WO2021120689A1 - 空调机组 - Google Patents

空调机组 Download PDF

Info

Publication number
WO2021120689A1
WO2021120689A1 PCT/CN2020/112450 CN2020112450W WO2021120689A1 WO 2021120689 A1 WO2021120689 A1 WO 2021120689A1 CN 2020112450 W CN2020112450 W CN 2020112450W WO 2021120689 A1 WO2021120689 A1 WO 2021120689A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
conditioning unit
evaporator
cleaning structure
gas
Prior art date
Application number
PCT/CN2020/112450
Other languages
English (en)
French (fr)
Inventor
周堂
张治平
刘华
钟瑞兴
周宇
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021120689A1 publication Critical patent/WO2021120689A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems

Definitions

  • the present disclosure is based on the application with the CN application number 201911312043.2 and the filing date on December 18, 2019, and claims its priority.
  • the disclosure of the CN application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the technical field of refrigerant heat exchange devices, in particular to an air conditioning unit.
  • the air entering the refrigerant system is compressed by the compressor to enter the condenser.
  • the gaseous refrigerant It exchanges heat with the cooling water and condenses into a liquid refrigerant, while the air mixed into the system cannot be condensed under the pressure of the condenser and the temperature of the cooling water, forming a non-condensable gas in the system.
  • more and more non-condensable gas will accumulate in the upper part of the condenser and cannot be discharged from the system. This will cause the unit's condensing pressure to gradually increase, which will seriously affect the reliability and performance of the unit.
  • an air-conditioning unit that separates the non-condensable gas and the refrigerant according to different liquefaction conditions is provided.
  • An air conditioning unit includes an evaporator, a condenser, and a cleaning structure.
  • the cleaning structure is provided with an inlet, an exhaust port and a liquid return port.
  • the condenser is provided with a gas outlet, which communicates with the inlet, and the liquid return port is connected to the evaporator.
  • the exhaust port is connected to the outside, and the mixed gas in the condenser is separated in the clean structure to form liquid refrigerant and gaseous non-condensable gas.
  • the liquid refrigerant enters the evaporator through the liquid return port, and the gaseous non-condensable gas is exhausted Orifice discharge cleaning structure.
  • an air extraction valve is provided at the inlet, an exhaust valve is provided at the exhaust port, and a liquid return valve is provided at the liquid return port.
  • the air extraction valve is opened, the condenser communicates with the cleaning structure.
  • the exhaust valve is opened, the cleaning structure is in communication with the outside, and when the return valve is opened, the cleaning structure is in communication with the evaporator.
  • partitions and heat exchange tubes are provided in the evaporator.
  • the partitions separate the evaporator into a condensing cavity and an evaporation cavity that are sealed to each other.
  • the condensing cavity forms a clean structure, and part of the heat exchange tubes are arranged in the evaporating cavity. , The remaining part of the heat exchange tube is arranged in the condensing cavity.
  • the shape of the partition is the same as the cross-sectional shape of the evaporator, and the edge of the partition is sealed with the inner surface of the evaporator.
  • the partition plate is provided with a through hole
  • the heat exchange tube is arranged in the through hole
  • the heat exchange tube and the through hole are sealed.
  • the cleaning structure includes a cleaning tank and a pressurizing mechanism.
  • the inlet, exhaust port, and liquid return port are all provided on the cleaning tank, and the pressurizing mechanism is provided between the inlet and the gas outlet, and the gas outlet flows from the gas outlet.
  • the mixed gas in the cleaning tank is pressurized.
  • the pressurizing mechanism is a high-pressure pump.
  • the gas outlet is arranged above the liquid surface in the condenser.
  • a liquid collection bag is provided at the liquid return port.
  • the air conditioning unit further includes a pressure sensor that detects the condensing pressure of the air conditioning unit, and the pressure sensor is electrically connected to the cleaning structure.
  • the air conditioning unit is a negative pressure centrifugal chiller.
  • the air conditioning unit uses a clean structure to separate the non-condensable gas and the refrigerant according to different liquefaction conditions, returns the liquefied refrigerant to the unit, and discharges the gaseous non-condensable gas out of the unit, and then cooperates with the gas extraction valve ,
  • the on-off control of the exhaust valve and the liquid return valve achieves the purpose of cleaning the system's non-condensable gas, effectively improving the reliability and performance of the unit, and ensuring the reliability of the unit's operation.
  • Figure 1 is a schematic structural diagram of an embodiment of an air conditioning unit provided by the present disclosure
  • Figure 2 is another schematic structural diagram of an embodiment of an air conditioning unit provided by the present disclosure.
  • the pressure value Pe of the evaporator in the compressor is smaller than the atmospheric pressure Po and the pressure value Pc of the condenser
