WO2021120784A1 - 多联机空调系统 - Google Patents

多联机空调系统 Download PDF

Info

Publication number
WO2021120784A1
WO2021120784A1 PCT/CN2020/119155 CN2020119155W WO2021120784A1 WO 2021120784 A1 WO2021120784 A1 WO 2021120784A1 CN 2020119155 W CN2020119155 W CN 2020119155W WO 2021120784 A1 WO2021120784 A1 WO 2021120784A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
refrigerant
liquid
component
liquid containing
Prior art date
Application number
PCT/CN2020/119155
Other languages
English (en)
French (fr)
Inventor
崔国栋
王海胜
柴庆伦
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021120784A1 publication Critical patent/WO2021120784A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of multi-line air conditioners, and specifically provides a multi-line air conditioner system.
  • Multi-line air conditioning systems are currently commonly used equipment capable of cooling/heating indoors, and are widely used in office buildings, shopping malls, and so on.
  • An electronic expansion valve is installed on the indoor side of the multi-line system. No matter when the multi-line air conditioning system executes indoor cooling mode, heating mode or heating standby, the refrigerant will generate noise due to throttling when passing through the electronic expansion valve. Because the refrigerant pressure is not uniformly distributed and the refrigerant entering the electronic expansion valve is not all caused by the liquid phase, this phenomenon will cause certain troubles to users who are sensitive to sound and affect the user's experience.
  • the present invention provides A multi-line air-conditioning system.
  • the multi-line air-conditioning system includes an outdoor unit and a plurality of indoor units.
  • Each indoor unit includes a liquid containing component, a heat exchange component, an electronic expansion valve, and a plurality of indoor coils.
  • the first connecting tube is connected to one of the liquid containing component and the heat exchange component
  • the outdoor unit is connected to the other of the liquid containing component and the heat exchange component through the second connecting tube.
  • the two ends of the electronic expansion valve are respectively connected to the container.
  • the liquid component and the heat exchange component are connected, and at least a part of the heat exchange component is disposed in the liquid containing component, so that the refrigerant in the heat exchange component and the refrigerant in the liquid containing component exchange heat.
  • a plurality of liquid distribution joints are provided on the liquid-containing component, and the number of the liquid distribution joints is greater than or equal to the number of indoor coils, and each indoor coil passes through a corresponding first connection.
  • the machine tube is connected with a liquid distribution joint, and the outdoor unit is connected with the heat exchange component through the second connecting machine tube.
  • the heat exchange component includes at least one heat exchange element connected to the electronic expansion valve, at least one heat exchange element is connected to the outdoor unit through the second connecting tube, and at least a part of the heat exchange element Set in the liquid containing member.
  • the heat exchange element is a heat exchange coil.
  • the heat exchange component includes a plurality of heat exchange components connected with the electronic expansion valve, at least a part of each heat exchange component is arranged in the liquid containing component, and the number of heat exchange components is the same as that of the room.
  • the number of the coils corresponds to one by one.
  • Each indoor coil is connected to the corresponding heat exchange element through the corresponding first connecting tube, and the outdoor unit is connected to the liquid containing component through the second connecting tube.
  • a part of the heat exchange parts are all arranged in the liquid-containing component, and the other part of the heat exchange parts are partly arranged in the liquid-containing component.
  • the heat exchange element is a heat exchange coil.
  • the liquid containing component is a liquid containing box.
  • the liquid-containing component has a liquid-separating effect, that is, the refrigerant can be distributed to different indoor coils through the liquid-containing component.
  • the indoor unit is cooled, the outdoor unit
  • the refrigerant passes through the heat exchange component, the electronic expansion valve and the liquid containing component in turn, and the refrigerant in the heat exchange component is further cooled by the refrigerant in the liquid containing component, so that all the refrigerant entering the electronic expansion valve is in the liquid phase, thereby making
  • the refrigerant passes through the electronic expansion valve, the flow rate is low and the state is stable, reducing the flow sound of the refrigerant.
  • the refrigerant in each indoor coil passes through the liquid containing component, the electronic expansion valve and the heat exchange component in turn, and passes through the exchange.
  • the refrigerant in the thermal component further cools the refrigerant in the liquid-containing component, so that all the refrigerant entering the electronic expansion valve is in the liquid phase, so that the flow rate of the refrigerant is low and the state is stable when the refrigerant passes through the electronic expansion valve, reducing the sound of the refrigerant flowing, and also That is to say, whether the indoor unit is in cooling mode, heating mode or heating standby mode, it can reduce the sound of refrigerant flowing through the electronic expansion valve, which can reduce noise and avoid troubles for users who are sensitive to sound. Improve the user experience.
  • the heat exchange component includes a plurality of heat exchange components connected to the electronic expansion valve, at least a part of each heat exchange component is arranged in the liquid containing component, and the number of heat exchange components corresponds to the number of indoor coils one-to-one.
