WO2021120233A1 - Procédé de réglage de rigidité en temps réel pour sonde de microscope à force atomique - Google Patents

Procédé de réglage de rigidité en temps réel pour sonde de microscope à force atomique Download PDF

Info

Publication number
WO2021120233A1
WO2021120233A1 PCT/CN2019/127400 CN2019127400W WO2021120233A1 WO 2021120233 A1 WO2021120233 A1 WO 2021120233A1 CN 2019127400 W CN2019127400 W CN 2019127400W WO 2021120233 A1 WO2021120233 A1 WO 2021120233A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
stiffness
cantilever beam
atomic force
force microscope
Prior art date
Application number
PCT/CN2019/127400
Other languages
English (en)
Chinese (zh)
Inventor
陈科纶
谷森
孙钰
汝长海
朱军辉
Original Assignee
江苏集萃微纳自动化系统与装备技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃微纳自动化系统与装备技术研究所有限公司 filed Critical 江苏集萃微纳自动化系统与装备技术研究所有限公司
Publication of WO2021120233A1 publication Critical patent/WO2021120233A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the invention relates to the technical field of atomic force microscopes, in particular to a method for real-time adjustment of the stiffness of the probes of the atomic force microscope.
  • the atomic force microscope uses a special tiny probe to scan the surface of the sample material in the left and right and front and back directions, and uses the scanner to fine-tune the ability in the vertical direction to keep the force between the probe and the material surface fixed during the scanning process.
  • the vertical fine-tuning distance of each point in the scanning process is recorded, and the three-dimensional topography of the material surface can be characterized.
  • the atomic force microscope presses the probe tip into and out of the material surface, obtains the force-displacement curve through the sensor, and calculates the curve to obtain the Young's modulus and hardness of the measured material.
  • the nanoindentation test can directly act on materials of any size and shape according to the shape and tip size of the nanoindenter. It is a direct test. It is widely used to test the mechanical properties of micro/nano-scale materials.
  • Atomic force microscope needs to select a probe with appropriate stiffness according to the working mode. For example: when the atomic force microscope selects the contact mode for imaging, the stiffness of the probe can be selected in the range of 0.1N/m-1N/m. When the AFM is imaging biological materials, the stiffness of the probe can be selected in the range of 0.01N/m-0.5N/m. When the AFM selects the non-contact mode for imaging, the stiffness of the probe can be selected from 50N/m-80N/m. When the AFM selects the force modulation mode for imaging, the stiffness of the probe can be selected from 5N/m-10N/m. When the atomic force microscope performs the nanoindentation test, the stiffness of the atomic force microscope probe is selected according to the mechanical properties of the material being tested.
  • the technical problem to be solved by the present invention is to provide a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which can adjust the stiffness of the probe in real time, with a large adjustment range, a wide working range and good stability.
  • the present invention provides a real-time adjustment method for the stiffness of an atomic force microscope probe.
  • the probe includes a cantilever beam and a needle tip, and includes the following steps:
  • the stiffness of the cantilever beam-coating composite is changed by changing the temperature of the stiffness adjustment layer.
  • the stiffness adjustment layer is a metal layer, and the melting point of the metal layer is lower than the melting point of the cantilever beam.
  • the metal layer is an alloy composed of one or more of indium, bismuth, tin, and gold.
  • the stiffness adjustment layer is prepared by a coating method, an electron beam sputtering method, a chemical vapor deposition method or a focused ion beam deposition method.
  • the “change the stiffness of the cantilever beam-coating composite piece by changing the temperature of the stiffness adjustment layer” specifically includes the following steps:
  • the molten metal is cooled, and the molten metal is solidified and formed on the surface of the cantilever beam.
  • the vibration frequency of the probe is 5khz-20khz, and the vibration amplitude of the probe is 3-5 ⁇ m
  • the cooling rate of the "cooling molten metal" is less than 10°C/s.
  • the vibration of the probe is driven by a piezoelectric ceramic driver.
  • the "change the stiffness of the cantilever beam-coating composite piece by changing the temperature of the stiffness adjustment layer” includes the following steps:
