座与所述直线轴承之间设有限位间隙;
在磁悬浮轴承系统的转子上还设有保护轴承,保护轴承的保护间隙小于所述限位间隙。
优选的,所述干扰力在线补偿控制模块为服务器或MCU控制器。
本发明所述的一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,解决了准确检测转子的实时振动加速度,实时快速补偿干扰力,以降低外部干扰力对转子振动位移的影响的技术问题,本发明能稳定、实时补偿转子不平衡离心力,消除不平衡力对转子振动位移的影响,提高转子的位置控制精度,本发明在磁悬浮轴承系统出现失稳后,可基于转子振动位移和加速度信号选择合适控制策略快速抑制转子 振动,实现在不降低转子转速情况下的快速再悬浮。
图1为本发明的转子振动加速度在线检测装置的俯视图;
图2为转子振动加速度在线检测装置的侧视图;
图3为本发明的系统控制方框图;
图4为本发明的流程图;
图中:转子1、基座2、轴承座3、直线轴承4、限位间隙5、限位支座6、加速度传感器7、滚珠轴承8、位移传感器9、保护轴承10。
如图1-图4所示的一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,包括如下步骤:
步骤1:在磁悬浮轴承系统的转子上设置转子振动加速度在线检测装置,转子振动加速度在线检测装置包括滚珠轴承,滚珠轴承的内圈固设在转子上,滚珠轴承外圈安装在一个轴承座上,加速度传感器设于轴承座上,加速度传感器用于检测轴承座的震动加速度;
加速度传感器通过检测轴承座的振动加速度来间接检测转子的振动加速度。
滚珠轴承在转子带动下高速旋转,虽不承载,但仍会产生一定的热量,如果滚珠高转速发热严重,本实施例选用更高精度滚珠轴承或双层滚珠轴承才减少滚珠高转速发热。
轴承座上设有四个限位支座,限位支座用于阻止轴承座在滚珠轴承摩擦力矩作用下发生旋转;
轴承座的外圈设有基座,基座上设有四个直线轴承,每一个直线轴承均对应一个所述限位支座,直线轴承用于限制限位支座的位移;
直线轴承只限制限位支座沿转子切向的位移,并不限制其沿转子径向的位移,保证加速度传感器能检测到转子的振动信号。
直线轴承中只有滚珠与限位支座接触,以减小两者之间的摩擦力。每个检测方向的加速度传感器均采用差动安装,以改善非线性,提高 灵敏度和抗干扰性。
本实施例中,加速度检测装置可安装在转子的两端,实时检测转子的径向和轴向振动加速度。
在磁悬浮轴承系统的转子上设有位移传感器;
步骤2:建立干扰力在线补偿控制模块,干扰力在线补偿控制模块获取位移传感器所采集到的位移数据和加速度传感器所采集到的震动加速度数据;
步骤3:在在线补偿控制模块中预设一个参考信号u
d,位移数据与参考信号u
d比较后,得到位移误差信号,经过PID控制器输出位移控制电压;
步骤4:在在线补偿控制模块中预设系数矩阵T1和系数矩阵T2,震动加速度通过系数矩阵T2转化为转子在磁轴承电磁力作用位置处的加速度;
系数矩阵T1和系数矩阵T2根据振动加速度安装的轴向几何位置和磁轴承安装轴向几何位置关系得到。
根据转子动力学模型计算各个自由度上电磁铁需要提供的补偿力,再根据系数矩阵T1计算得的磁轴承电磁力作用位置处的实时转子振动位移;
步骤5:计算各个电磁线圈需要通入的补偿电流,再除以功率放大器的放大系数G
A,得到补偿电流所需的控制电压u
2;
控制电压u
2再减去此刻电磁线圈中的控制电流所对应的控制电压,得到所需的补偿控制电压u
1。
优选的,所述直线轴承用于限制限位支座沿转子转动切线上的的位移。
优选的,所述限位支座与所述直线轴承之间设有限位间隙;
在磁悬浮轴承系统的转子上还设有保护轴承,保护轴承的保护间隙小于所述限位间隙,以不影响磁悬浮轴承和保护轴承的正常工作。
优选的,所述干扰力在线补偿控制模块为服务器或MCU控制器。
本实例中,对转子的振幅、振动频率、补偿力大小、补偿力变化率、补偿控制电流大小及变化率等进行评估,根据实时工况控制位移 误差控制通道、补偿控制通道以及应急控制通道的通断。
当磁悬浮轴承系统正常工作时,经典PID控制器输出的位移误差控制通道和补偿控制电压u
1输出的补偿控制通道1接入功率放大器模块。
如图4所示,干扰力在线补偿控制模块首先对转子的静态悬浮效果和抗干扰能力进行评估,优化相关控制参数,然后电机再驱动转子旋转。当发现转子悬浮效果和抗干扰能力较差但尚未失稳时,再对补偿可控性进行评估,如果发现补偿力变化率大于电磁铁能响应的电磁力最大变化率,或补偿力所需要的控制信号期望的电流变化率大于功率放大器能够响应的最大电流变化率时,切断补偿控制通道,若可控则继续优化相关控制参数。
当磁悬浮轴承系统控制失稳后,为了防止位移误差控制加剧转子的振动,干扰力在线补偿控制模块切断经典PID控制器输出的位移误差控制通道,如果工作状态评估模块评估补偿可控,则接入补偿控制电压u
2输出的补偿控制通道2,以快速抑制转子的振动,待工作状态评估模块评估可恢复悬浮时,恢复位移误差控制通道和补偿控制通道1,实现转子再悬浮。
否则,切断补偿控制通道,接入应急控制模块,应急控制模块使磁轴承仅提供沿重力方向的电磁力,以实现转子在保护轴承底部摆动,待工作状态评估发现系统可控后,切断应急控制通道,恢复补偿力控制通道2,进一步抑制转子振动,待工作状态评估模块评估可恢复悬浮时,恢复位移误差控制通道和补偿控制通道1,实现转子再悬浮。
同时设定时间节点,若在设定时间内仍未实现转子再悬浮且转子的振幅未明显减小,切断磁悬浮轴承支撑和电机驱动,让转子在保护轴承支撑下自由降速,以保证系统的安全。
