CN210721158U - 自供电的转轴振动主动控制系统 - Google Patents

自供电的转轴振动主动控制系统 Download PDF

Info

Publication number
CN210721158U
CN210721158U CN201921917264.8U CN201921917264U CN210721158U CN 210721158 U CN210721158 U CN 210721158U CN 201921917264 U CN201921917264 U CN 201921917264U CN 210721158 U CN210721158 U CN 210721158U
Authority
CN
China
Prior art keywords
vibration
control system
self
active control
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921917264.8U
Other languages
English (en)
Inventor
刘金鑫
张骞
乔百杰
杨亮东
陈雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201921917264.8U priority Critical patent/CN210721158U/zh
Application granted granted Critical
Publication of CN210721158U publication Critical patent/CN210721158U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

公开了自供电的转轴振动主动控制系统,自供电的转轴振动主动控制系统中,内壳体固定连接转轴,第一端盖可转动连接内壳体,第二端盖可转动连接内壳体,外壳体固定连接第一端盖和第二端盖,永磁体固定连接外壳体,线圈架固定安装于内壳体,励磁线圈缠绕于线圈架与永磁体产生相对运动以产生电能,加速度传感器固定连转轴以实时测量转轴的振动信号,弹性元件固定连接转轴,作动器固定连接弹性元件使得施加的作用力经由弹性元件作用于转轴,控制器电连接励磁线圈,所述控制器连接加速度传感器和作动器,功率放大器电连接于所述控制器以放大所述控制信号。