  • Each indoor coil is connected to the corresponding heat exchange part through the corresponding first connecting tube, and the outdoor unit is connected to the liquid containing component through the second connecting tube, that is, the liquid is separated through different heat exchange parts.
  • the refrigerant of the outdoor unit passes through the liquid-containing component, the electronic expansion valve and the heat exchange component corresponding to each indoor coil in turn, and the refrigerant in the liquid-containing component is further cooled by the refrigerant in the heat exchange component, so that it enters
  • the refrigerant in the electronic expansion valve is all in the liquid phase, so that when the refrigerant passes through the electronic expansion valve, the flow rate is low and the state is stable, reducing the flow sound of the refrigerant.
  • the refrigerant of each indoor coil passes through the corresponding The heat exchanger, the electronic expansion valve and the liquid-containing component, and the refrigerant in the heat-exchange component is further cooled by the refrigerant in the liquid-containing component, so that the refrigerant entering the electronic expansion valve is all in the liquid phase, and the refrigerant is expanded through the electrons
  • the valve has a low flow rate and a stable state, which reduces the sound of refrigerant flowing. That is to say, whether the indoor unit is in cooling mode, heating mode or heating standby, it can reduce the sound of refrigerant flowing through the electronic expansion valve. For the purpose of noise reduction, it avoids troubles for users who are sensitive to sound and enhances the user experience.
  • Fig. 1 is a schematic structural diagram of Embodiment 1 of a multi-connected air-conditioning system of the present invention
  • Fig. 2 is a schematic structural diagram of the second embodiment of the multi-connected air-conditioning system of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the present invention provides a multi-line air-conditioning system
  • the refrigerant on the downstream side of the electronic expansion valve can be used to cool the refrigerant on the upstream side of the electronic expansion valve.
  • the refrigerant of the electronic expansion valve is all liquid, so that the flow rate of the refrigerant is low and the state is stable when passing through the electronic expansion valve, reducing the sound of the refrigerant flowing, achieving the purpose of noise reduction, avoiding troubles for sound-sensitive users, and improving user experience.
  • the multi-line air conditioning system of the present invention includes an outdoor unit and a plurality of indoor units.
  • Each indoor unit includes a liquid containing component, a heat exchange component, an electronic expansion valve, and a plurality of indoor coils, and each indoor coil passes
  • the first connecting tube is connected to one of the liquid containing component and the heat exchange component
  • the outdoor unit is connected to the other of the liquid containing component and the heat exchange component through the second connecting tube
  • the two ends of the electronic expansion valve are respectively connected to the liquid containing component.
  • the component and the heat exchange component are connected, and at least a part of the heat exchange component is arranged in the liquid containing component, so that the refrigerant in the heat exchange component and the refrigerant in the liquid containing component exchange heat.
  • the outdoor unit When each indoor coil is connected to the liquid containing component through the first connecting pipe, the outdoor unit is connected to the heat exchange component through the second connecting pipe, and when each indoor coil is connected to the heat exchange component through the first connecting pipe When the components are connected, the outdoor unit is connected to the liquid containing component through the second connecting pipe.
  • the liquid containing member may be a containing box, or a containing box, or a containing groove formed on the indoor cabinet. Those skilled in the art can flexibly set the specific structure of the liquid containing member in practical applications. It should be noted that the multi-line air-conditioning system includes multiple indoor units, and each indoor unit includes multiple indoor coils. When all the indoor coils of each indoor unit are connected to the liquid-containing component, the liquid-containing component is equipped with liquid separation.
  • the heat exchange component has the function of liquid separation. Through liquid separation, the refrigerant can be distributed to each indoor coil of each indoor unit, and the heat exchange efficiency of the indoor coil can be improved.
  • the liquid containing member 3 is provided with a plurality of taps 7 and the number of taps 7 is greater than or equal to the number of the indoor coil 1 (only one indoor coil of an indoor unit is shown in Figure 1 1)
  • Each indoor coil 1 is connected to a liquid distribution joint 7 through a corresponding first connecting pipe 5, and an outdoor unit (not shown in the figure) is connected to a heat exchange member through a second connecting pipe 6.
  • the liquid-containing member 3 has a liquid-dispensing function.
  • the example shown in FIG. 1 is that the liquid-containing member 3 is provided with three liquid-dispensing joints 7; The number of indoor coils 1 can ensure that each indoor coil 1 can be individually connected to a tapping joint 7.
  • the extra tapping joint 7 can be used as Spare connector.
  • the heat exchange components may be all arranged in the liquid containing member 3, or part of the heat exchange components may be arranged in the liquid containing member 3.
  • the refrigerant of the outdoor unit enters the heat exchange component through the second connecting pipe 6, and the refrigerant in the heat exchange component enters the liquid containing component 3 through the electronic expansion valve 2 due to the electronic expansion valve 2