  • air will enter the evaporator due to manufacturing, process defects, etc., and finally together with the gaseous working fluid will be compressed by the compressor and gathered above the condenser, causing the unit to increase the condensing pressure, which is unfavorable. It will affect the reliability and performance of the unit.
  • the air conditioning unit shown in Figure 1 includes an evaporator 1, a condenser 2 and a cleaning structure 3.
  • the cleaning structure 3 is provided with an inlet 31, an exhaust port 32 and a liquid return port 33, and the condenser 2
  • a gas outlet 21 is provided, the gas outlet 21 is connected to the inlet 31, the liquid return port 33 is connected to the evaporator 1, the exhaust port 32 is connected to the outside, and the mixed gas in the condenser 2 is separated in the cleaning structure 3 to form liquid refrigeration
  • the liquid refrigerant enters the evaporator 1 through the liquid return port 33, and the gaseous non-condensable gas exits the cleaning structure 3 through the exhaust port 32.
  • the cleaning structure 3 is used to mix the refrigerant and the non-condensable gas according to the liquefaction conditions Separate differently to achieve the purpose of cleaning the system's non-condensable gas, effectively improve the reliability and performance of the unit, and ensure the reliability of the unit's operation.
  • the volume of the cleaning structure 3 is proportional to the volume of the unit.
  • an air extraction valve is provided at the inlet 31, an exhaust valve is provided at the exhaust port 32, and a liquid return valve is provided at the liquid return port 33.
  • the air extraction valve is opened, the condenser 2 is connected to the clean Structure 3 is connected.
  • the exhaust valve is opened, the cleaning structure 3 is connected to the outside.
  • the liquid return valve is opened, the cleaning structure 3 communicates with the evaporator 1, through the on-off control of the gas valve, exhaust valve and liquid return valve. , To realize the functions of mixed gas entering the cleaning structure 3, discharging the non-condensable gas, and recovering the refrigerant.
  • a partition 11 and a heat exchange tube 12 are provided in the evaporator 1.
  • the partition 11 separates the evaporator 1 into a condensing cavity 13 and an evaporating cavity 14 which are sealed to each other.
  • the condensing cavity 13 forms a cleaning structure 3
  • Part of the heat exchange tube 12 is arranged in the evaporation chamber 14, and the remaining part of the heat exchange tube 12 is arranged in the condensation chamber 13.
  • the chilled water and mixed gas entering the heat exchange tube 12 are used for heat exchange, and the non-condensable gas and refrigerant are used for liquefaction.
  • the liquid refrigerant in the unit The evaporation is normally carried out in the evaporation chamber 14.
  • the shape of the partition 11 is the same as the cross-sectional shape of the evaporator 1, and the edge of the partition 11 is sealed with the inner surface of the evaporator 1, that is, the partition 11 and one end of the evaporator 1 jointly enclose
  • the clean structure 3 reduces the complexity of the internal structure of the evaporator 1.
  • the partition 11 is provided with a through hole, the heat exchange tube 12 is arranged in the through hole, and the heat exchange tube 12 is sealed with the through hole, that is, the condensing cavity 13 and the evaporation cavity 14 are along the heat exchange tube. If the axis 12 is distributed, there is no need to change the arrangement of the heat exchange tubes 12 in the existing evaporator 1, and only need to add a partition plate 11 inside.
  • the cleaning structure 3 includes a cleaning tank 34 and a pressurizing mechanism 35.
  • the inlet 31, the exhaust port 32 and the liquid return port 33 are all provided on the cleaning tank 34, and the pressurizing mechanism 35 is provided.
  • the mixed gas flowing from the gas outlet 21 to the cleaning tank 34 is pressurized.
  • the refrigerant in the mixed gas is liquefied and the non-condensable gas is not Carry out liquefaction to achieve the purpose of separation.
  • the pressurizing mechanism 35 is a high-pressure pump.
  • the gas outlet 21 is arranged above the liquid level in the condenser 2.
  • the gas outlet 21 is at the highest point of the condenser 2, so as to ensure that more non-condensable gas is discharged into the clean structure 3 Carry out separation.
  • a liquid collecting bag is provided at the liquid return port 33 to ensure effective recovery of the liquid working fluid.
  • the air-conditioning unit further includes a pressure sensor that detects the condensing pressure of the air-conditioning unit, and the pressure sensor is electrically connected to the cleaning structure 3.
  • the cleaning The working state of the structure 3 is controlled.
  • the cleaning structure 3 starts to work until the real-time condensing pressure drops to a reasonable range (equal to the rated condensing pressure as the optimal state), and the cleaning structure 3 stops working.
  • the air conditioning unit is a negative pressure centrifugal chiller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本公开提供一种空调机组,包括蒸发器、冷凝器和清洁结构,所述清洁结构上设置有入口、排气口和回液口,所述冷凝器上设置有气体出口,所述气体出口与所述入口连通,所述回液口与所述蒸发器连通,所述排气口与外界连通,且冷凝器内的混合气体在所述清洁结构内分离后形成液态制冷剂和气态不凝气体。本公开提供的空调机组,利用清洁结构对不凝气体和制冷剂根据液化条件不同而进行分离,将液化的制冷剂回流至机组,并将气态的不凝气体排出机组外,再配合取气阀、排气阀和回液阀的通断控制,达到对系统不凝气体清洁的目的,有效提高机组可靠性及性能,保证机组运行可靠性。