Description

自供电的转轴振动主动控制系统
技术领域
本实用新型涉及主动控制技术领域,特别是一种自供电的转轴振动主动控制系统。
背景技术
随着科学技术的迅猛发展,机械工业化的程度也飞速提高,现代工业生产的机械设备正逐步走向复杂化、高速化、自动化。精密的工业生产过程越来越依赖于电机和相关机械设备高效可靠、安全平稳的运作。机械振动对于大多数的工业机械/工程结构及仪器仪表是有害的,它常常是造成机械和结构恶性破坏和失效的直接原因,例如1940年美国的Tacoma Narrows吊桥在中速风载下,因卡门漩涡引起桥身扭转振动和上下振动而坍塌。1972年日本海南电厂的一台66万千瓦汽轮发电机组,在试车中因发生异常振动而全机毁坏,长达51米的主轴断裂飞散,联轴节及汽轮机叶片穿透厂房飞落至百米之外。
旋转机械是电力工业重要的组成部分,转子系统是其关键部件。为了防止旋转机械由振动而产生的疲劳、噪声和故障等问题,需要对转子系统的振动进行控制,实际上在各类旋转机械的转子系统上都采用了各种各样的被动抑振措施。随着现代旋转机械参数的不断提高,生产上对降低转子系统的振动,提高机组稳定性的要求与日俱增。通常人们采用诸如改进设计水平、提高制造精度及吸振隔振等手段来抑制转子的振动,实践证明收效有限,振动事故仍层出不穷,造成巨大的经济损失,因此振动主动控制技术日益收到关注和重视。随着计算机、控制理论和电子技术的发展,振动主动控制技术发展迅速,应用日广,振动主动控制较被动控制精度更高,控制更灵活,减振效果更好、适应性更强、低频控制效果好。
目前关于转子系统振动主动控制方法的研究研究时间较短,相关成果较少,且大部分的的研究多偏重于理论研究,对这种控制系统的物理实现技术研究较少,目前常见的转轴振动主动控制物理实现技术主要是将传感器安装在固定转轴的支撑件上,通过将检测到的支撑件振动信号输送给控制器,控制器对转轴的振动数据进行分析处理产生控制信号,传递给作动器产生作动力,来控制转轴的振动,这种方式虽然能够在一定程度上实现转轴振动的主动控制,但是由于是一种间接测量控制的方式,时滞较大,控制效果不是很好,测量精度受支撑件刚度的影响较大,且系统结构复杂,拆装困难,成本高,实用性较差,适用范围较窄。
在背景技术部分中公开的上述信息仅仅用于增强对本实用新型背景的理解,因此可能包含不构成本领域普通技术人员公知的现有技术的信息。
实用新型内容
为了上述问题,本实用新型提供了自供电的转轴振动主动控制系统,整个系统可根据实际需要选择较为合适的安装方式,安装和拆卸方便,直接安装在转轴上即可发挥作用,对转轴振动信号的检测和处理速度快,抑制效果好,能有效解决传统的转轴振动主动控制系统中存在的设备安装复杂,需要外部电源供电,布线困难,信号检测误差大,处理时间长,时滞大,振动抑制效果差等问题,能够很好的实现转轴径向振动的主动控制。本实用新型的目的是通过以下技术方案予以实现。
一种自供电的转轴振动主动控制系统包括,
内壳体,其固定连接转轴,
第一端盖,其可转动连接内壳体,
第二端盖,其可转动连接内壳体,
外壳体,其固定连接第一端盖和第二端盖,
永磁体,其固定连接所述外壳体,
线圈架,其固定安装于所述内壳体,
励磁线圈,其缠绕于所述线圈架与所述永磁体产生相对运动以产生电能,
加速度传感器,其固定连所述转轴以实时测量所述转轴的振动信号,
弹性元件,其固定连接所述转轴,
作动器,其固定连接所述弹性元件使得施加的作用力经由弹性元件作用于转轴,
控制器,其电连接励磁线圈,所述控制器连接加速度传感器和作动器,
功率放大器,其电连接于所述控制器以放大所述控制信号。
所述的自供电的转轴振动主动控制系统中,第一轴承和第二轴承的外端分别通过第一端盖和第二端盖固定,第一轴承的内侧通过内壳体的轴肩固定,第二轴承的内侧通过轴承固定轴套固定于内壳体,永磁体经由第一端盖和外壳体夹紧。
所述的自供电的转轴振动主动控制系统中,所述主动控制系统还包括,
作动器盖板,其设在所述作动器上,
预紧螺栓,其设在所述作动器盖板以调节所述弹性元件的预紧力。
所述的自供电的转轴振动主动控制系统中,所述主动控制系统还包括,
风扇,其固定在内壳体上,
进气口,其设在所述第二端盖上,
出气口,其设在所述第一端盖上。
所述的自供电的转轴振动主动控制系统中,作动器包括六个压电叠层作动器,其在圆周方向上的夹角为60°。
所述的自供电的转轴振动主动控制系统中,所述加速度传感器包括压电式加速度传感器,所述弹性元件包括叠层弹簧,所述作动器包括压电叠层作动器。
所述的自供电的转轴振动主动控制系统中,加速度传感器包括安装在内壳体表面上靠近第一滚动轴承的位置处的第一加速度传感器和第二加速度传感器,两个传感器在圆周方向上呈90°夹角。
所述的自供电的转轴振动主动控制系统中,传感器固定安装在所述内壳体上,作动器固定安装在所述叠层弹簧上,随转轴一同旋转。
所述的自供电的转轴振动主动控制系统中,所述控制器包括对比转轴振动主动控制前后的波形图以修正控制信号的修正单元。
所述的自供电的转轴振动主动控制系统中,所述内壳体设有支撑作动器盖板的凸起。
与现有技术相比,本实用新型的有益效果是:
整个系统结构简单,安装和拆卸方便,工作可靠,实用性好,适用范围广;转轴开始旋转,本实用新型的一种自供电的转轴振动主动控制系统便开始工作,消除转轴径向振动;整个转轴径向振动主动控制系统均随转轴同步转动,振动信号测量误差小,测量结果准确,控制器处理耗时短,执行器响应速度快,控制系统时滞小,能较好的实现转轴径向振动的主动控制。
上述说明仅是本实用新型技术方案的概述,为了能够使得本实用新型的技术手段更加清楚明白,达到本领域技术人员可依照说明书的内容予以实施的程度,并且为了能够让本实用新型的上述和其它目的、特征和优点能够更明显易懂,下面以本实用新型的具体实施方式进行举例说明。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本实用新型各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本实用新型的限制。显而易见地,下面描述的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。
在附图中:
图1是根据本实用新型一个实施例的自供电的转轴振动主动控制系统的结构示意图。
以下结合附图和实施例对本实用新型作进一步的解释。