  • the throttling effect makes the temperature of the refrigerant in the liquid-containing component 3 lower than the temperature of the refrigerant in the heat exchange component, so that the refrigerant in the liquid-containing component 3 exchanges heat with the refrigerant in the heat exchange component, that is, through the liquid
  • the refrigerant in the component 3 further cools the refrigerant in the heat exchange component (that is, supercooling), so that the refrigerant entering the electronic expansion valve 2 of the heat exchange component is all in the liquid phase, so that the flow rate of the refrigerant is low when passing through the electronic expansion valve 2
  • the state is stable and the sound of refrigerant flowing is reduced.
  • the refrigerant of the indoor coil 1 enters the liquid-containing component 3 through the corresponding first connecting pipe 5 and the liquid distribution joint 7, and the refrigerant in the liquid-containing component 3 is expanded by electrons.
  • the valve 2 enters the heat exchange component.
  • the heat exchange component includes at least one heat exchange element 4 connected to the electronic expansion valve 2, at least one heat exchange element 4 is connected to the outdoor unit through the second connecting pipe 6, and at least a part of the heat exchange element 4 is arranged in the liquid container.
  • Component 3 That is to say, the heat exchange component may include one heat exchange element 4 or multiple heat exchange elements 4.
  • the heat exchange elements 4 may be all arranged in the liquid-containing member 3, or may be partially arranged in the liquid-containing member 3.
  • Those skilled in the art can flexibly set the specific number and setting mode of the heat exchange elements 4 in practical applications. Such adjustment and change of the specific number and setting mode of the heat exchange elements 4 do not constitute a limitation of the present invention, and should be limited to this Within the scope of protection of the invention.
  • the heat exchange element 4 may be a heat exchange coil (arranged in a spiral shape), or may also be a heat exchange straight tube or a heat exchange row tube.
  • the heat exchange member includes a plurality of heat exchange elements 4 connected to the electronic expansion valve 2, at least a part of each heat exchange element 4 is arranged in the liquid-containing member 3, and the number of heat exchange elements 4 is the same as that of the indoor plate.
  • the number of tubes 1 corresponds to each other.
  • Each indoor coil 1 is connected to the corresponding heat exchange element 4 through the corresponding first connecting tube 5, and the outdoor unit (not shown in the figure) is connected to the corresponding heat exchange element 4 through the second connecting tube 6
  • the liquid containing member 3 is connected.
  • All the heat exchange elements 4 can be all arranged in the liquid-containing member 3, or partly arranged in the liquid-containing member 3, or a part of the heat exchange elements 4 are all arranged in the liquid-containing member 3, and another part of the heat exchange element 4 is partially arranged In the liquid containing member 3.
  • the heat exchange element 4 can be a heat exchange coil (arranged in a spiral shape), or can also be a heat exchange straight tube or a heat exchange row tube.
  • Those skilled in the art can flexibly set the specific number and setting mode of the heat exchange elements 4 in practical applications. Such adjustment and change of the specific number and setting mode of the heat exchange elements 4 do not constitute a limitation of the present invention, and should be limited to this Within the scope of protection of the invention.
  • the number of heat exchange elements 4 is three.
  • the number of heat exchange elements 4 is not limited to three, and those skilled in the art can use each indoor unit according to the actual application.
  • the number of indoor coils 1 can be flexibly set with the number of heat exchange elements 4.
  • the throttling effect of the electronic expansion valve 2 makes the temperature of the refrigerant in all the heat exchange parts 4 lower than the temperature of the refrigerant in the liquid-containing component 3, so that the refrigerant in all the heat exchange parts 4 and the liquid-containing component 3
  • the refrigerant performs heat exchange, that is, the refrigerant in the liquid-containing component 3 is further cooled (that is, supercooled) by the refrigerant in all the heat exchange components 4, so that the refrigerant in the liquid-containing component 3 entering the electronic expansion valve 2 is all in the liquid phase. Furthermore, when the refrigerant passes through the electronic expansion valve 2, the flow rate is low and the state is stable, and the flow sound of the refrigerant is reduced.
  • the refrigerant of the indoor coil 1 enters the corresponding heat exchange element 4 through the corresponding first connecting pipe 5, and the refrigerant in all the heat exchange elements 4 then passes through the electronic expansion valve 2 Into the liquid-containing component 3, due to the throttling effect of the electronic expansion valve 2, the temperature of the refrigerant in the liquid-containing component 3 is lower than the temperature of the refrigerant in all the heat exchange parts 4, so that the refrigerant in the liquid-containing component 3 Perform heat exchange with the refrigerant in all heat exchange parts 4, that is, the refrigerant in all heat exchange parts 4 is further cooled (that is, supercooled) by the refrigerant in the liquid containing component 3, so that all heat exchange parts 4 enter the electronic expansion
  • the refrigerant in the valve 2 is all in the liquid phase, so that when the refrigerant passes through the electronic expansion valve 2, the flow rate is low and the state is stable, and the flow sound of the refrigerant is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机空调系统,其包括室外机和多个室内机,每个室内机均包括容液构件(3)、换热构件、电子膨胀阀(2)和多个室内盘管(1),每个室内盘管(1)均通过第一连机管(5)与容液构件(3)和换热构件中的一个连接,室外机通过第二连机管(6)与容液构件(3)和换热构件中的另一个连接,电子膨胀阀(2)的两端分别与容液构件(3)和换热构件连接,且换热构件的至少一部分设置在容液构件(3)中,以使换热构件中的冷媒与容液构件(3)中的冷媒进行热交换。能够使冷媒通过电子膨胀阀(2)时流速低且状态稳定,降低冷媒的流动声音,提升用户体验。