  • the morphology of the crystal grains after the solidification of the molten metal is changed, and the cantilever beam-coating composite parts with different stiffness are obtained.
  • the "cooling rate of the probe" is 0.1-10°C/s.
  • the invention discloses a real-time adjustment method for the stiffness of an atomic force microscope probe.
  • the probe includes a cantilever beam and a needle tip, and includes the following steps:
  • the probe is pulled out of the non-conductive material. At this time, the surface of the probe is coated with the non-conductive material, and the heating of the probe is stopped, and the non-conductive material is solidified and formed on the probe.
  • the melting point of the non-conductive material is lower than 100°C.
  • the surface of the probe is coated with the non-conductive material, stop heating the probe, and the non-conductive material is solidified on the probe to form” further includes: scraping Except for the non-conductive material of the needle tip.
  • the non-conductive material is resin material, polyethylene, polypropylene or rubber.
  • the present invention forms a cantilever beam-coating composite piece by coating a stiffness adjustment layer on the cantilever beam, and then changes the stiffness of the cantilever beam-coating composite piece by changing the temperature of the stiffness adjustment layer, which can adjust the probe in real time Rigidity, no need to replace the probe frequently, reduce probe loss, large adjustment range, wide working range and good stability.
  • Figure 1 is a schematic diagram of the structure of the probe
  • Figure 2 is a schematic flow chart of the first embodiment
  • Fig. 3 is a schematic flow chart of the third embodiment.
  • the present invention discloses a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which includes the following steps:
  • a rigidity adjustment layer is coated on the cantilever beam to form a cantilever beam-coating composite.
  • the stiffness adjustment layer is a metal layer, and the melting point of the metal layer is lower than the melting point of the cantilever beam.
  • the metal layer is an alloy composed of one or more of indium, bismuth, tin, and gold.
  • the stiffness adjustment layer is prepared by a coating method, an electron beam sputtering method, a chemical vapor deposition method, or a focused ion beam deposition method.
  • Cooling the molten metal the molten metal solidifies and forms on the surface of the cantilever beam, "cooling the molten metal", and the cooling rate is less than 10°C/s.
  • the probe can be a piezoresistive self-induction atomic force microscope probe produced by Japan HITACHI company.
  • the working principle of the probe is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam; moreover, when a voltage is applied to the probe, the cantilever beam can be heated up. Due to the actual micro-machining error, The stiffness of the AFM probe is 40 ⁇ 5N/m.
  • Au-Sn alloy powder is placed on the surface of the probe cantilever beam.
  • Au-Sn alloy powder is a mixture of Au-Sn solder and alcohol, the ratio is 1:5.
  • the target voltage is applied to the AFM probe to 5-10V. After heating for 1 minute, the temperature of the cantilever beam of the probe stabilizes at 280°C, reaching the melting point of Au-Sn alloy powder, which is much lower than the melting point of silicon cantilever material of 1410°C.
  • the Au-Sn alloy powder on the surface of the AFM probe is completely melted and is in a molten state. Drive the AFM probe in the Z direction with a vibration frequency of 10KHz and a vibration amplitude of 3 ⁇ m.
  • the molten Au-Sn alloy material spreads evenly on the surface of the probe cantilever beam. Within 10 minutes, the voltage was slowly reduced from 5-10V to 0V, and the molten Au-Sn alloy solidified into a solid state of 140 with a forming thickness of 15nm. Through software testing and software calculations, the overall stiffness of the AFM probe with the thickness of the cantilever increased by 15nm increased to 102.98N/m.
  • the probe in this embodiment is suitable for all AFM probes based on piezoresistive self-induction and self-heating.
  • the present invention can influence the forming thickness of Au-Sn alloy material by changing the vibration frequency and the vibration amplitude, and adjust the overall stiffness of the atomic force microscope probe. See Table 1 and Table 2 for details.
  • the alloy powder in this embodiment is not limited to the gold-based alloy brazing filler metal.
  • the Bi-based alloy and the In-based alloy solder have a lower melting point, which can expand the application of the present invention.
  • the melting point of 51% In/32.5% Bi/16.5% Sn is 60°C; the melting point of 57% Bi/26% In/17% Sn is 79°C.