具体实施方式
下面将参照附图1更详细地描述本实用新型的具体实施例。虽然附图中显示了本实用新型的具体实施例,然而应当理解,可以以各种形式实现本实用新型而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本实用新型,并且能够将本实用新型的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本实用新型的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本实用新型的范围。本实用新型的保护范围当视所附权利要求所界定者为准。
为便于对本实用新型实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明,且各个附图并不构成对本实用新型实施例的限定。
为了更好地理解,如图1所示,一种自供电的转轴振动主动控制系统包括,内壳体201,其固定连接转轴1,
第一端盖202,其可转动连接内壳体201,
第二端盖204,其可转动连接内壳体201,
外壳体207,其固定连接第一端盖202和第二端盖204,
永磁体303,其固定连接所述外壳体207,
线圈架301,其固定安装于所述内壳体201,
励磁线圈302,其缠绕于所述线圈架301与所述永磁体303产生相对运动以产生电能,
加速度传感器401,其固定连所述转轴1以实时测量所述转轴1的振动信号,弹性元件407,其固定连接所述转轴1,
作动器405,其固定连接所述弹性元件407使得施加的作用力经由弹性元件407作用于转轴1,
控制器403,其电连接励磁线圈302,
功率放大器404,其电连接于所述控制器403以放大所述控制信号,其中,
响应于所述振动信号,控制器403分析处理振动信号以形成控制信号,
响应于所述控制信号,作动器405施加作用力经由弹性元件407作用于转轴1以主动控制转轴1的径向振动。
所述的自供电的转轴振动主动控制系统的优选实施方式中,第一轴承和第二轴承的外端分别通过第一端盖202和第二端盖204固定,第一轴承的内侧通过内壳体201的轴肩固定,第二轴承的内侧通过轴承固定轴套固定于内壳体201,永磁体303经由第一端盖202和外壳体207夹紧。
所述的自供电的转轴振动主动控制系统的优选实施方式中,所述主动控制系统还包括,
作动器盖板402,其设在所述作动器405上,
预紧螺栓406,其设在所述作动器盖板以调节所述弹性元件407的预紧力。
所述的自供电的转轴振动主动控制系统的优选实施方式中,所述主动控制系统还包括,
风扇602,其固定在内壳体201上,
进气口601,其设在所述第二端盖204上,
出气口603,其设在所述第一端盖202上。
所述的自供电的转轴振动主动控制系统的优选实施方式中,作动器405包括六个压电叠层作动器405,其在圆周方向上的夹角为60°。
所述的自供电的转轴振动主动控制系统的优选实施方式中,所述加速度传感器401包括压电式加速度传感器401,所述弹性元件407包括叠层弹簧,所述作动器405包括压电叠层作动器405。
所述的自供电的转轴振动主动控制系统的优选实施方式中,加速度传感器401包括安装在内壳体201表面上靠近第一滚动轴承203的位置处的第一加速度传感器401和第二加速度传感器401,两个传感器在圆周方向上呈90°夹角。
所述的自供电的转轴振动主动控制系统的优选实施方式中,传感器401固定安装在所述内壳体201上,作动器405固定安装在所述弹性元件407上,随转轴1一同旋转。
所述的自供电的转轴振动主动控制系统的优选实施方式中,所述控制器403对比转轴振动主动控制前后的波形图以修正控制信号。
所述的自供电的转轴振动主动控制系统的优选实施方式中,用于定位的第一套筒501和第二套筒502设置在内壳体201和外壳体207之间。
所述的自供电的转轴振动主动控制系统的优选实施方式中,所述内壳体201设有支撑作动器盖板402的凸起。
为了进一步理解本实用新型,在一个实施例中,一种自供电集成式轴系径向振动主动控制系统由转轴1壳体部分,电源组件,振动主动控制组件,散热部分和若干联接固定件组成。壳体部分主要由第一端盖202,外壳体207,第一滚动轴承203,内壳体201,第二内壳体206,第二端盖204,第二滚动轴承205等组成,用以安装和固定系统的其他部分。内壳体201、第二内壳体206可以通过键和螺栓或者过盈配合等方式联接固定在转轴1上,随转轴1一起做同步转动;外壳体207的一端与内壳体201之间装有第一滚动轴承203,另一端与第二内壳体206之间装有第二滚动轴承205,用以实现外壳体204与内壳体201、第二内壳体206间的相对运动;第一滚动轴承203和第二滚动轴承205均采用两端单向固定的结构形式安装,轴承外端通过第一端盖202和第二端盖204固定,第一滚动轴承203内侧通过内壳体201上的轴肩进行固定,第二滚动轴承205内侧通过轴承固定轴套502固定;电源组件主要由永磁体303和励磁线圈302组成,利用电磁感应原理产生电能,给整个系统供电。永磁体303通过第一端盖202和外壳体207实现定位和夹紧,线圈架301安装并固定在内壳体201上,励磁线圈302缠绕在线圈架301上。转轴1转动过程中,励磁线圈302与永磁体303产生相对运动,切割磁感线产生电能;振动主动控制组件主要由振动主动控制组件壳体402,压电式加速度传感器401,控制器403,功率放大器404,叠层弹簧407,压电叠层作动器405,预紧螺钉406等几部分组成,随转轴1一起转动,压电式加速度传感器401检测转轴1的振动,并将振动信号传至控制器403,控制器403对传入的振动信号进行快速处理,并将其转化为控制信号输出至功率放大器404,经功率放大器404放大后输出至压电叠层作动器405,压电叠层作动器405产生作动力,从而抑制转轴1的径向振动,使转轴1转动趋向平稳;联接固定件主要由套筒1501、套筒2502和一些螺栓联接件组成,主要用来实现系统中一些部件的定位和固定等;散热部分主要由进气孔601,风扇602和散热孔603等组成,风扇602通过键和螺栓等安装在内壳体201上,转轴1旋转过程中,风扇602随转轴1一起旋转,将由进气口601进入的冷空气经系统内部送至散热孔603,通过散热孔将系统内部的热空气排出到系统外,实现系统的散热。