Description

空调机组
相关申请的交叉引用
本公开是以CN申请号为201911312043.2,申请日为2019年12月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及冷媒换热装置技术领域,特别是一种空调机组。
背景技术
发明人发现,在负压工质的离心式水冷冷水机组系统中,由于负压工质的物理特性,在机组运行过程中,蒸发器处于负压状态,由于机组制造、工艺等缺陷,外界空气不可避免会向蒸发器中泄漏,导致制冷工质中混入空气,致使机组的性能下降,进入到冷媒系统的空气,通过压缩机压缩进入到冷凝器,然而在冷凝器中,气态的制冷工质与冷却水换热,冷凝为液态的制冷工质,而混入到系统中的空气无法在冷凝器所处的压力以及冷却水温度下冷凝,形成系统中的不凝气体。机组长期运行后,不凝气体将越来越多的累积在冷凝器上部,无法排出系统,导致机组冷凝压力逐步升高,严重影响机组可靠性及性能。
发明内容
为了解决因不凝气体不参与换热而影响机组性能的技术问题,提供一种将不凝气体与制冷剂根据液化条件不同而分离的空调机组。
一种空调机组,包括蒸发器、冷凝器和清洁结构,清洁结构上设置有入口、排气口和回液口,冷凝器上设置有气体出口,气体出口与入口连通,回液口与蒸发器连通,排气口与外界连通,且冷凝器内的混合气体在清洁结构内分离后形成液态制冷剂和气态不凝气体,液态制冷剂通过回液口进入蒸发器,气态不凝气体由排气口排出清洁结构。
在一些实施例中,入口处设置有取气阀,排气口处设置有排气阀,回液口处设置有回液阀,且在取气阀打开时,冷凝器与清洁结构连通,在排气阀打开时,清洁结构与外界连通,在回液阀打开时,清洁结构与蒸发器连通。
在一些实施例中,蒸发器内设置有隔板和换热管,隔板将蒸发器分隔成彼此密封的冷凝腔和蒸发腔,冷凝腔形成清洁结构,且部分换热管设置于蒸发腔内,剩余部分换热管设置于冷凝腔内。
在一些实施例中,隔板的形状与蒸发器的截面形状相同,且隔板的边缘与蒸发器的内 表面密封设置。
在一些实施例中,隔板上设置有通孔,换热管设置于通孔内,且换热管与通孔密封设置。
在一些实施例中,清洁结构包括清洁罐和加压机构,入口、排气口和回液口均设置与清洁罐上,加压机构设置于入口和气体出口之间,且对由气体出口流至清洁罐内的混合气体进行加压。
在一些实施例中,加压机构为高压泵。
在一些实施例中,气体出口设置于冷凝器内的液面上方。
在一些实施例中,回液口处设置有集液包。
在一些实施例中,空调机组还包括压力传感器,压力传感器检测空调机组的冷凝压力,且压力传感器与清洁结构电连接。
在一些实施例中,空调机组为负压离心式冷水机组。
本公开提供的空调机组,利用清洁结构对不凝气体和制冷剂根据液化条件不同而进行分离,将液化的制冷剂回流至机组,并将气态的不凝气体排出机组外,再配合取气阀、排气阀和回液阀的通断控制,达到对系统不凝气体清洁的目的,有效提高机组可靠性及性能,保证机组运行可靠性。
附图说明
图1为本公开提供的空调机组的实施例的结构示意图;
图2为本公开提供的空调机组的实施例的另一结构示意图;
图中:1、蒸发器;2、冷凝器;3、清洁结构;31、入口;32、排气口;33、回液口;21、气体出口;11、隔板;12、换热管;13、冷凝腔;14、蒸发腔;34、清洁罐;35、加压机构。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。