  • the invention discloses a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which comprises the following steps:
  • a rigidity adjustment layer is coated on the cantilever beam to form a cantilever beam-coating composite.
  • the stiffness adjustment layer is a metal layer, and the melting point of the metal layer is lower than the melting point of the cantilever beam.
  • the metal layer is an alloy composed of one or more of indium, bismuth, tin, and gold.
  • the stiffness adjustment layer is prepared by a coating method, an electron beam sputtering method, a chemical vapor deposition method, or a focused ion beam deposition method.
  • the probe can be a piezoresistive self-induction atomic force microscope probe produced by Japan HITACHI company.
  • the working principle of the probe is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam; moreover, when a voltage is applied to the probe, the cantilever beam can be heated up. Due to the actual micro-machining error, The stiffness of the AFM probe is 40 ⁇ 5N/m.
  • the principle of this embodiment is to place a layer of material on the surface of the cantilever beam of the atomic force microscope probe, and heat the probe to melt the surface material of the cantilever beam.
  • the probe used is a piezoresistive self-induction atomic force microscope probe produced by Japan's HITACHI company.
  • the working principle is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam.
  • the cantilever beam can be heated up. Due to the actual micro-machining error, the stiffness of the AFM probe is 40 ⁇ 5N/m.
  • the Au-Sn alloy powder is placed on the surface 220 of the cantilever beam.
  • the Au-Sn alloy powder 210 is a mixture of Au-Sn solder and alcohol, and the ratio is 1:5.
  • the target voltage is applied to the probe to 5-10V, and after heating for 1 minute, the temperature of the cantilever beam of the probe 2 stabilizes at 280°C, reaching the melting point of Au-Sn alloy powder 210, which is much lower than the melting point of the cantilever silicon material of 1410°C.
  • the Au-Sn alloy powder on the surface of the atomic force microscope probe is completely melted and is in a molten state 230.
  • the voltage is slowly reduced from 5-10V to 0V, and the molten Au-Sn alloy 230 solidifies into a solid state.
  • the average grain size of the solidified Au-Sn alloy metal is 80nm.
  • the invention can change the metal crystal grain size of Au-Sn alloy material by controlling the cooling rate of the atomic force microscope probe, affect the mechanical properties of the Au-Sn alloy material, and adjust the overall stiffness of the probe. See Table 3 for details.
  • the alloy powder in this embodiment is not limited to the gold-based alloy brazing filler metal.
  • the Bi-based alloy and the In-based alloy solder have a lower melting point, which can expand the application of the present invention.
  • the melting point of 51% In/32.5% Bi/16.5% Sn is 60°C; the melting point of 57% Bi/26% In/17% Sn is 79°C.
  • the PID method can be used to adjust and control the cooling rate.
  • the present invention discloses a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which includes the following steps:
  • the non-conductive material is resin material, polyethylene, polypropylene or rubber.
  • the probe used in this embodiment is a piezoresistive self-induction atomic force microscope probe produced by Japan's HITACHI company.
  • the working principle is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam. Moreover, by applying a voltage to the probe, the cantilever beam can be heated up. Due to the actual micro-machining error, the stiffness of the AFM probe is 40 ⁇ 5N/m.
  • the specific implementation steps of this embodiment are as follows: apply the target voltage to the probe of the atomic force microscope to 1-5V, and after heating for 1 minute, the temperature reaches 80°C. Drive the AFM probe close to the resin material until it is "immersed” in the resin material. After being “immersed” in the resin material for 1 minute, drive the AFM probe again to move the AFM probe away from the resin material. At this time, the surface of the cantilever beam of the atomic force microscope probe is covered with a layer of resin material. After software testing and software calculation, the overall stiffness of the atomic force microscope probe has increased to 67.87N/m.
  • the speed at which the probe of the atomic force microscope approaches the resin material is controlled below 20 nm/s to prevent the probe from being damaged.
  • the overall stiffness of the atomic force microscope probe can be adjusted by controlling the heating temperature and the "immersion" time. Refer to Table 4 and Table 5 for details.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