本发明所述的一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,解决了准确检测转子的实时振动加速度,实时快速补偿干扰力,以降低外部干扰力对转子振动位移的影响的技术问题,本发明能稳定、实时补偿转子不平衡离心力,消除不平衡力对转子振动位移的影响,提高转子的位置控制精度,本发明在磁悬浮轴承系统出现失稳后, 可基于转子振动位移和加速度信号选择合适控制策略快速抑制转子振动,实现在不降低转子转速情况下的快速再悬浮。
Claims (4)
- 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,其特征在于:包括如下步骤:步骤1:在磁悬浮轴承系统的转子上设置转子振动加速度在线检测装置,转子振动加速度在线检测装置包括滚珠轴承,滚珠轴承的内圈固设在转子上,滚珠轴承外圈安装在一个轴承座上,加速度传感器设于轴承座上,加速度传感器用于检测轴承座的震动加速度;轴承座上设有四个限位支座,限位支座用于阻止轴承座在滚珠轴承摩擦力矩作用下发生旋转;轴承座的外圈设有基座,基座上设有四个直线轴承,每一个直线轴承均对应一个所述限位支座,直线轴承用于限制限位支座的位移;在磁悬浮轴承系统的转子上设有位移传感器;步骤2:建立干扰力在线补偿控制模块,干扰力在线补偿控制模块获取位移传感器所采集到的位移数据和加速度传感器所采集到的震动加速度数据;步骤3:在在线补偿控制模块中预设一个参考信号u d,位移数据与参考信号u d比较后,得到位移误差信号,经过PID控制器输出位移控制电压;步骤4:在在线补偿控制模块中预设系数矩阵T1和系数矩阵T2,震动加速度通过系数矩阵T2转化为转子在磁轴承电磁力作用位置处的加速度;根据转子动力学模型计算各个自由度上电磁铁需要提供的补偿力,再根据系数矩阵T1计算得的磁轴承电磁力作用位置处的实时转子振动位移;步骤5:计算各个电磁线圈需要通入的补偿电流,再除以功率放大器的放大系数G A,得到补偿电流所需的控制电压u 2;控制电压u 2再减去此刻电磁线圈中的控制电流所对应的控制电压,得到所需的补偿控制电压u 1。
- 如权利要求1所述的一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,其特征在于:所述直线轴承用于限制限位支座沿转子转动切线上的的位移。
- 如权利要求1所述的一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,其特征在于:所述限位支座与所述直线轴承之间设有限位间隙;在磁悬浮轴承系统的转子上还设有保护轴承,保护轴承的保护间隙小于所述限位间隙。
- 如权利要求1所述的一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法,其特征在于:所述干扰力在线补偿控制模块为服务器或MCU控制器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911294130.X | 2019-12-16 | ||
CN201911294130.XA CN110848256B (zh) | 2019-12-16 | 2019-12-16 | 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021121092A1 true WO2021121092A1 (zh) | 2021-06-24 |
Family
ID=69609365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/134809 WO2021121092A1 (zh) | 2019-12-16 | 2020-12-09 | 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110848256B (zh) |
WO (1) | WO2021121092A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113500921A (zh) * | 2021-08-05 | 2021-10-15 | 中车株洲电力机车有限公司 | 一种磁浮列车及其悬浮控制系统、悬浮点振动抑制方法 |
CN115182928A (zh) * | 2022-03-28 | 2022-10-14 | 北方工业大学 | 一种复合轴视轴稳定设备的动力减摩方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110848256B (zh) * | 2019-12-16 | 2021-04-20 | 常州工学院 | 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 |
CN112815007B (zh) * | 2021-03-16 | 2022-02-01 | 华中科技大学 | 磁悬浮轴承系统转子不平衡激励观测与位移振动抑制方法 |
CN113341714B (zh) * | 2021-06-02 | 2022-05-27 | 南京工业大学 | 一种磁悬浮轴承转子控制系统同频干扰的抵消方法 |
CN113653734B (zh) * | 2021-08-11 | 2022-12-06 | 江苏明磁动力科技有限公司 | 一种磁悬浮轴承转子及基座振动抑制试验系统 |
CN113623239B (zh) * | 2021-09-16 | 2024-06-25 | 北京航空航天大学宁波创新研究院 | 一种不平衡磁拉力控制方法、装置、系统、设备和介质 |