在一个实施例中,振动主动控制组件均过盈配合在转轴1上,并随转轴1做同步转动,转轴1振动信号的检测和处理过程时滞小,系统响应快,能更好的实现转轴1振动的主动控制。
在一个实施例中,整个系统所需的电能由系统内部产生,为振动主动控制部件安装在转轴1上,快速对转轴1的振动作出反应提供了一种实现途径,使整个系统结构得以大大简化,避免了在运动部件和静止部件间布线难的问题,且有利于能源的高效利用,作用效果显著。
在一个实施例中,振动主动控制系统组件中的压电式加速度传感器401共有两个,安装在系统内壳体201上靠近第一滚动轴承203的位置,在圆周方向上成90°排列,随转轴1做同步转动,用于实时检测转轴1的径向振动,并将振动信号快速的传递至控制器403。
在一个实施例中,振动主动控制组件的压电叠层作动器405有六个,通过弹性元件407直接安装在转轴1上,径向成60°排列;在压电叠层作动器405的外侧设置有预紧螺钉406,用于固定压电叠层作动器405并对其施加一定的预紧力;在压电叠层作动器405的外侧设置有环形叠层弹簧407,用于将作动器405产生的作动力传递至转轴1。
在一个实施例中,压电式加速度传感器401安装在系统内壳体201上靠近第一滚动轴承203的位置,该处检测到的转轴1振动信号干扰因素少,测量效果较好。
在一个实施例中,压电叠层作动器405安装在叠层弹簧407上,叠层弹簧407直接安装在转轴1上,压电叠层作动器405产生的作动力可以通过叠层弹簧407直接作用于转轴1,用以快速高效的实现转轴1的振动主动控制。
在一个实施例中,整个系统是直接套装在转轴1上的,安装拆卸方便,适应性强,作用效果好。
在一个实施例中,电源部分主要由线圈架301,永磁体303和励磁线圈302组成,利用电磁感应原理为整个系统提供电能,且由于永磁体303和励磁线圈302在产生电能的同时均受到来自对方的安培力作用,虽然会在一定程度上削弱其相对运动趋势,但同时也会在一定程度上削弱甚至消除转轴1的扭转振动。
优选的,所述的一种自供电集成式轴系径向振动主动控制系统可根据具体工作需要,通过螺栓联接、过盈配合、焊接、铆接或其他方式直接安装在转轴1上即可使用。
所述的壳体部分主要由第一端盖202,外壳体207,第一滚动轴承203,内壳体201,第二内壳体206201,第二端盖204,第二滚动轴承205等组成,是整个系统的骨架部分,用以安装和固定系统的其他部分。
优选的,所述壳体部分的内壳体201、第二内壳体206均采用紧配合的方式联接固定在所述转轴1上,随转轴1同步转动。
优选的,所述壳体部分的外壳体207一端与内壳体201之间装有第一滚动轴承203,另一端与第二内壳体206之间装有第二滚动轴承205,用以实现外壳体207与内壳体201、第二内壳体206间的相对运动;第一滚动轴承203和第二滚动轴承205均采用两端单向固定的结构形式安装,轴承外端通过第一端盖202和第二端盖204固定,第一滚动轴承203内侧通过内壳体201上的轴肩进行固定,第二滚动轴承205内侧通过轴承固定轴套固定。
优选的,所述电源组件主要由永磁体303和励磁线圈302组成,利用电磁感应原理产生电能,给整个系统供电。所述电源组件的永磁体303通过第一端盖202和外壳体207实现定位和夹紧,线圈架301安装并固定在内壳体201上,励磁线圈302缠绕在线圈架301上。转轴1转动过程中,励磁线圈302与永磁体303产生相对运动,切割磁感线产生电能。
优选的,所述振动主动控制组件主要由振动主动控制组件壳体402,压电式加速度传感器401,控制器403,功率放大器404,叠层弹簧407,压电叠层作动器405,预紧螺钉等几部分组成,随转轴1一起转动,压电式加速度传感器401检测转轴1的振动,并将振动信号传至控制器403,控制器403对传入的振动信号进行快速处理,并将其转化为控制信号输出至功率放大器404,经功率放大器404放大后输出至压电叠层作动器405,压电叠层作动器405产生作动力,从而抑制转轴1的径向振动,使转轴1转动趋向平稳。
所述的散热部分主要由进气孔601,风扇602和散热孔603等组成,所述散热部分的风扇602通过键和螺栓等安装在内壳体201上,转轴1旋转过程中,风扇602随转轴1一起旋转,将由进气口601进入的冷空气经系统内部送至散热孔603,通过散热孔603将系统内部的热空气排出到系统外,实现系统的散热。
所述的一种自供电集成式轴系径向振动主动控制系统,其工作过程及原理如下:
将所述的一种自供电集成式轴系径向振动主动控制系统直接安装在转轴1上,具体安装方式可根据实际情况进行选择,如螺纹联接、过盈配合联接、焊接、铆接等方式;
转轴1转动过程中,所述的一种自供电集成式轴系径向振动主动控制系统中的压电式加速度传感器401检测转轴1的径向振动,并将振动信号传递至控制器403,控制器403对振动信号进行分析处理生成控制信号,经功率放大器404的放大作用传递至压电叠层作动器405,对转轴1的径向振动做出反馈,以减小甚至消除转轴1振动。
优选的,所述自供电集成式轴系径向振动主动控制系统内部有电源组件,无需外部供电,可直接将转轴1转动过程中由于振动产生的机械能转化为电能,为振动主动控制系统供电,可以节约能源,避免了在运动部件和静止部件间布线引发的各种问题,且由于电流的磁效应,可以在一定程度上削弱转轴1转动过程中的扭振现象;
优选的,所述振动主动控制组件中的压电式加速度传感器401共有两个,安装在所述壳体部分的内壳体201上,径向成90°排列,用于检测转轴1的径向振动,并将检测到的振动信号传递至控制器403;
优选的,所述振动主动控制组件中的压电叠层作动器405共有6个,在叠层弹簧407上均匀分布,用以接收控制器403经功率放大器404传来的控制信号,对转轴1的径向振动进行反馈;
进一步优选的,所述轴系径向振动主动控制系统的压电式加速度传感器401,控制器403,功率放大器404,压电叠层作动器405均直接安装在转轴1上,随转轴1一同旋转,信号传输过程中时滞小,传输速度快,响应快,控制效果好;
优选的,所述散热部分风扇602直接安装在转轴1上,无需外接电源,主要用于对转轴1径向振动主动控制系统中的发热部件及时散热,结构简单,散热效果好。
工业实用性
本实用新型所述的自供电的转轴振动主动控制系统可以在振动控制领域制造并使用。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (10)