Description

多联机空调系统 技术领域
本发明属于多联机空调技术领域,具体提供一种多联机空调系统。
背景技术
多联机空调系统是目前常用的能够为室内制冷/制热的设备,其广泛地应用于写字楼、购物中心等。
多联机系统的室内侧设置有电子膨胀阀,无论多联机空调系统执行室内制冷模式、制热模式还是制热待机时,冷媒在流经电子膨胀阀的时候由于节流左右都会产生噪音,这是由于冷媒压力分配不均并且进入电子膨胀阀的冷媒并不是全部为液相而引起的,这种现象对声音敏感的用户会造成一定的困扰,影响用户的使用体验。
因此,本领域需要一种新的多联机空调系统来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有多联机空调系统室内机在执行制冷模式、制热模式以及制热待机时冷媒流经电子膨胀阀会产生噪音的问题,本发明提供了一种多联机空调系统,多联机空调系统包括室外机和多个室内机,每个室内机均包括容液构件、换热构件、电子膨胀阀和多个室内盘管,每个室内盘管均通过第一连机管与容液构件和换热构件中的一个连接,室外机通过第二连机管与容液构件和换热构件中的另一个连接,电子膨胀阀的两端分别与容液构件和换热构件连接,且换热构件的至少一部分设置在容液构件中,以使换热构件中的冷媒与容液构件中的冷媒进行热交换。
在上述多联机空调系统的优选技术方案中,容液构件上设置有多个分液接头,分液接头的数量大于或等于室内盘管的数量,每个室 内盘管均通过相应的第一连机管与一个分液接头连接,室外机通过第二连机管与换热构件连接。
在上述多联机空调系统的优选技术方案中,换热构件包括与电子膨胀阀连接的至少一个换热件,至少一个换热件通过第二连机管与室外机连接,换热件的至少一部分设置在容液构件中。
在上述多联机空调系统的优选技术方案中,换热件为换热盘管。
在上述多联机空调系统的优选技术方案中,换热构件包括与电子膨胀阀连接的多个换热件,每个换热件的至少一部分设置在容液构件中,换热件的数量与室内盘管的数量一一对应,每个室内盘管均通过相应的第一连机管与对应的换热件连接,室外机通过第二连机管与容液构件连接。
在上述多联机空调系统的优选技术方案中,所有的换热件都全部设置在容液构件中。
在上述多联机空调系统的优选技术方案中,所有的换热件都部分设置在容液构件中。
在上述多联机空调系统的优选技术方案中,一部分的换热件全部设置在容液构件中,另一部分的换热件部分设置在容液构件中。
在上述多联机空调系统的优选技术方案中,换热件为换热盘管。
在上述多联机空调系统的优选技术方案中,容液构件为容液盒。
本领域技术人员能够理解的是,在本发明的优选技术方案中,通过在电子膨胀阀的两端分别连接容液构件和换热构件,且换热构件的至少一部分设置在容液构件中,通过这样的设置,无论是该室内机执行制冷模式、制热模式还是制热待机时,都能够通过电子膨胀阀下游侧的冷媒来冷却电子膨胀阀上游侧的冷媒,起到一定的过冷作用,使得流经电子膨胀阀的冷媒全部为液体,使得冷媒通过电子膨胀阀时流速低且状态稳定,降低冷媒的流动声音,起到降噪的目的,避免对声音敏感的用户造成困扰,提升用户的使用体验。
进一步地,通过在容液构件上设置多个分液接头,使得容液构件具有分液作用,即通过容液构件可以将冷媒分配给不同的室内盘管,在该室内机制冷时,室外机的冷媒依次经过换热构件、电子膨胀阀和容液构件,并且通过容液构件中的冷媒对换热构件中的冷媒进一步冷却,使得进入到电子膨胀阀中的冷媒全部为液相,进而使冷媒通过电子膨胀阀时流速低且状态稳定,降低冷媒的流动声音,在该室内机制热时,每个室内盘管的冷媒都依次经过容液构件、电子膨胀阀和换热构件,并且通过换热构件中的冷媒对容液构件中的冷媒进一步冷却,使得进入到电子膨胀阀中的冷媒全部为液相,进而使冷媒通过电子膨胀阀时流速低且状态稳定,降低冷媒的流动声音,也就是说,无论是该室内机在执行制冷模式、制热模式还是制热待机时,都能够降低冷媒流经电子膨胀阀的声音,起到降噪的目的,避免对声音敏感的用户造成困扰,提升用户的使用体验。