CN114135580B (zh) * | 2021-11-04 | 2022-07-26 | 珠海格力电器股份有限公司 | 磁轴承转子的位置评估方法及装置 |
CN115494390B (zh) * | 2022-11-15 | 2023-01-31 | 常州明磁卓控智能科技有限公司 | 一种基于基座加速度信号的磁悬浮电机失稳预诊断方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107584A (ja) * | 2005-10-12 | 2007-04-26 | Matsushita Electric Ind Co Ltd | 磁気軸受装置 |
CN103982544A (zh) * | 2014-05-16 | 2014-08-13 | 常州工学院 | 一种自动消除和恢复保护间隙的径向保护轴承装置 |
CN106122359A (zh) * | 2016-07-01 | 2016-11-16 | 南京航空航天大学 | 基于双闭环控制的磁悬浮平台支承隔振控制结构及方法 |
CN106402157A (zh) * | 2016-11-16 | 2017-02-15 | 常州工学院 | 一种失稳后实现再悬浮的磁悬浮轴承控制系统及其控制方法 |
EP3467338A1 (en) * | 2017-10-09 | 2019-04-10 | Mecos AG | Balancing a rotor in a magnetic bearing device |
CN110848256A (zh) * | 2019-12-16 | 2020-02-28 | 常州工学院 | 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04298419A (ja) * | 1991-03-27 | 1992-10-22 | Seiko Seiki Co Ltd | 搬送装置 |
JP3114091B2 (ja) * | 1997-04-01 | 2000-12-04 | セイコー精機株式会社 | 磁気軸受装置 |
JP2003283010A (ja) * | 2002-03-26 | 2003-10-03 | Ebara Corp | ガスレーザ装置 |
KR100792792B1 (ko) * | 2006-10-26 | 2008-01-14 | 한국기계연구원 | 이중 댐퍼를 갖는 자기베어링 |
DE102008038661A1 (de) * | 2008-08-12 | 2010-02-18 | Wilo Se | Geräuschminimierung von elektromotorisch betriebenen Pumpen |
DE102008060569A1 (de) * | 2008-12-04 | 2010-06-10 | Schaeffler Kg | Lageranordnung mit Magnetlagerabschnitt sowie Verfahren zur Regelung einer oder der Lageranordnung |
CN102425562B (zh) * | 2011-12-05 | 2014-04-30 | 北京中科科仪股份有限公司 | 一种磁悬浮分子泵动平衡方法 |
CN102829116B (zh) * | 2012-08-28 | 2015-01-14 | 清华大学 | 减小磁力轴承系统中基座振动的方法 |
CN105545955B (zh) * | 2016-01-21 | 2017-10-24 | 圣泰科达(北京)技术有限公司 | 一种基于力反馈控制的磁力轴承 |
CN106289208B (zh) * | 2016-09-27 | 2018-01-19 | 北京航空航天大学 | 一种基于非线性自适应算法的磁轴承系统惯性轴辨识方法 |
CN106499730B (zh) * | 2016-11-15 | 2018-07-10 | 常州工学院 | 一种磁悬浮轴承系统短暂失控后能实现再悬浮的控制方法 |
CN207043865U (zh) * | 2017-08-18 | 2018-02-27 | 沈阳建筑大学 | 一种用于机床电主轴的偏心补偿系统 |
CN107727088A (zh) * | 2017-10-13 | 2018-02-23 | 河南工业大学 | 一种基于非线性自适应控制的全主动磁轴承系统惯性轴辨识方法 |
CN109058292B (zh) * | 2018-08-09 | 2019-08-20 | 南京航空航天大学 | 一种新型磁悬浮轴承不平衡振动力直接抑制方法 |
-
2019
- 2019-12-16 CN CN201911294130.XA patent/CN110848256B/zh active Active
-
2020
- 2020-12-09 WO PCT/CN2020/134809 patent/WO2021121092A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107584A (ja) * | 2005-10-12 | 2007-04-26 | Matsushita Electric Ind Co Ltd | 磁気軸受装置 |