1.一种自供电的转轴振动主动控制系统,其特征在于,其包括,
内壳体,其固定连接转轴,
第一端盖,其可转动连接内壳体,
第二端盖,其可转动连接内壳体,
外壳体,其固定连接第一端盖和第二端盖,
永磁体,其固定连接所述外壳体,
线圈架,其固定安装于所述内壳体,
励磁线圈,其缠绕于所述线圈架与所述永磁体产生相对运动以产生电能,
加速度传感器,其固定连所述转轴以实时测量所述转轴的振动信号,
弹性元件,其固定连接所述转轴,
作动器,其固定连接所述弹性元件使得施加的作用力经由弹性元件作用于转轴,
控制器,其电连接励磁线圈,所述控制器连接加速度传感器和作动器,
功率放大器,其电连接于所述控制器。
2.如权利要求1所述的自供电的转轴振动主动控制系统,其中,第一轴承和第二轴承的外端分别通过第一端盖和第二端盖固定,第一轴承的内侧通过内壳体的轴肩固定,第二轴承的内侧通过轴承固定轴套固定于内壳体,永磁体经由第一端盖和外壳体夹紧。
3.如权利要求1所述的自供电的转轴振动主动控制系统,其中,所述主动控制系统还包括,
作动器盖板,其设在所述作动器上,
预紧螺栓,其设在所述作动器盖板以调节所述弹性元件的预紧力。
4.如权利要求2所述的自供电的转轴振动主动控制系统,其中,所述主动控制系统还包括,
风扇,其固定在内壳体上,
进气口,其设在所述第二端盖上,
出气口,其设在所述第一端盖上。
5.如权利要求1所述的自供电的转轴振动主动控制系统,其中,作动器包括六个压电叠层作动器,其在圆周方向上的夹角为60°。
6.如权利要求2所述的自供电的转轴振动主动控制系统,其中,所述加速度传感器包括压电式加速度传感器,所述弹性元件包括叠层弹簧,所述作动器包括压电叠层作动器。
7.如权利要求2所述的自供电的转轴振动主动控制系统,其中,加速度传感器包括安装在内壳体表面上靠近第一滚动轴承的位置处的第一加速度传感器和第二加速度传感器,两个传感器在圆周方向上呈90°夹角。
8.如权利要求6所述的自供电的转轴振动主动控制系统,其中,传感器固定安装在所述内壳体上,作动器固定安装在所述叠层弹簧上,随转轴一同旋转。
9.如权利要求1所述的自供电的转轴振动主动控制系统,其中,所述控制器包括对比转轴振动主动控制前后的波形图以修正控制信号的修正单元。
10.如权利要求3所述的自供电的转轴振动主动控制系统,其中,所述内壳体设有支撑作动器盖板的凸起。
CN201921917264.8U 2019-11-07 2019-11-07 自供电的转轴振动主动控制系统 Active CN210721158U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921917264.8U CN210721158U (zh) 2019-11-07 2019-11-07 自供电的转轴振动主动控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921917264.8U CN210721158U (zh) 2019-11-07 2019-11-07 自供电的转轴振动主动控制系统