进一步地,换热构件包括与电子膨胀阀连接的多个换热件,每个换热件的至少一部分设置在容液构件中,换热件的数量与室内盘管的数量一一对应,每个室内盘管均通过相应的第一连机管与对应的换热件连接,室外机通过第二连机管与容液构件连接,即通过不同的换热件进行分液,在该室内机制冷时,室外机的冷媒依次经过容液构件、电子膨胀阀和对应于每个室内盘管的换热件,并且通过换热件中的冷媒对容液构件中的冷媒进一步冷却,使得进入到电子膨胀阀中的冷媒全部为液相,进而使冷媒通过电子膨胀阀时流速低且状态稳定,降低冷媒的流动声音,在该室内机制热时,每个室内盘管的冷媒都依次经过对应的换热件、电子膨胀阀和容液构件,并且通过容液构件中的冷媒对换热件中的冷媒进一步冷却,使得进入到电子膨胀阀中的冷媒全部为液相,进而使冷媒通过电子膨胀阀时流速低且状态稳定,降低冷媒的流动声音,也就是说,无论是该室内机在执行制冷模式、制热模式还是制热待机时,都能够降低冷媒流经电子膨胀阀的声音,起到降噪的目的,避免对声音敏感的用户造成困扰,提升用户的使用体验。
附图说明
图1是本发明的多联机空调系统实施例一的结构示意图;
图2是本发明的多联机空调系统实施例二的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术指出的现有多联机空调系统室内机在执行制冷模式、制热模式以及制热待机时冷媒流经电子膨胀阀会产生噪音的问题,本发明提供了一种多联机空调系统,旨在使室内机无论在执行制冷模式、制热模式还是制热待机时,都能够通过电子膨胀阀下游侧的冷媒来冷却电子膨胀阀上游侧的冷媒,起到一定的过冷作用,使得流经电子膨胀阀的冷媒全部为液体,使得冷媒通过电子膨胀阀时流速低且状态稳定,降低冷媒的流动声音,起到降噪的目的,避免对声音敏感的用户造成困扰,提升用户的使用体验。
具体地,本发明的多联机空调系统包括室外机和多个室内机,每个室内机均包括容液构件、换热构件、电子膨胀阀和多个室内盘管,每个室内盘管均通过第一连机管与容液构件和换热构件中的一个连接,室外机通过第二连机管与容液构件和换热构件中的另一个连接,电子膨胀阀的两端分别与容液构件和换热构件连接,且换热构件的至少一部分设置在容液构件中,以使换热构件中的冷媒与容液构件中的冷媒进行热交换。当每个室内盘管均通过第一连机管与容液构件连接时,室外机通过第二连机管与换热构件连接,当每个室内盘管均通过第一连机管与换热构件连接时,室外机通过第二连机管与容液构件连接。容液构件 可以为容纳盒,或者为容纳箱,再或者为室内机箱体上形成的容纳槽,本领域技术人员可以在实际应用中灵活地设置容液构件的具体结构。需要说明的是,多联机空调系统包括多个室内机,每个室内机又包括多个室内盘管,当每个室内机的所有室内盘管与容液构件连接时,容液构件具备分液功能,当每个室内机的所有室内盘管与换热构件连接时,换热构件具备分液功能。通过分液,可以将冷媒分配给每个室内机的每个室内盘管,提高室内盘管的换热效率。下面通过两个实施例来进一步阐述本发明的技术方案。
实施例一