在负压工质的离心式水冷冷水机组系统中,由于负压工质的物理特性,在机组运行过程中,压缩机中的蒸发器的压力值Pe小于大气压力Po小于冷凝器的压力值Pc,也就是说,在运行过程中,空气会因为制造、工艺缺陷等原因进入蒸发器内,并最终与气态工质一起通过压缩机压缩聚集在冷凝器的上方,导致机组冷凝压力升高,不利地影响机组可靠性和性能。
为了解决上述问题,如图1所示的空调机组,包括蒸发器1、冷凝器2和清洁结构3,清洁结构3上设置有入口31、排气口32和回液口33,冷凝器2上设置有气体出口21,气体出口21与入口31连通,回液口33与蒸发器1连通,排气口32与外界连通,且冷凝器2内的混合气体在清洁结构3内分离后形成液态制冷剂和气态不凝气体,液态制冷剂通过回液口33进入蒸发器1,气态不凝气体由排气口32排出清洁结构3,利用清洁结构3将制冷剂与不凝气体的混合物根据液化条件不同而进行分离,达到对系统不凝气体清洁的目的,有效提高机组可靠性及性能,保证机组运行可靠性。其中清洁结构3的容积与机组的体积呈正比。
在一些实施例中,入口31处设置有取气阀,排气口32处设置有排气阀,回液口33处设置有回液阀,且在取气阀打开时,冷凝器2与清洁结构3连通,在排气阀打开时,清洁结构3与外界连通,在回液阀打开时,清洁结构3与蒸发器1连通,通过取气阀、排气阀和回液阀的通断控制,实现混合气体进入清洁结构3、将不凝气体排出、将制冷剂回收的功能。
在一些实施例中,蒸发器1内设置有隔板11和换热管12,隔板11将蒸发器1分隔成彼此密封的冷凝腔13和蒸发腔14,冷凝腔13形成清洁结构3,且部分换热管12设置于蒸发腔14内,剩余部分换热管12设置于冷凝腔13内,使用进入换热管12内的冷冻水与混合气体进行换热,利用不凝气体和制冷剂液化温度不同将制冷剂液化,将不凝气体排出系统,冷凝后的液态工质回收到制冷系统,从而达到对系统不凝气体清洁的目的,提高机组可靠性及性能,而机组中的液态制冷剂正常在蒸发腔14内进行蒸发。
在一些实施例中,隔板11的形状与蒸发器1的截面形状相同,且隔板11的边缘与蒸发器1的内表面密封设置,也即隔板11与蒸发器1的一端共同围成清洁结构3,降低蒸发器1内部结构的复杂度。
在一些实施例中,隔板11上设置有通孔,换热管12设置于通孔内,且换热管12与通孔密封设置,也即冷凝腔13和蒸发腔14是沿换热管12的轴线进行分布的,不需要改变现有的蒸发器1内的换热管12的排列方式,仅需要在内部加设隔板11即可。
在一些实施例中,如图2所示,清洁结构3包括清洁罐34和加压机构35,入口31、排气口32和回液口33均设置与清洁罐34上,加压机构35设置于入口31和气体出口21之间,且对由气体出口21流至清洁罐34内的混合气体进行加压,通过对混合气体进行加压,使混合气体内的制冷剂液化而不凝气体不进行液化,从而实现分离的目的。
在一些实施例中,加压机构35为高压泵。
在一些实施例中,气体出口21设置于冷凝器2内的液面上方,优选的,气体出口21处于冷凝器2的最高点处,从而保证将更多的不凝气体排入清洁结构3内部进行分离。
在一些实施例中,回液口33处设置有集液包,保证有效回收液态工质。
在一些实施例中,空调机组还包括压力传感器,压力传感器检测空调机组的冷凝压力,且压力传感器与清洁结构3电连接,通过比较空调机组的实时冷凝压力和空调机组的额定 冷凝压力,对清洁结构3的工作状态进行控制,当实时冷凝压力大于额定冷凝压力时,清洁结构3开始工作,直至实时冷凝压力下降至合理范围(等于额定冷凝压力为最优状态),清洁结构3停止工作。
在一些实施例中,空调机组为负压离心式冷水机组。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变型和改进,这些都属于本公开的保护范围。因此,本公开的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种空调机组,包括:
    蒸发器(1);
    冷凝器(2),设置有气体出口(21);以及
    清洁结构(3),所述清洁结构(3)设有入口(31)、排气口(32)和回液口(33),所述气体出口(21)与所述入口(31)连通,所述回液口(33)与所述蒸发器(1)连通,所述排气口(32)与外界连通,所述清洁结构(3)被构造成使得所述冷凝器(2)内的混合气体在其内分离成液态制冷剂和气态不凝气体,所述液态制冷剂通过所述回液口(33)进入所述蒸发器(1),所述气态不凝气体由所述排气口(32)排出所述清洁结构(3)。
  2. 根据权利要求1所述的空调机组,其中所述入口(31)处设置有取气阀,所述排气口(32)处设置有排气阀,所述回液口(33)处设置有回液阀,且在所述取气阀打开时,所述冷凝器(2)与所述清洁结构(3)连通,在所述排气阀打开时,所述清洁结构(3)与外界连通,在所述回液阀打开时,所述清洁结构(3)与所述蒸发器(1)连通。
  3. 根据权利要求1所述的空调机组,其中所述蒸发器(1)内设置有隔板(11)和换热管(12),所述隔板(11)将所述蒸发器(1)分隔彼此密封的冷凝腔(13)和蒸发腔(14),所述冷凝腔(13)形成所述清洁结构(3),且所述换热管(12)的一部分设置于所述蒸发腔(14)内,所述换热管(12)的剩余部分设置于所述冷凝腔(13)内。
  4. 根据权利要求3所述的空调机组,其中所述隔板(11)的形状与所述蒸发器(1)的截面形状相同,且所述隔板(11)的边缘与所述蒸发器(1)的内表面密封设置。
  5. 根据权利要求4所述的空调机组,其中所述隔板(11)上设置有通孔,所述换热管(12)穿过所述通孔设置,且所述换热管(12)与所述通孔密封设置。
  6. 根据权利要求1所述的空调机组,其中所述清洁结构(3)包括清洁罐(34)和加压机构(35),所述入口(31)、所述排气口(32)和所述回液口(33)均设置于所述清洁罐(34)上,所述加压机构(35)设置于所述入口(31)和所述气体出口(21)之间,且对由所述气体出口(21)流至所述清洁罐(34)内的混合气体进行加压。
  7. 根据权利要求6所述的空调机组,其中所述加压机构(35)为高压泵。
  8. 根据权利要求1所述的空调机组,其中所述气体出口(21)设置于所述冷凝器(2)内的液面上方。
  9. 根据权利要求1所述的空调机组,其中所述回液口(33)处设置有集液包。
  10. 根据权利要求1所述的空调机组,其中所述空调机组还包括压力传感器,所述压力传感器检测所述空调机组的冷凝压力,且所述压力传感器与所述清洁结构(3)电连接。
  11. 根据权利要求1所述的空调机组,其中所述空调机组为负压离心式冷水机组。
PCT/CN2020/112450 2019-12-18 2020-08-31 空调机组 WO2021120689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911312043.2A CN110986438A (zh) 2019-12-18 2019-12-18 具有清洁不凝气体功能的空调机组
CN201911312043.2 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021120689A1 true WO2021120689A1 (zh) 2021-06-24