Publications (1)

Publication Number Publication Date
CN210721158U true CN210721158U (zh) 2020-06-09

Family

ID=70925691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921917264.8U Active CN210721158U (zh) 2019-11-07 2019-11-07 自供电的转轴振动主动控制系统

Country Status (1)

Country Link
CN (1) CN210721158U (zh)

Similar Documents

Publication Publication Date Title
CN110805643B (zh) 自供电的转轴振动主动控制系统及主动控制方法
CN103115724B (zh) 一种高速电主轴的在线动平衡补偿装置及其补偿方法
US10050579B2 (en) Damped bearing of a rotor shaft
Munteanu et al. Five-axis magnetic suspension with two conical air gap bearingless PM synchronous half-motors
EP2237398A1 (en) Method and arrangement to adjust an air-gap
CN105526180A (zh) 磁悬浮复合分子泵
CN111537910B (zh) 基于振动信号的定子绕组匝间短路故障诊断方法与装置
US10027189B2 (en) Electric rotating machine
EP2199641B1 (en) Eddy current torsional damper for generator
EP3568602A1 (en) Active radial magnetic bearing assembly with internal sensors
CN203856517U (zh) 一种可以测量动静间隙的汽轮机内缸
CN210721158U (zh) 自供电的转轴振动主动控制系统
US20200200215A1 (en) Fractal structure for power-generation of bearing rotating vibration
CN108827655A (zh) 永磁同步电机直驱的外转子底盘测功机
CN107359814B (zh) 一种旋转式压电风力发电机
CN110850903B (zh) 转轴径向振动主动控制系统及主动控制方法
CN210721159U (zh) 转轴径向振动主动控制系统
JP2020133511A (ja) 回転電機機械、発電機及び風力発電設備
CN205453457U (zh) 一种具有耦合、离合及调速功能的磁力传动装置
CN208887939U (zh) 永磁同步电机直驱的外转子底盘测功机
CN114458732A (zh) 一种应用于转子系统扭振抑制的间隙型非线性能量阱
Li et al. Dynamic characteristics analysis of permanent magnet grinding electric spindle rotor system under eccentricity failure and stiffness failure
JP7130258B2 (ja) 電気機械システム
Zhang et al. Rotor Mechanics Behavior Characteristics for Diagnosis SAGE Fault in PMSG with Load Change
CN109495018A (zh) 压电条单元压电发电机

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant