WO2021120364A1 - 一种生物处理酸性矿山废水同时回收铁离子的方法及系统 - Google Patents

一种生物处理酸性矿山废水同时回收铁离子的方法及系统 Download PDF

Info

Publication number
WO2021120364A1
WO2021120364A1 PCT/CN2020/072601 CN2020072601W WO2021120364A1 WO 2021120364 A1 WO2021120364 A1 WO 2021120364A1 CN 2020072601 W CN2020072601 W CN 2020072601W WO 2021120364 A1 WO2021120364 A1 WO 2021120364A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
biomineralization
unit
biological
iron
Prior art date
Application number
PCT/CN2020/072601
Other languages
English (en)
French (fr)
Inventor
周立祥
王晓萌
Original Assignee
南京农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京农业大学 filed Critical 南京农业大学
Priority to GB2209872.7A priority Critical patent/GB2606659B/en
Publication of WO2021120364A1 publication Critical patent/WO2021120364A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/24Activated sludge processes using free-fall aeration or spraying
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/346Iron bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the field of wastewater treatment, and relates to a method and system for biologically treating acid mine wastewater and simultaneously recovering iron ions.
  • Acid mine wastewater is currently a challenging environmental problem facing the global mining industry. It is a type of low-pH, high-iron-ion drainage produced by biological and chemical reactions during mining or waste slag accumulation. Extremely acidic (pH: 2.0-3.5), rich sulfate (SO 4 2- : 2000-6000mg/L), high iron content (Fe 2+ or Fe 3+ : 500-4500mg/L), toxic metals (As, The existence of Cd, Cu, Pb, Ni, etc.) is a typical feature of AMD. AMD's direct emissions seriously threaten the safety of the water and soil environment and the ecosystem around the mining area, causing huge losses to people's production and life.
  • the neutralization precipitation method is a relatively mature method for treating AMD wastewater. It mainly uses alkaline reagents such as lime or limestone to neutralize acidity, and uses acid-base neutralization reaction to precipitate AMD metal ions and sulfate radicals to purify sewage and improve The purpose of wastewater pH.
  • Precipitating metal ions and sulfates in AMD in the form of minerals can achieve the dual purpose of simultaneous recovery of useful ions and repair of AMD.
  • AMD treatment technology based on sulfate reduction has been extensively studied in recent years.
  • Sulfate-reducing bacteria can use hydrogen or organic matter as electron donors to reduce sulfate to sulfide ions, increase the pH of the solution, and generate biogenic sulfur at the same time.
  • Ions can form corresponding sulfide precipitates with metal ions (Fe, Zn, Cu, etc.) in AMD to achieve the purpose of recovering valuable ions in AMD.
  • Chinese invention patent 200910038782.7 discloses a method of using Citrobacter to reduce sulfate in AMD and precipitating metals, so that all metal ions are converted into sulfide form, which is conducive to recycling;
  • Chinese invention patent 200810054487.6 discloses that sulfate-reducing bacteria are the main body
  • the biological treatment of acid mine wastewater technology achieves the dual effects of recovering elemental sulfur and treating wastewater.
  • the S 2- precipitated metal ions after the reduction of SO 4 2- can make the AMD treatment process achieve the purpose of resource utilization and harmlessness.
  • the stability of biological treatment systems based on sulfate reduction is not easy to control.
  • Sulfate-reducing bacteria are mostly heterotrophic and obligate anaerobic microorganisms, which are extremely sensitive to the oxygen content, pH value, carbon source types and metal ions in the system. sensitive. It is reported in the literature that a large amount of iron ions in AMD can inhibit the activity of sulfate-reducing bacteria and reduce the sulfate-reducing capacity by 39-100%. Although some enhancement methods can improve the tolerance of bioreactors, such as the use of mixed bacteria for bioenhancement, they cannot completely solve the disadvantages of the need for carbon source addition, absolute anaerobic conditions, and neutral pH requirements (pH 5-7). In addition, Chinese invention patent 201610153310.6 discloses an acid mine wastewater treatment system based on biological mineralization.
  • the acid mine wastewater is passed through a biological oxidation mineralization unit to form iron secondary minerals to remove part of the iron ions and sulfuric acid in the acid mine wastewater. Roots to reduce the burden of subsequent ash neutralization treatment.
  • This method uses acidophilic Thiobacillus ferrooxidans, which can realize the mineralization process under in-situ conditions, but the disadvantages are that the efficiency of biological mineralization treatment is low, and the microorganisms are directly applied to wastewater treatment, and there is a tendency for microorganisms to be easily lost.
  • the problem is that it is difficult to fully apply to the actual mine wastewater treatment process. Therefore, the development of a new type of processing technology to realize the resource utilization and harmlessness of AMD is still a problem that needs to be solved urgently in the environmental field.
  • the purpose of the present invention is to solve the above-mentioned shortcomings of the prior art and provide a system for biologically treating acid mine wastewater while recovering iron ions.
  • Another object of the present invention is to provide a method for biologically treating acid mine wastewater while recovering iron ions.
  • a system for biologically treating acid mine wastewater and simultaneously recovering iron ions comprises: the system comprises: a biological mineralization unit, a biological reduction tank unit, and an alkali regulating tank unit; the biological mineralization unit includes two Part: the multi-stage water drop aeration tank at the front end and the advection catch tank at the back end.
  • the biological reduction unit includes a distribution tank and a biological reduction tank.
  • the alkali adjustment unit includes an alkali adjustment tank and a distribution tank.
  • the outlet of the regulating unit is connected with the top of the biomineralization unit through a circulating pump and a pipeline to form a circulating acid mine wastewater treatment system.
  • the biomineralization unit (1) is preferably provided with an internal circulation: the end of the advection water collection tank (5) is circulated to the top of the first-stage water drop aeration tank (4) through a circulating pump and a pipeline.
  • the bottom and the top of the biological reduction tank (7) are connected through a circulating pump and a pipeline.
  • the end of the distribution tank (9) and the alkali regulating tank (8) are provided with an internal circulation, which is connected with a pipeline through a circulation pump.
  • the multi-stage water drop aeration tank and the flat flow collection tank of the biomineralization reaction unit are filled with acidophilic iron oxidizing bacteria biofilm; the biological reduction tank is filled with acidophilic iron reduction Bacteria biofilm.
  • the biomineralization reaction tank is characterized by wide and shallow, and the biological reduction tank is characterized by narrow and deep.
  • the number of water falling aeration stages of the water falling aeration tank is greater than 3; an S-shaped return plate is arranged in the advection water collecting tank of the biomineralization unit.
  • a method for biologically treating acid mine wastewater and simultaneously recovering iron ions comprising:
  • the method for biologically treating acid mine wastewater while recovering iron ions preferably includes:
  • the acid mine wastewater is introduced into the system of the present invention for cyclic treatment to recover jarosite minerals or Shi’s minerals.
  • the specific process is as follows: the wastewater is directly introduced into the biomineralization unit, oxygenated by the falling water aeration tank, and in the acidophilic aeration tank. Biomineralization occurs under the action of iron oxidizing bacteria, and the subsequent flow through the advection sump for further mineralization. The end of the advection sump and the top of the falling water aeration are constructed through a peristaltic pump to build a multi-cycle biomineralization process to promote mineralization.
  • Sedimentation rate waste water consumes part of oxygen through the advection sump, flows through the gentle flow of the distribution pool, and then enters the biological reduction tank.
  • the unmineralized iron ions are reduced to ferrous ions through biological reduction Recycling treatment in the tank improves the reduction efficiency;
  • the wastewater enters the alkali adjustment tank after reduction, and the pH of the solution is increased to meet the needs of the acidophilic iron oxidizing bacteria in the next cycle treatment process.
  • the pH of the solution is fully adjusted through the cycle process in the alkali adjustment unit;
  • the distribution tank enters the next batch processing system. After multiple cycles of treatment, jarosite minerals or Shi's minerals are recovered from the bottom of the biomineralization unit and the acidophilic iron oxidizing bacteria biological filler.
  • the acidophilic iron oxidizing bacteria are cultured aerobic and colonized on the composite biological filler to prepare the acidophilic iron oxidizing bacteria biofilm: the liquid culture medium of the acidophilic iron oxidizing bacteria is used for inoculation Culture, the formula is (NH 4 ) 2 SO 4 : 3.5g/L, MgSO 4 ⁇ 7H 2 O: 0.58g/L, KCl: 0.055g/L, KH 2 PO 4 ⁇ 3H 2 O: 0.029g/L, Ca(NO 3 ) 2 ⁇ 4H 2 O: 0.0168g/L and FeSO 4 ⁇ 7H 2 O: 22.4g/L: pH: 2.5, the first use of pure strains is 20% (volume ratio) inoculation amount, and subsequent direct use The last batch of bacteria-containing effluent is inoculated, and the inoculation volume is gradually reduced (20-5%), after 3-5 batches of culture and colonization, each culture is 3-5 days.
  • the acidophilus iron-reducing bacteria are cultured statically and colonized on the composite biological filler to prepare the acidophilus iron-reducing bacteria biofilm.
  • the medium of iron-reducing bacteria the formula is: (NH 4 ) 2 SO 4 :0.15g/L, MgSO 4 ⁇ 7H 2 O: 0.5g/L, KCl: 0.05g/L, KH 2 PO 4 ⁇ 3H 2 O :0.05g/L, Ca(NO 3 ) 2 ⁇ 4H 2 O: 0.0144g/L, yeast extract: 0.2g/L, C 6 H 12 O 6 :1g/L and Fe 2 (SO 4 ) 3 ⁇ 3H 2 O: 8.92 g/L, pH: 2.8.
  • the amount of each inoculation is 20% (volume ratio), the pure strain is used for the first time, and the subsequent batch of bacteria-containing effluent is used for inoculation. A total of 3-5 batches of culture and colonization are carried out, and each culture is 7-12 days.
  • the acidophilic iron oxidizing bacteria is Acidithiobacillus ferrooxidans LX5, which is deposited in the General Microbiology Center of the Chinese Microbial Culture Collection Management Committee, and the deposit number is CGMCC No.0727; the acidophilic iron reducing bacteria It is Acidiphilium cryptum JZ-6, deposited in the General Microbiology Center of China Microbial Culture Collection Management Committee, and the deposit number is CGMCC No.11036.
  • an acidophilic iron oxidizing bacteria culture medium with a concentration of 1/10-1/2 is additionally added to the acid mine wastewater for the purpose of providing nutrients necessary for the growth of bacteria.
  • the number of falling water aeration stages is greater than three.
  • an S-shaped return plate is arranged in the collecting tank of the biomineralization unit.
  • the waste water is circulated from the end of the advection sump of the biomineralization unit to the top of the water drop aeration tank, and the reflux rate is 0.4-0.8L/min.
  • wastewater is circulated from the bottom of the biological reduction tank to the top of the tank, and the reflux rate is 0.8-1.2 L/min.
  • the effluent from the distribution tank of the alkali adjustment unit is recycled to the adjustment tank, and the reflux rate is 0.05-0.2L/min.
  • the circulating flow rate from the end of the alkali adjustment unit to the top of the water drop aeration tank of the biomineralization unit is set to 6-10 mL/min, and the time for a single biomineralization-biological reduction-alkali adjustment process is 3 -7 days.
  • the alkali regulating tank is filled with 45-50 g/L of granular calcium carbonate with a particle size of 1-3 ⁇ m.
  • the pH of the biomineralization unit in the treatment process is maintained at 1.8-3.0, and the pH of the effluent from the alkali regulating tank is at 2.0-3.0.
  • the strains screened in the present invention are adapted to the solution environment of acid mine wastewater, and can be directly treated in situ conditions, and their activity is not inhibited by metal ions and other substances in the wastewater;
  • Acidophilic iron oxidizing bacteria are Aerobic bacteria and iron-reducing bacteria are facultative aerobic bacteria, they are easy to cultivate, aerobic growth is rapid, and the treatment process is not restricted by strict anaerobic;
  • the removal rate of iron and sulfate radical in a single cycle can be calculated by theory Therefore, the operation cycle can be accurately adjusted according to actual needs;
  • Cyclic treatment can greatly reduce the content of metal ions and sulfate radicals in acid mine wastewater, and can significantly reduce the burden of subsequent lime neutralization treatment, so that the final treated effluent meets Class II National Emission Standard (GB 8978-1996);
  • the recovered iron secondary mineral is an environmental material that can be used as an adsorption material and heterogeneous Fenton catalyst for water treatment and soil remediation.
  • Figure 1 is a schematic diagram of the experimental device of the present invention.
  • 1 Biological mineralization unit
  • 2 Biological reduction tank unit
  • 3 Alkali adjustment tank unit
  • 4 Falling water aeration tank
  • 5 Advection water collection tank
  • 6 Distribution tank
  • 7 Biological reduction tank
  • 8 Alkali adjustment Pool
  • 9 Distribution pool.
  • JZ-6 classified as Acidiphilium sp., deposited in the General Microbiology Center of China Microbial Culture Collection Management Committee, deposited at the Institute of Microbiology, Chinese Academy of Sciences, No. 3, Beichen West Road, Chaoyang District, Beijing. The preservation date is On July 2, 2015, the deposit number was CGMCC No.11036.
  • a method and device for biologically treating mine wastewater and recovering iron ions at the same time, the specific steps include:
  • the formula of acidophilic iron oxidizing bacteria LX5 liquid medium is: (NH 4 ) 2 SO 4 : 3.5g/L, MgSO 4 ⁇ 7H 2 O: 0.58g/L, KCl: 0.055g/L, KH 2 PO 4 ⁇ 3H 2 O: 0.029 g/L, Ca(NO 3 ) 2 ⁇ 4H 2 O: 0.0168 g/L, and FeSO 4 ⁇ 7H 2 O: 22.4 g/L: pH: 2.5.
  • the liquid culture medium of eosinophilic iron oxidizing bacteria LX5 was used for filming treatment.
  • the eosinophilic iron oxidizing bacteria LX5 was cultured in a pure sterile medium at 180 rpm to a density of 10 8 cells/mL, and then inoculated at 20%. Compare the inoculation of the elastic film composite filler in the biomineralization unit.
  • the inoculation amount of the first batch is 20% and the time is 5 days.
  • the effluent of the second batch and above is directly inoculated, and the inoculation amount is 10%.
  • the time is 5 days
  • the third batch of inoculation amount is 5%, and the time is 3 days.
  • the iron oxidizing bacteria colonize the biofilm of the elastic film composite filler to form brown-red iron oxidizing organisms. membrane.
  • the medium of acidophilus iron-reducing bacteria JZ-6 the formula is: (NH 4 ) 2 SO 4 :0.15g/L, MgSO 4 ⁇ 7H 2 O: 0.5g/L, KCl: 0.05g/L, KH 2 PO 4 ⁇ 3H 2 O: 0.05g/L, Ca(NO 3 ) 2 ⁇ 4H 2 O: 0.0144g/L, yeast extract: 0.2g/L, C 6 H 12 O 6 : 1g/L and Fe 2 ( SO 4 ) 3 ⁇ 3H 2 O: 8.92g/L, pH: 2.8; after the iron oxidizing bacteria are cultured in a pure sterile medium to a density of 10 8 cells/mL, the inoculation ratio is 20% Inoculate the biological filler in the biological reduction unit.
  • the eosinophilic iron oxidizing bacteria biofilm is placed in a wide and shallow water drop aeration tank and a advection water collection tank, the water drop aeration tank is set at the front end, and the advection water collection tank is set at the back end of the multi-stage water drop aeration tank ,
  • the end of the pool and the top of the water drop aeration are constructed through a peristaltic pump to construct a cyclic biomineralization process; the acidophilic iron-reducing bacteria biofilm is placed in a narrow and deep biological reduction pool, and the peristaltic pump builds a cycle from the bottom to the top of the pool.
  • Biological reduction treatment process ;
  • the biomineralization unit is composed of five water drop aeration tanks (volume 3L) and one collection tank (volume 15L). Each drop tank is filled with 6 combined fillers, and the collection tank is filled with 30 fillers for a total of 60 A combination of fillers.
  • the total height of the water drop is 125cm, an S-shaped return plate is set in the sump, the return rate in the end of the sump and the top of the water drop aeration is set to 0.6L/min, the pH of the biomineralization unit is maintained at 1.8-3.0; the volume of the biological reduction unit It is 30L, and 66 composite packings are suspended and filled on average, and the flow rate of circulation from bottom to top is set to 1L/min;
  • the back end of the reduction tank is connected with an alkali adjustment tank, the alkali adjustment unit is equipped with an internal circulation, and the end of the alkali adjustment unit's distribution pool is connected with the top of the water drop aeration tank to form a circulating treatment system;
  • the effective volume of the alkali conditioning tank is 3L, and it is filled with 150g calcium carbonate with a particle size of 1-3 ⁇ m.
  • the effluent is refluxed at a flow rate of 116mL/min, and the effluent is connected to the top of the water drop aeration tank at a flow rate of 8.5mL/min. It constitutes a treatment system with a single cycle treatment time of 5 days, and the pH of the effluent from the alkali regulating tank is maintained at 2.0-3.0;
  • the actual acid mine wastewater composition of the abandoned copper mine in Tongling, Jiangxi is shown in Table 1. After adding a half-concentration iron oxidizing bacteria culture medium to the actual mine wastewater, it is introduced into the treatment system for recycling treatment.
  • the single biomineralization-bioreduction-alkali adjustment treatment cycle is 5 days, and 50g calcium carbonate in the alkali adjustment tank is replaced every 5 days, and 1g/L glucose is supplemented in the bioreduction tank.
  • the effluent is neutralized by lime, which can significantly reduce the amount of lime and the neutralization waste generated.
  • the amount of lime required is reduced from 5.4g/L to 2.6g/L, and the neutralization is produced
  • the amount of waste residue is reduced from 23.8g/L to 7.4g/L.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种生物处理酸性矿山废水同时回收铁离子的方法,该方法包含:(1)将酸性矿山废水经嗜酸性铁氧化菌进行生物矿化,然后经嗜酸性铁还原菌进行循环生物还原处理后进入碱调节池(8)循环调节pH后出水循环至生物矿化单元(1)进行循环处理;(2)一段时间反应后,将废水从平流集水池(5)末端引出,后续可连接石灰中和处理系统,在生物矿化单元(1)可回收黄钾铁矾矿物或施氏矿物。还公开了一种生物处理酸性矿山废水同时回收铁离子的系统。

Description

一种生物处理酸性矿山废水同时回收铁离子的方法及系统 技术领域
本发明属于废水处理领域,涉及一种生物处理酸性矿山废水同时回收铁离子的方法及系统。
背景技术
酸性矿山废水(AMD)是目前全球采矿业面临的具有挑战性的环境问题。它是矿山在开采或废弃矿渣堆积过程中发生生物和化学反应后产生的一类低pH、高铁离子的排水。极端酸性(pH:2.0-3.5)、丰富的硫酸根(SO 4 2-:2000-6000mg/L)、高铁含量(Fe 2+或Fe 3+:500-4500mg/L)、有毒金属(As,Cd,Cu,Pb,Ni等)存在是AMD的典型特征。AMD的直接排放严重威胁矿区周边水土环境安全和生态系统,给人们的生产和生活造成巨大损失。
中和沉淀法是处理AMD废水比较成熟的方法,主要采用投加石灰或石灰石等碱性试剂来中和酸性,并利用酸碱中和反应沉淀AMD的金属离子和硫酸根,达到净化污水、提升废水pH值的目的。但该方法在使用中仍存在许多问题:(1)AMD中存在的大量铁离子和硫酸在中和过程中易形成沉淀包裹在石灰表面,降低中和效率,从而造成碱中和试剂用量的提高;(2)AMD中大量的铁与硫酸根离子直接沉淀下来,难以回收利用,造成资源的浪费;(3)处理后中和废渣量大,含有的有毒金属含量低,无法回收利用,造成污泥安全处置的难度大。AMD中存在的大量铁与硫酸根是限制该方法有效运行的根本原因。在原位AMD环境通过预处理去除其中的铁离子和硫酸根,再进入石灰中和处理系统,可从根本上解决传统石灰中和处理存在的弊端。
以生成矿物的形式沉淀AMD中的金属离子和硫酸根可达到同步回收有用离子和修复AMD的双重目的。以硫酸盐还原为主的AMD处理技术在近些年受到广泛的研究,硫酸盐还原菌可利用氢气或有机物作为电子供体,还原硫酸根为硫离子,提升溶液pH,同时生成的生物成因硫离子可与AMD中的金属离子(Fe,Zn,Cu等)形成相应的硫化物沉淀,达到回收AMD中有价值离子的目的。中国发明专利200910038782.7公开了一种利用柠檬酸杆菌还原AMD中硫酸盐并沉淀金属的方法,使金属离子全部转化为硫化物形态,利于回收利用;中国发明专利200810054487.6公开了以硫酸盐还原菌为主体的生物处理酸性矿山废水工艺,达到回收单质硫和处理废水的双重功效。通过SO 4 2-还原后的S 2-沉淀金属离子,可使AMD处理过程达到资源化和无害化的目的。但是,以硫酸盐还原为主的生物处理系统的稳定性不易控制,硫酸盐还原 菌多为异养型、专性厌氧微生物,对体系中氧气含量、pH值、碳源种类和金属离子极度敏感。文献报道AMD中大量存在的铁离子可抑制硫酸盐还原菌活性,降低硫酸盐还原能力39-100%。一些强化方法虽可以提高生物反应器的耐性,如利用混合细菌进行生物强化,但无法彻底解决需要碳源添加、绝对厌氧条件和中性pH需求(pH 5-7)的弊端。此外,中国发明专利201610153310.6公开了一种基于生物成矿的酸性矿山废水处理系统,将酸性矿山废水通过生物氧化成矿单元以形成铁次生矿物的形式去除酸性矿山废水中的部分铁离子与硫酸根,以降低后续灰中中和处理负担。这种方法利用了嗜酸性氧化亚铁硫杆菌,可在原位条件下实现矿化过程,但存在的弊端是生物成矿处理效率较低,且微生物直接应用于废水处理,存在微生物易流失的问题,难以完全应用到实际矿山废水处理过程。因此,开发新型的处理工艺实现AMD的资源化与无害化仍是目前环境领域亟需解决的难题。
发明内容
本发明的目的是针对现有技术的上述不足,提供一种生物处理酸性矿山废水同时回收铁离子的系统。
本发明的另一目的是提供一种生物处理酸性矿山废水同时回收铁离子的方法。
本发明的目的可通过以下技术方案实现:
一种生物处理酸性矿山废水同时回收铁离子的系统,所述的系统包含:所述的系统包含:生物矿化单元、生物还原池单元和碱调节池单元;所述的生物矿化单元包括两部分:前端的多级跌水曝气池和后端的平流集水池,所述的生物还原单元包括配水池和生物还原池,所述的碱调节单元包括碱调节池和配水池,所述的碱调节单元出水处与生物矿化单元顶端通过循环泵和管道连通,构成循环的酸性矿山废水处理系统。
所述的生物矿化单元(1)优选设置内循环:平流集水池(5)末端通过循环泵和管道循环至第一级跌水曝气池(4)顶端。
作为本发明系统的一种优选,所述的生物还原池(7)底部与顶部通过循环泵和管道连通。
作为本发明系统的一种优选,所述的配水池(9)末端与碱调节池(8)设置内循环,通过循环泵和管道连接。
作为本发明系统的一种优选,所述的生物矿化反应单元的多级跌水曝气池和平流集水池均填充嗜酸性铁氧化菌生物膜;所述的生物还原池填充嗜酸性铁还原菌生物膜。
作为本发明系统的一种优选,所述生物矿化反应池的特征为宽而浅,所述的生物还原池的 特征为窄而深。
作为本发明系统的一种优选,所述跌水曝气池的跌水曝气级数大于3级;所述的生物矿化单元平流集水池内设置S形回流板。
一种生物处理酸性矿山废水同时回收铁离子的方法,包含:
将酸性矿山废水中额外加入一定量的铁氧化菌培养基,引入系统,进行循环生物矿化-生物还原-生物矿化处理,最终在生物矿化单元回收黄钾铁矾矿物或施氏矿物;
所述的生物处理酸性矿山废水同时回收铁离子的方法,优选包含:
将酸性矿山废水引入本发明所述的系统进行循环处理,回收黄钾铁矾矿物或施氏矿物,具体过程为:废水直接引入生物矿化单元,经跌水曝气池充氧,在嗜酸性铁氧化菌的作用下发生生物矿化作用,后续流经平流集水池进行进一步的矿化,平流集水池末端与跌水曝气顶端通过蠕动泵构筑多次循环生物矿化处理过程,促进矿化沉淀率;废水经由平流集水池消耗部分氧气,流经配水池平缓水流后,进入生物还原池,在嗜酸性铁还原菌的作用下将未矿化的铁离子还原为亚铁离子,通过生物还原池内循环处理提高还原效率;废水经还原后进入碱调节池,提升溶液pH以适应下一循环处理过程嗜酸性铁氧化菌的溶液需求,经过碱调节单元内循环过程充分调整溶液pH;废水最后由配水池进入下一批次处理系统。经过多次循环处理后,从生物矿化单元底部及嗜酸性铁氧化菌生物填料上回收黄钾铁矾矿物或施氏矿物。
作为本发明方法的进一步优选,将嗜酸性铁氧化菌好氧培养,将其定殖在复合生物填料上制备得到嗜酸性铁氧化菌生物膜:采用嗜酸性铁氧化菌的液体培养基进行菌剂培养,配方为(NH 4) 2SO 4:3.5g/L、MgSO 4·7H 2O:0.58g/L、KCl:0.055g/L、KH 2PO 4·3H 2O:0.029g/L、Ca(NO 3) 2·4H 2O:0.0168g/L和FeSO 4·7H 2O:22.4g/L:pH:2.5,首次利用纯菌种按20%(体积比)接种量,后续直接采用上批次含菌出水进行接种,并逐级降低接种体积(20-5%),经过3-5批次培养定殖,每次培养3-5天。
将嗜酸性铁还原菌静置培养,将其定殖在复合生物填料上制备得到嗜酸性铁还原菌生物膜。铁还原菌的培养基,配方为:(NH 4) 2SO 4:0.15g/L,MgSO 4·7H 2O:0.5g/L,KCl:0.05g/L,KH 2PO 4·3H 2O:0.05g/L,Ca(NO 3) 2·4H 2O:0.0144g/L,酵母提取物:0.2g/L,C 6H 12O 6:1g/L和Fe 2(SO 4) 3·3H 2O:8.92g/L,pH:2.8。每次接种量按20%(体积比),首次利用纯菌种,后续用上批次含菌出水接种,共进行3-5批次培养定殖,每次培养7-12天。
作为本发明方法的进一步优选,所述的嗜酸性铁氧化菌为Acidithiobacillus ferrooxidans LX5,保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.0727;所述的嗜酸性铁还原菌为Acidiphilium cryptum JZ-6,保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.11036。
作为本发明方法的进一步优选,所述酸性矿山废水中额外加入1/10-1/2浓度的嗜酸性铁氧化菌培养基,目的是为细菌提供生长必须营养。
作为本发明方法的进一步优选,跌水曝气级数大于3级。
作为本发明方法的进一步优选,所述的生物矿化单元集水池内设置S形回流板。
作为本发明方法的进一步优选,废水从生物矿化单元平流集水池末端循环至跌水曝气池顶端,回流速度为0.4-0.8L/min。
作为本发明方法的进一步优选,废水从生物还原池底部循环到池顶部,回流速度为0.8-1.2L/min。
作为本发明方法的进一步优选,碱调节单元配水池出水再循环至调节池内,回流速度为0.05-0.2L/min。
作为本发明方法的进一步优选,碱调节单元末端到生物矿化单元跌水曝气池顶端的循环流速设置为6-10mL/min,单次生物矿化-生物还原-碱调节处理过程时间为3-7天。作为本发明方法的进一步优选,所述的碱调节池内填充45-50g/L的颗粒状碳酸钙,粒径为1-3μm。
作为本发明方法的进一步优选,所述处理过程生物矿化单元pH维持在1.8-3.0,碱调节池出水pH在2.0-3.0。
作为本发明方法的进一步优选,所述在单次生物矿化-生物还原-碱调节处理过程,添加1g/L葡萄糖至生物还原池,更换1/3碱调池中的碳酸钙。
有益效果:
(1)本发明筛选得到的菌株适应酸性矿山废水的溶液环境,可在原位条件直接进行废水处理,其活性不受废水中金属离子和其他物质的抑制;(2)嗜酸性铁氧化菌为好氧菌,铁还原菌为兼性好氧菌,它们易于培养,好氧生长迅速,处理过程不受严格厌氧的限制;(3)单次循环对铁及硫酸根去除率可通过理论计算获得,因此,可根据实际需求准确调控运行周期;(4)循环处理可大幅度降低酸性矿山废水中金属离子和硫酸根含量,能明显降低后续石灰中和处理负担,使最终处理出水满足Ⅱ级国家排放标准(GB 8978-1996);(5)回收到的铁次生矿物是一种环境材料,可作为吸附材料和异相芬顿催化剂,应用于水处理和土壤修复。
附图说明
图1是本实用新型的实验装置示意图。
1:生物矿化单元、2:生物还原池单元、3:碱调节池单元、4:跌水曝气池、5:平流集水池、6:配水池、7:生物还原池、8:碱调节池、9:配水池。
生物材料保藏信息
LX5,分类命名为氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans),保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址:中国.北京.中关村,保藏日期为2002年3月13日,保藏编号为CGMCC No.0727。
JZ-6,分类命名为嗜酸菌Acidiphilium sp.,保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,保藏日期为2015年7月2日,保藏编号为CGMCC No.11036。
具体实施例
通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例1:
一种生物处理矿山废水同时回收铁离子的方法及装置,具体步骤包括:
(1)将嗜酸性铁氧化菌LX5(CGMCC No.0727)好氧培养,经过批次培养,将其定殖在市售弹性挂膜组合填料(宜兴市苏盟环保填料有限公司)上:
嗜酸性铁氧化菌LX5液体培养基配方为:(NH 4) 2SO 4:3.5g/L、MgSO 4·7H 2O:0.58g/L、KCl:0.055g/L、KH 2PO 4·3H 2O:0.029g/L、Ca(NO 3) 2·4H 2O:0.0168g/L和FeSO 4·7H 2O:22.4g/L:pH:2.5。以嗜酸性铁氧化菌LX5的液体培养基进行挂膜处置,嗜酸性铁氧化菌LX5在纯的灭菌培养基中以180rpm转速培养至菌密度为10 8cells/mL后,以20%的接种比对生物矿化单元内的生弹性挂膜组合填料进行接种,第一批次接种量为20%,时间为5天,第二批次以上批次出水直接进行接种,接种量为10%,时间为5天,第三批次接种量为5%,时间为3天,经过3批次接种后,铁氧化菌定殖在弹性挂膜组合填料的生物膜上,形成棕红色的铁氧化生物膜。
(2)将嗜酸性铁还原菌JZ-6(CGMCC No.11036)静置培养,经过批次培养,将其定殖在弹性挂膜组合填料上:
嗜酸性铁还原菌JZ-6的培养基,配方为:(NH 4) 2SO 4:0.15g/L,MgSO 4·7H 2O:0.5g/L,KCl: 0.05g/L,KH 2PO 4·3H 2O:0.05g/L,Ca(NO 3) 2·4H 2O:0.0144g/L,酵母提取物:0.2g/L,C 6H 12O 6:1g/L和Fe 2(SO 4) 3·3H 2O:8.92g/L,pH:2.8;铁氧化菌在纯的灭菌培养基中静置培养至菌密度为10 8cells/mL后,以20%的接种比对生物还原单元内生物填料进行接种,共接种3批次,接种量为20%,每次接种时间为10天,第一批次用纯菌种接种,后两批次以上批次出水直接进行接种,经过3批次接种后,铁还原菌定殖在生物膜上,形成浅黄色的铁还原生物膜。
(3)嗜酸性铁氧化菌生物膜放置在宽而浅的跌水曝气池和平流集水池中,跌水曝气池设置在前端,平流集水池设置在多级跌水曝气池后端,池末端与跌水曝气顶端通过蠕动泵构筑循环生物矿化处理过程;嗜酸性铁还原菌生物膜放置在窄而深的生物还原池中,并从池底端向顶端通过蠕动泵构建循环生物还原处理过程;
生物矿化单元由五个跌水曝气池(容积为3L)和一个集水池(容积为15L)组成,每个跌水池内填充6个组合填料,集水池内填充30个填料,共填充60个组合填料。跌水总高度为125cm,集水池内设置S形回流板,集水池末端与跌水曝气顶端内回流速率设置为0.6L/min,生物矿化单元pH维持在1.8-3.0;生物还原单元容积为30L,平均悬挂填充66个组合填料,底部到顶部循环的流速设置为1L/min;
(4)还原池后端接碱调节池,碱调节单元设置内循环,碱调节单元配水池末端与跌水曝气池顶端连通,构成循环处理系统;
碱调池的有效容积为3L,里面填充150g粒径为1-3μm的碳酸钙,出水以116mL/min的流速回流,出水并以8.5mL/min的流速接入到跌水曝气池顶端,构成单次循环处理时间为5天的处理系统,碱调节池出水pH维持在2.0-3.0;
(5)向需处理得AMD中加入一定浓度的培养基,引入跌水曝气池顶端,开启处理过程;
江西铜陵废弃铜矿的实际酸性矿山废水成分如见表1,向实际矿山废水种添加一半浓度的铁氧化菌培养基后,将其引入处理系统,进行循环处理。单次生物矿化-生物还原-碱调节处理周期为5天,每5天更换碱调节池中50g的碳酸钙,并在生物还原池中补充1g/L的葡萄糖。
表1 酸性矿山废水水质特性
Figure PCTCN2020072601-appb-000001
(6)运行若干循环后,从生物矿化单元末端将废水引出,进行后续的石灰中和处理。从生物矿 化单元反应器底部及生物填料上回收棕红色的铁次生矿物。
经过3个循环共计15天处理后的出水经石灰中和处理,可明显降低石灰用量和产生的中和废渣,所需的石灰量由5.4g/L降低至2.6g/L,产的中和废渣量由23.8g/L降低至7.4g/L。
当继续增加运行时间至26天(5个循环处理),后续中和处理过程石灰消耗量和所产生的中和废渣量分别降低至1.3g/L和5.4g/L,中和出水各离子含量见表2,满足Ⅱ级国家排放标准(GB8978-1996)。收集生物矿化单元池底及生物膜上的红棕色沉淀,经鉴定,其为黄钾铁矾矿物,其产量为16.4g/L。
表2 循环处理26天耦联石灰中和后各离子浓度
Figure PCTCN2020072601-appb-000002

Claims (19)

  1. 一种生物处理酸性矿山废水同时回收铁离子的系统,其特征在于所述的系统包含:生物矿化单元(1)、生物还原池单元(2)和碱调节池单元(3);所述的生物矿化单元(1)包括两部分:前端的多级跌水曝气池(4)和后端的平流集水池(5),所述的生物还原单元(2)包括配水池(6)和生物还原池(7),所述的碱调节单元(3)包括碱调节池(8)和配水池(9),所述的碱调节单元(3)出水处与生物矿化单元(1)顶端通过循环泵和管道连通,构成循环的酸性矿山废水处理系统。
  2. 根据权利要求1所述的系统,其特征在于所述的生物矿化单元(1)设置内循环:平流集水池(5)末端通过循环泵和管道循环至第一级跌水曝气池(4)顶端;所述的生物还原池(7)底部与顶部通过循环泵和管道连通;所述的配水池(9)末端与碱调节池(8)设置内循环,通过循环泵和管道连接。
  3. 根据权利要求1所述的系统,其特征在于所述的跌水曝气池和平流集水池均填充嗜酸性铁氧化菌生物膜;所述的生物还原池填充嗜酸性铁还原菌生物膜。
  4. 根据权利要求3所述的系统,其特征在于所述生物矿化反应池的特征为宽而浅,所述的生物还原池的特征为窄而深。
  5. 根据权利要求1所述的系统,其特征在于跌水曝气池的跌水曝气级数大于3级;所述的生物矿化单元平流集水池内设置S形回流板。
  6. 一种生物处理酸性矿山废水同时回收铁离子的方法,其特征在于包含:
    将酸性矿山废水中额外加入一定量的铁氧化菌培养基,引入系统,进行循环生物矿化-生物还原-生物矿化处理,最终在生物矿化单元回收黄钾铁矾矿物或施氏矿物。
  7. 根据权利要求6所述的方法,其特征在于包含:
    将酸性矿山废水引入权利要求1-5中任一项所述的系统进行循环处理,回收黄钾铁矾矿物或施氏矿物,具体过程为:废水直接引入生物矿化单元,经跌水曝气池充氧,在嗜酸性铁氧化菌的作用下发生生物矿化作用,后续流经平流集水池进行进一步的矿化,平流集水池末端与跌水曝气顶端通过蠕动泵构筑多次循环生物矿化处理过程,促进矿化沉淀率;废水经由平流集水池消耗部分氧气,流经配水池平缓水流后,进入生物还原池,在嗜酸性铁还原菌的作用下将未矿化的铁离子还原为亚铁离子,通过生物还原池内循环处理提高还原效率;废水经还原后进入碱调节池,提升溶液pH以适应下一循环处理过程嗜酸性铁氧化菌的溶液需求,经 过碱调节单元内循环过程充分调整溶液pH;废水最后由配水池进入下一批次处理系统,经过多次循环处理后,从生物矿化单元底部及嗜酸性铁氧化菌生物填料上回收黄钾铁矾矿物或施氏矿物。
  8. 根据权利要求7所述的方法,其特征在于将嗜酸性铁氧化菌好氧培养,将其定殖在复合生物填料上制备得到嗜酸性铁氧化菌生物膜;将嗜酸性铁还原菌静置培养,将其定殖在复合生物填料上制备得到嗜酸性铁还原菌生物膜。
  9. 根据权利要求5所述的方法,其特征在于所述的嗜酸性铁氧化菌为氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)LX5,保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.0727;所述的嗜酸性铁还原菌为嗜酸菌(Acidiphilium sp.)JZ-6,保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.11036。
  10. 根据权利要求7所述的方法,其特征在于所述酸性矿山废水中额外加入1/10-1/2浓度的嗜酸性铁氧化菌培养基。
  11. 根据权利要求7所述的方法,其特征在于跌水曝气池的跌水曝气级数大于3级。
  12. 根据权利要求7所述的方法,其特征在于所述的生物矿化单元平流集水池内设置S形回流板。
  13. 根据权利要求7所述的方法,其特征在于废水从生物矿化单元平流集水池末端循环至跌水曝气池顶端,回流速度为0.4-0.8L/min。
  14. 根据权利要求7所述的方法,其特征在于废水从生物还原池底部循环到池顶部,回流速度为0.8-1.2L/min。
  15. 根据权利要求7所述的方法,其特征在于碱调节单元的配水池出水再循环至调节池内,回流速度为0.05-0.2L/min。
  16. 根据权利要求7所述的方法,其特征在于碱调节单元末端到生物矿化单元跌水曝气池顶端的循环流速设置为6-10mL/min,单次生物矿化-生物还原-碱调节处理过程时间为3-7天。
  17. 根据权利要求7所述的方法,其特征在于所述的碱调节池内填充45-50g/L的颗粒状碳酸钙,粒径为1-3μm。
  18. 根据权利要求7所述的方法,其特征在于所述处理过程生物矿化单元pH维 持在1.8-3.0,碱调节池出水pH在2.0-3.0。
  19. 根据权利要求7所述的方法,其特征在于所述在单次生物矿化-生物还原-碱调节处理过程,添加1g/L葡萄糖至生物还原池,更换1/3碱调池中的碳酸钙。
PCT/CN2020/072601 2019-12-16 2020-01-17 一种生物处理酸性矿山废水同时回收铁离子的方法及系统 WO2021120364A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2209872.7A GB2606659B (en) 2019-12-16 2020-01-17 Method and system for biologically treating acidic mine wastewater while recovering iron ion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911293991.6 2019-12-16
CN201911293991.6A CN111620444B (zh) 2019-12-16 2019-12-16 一种生物处理酸性矿山废水同时回收铁离子的方法及系统

Publications (1)

Publication Number Publication Date
WO2021120364A1 true WO2021120364A1 (zh) 2021-06-24

Family

ID=72256874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072601 WO2021120364A1 (zh) 2019-12-16 2020-01-17 一种生物处理酸性矿山废水同时回收铁离子的方法及系统

Country Status (3)

Country Link
CN (1) CN111620444B (zh)
GB (1) GB2606659B (zh)
WO (1) WO2021120364A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830904A (zh) * 2021-11-10 2021-12-24 中国科学院成都生物研究所 一种铁氧化微生物联合活性碳处理老龄垃圾渗滤液的技术
CN115975845A (zh) * 2022-07-29 2023-04-18 安徽农业大学 一株耐盐/耐酸异养硝化-好氧反硝化菌在环境废水处理中的应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624284A (zh) * 2020-12-03 2021-04-09 贵州大学 一种循环流处理酸性矿山废水的方法
CN112661197B (zh) * 2020-12-24 2021-12-07 成都湛蓝未来环保科技有限公司 一种微生物催化制备聚合硫酸铁的装置和制备方法
CN114634257A (zh) * 2022-03-04 2022-06-17 太原碧蓝水利工程设计股份有限公司 一种处理酸性矿坑水的方法及由酸性矿坑水合成的羟基硫酸铁钾
CN114958387B (zh) * 2022-06-13 2023-09-15 中南大学 一种微生物复合试剂及其制备方法和应用
CN115403126A (zh) * 2022-09-30 2022-11-29 中化学土木工程有限公司 一种矿山酸性废水中和处理循环系统
CN116328710A (zh) * 2023-04-28 2023-06-27 贵州大学 高效去除amd中重金属的生物矿化材料、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241038A1 (en) * 2006-04-17 2007-10-18 Christopher Gillis Fluid remediation system
CN102701517A (zh) * 2012-05-14 2012-10-03 贵州大学 一种利用有机质及碳酸盐岩联合处理矿山酸性废水的方法
CN108975637A (zh) * 2018-09-25 2018-12-11 爱土工程环境科技有限公司 矿洞废水预处理装置
CN110272167A (zh) * 2019-06-28 2019-09-24 武汉环天禹生物环保科技有限公司 一种基于碳纤维的矿山废水处理系统及地下水去污工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402491A (zh) * 2008-10-27 2009-04-08 合肥工业大学 生物质固定床处理含重金属酸性废水并回收重金属的方法
CN101746918A (zh) * 2008-11-27 2010-06-23 北京有色金属研究总院 一种处理矿山酸性废水并回收废水中有价金属的工艺
CN103834806B (zh) * 2014-03-27 2016-03-09 内蒙古科技大学 一种提高含铌复杂尾矿中铌矿物可选性的方法及装置
CN106007166B (zh) * 2016-03-03 2019-04-16 国家地质实验测试中心 用于去除酸性矿山废水中重金属的装置
CN105601051B (zh) * 2016-03-11 2018-04-20 山西农业大学 一种基于生物成矿的酸性矿山废水处理系统和处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241038A1 (en) * 2006-04-17 2007-10-18 Christopher Gillis Fluid remediation system
CN102701517A (zh) * 2012-05-14 2012-10-03 贵州大学 一种利用有机质及碳酸盐岩联合处理矿山酸性废水的方法
CN108975637A (zh) * 2018-09-25 2018-12-11 爱土工程环境科技有限公司 矿洞废水预处理装置
CN110272167A (zh) * 2019-06-28 2019-09-24 武汉环天禹生物环保科技有限公司 一种基于碳纤维的矿山废水处理系统及地下水去污工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU LIXIANG: "Biomineralization: a Pivotal Process in Developing a Novel Passive Treatment System for Acid Mine Drainage", ACTA CHIMICA SINICA, vol. 75, no. 6, 15 June 2017 (2017-06-15), CN, pages 552 - 559, XP009528612, ISSN: 0567-7351, DOI: 10.6023/A17020058 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830904A (zh) * 2021-11-10 2021-12-24 中国科学院成都生物研究所 一种铁氧化微生物联合活性碳处理老龄垃圾渗滤液的技术
CN113830904B (zh) * 2021-11-10 2023-11-03 中国科学院成都生物研究所 一种铁氧化微生物联合活性碳处理老龄垃圾渗滤液的技术
CN115975845A (zh) * 2022-07-29 2023-04-18 安徽农业大学 一株耐盐/耐酸异养硝化-好氧反硝化菌在环境废水处理中的应用
CN115975845B (zh) * 2022-07-29 2023-11-21 安徽农业大学 一株耐盐/耐酸异养硝化-好氧反硝化菌在环境废水处理中的应用

Also Published As

Publication number Publication date
CN111620444A (zh) 2020-09-04
GB2606659A (en) 2022-11-16
GB2606659A9 (en) 2022-12-21
GB2606659B (en) 2024-07-24
GB202209872D0 (en) 2022-08-17
CN111620444B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021120364A1 (zh) 一种生物处理酸性矿山废水同时回收铁离子的方法及系统
Bai et al. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs
Boshoff et al. Tannery effluent as a carbon source for biological sulphate reduction
CN101195859B (zh) 微生物法处理低浓度重金属硫酸盐溶液的工艺
CN101628773B (zh) 含铜铁高浓度矿山酸性废水处理工艺
CN106834699B (zh) 一种含铜污泥无害化处理及高值化利用的方法
CN101402491A (zh) 生物质固定床处理含重金属酸性废水并回收重金属的方法
CN101531976B (zh) 柠檬酸杆菌及其处理酸性矿山废水的方法
Bi et al. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters
CN102220259B (zh) 一种具有硫酸盐还原功能的柠檬酸杆菌及其应用
CN104787984A (zh) 一种同步回收垃圾渗滤液和酸性矿山排水中重金属的方法
CN111996133A (zh) 一种硫酸盐还原菌生物强化应用的方法
CN105776788A (zh) 一种生物淋滤去除城市污水处理厂污泥中重金属Cu的方法
Wang et al. Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system
CN110129224A (zh) 一种耐盐反硝化菌及其菌剂的制备方法与应用
CN111362419A (zh) 一种矿山酸性废水的生化处理系统
CN114212881B (zh) 强化短程反硝化厌氧氨氧化脱氮同步磷回收的工艺及装置
CN114369625B (zh) 一种人为强化单质硫生物歧化产硫的方法及其实现废水中重金属生物脱除的方法
CN105217911A (zh) 一种利用生物沥浸反应进行污泥脱水的工艺和方法
Magowo et al. Bioremediation of acid mine drainage using Fischer-Tropsch waste water as a feedstock for dissimilatory sulfate reduction
CN110921993A (zh) 一种发电厂含氨废水的处理方法
CN104498713A (zh) 一种嗜酸细菌作用下的基于含铁硫化矿的铬还原方法
CN106957078B (zh) 一种基于铁氧化细菌的光催化半导体硫化矿降解选矿废水残余药剂的方法
CN108148771B (zh) 低温耐氟浸矿菌及其用于含氟铀矿的生物浸出工艺
CN102424509A (zh) 一种新型生物淋滤处理污泥中重金属的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202209872

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200117

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902678

Country of ref document: EP

Kind code of ref document: A1