L'invention concerne un procédé de réglage de rigidité en temps réel pour une sonde d'un microscope à force atomique comprenant les étapes suivantes : le revêtement d'une couche de réglage de rigidité sur un porte-à-faux pour former un élément composite de revêtement en porte-à-faux ; et la modification de la température de la couche de réglage de rigidité pour modifier la rigidité de l'élément composite de revêtement en porte-à-faux. La présente invention peut ajuster la rigidité de la sonde en temps réel, sans remplacement fréquent de sondes, réduisant la perte de sonde et ayant une large plage de réglage, une large plage de fonctionnement et une bonne stabilité.
PCT/CN2019/127400 2019-12-20 2019-12-23 Procédé de réglage de rigidité en temps réel pour sonde de microscope à force atomique WO2021120233A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911329307.5A CN110954714B (zh) 2019-12-20 2019-12-20 一种原子力显微镜的探针的刚度实时调节方法
CN201911329307.5 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021120233A1 true WO2021120233A1 (fr) 2021-06-24

Family

ID=69983168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127400 WO2021120233A1 (fr) 2019-12-20 2019-12-23 Procédé de réglage de rigidité en temps réel pour sonde de microscope à force atomique

Country Status (2)

Country Link
CN (1) CN110954714B (fr)
WO (1) WO2021120233A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2643316Y (zh) * 2003-09-27 2004-09-22 均豪精密工业股份有限公司 具有高强度探针的纳米机械性质测量装置
WO2007095360A2 (fr) * 2006-02-14 2007-08-23 The Regents Of The University Of California systèmes élastiques couplés et procédés d'imagerie pour microscopie à sonde de balayage
CN101876667A (zh) * 2010-06-30 2010-11-03 北京大学 基于碳纳米管和平面波导结构的原子力显微镜探针
CN107328956A (zh) * 2017-06-05 2017-11-07 南京航空航天大学 一种包裹二维材料的原子力显微镜探针制备方法
CN109239405A (zh) * 2018-07-24 2019-01-18 西安交通大学 一种原子力显微镜探针的制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290378B2 (ja) * 1996-06-13 2002-06-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Afm/stm形状測定のためのマイクロメカニカル・センサ
US20030143327A1 (en) * 2001-12-05 2003-07-31 Rudiger Schlaf Method for producing a carbon nanotube
US6612161B1 (en) * 2002-07-23 2003-09-02 Fidelica Microsystems, Inc. Atomic force microscopy measurements of contact resistance and current-dependent stiction
GB0316577D0 (en) * 2003-07-15 2003-08-20 Univ Bristol Atomic force microscope
WO2007037994A2 (fr) * 2005-09-26 2007-04-05 General Nanotechnology Llc Fabrication de micro-objets tels que des pointes d'objets miniatures en diamant
US20100196661A1 (en) * 2009-01-30 2010-08-05 Duerig Urs T Method for patterning nano-scale patterns of molecules on a surface of a material
JP2011008070A (ja) * 2009-06-26 2011-01-13 Ricoh Co Ltd マイクロミラー装置
JP5519572B2 (ja) * 2011-05-09 2014-06-11 株式会社日立ハイテクノロジーズ 磁気力顕微鏡用カンチレバー
CN102738380B (zh) * 2012-06-05 2015-04-15 东南大学 微纳热电偶探针的制备装置
EP2835654A1 (fr) * 2013-08-09 2015-02-11 Université de Genève Sonde conductrice enrobée d'un isolateur et méthode de production de celle-ci
WO2015085316A1 (fr) * 2013-12-07 2015-06-11 Bruker Nano, Inc. Mesure de force avec détermination de ligne de base en temps réel
CN104698224A (zh) * 2013-12-09 2015-06-10 孙宝恒 高灵敏微悬臂梁探针
CN104360107B (zh) * 2014-11-12 2016-11-30 苏州大学 一种石墨烯包覆原子力显微镜探针及其制备方法、用途
CN104764905B (zh) * 2015-03-24 2018-04-20 清华大学深圳研究生院 一种原子力显微镜扫描热探针及其制备方法
KR101742211B1 (ko) * 2015-11-23 2017-05-31 주식회사 포스코 마이크로 rna의 초민감성 정량 분석 방법 및 장치
US20170184631A1 (en) * 2015-12-14 2017-06-29 Applied Nanostructures, Inc. Probe device for scanning probe microscopes and method of manufacture thereof
CN105712281B (zh) * 2016-02-18 2017-08-04 国家纳米科学中心 一种锥形纳米碳材料功能化针尖及其制备方法
KR102581662B1 (ko) * 2016-06-30 2023-09-22 고쿠리츠 다이가쿠 호진 교토 다이가쿠 탐침의 제조 방법 및 탐침
US10845382B2 (en) * 2016-08-22 2020-11-24 Bruker Nano, Inc. Infrared characterization of a sample using oscillating mode
WO2018089022A1 (fr) * 2016-11-11 2018-05-17 Aaron Lewis Amélioration de signaux optiques à l'aide de pointes de sonde optimisées pour des caractéristiques optiques et de potentiel chimique
CN106501551B (zh) * 2016-12-29 2019-08-06 山东大学 一种基于光纤的原子力显微镜探头及原子力显微镜系统
CN107561315B (zh) * 2017-09-14 2019-08-30 浙江大学 一种金属中微观氢分布及氢偏聚激活能的测试装置及方法
CN108051614B (zh) * 2017-12-05 2020-03-24 湘潭大学 一种基于扫描电镜原位力学测试系统的光/力/电耦合测试装置及其测试方法
CN110051343B (zh) * 2019-04-08 2020-05-22 北京大学 一种以不锈钢为基材的多功能三维生物微探针及其制备方法
CN112394199A (zh) * 2019-08-16 2021-02-23 长鑫存储技术有限公司 原子力显微镜及其测量方法
CN112964910A (zh) * 2020-09-16 2021-06-15 中国科学院沈阳自动化研究所 原子力显微镜一体化双探针快速原位切换测量方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2643316Y (zh) * 2003-09-27 2004-09-22 均豪精密工业股份有限公司 具有高强度探针的纳米机械性质测量装置
WO2007095360A2 (fr) * 2006-02-14 2007-08-23 The Regents Of The University Of California systèmes élastiques couplés et procédés d'imagerie pour microscopie à sonde de balayage
CN101876667A (zh) * 2010-06-30 2010-11-03 北京大学 基于碳纳米管和平面波导结构的原子力显微镜探针
CN107328956A (zh) * 2017-06-05 2017-11-07 南京航空航天大学 一种包裹二维材料的原子力显微镜探针制备方法
CN109239405A (zh) * 2018-07-24 2019-01-18 西安交通大学 一种原子力显微镜探针的制备方法