Family

ID=70095589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112450 WO2021120689A1 (zh) 2019-12-18 2020-08-31 空调机组

Country Status (2)

Country Link
CN (1) CN110986438A (zh)
WO (1) WO2021120689A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986438A (zh) * 2019-12-18 2020-04-10 珠海格力电器股份有限公司 具有清洁不凝气体功能的空调机组
CN112229113A (zh) * 2020-07-13 2021-01-15 珠海格力电器股份有限公司 提高提纯效率的冷媒分离提纯系统、控制方法和空调机组
CN111981628B (zh) * 2020-07-27 2022-03-04 珠海格力电器股份有限公司 简单有效的冷媒分离提纯系统、控制方法和空调机组
CN113932470B (zh) * 2021-11-02 2023-01-24 四川大学 高温热泵循环系统
CN114517995A (zh) * 2022-01-11 2022-05-20 华为技术有限公司 制冷系统中的混合气体处理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986894A (en) * 1958-02-03 1961-06-06 Carrier Corp Purge recovery arrangement for refrigeration systems
CN104864645A (zh) * 2014-02-26 2015-08-26 荏原冷热系统株式会社 压缩式制冷机
CN204830358U (zh) * 2015-08-21 2015-12-02 广州永诚制冷设备有限公司 一种空调机组不凝性气体排出装置
CN107238239A (zh) * 2017-06-15 2017-10-10 珠海格力电器股份有限公司 离心式冷水机组及其控制方法
CN107763910A (zh) * 2016-08-17 2018-03-06 约克(无锡)空调冷冻设备有限公司 排气装置、制冷空调机组和不凝性气体的排气方法
CN110986438A (zh) * 2019-12-18 2020-04-10 珠海格力电器股份有限公司 具有清洁不凝气体功能的空调机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986894A (en) * 1958-02-03 1961-06-06 Carrier Corp Purge recovery arrangement for refrigeration systems
CN104864645A (zh) * 2014-02-26 2015-08-26 荏原冷热系统株式会社 压缩式制冷机
CN204830358U (zh) * 2015-08-21 2015-12-02 广州永诚制冷设备有限公司 一种空调机组不凝性气体排出装置
CN107763910A (zh) * 2016-08-17 2018-03-06 约克(无锡)空调冷冻设备有限公司 排气装置、制冷空调机组和不凝性气体的排气方法
CN107238239A (zh) * 2017-06-15 2017-10-10 珠海格力电器股份有限公司 离心式冷水机组及其控制方法
CN110986438A (zh) * 2019-12-18 2020-04-10 珠海格力电器股份有限公司 具有清洁不凝气体功能的空调机组

Also Published As

Publication number Publication date
CN110986438A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021120689A1 (zh) 空调机组
TW201807367A (zh) 排氣裝置、製冷空調機組和不凝性氣體的排氣方法
WO2020029804A1 (zh) 冷媒净化系统以及包含该冷媒净化系统的换热系统
CN107192153A (zh) 带喷射器的双级蒸发制冷系统
CN108343600A (zh) 一种用于压缩机的性能测试台及使用方法
CN104864621B (zh) 一种四管制双蒸发器制冷系统
CN105240962A (zh) 一种风温范围宽泛的水冷调温除湿机
WO2024021698A1 (zh) 壳管式换热器及空调机组
CN207708792U (zh) 一种压缩空气冷干机
CN106196733A (zh) 用于热泵的集成装置
CN215842039U (zh) 低温真空滤油器
CN109682103A (zh) 单级压缩直接接触冷凝带喷射器的制冷系统
CN211625793U (zh) 具有清洁不凝气体功能的空调机组
CN213238038U (zh) 一种冷媒提纯净化系统
CN209783060U (zh) 制冷系统和制冷设备
CN209672622U (zh) 一种进出油口大温差冷却系统
CN209386611U (zh) 一种满液式冷凝器蒸发器组合系统
CN209672631U (zh) 单级压缩直接接触冷凝带喷射器的制冷系统
CN210051018U (zh) 共用中冷器的双级压缩机制冷系统
CN208012133U (zh) 一种防止瞬间高压过高的制冷系统
CN208652989U (zh) 一种满液式蒸发器
US2026233A (en) Refrigerating apparatus
CN206709434U (zh) 冷冻式干燥机制冷系统
CN205980443U (zh) 用于热泵的集成装置
CN109682121A (zh) 一种满液式冷凝器蒸发器组合系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901690

Country of ref document: EP

Kind code of ref document: A1