如图1所示,容液构件3上设置有多个分液接头7,分液接头7的数量大于或等于室内盘管1的数量(图1中仅示出一个室内机的一个室内盘管1),每个室内盘管1均通过相应的第一连机管5与一个分液接头7连接,室外机(图中未示出)通过第二连机管6与换热构件连接。其中,容液构件3具备分液功能,图1中示例的是容液构件3上设置有三个分液接头7,当然,分液接头7不限于三个,分液接头7的数量大于或等于室内盘管1的数量可以保证每个室内盘管1均可以单独与一个分液接头7连接,当分液接头7的数量大于室内盘管1的数量时,多出的分液接头7可以用作备用接头。此外,换热构件可以全部设置在容液构件3中,还可以部分设置在容液构件3中。在室内机制冷运行时,室外机的冷媒通过第二连机管6进入到换热构件中,换热构件中的冷媒再经过电子膨胀阀2进入到容液构件3中,由于电子膨胀阀2的节流作用,使得容液构件3中的冷媒的温度比换热构件中的冷媒的温度低,从而使容液构件3中的冷媒与换热构件中的冷媒进行热交换,即通过容液构件3中的冷媒对换热构件中的冷媒进行进一步冷却(即过冷),使得换热构件进入到电子膨胀阀2的冷媒全部为液相,进而使冷媒通过电子膨胀阀2时流速低且状态稳定,降低冷媒的流动声音。在室内机制热运行或者制热待机时,室内盘管1的冷媒经过对应的第一连机管5和分液接头7进入到容液构件3中,容液构件3中的冷媒再经由电子膨胀阀2进入到换热构件中,由于电子膨胀阀2的节流作用,使得换热构件中的冷媒的温度比容液构件3中的冷媒的温度低,从而使换热构件中的冷媒与容液构件3中的冷媒进行热交换,即通过换热构件中的冷媒对容液构 件3中的冷媒进行进一步冷却(即过冷),使得容液构件3进入到电子膨胀阀2的冷媒全部为液相,进而使冷媒通过电子膨胀阀2时流速低且状态稳定,降低冷媒的流动声音。
优选地,换热构件包括与电子膨胀阀2连接的至少一个换热件4,至少一个换热件4通过第二连机管6与室外机连接,换热件4的至少一部分设置在容液构件3中。也就是说,换热构件可以包括一个换热件4,还可以包括多个换热件4,换热件4可以全部设置在容液构件3中,也可以部分设置在容液构件3中,本领域技术人员可以在实际应用中灵活地设置换热件4的具体数量和设置方式,这种换热件4具体数量和设置方式的调整和改变不构成对本发明的限制,均应限定在本发明的保护范围之内。在上述中,换热件4可以为换热盘管(呈螺旋状设置),还可以为换热直管或者换热排管等。
实施例二
如图2所示,换热构件包括与电子膨胀阀2连接的多个换热件4,每个换热件4的至少一部分设置在容液构件3中,换热件4的数量与室内盘管1的数量一一对应,每个室内盘管1均通过相应的第一连机管5与对应的换热件4连接,室外机(图中未示出)通过第二连机管6与容液构件3连接。所有换热件4可以全部设置在容液构件3中,也可以部分设置在容液构件3中,再或者一部分换热件4全部设置在容液构件3中,另一部分换热件4部分设置在容液构件3中。换热件4可以为换热盘管(呈螺旋状设置),还可以为换热直管或者换热排管等。本领域技术人员可以在实际应用中灵活地设置换热件4的具体数量和设置方式,这种换热件4具体数量和设置方式的调整和改变不构成对本发明的限制,均应限定在本发明的保护范围之内。此外,图2中示例的是换热件4的数量为三个,当然,在实际应用中,换热件4的数量不限于三个,本领域技术人员可以在实际应用中根据每个室内机的室内盘管1的数量灵活地设置换热件4的数量。在室内机制冷运行时,室外机的冷媒通过第二连机管6进入到容液构件3中,容液构件3中的冷媒再经过电子膨胀阀2进入到每个换热件4中,由于电子膨胀阀2的节流作用,使得所有换热件4中的冷媒的温度都比容液构件3中的冷媒的温度低,从而使所有换热件4中的冷媒与容液构件3中的冷媒进行热交换,即通过所有 换热件4中的冷媒对容液构件3中的冷媒进行进一步冷却(即过冷),使得容液构件3进入到电子膨胀阀2的冷媒全部为液相,进而使冷媒通过电子膨胀阀2时流速低且状态稳定,降低冷媒的流动声音。