CN103982544A (zh) * | 2014-05-16 | 2014-08-13 | 常州工学院 | 一种自动消除和恢复保护间隙的径向保护轴承装置 |
CN106122359A (zh) * | 2016-07-01 | 2016-11-16 | 南京航空航天大学 | 基于双闭环控制的磁悬浮平台支承隔振控制结构及方法 |
CN106402157A (zh) * | 2016-11-16 | 2017-02-15 | 常州工学院 | 一种失稳后实现再悬浮的磁悬浮轴承控制系统及其控制方法 |
EP3467338A1 (en) * | 2017-10-09 | 2019-04-10 | Mecos AG | Balancing a rotor in a magnetic bearing device |
CN110848256A (zh) * | 2019-12-16 | 2020-02-28 | 常州工学院 | 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113500921A (zh) * | 2021-08-05 | 2021-10-15 | 中车株洲电力机车有限公司 | 一种磁浮列车及其悬浮控制系统、悬浮点振动抑制方法 |
CN115182928A (zh) * | 2022-03-28 | 2022-10-14 | 北方工业大学 | 一种复合轴视轴稳定设备的动力减摩方法 |
CN115182928B (zh) * | 2022-03-28 | 2023-08-11 | 北方工业大学 | 一种复合轴视轴稳定设备的动力减摩方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110848256A (zh) | 2020-02-28 |
CN110848256B (zh) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021121092A1 (zh) | 一种磁悬浮轴承系统中转子所受干扰力实时补偿的方法 | |
CN108716471B (zh) | 一种磁悬浮分子泵转子极小位移主动控制方法 | |
US7812493B2 (en) | Spindle apparatus | |
US5313399A (en) | Adaptive synchronous vibration suppression apparatus | |
JP6351400B2 (ja) | 改良された能動型磁気軸受制御システム | |
KR100987564B1 (ko) | 인덱싱 장치 | |
CN102425553B (zh) | 磁悬浮分子泵的转子悬浮中心测定方法 | |
CN102242722B (zh) | 一种磁悬浮分子泵及其控制方法、制造方法 | |
JP2012251486A (ja) | 磁気浮上式真空ポンプ、振れまわり推定方法、ロータバランス検査方法および磁気軸受制御ゲイン調整方法 | |
Sun et al. | Disturbance force self-sensing and suppression method for AMB-rotor system based on disturbance observer | |
EP2006556B1 (en) | Recovery of impact in a magnetic bearing device | |
CN102410238B (zh) | 一种磁悬浮分子泵升速过程中的平稳控制方法 | |
CN105545955A (zh) | 一种基于力反馈控制的磁力轴承 | |
CN1528548A (zh) | 工业应用型主动磁悬浮机床电主轴 | |
CN102425559B (zh) | 一种磁悬浮分子泵降速过程中的平稳控制方法 | |
CN117404389A (zh) | 一种磁悬浮径向轴承磁力参数在线辨识方法 | |
TWI835208B (zh) | 動平衡監控系統及其監控方法 | |
CN207043865U (zh) | 一种用于机床电主轴的偏心补偿系统 | |
CN113659911A (zh) | 一种磁悬浮轴承系统中转子振动抑制系统及方法 | |
JP3395170B2 (ja) | スラスト磁気軸受の制御装置及び方法 | |
Kruger et al. | Control of magnetically suspended rotor combined with motor drive system | |
CN108414147B (zh) | 一种考虑气隙不平衡的电主轴在线自适应主动平衡方法 | |
JP2000343379A (ja) | 主軸ヘッド制御装置 | |
Chao et al. | A Novel Low‐Torque Ball Re‐Positioning Scheme Based on a Sliding‐Mode Ball Observer for an Automatic Balancer System | |
CN118578197B (zh) | 一种振动智能抑制系统及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20902587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20902587 Country of ref document: EP Kind code of ref document: A1 |