在室内机制热运行或者制热待机时,室内盘管1的冷媒经过对应的第一连机管5进入到对应的换热件4中,所有换热件4中的冷媒再经由电子膨胀阀2进入到容液构件3中,由于电子膨胀阀2的节流作用,使得容液构件3中的冷媒的温度比所有换热件4中的冷媒的温度低,从而使容液构件3中的冷媒与所有换热件4中的冷媒进行热交换,即通过容液构件3中的冷媒对所有换热件4中的冷媒进行进一步冷却(即过冷),使得所有换热件4进入到电子膨胀阀2的冷媒全部为液相,进而使冷媒通过电子膨胀阀2时流速低且状态稳定,降低冷媒的流动声音。
至此,已经结合附图描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种多联机空调系统,所述多联机空调系统包括室外机和多个室内机,其特征在于,每个所述室内机均包括容液构件、换热构件、电子膨胀阀和多个室内盘管,每个所述室内盘管均通过第一连机管与所述容液构件和所述换热构件中的一个连接,所述室外机通过第二连机管与所述容液构件和所述换热构件中的另一个连接,
    所述电子膨胀阀的两端分别与所述容液构件和所述换热构件连接,且所述换热构件的至少一部分设置在所述容液构件中,以使所述换热构件中的冷媒与所述容液构件中的冷媒进行热交换。
  2. 根据权利要求1所述的多联机空调系统,其特征在于,所述容液构件上设置有多个分液接头,所述分液接头的数量大于或等于所述室内盘管的数量,每个所述室内盘管均通过相应的所述第一连机管与一个所述分液接头连接,所述室外机通过所述第二连机管与所述换热构件连接。
  3. 根据权利要求2所述的多联机空调系统,其特征在于,所述换热构件包括与所述电子膨胀阀连接的至少一个换热件,所述至少一个换热件通过所述第二连机管与所述室外机连接,所述换热件的至少一部分设置在所述容液构件中。
  4. 根据权利要求3所述的多联机空调系统,其特征在于,所述换热件为换热盘管。
  5. 根据权利要求1所述的多联机空调系统,其特征在于,所述换热构件包括与所述电子膨胀阀连接的多个换热件,每个所述换热件的至少一部分设置在所述容液构件中,所述换热件的数量与所述室内盘管的数量一一对应,每个所述室内盘管均通过相应的所述第一连机管与对应的所述换热件连接,所述室外机通过所述第二连机管与所述容液构件连接。
  6. 根据权利要求5所述的多联机空调系统,其特征在于,所有的所述换热件都全部设置在所述容液构件中。
  7. 根据权利要求5所述的多联机空调系统,其特征在于,所有的所述换热件都部分设置在所述容液构件中。
  8. 根据权利要求5所述的多联机空调系统,其特征在于,一部分的所述换热件全部设置在所述容液构件中,另一部分的所述换热件部分设置在所述容液构件中。
  9. 根据权利要求5所述的多联机空调系统,其特征在于,所述换热件为换热盘管。
  10. 根据权利要求1至9中任一项所述的多联机空调系统,其特征在于,所述容液构件为容液盒。
PCT/CN2020/119155 2019-12-20 2020-09-30 多联机空调系统 WO2021120784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911326244.8 2019-12-20
CN201911326244.8A CN111059615A (zh) 2019-12-20 2019-12-20 多联机空调系统

Publications (1)

Publication Number Publication Date
WO2021120784A1 true WO2021120784A1 (zh) 2021-06-24

Family

ID=70301297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119155 WO2021120784A1 (zh) 2019-12-20 2020-09-30 多联机空调系统

Country Status (2)

Country Link
CN (1) CN111059615A (zh)
WO (1) WO2021120784A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111059615A (zh) * 2019-12-20 2020-04-24 青岛海尔空调电子有限公司 多联机空调系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289699A (en) * 1991-09-19 1994-03-01 Mayer Holdings S.A. Thermal inter-cooler
US5327743A (en) * 1992-10-19 1994-07-12 Enerjed, Inc. Sub cooling condensate trap with easily removable lid
US5867993A (en) * 1997-09-08 1999-02-09 Dube; Serge Refrigerant reservoir and heat exchanger unit for a refrigerated counter system
CN101886852A (zh) * 2009-05-15 2010-11-17 珠海格力电器股份有限公司 应用过冷器的空调系统及其制冷剂流量的控制方法
US8763424B1 (en) * 2013-09-30 2014-07-01 Heat Pump Technologies, LLC Subcooling heat exchanger adapted for evaporator distribution lines in a refrigeration circuit
CN204329177U (zh) * 2014-12-19 2015-05-13 特灵空调系统(中国)有限公司 自带过冷装置的室内机
CN107076467A (zh) * 2014-11-04 2017-08-18 三菱电机株式会社 空气调节装置
US20180094840A1 (en) * 2016-10-05 2018-04-05 Johnson Controls Technology Company Parallel capillary expansion tube systems and methods
CN108036551A (zh) * 2017-12-18 2018-05-15 广东美的暖通设备有限公司 切换装置和具有其的多联机空调
CN108375255A (zh) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 空调器系统
CN111059615A (zh) * 2019-12-20 2020-04-24 青岛海尔空调电子有限公司 多联机空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078573A (zh) * 2007-06-27 2007-11-28 王全龄 高效空气源热泵热水装置
CN202993698U (zh) * 2012-08-06 2013-06-12 广东美的暖通设备有限公司 室内机的节流装置及多联机系统
CN203454320U (zh) * 2013-09-03 2014-02-26 广东美的暖通设备有限公司 制冷/制热系统
KR101866211B1 (ko) * 2015-10-27 2018-06-12 박종근 공기조화기
CN106839203A (zh) * 2017-01-16 2017-06-13 上海坤瀚电子科技有限公司 一种cda恒温水冷系统
CN109059359B (zh) * 2018-08-08 2024-04-05 珠海凌达压缩机有限公司 一种压缩机及压缩机制冷系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289699A (en) * 1991-09-19 1994-03-01 Mayer Holdings S.A. Thermal inter-cooler
US5327743A (en) * 1992-10-19 1994-07-12 Enerjed, Inc. Sub cooling condensate trap with easily removable lid
US5867993A (en) * 1997-09-08 1999-02-09 Dube; Serge Refrigerant reservoir and heat exchanger unit for a refrigerated counter system
CN101886852A (zh) * 2009-05-15 2010-11-17 珠海格力电器股份有限公司 应用过冷器的空调系统及其制冷剂流量的控制方法
US8763424B1 (en) * 2013-09-30 2014-07-01 Heat Pump Technologies, LLC Subcooling heat exchanger adapted for evaporator distribution lines in a refrigeration circuit
CN107076467A (zh) * 2014-11-04 2017-08-18 三菱电机株式会社 空气调节装置
CN204329177U (zh) * 2014-12-19 2015-05-13 特灵空调系统(中国)有限公司 自带过冷装置的室内机
US20180094840A1 (en) * 2016-10-05 2018-04-05 Johnson Controls Technology Company Parallel capillary expansion tube systems and methods
CN108036551A (zh) * 2017-12-18 2018-05-15 广东美的暖通设备有限公司 切换装置和具有其的多联机空调
CN108375255A (zh) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 空调器系统
CN111059615A (zh) * 2019-12-20 2020-04-24 青岛海尔空调电子有限公司 多联机空调系统

Also Published As

Publication number Publication date
CN111059615A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN103017424B (zh) 一种板式冷凝器
CN103982943B (zh) 多联机空调系统
CN203375573U (zh) 提高多联机的冷媒过冷度的装置及具有该装置的多联机
JP2002031376A (ja) 空調システム
CN202392893U (zh) 空调末端装置、空调设备及数据中心
WO2021120784A1 (zh) 多联机空调系统
CN103234301A (zh) 空调换热系统及其控制方法
JP2003279170A (ja) 空気調和装置
CN212006013U (zh) 多联机空调系统
CN211119734U (zh) 一种四管制中央空调系统
CN208653007U (zh) 制冷设备
CN104879950A (zh) 空调一体机系统及其控制方法
WO2023226469A1 (zh) 热泵空调机组及其控制方法
CN208458162U (zh) 一种数据中心的空调系统
WO2020034512A1 (zh) 空调热水系统
KR20120081815A (ko) 공기 조화기
CN202813668U (zh) 一种具有新型芯片散热装置的变频空调
WO2021143744A1 (zh) 多联机空调系统的控制方法
CN212006014U (zh) 多联机空调系统
CN213334680U (zh) 空调室内机
JPH04332356A (ja) 空気調和装置
CN217519960U (zh) 自过冷式空调室内机及具有其的自过冷式空调
CN218895465U (zh) 空调室内机和空调系统
CN219146037U (zh) 一种一体式机架空调系统
CN220507001U (zh) 室内换热器、室内机及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902113

Country of ref document: EP

Kind code of ref document: A1