Also Published As

Publication number Publication date
CN110954714B (zh) 2021-10-19
CN110954714A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
Braunsmann et al. High-speed atomic force microscopy for large scan sizes using small cantilevers
Nahar et al. Quantitative nanomechanical property mapping of bitumen micro-phases by peak-force atomic force microscopy
WO2017054782A1 (fr) Plate-forme de nanoindentation in situ à double inclinaison de microscope électronique en transmission
TWI438437B (zh) 探針尖端固著導電顆粒之製備方法
CN107389447B (zh) 一种金属增材制造的拉伸试样
Kuchin et al. The smallest and the fastest shape memory alloy actuator for micro-and nanorobotics
WO2021120233A1 (fr) Procédé de réglage de rigidité en temps réel pour sonde de microscope à force atomique
CN110686951B (zh) 一种适用于多相钼合金的纳米硬度测量方法
Alfreider et al. Addressing fracture properties of individual constituents within a Cu-WTi-SiO x-Si multilayer
JP2012516064A (ja) 基板温度制御を含む大面積均質アレイの製作方法
Serrell et al. A uniaxial bioMEMS device for quantitative force-displacement measurements
JP2012515559A (ja) 制御された先端部材負荷用蒸着を含む大面積均質アレイの製作方法
WO2013028782A1 (fr) Nanofils à croissance électrochimique et utilisations de ceux-ci
CN106771376B (zh) 一种制备原子力显微镜针尖的方法
Shiratori et al. Automatic film formation system for ultra-thin organic/inorganic hetero-structure by mass-controlled layer-by-layer sequential adsorption method with ‘nm’scale accuracy
Serrell et al. A uniaxial bioMEMS device for imaging single cell response during quantitative force-displacement measurements
CN109825780A (zh) 一种提高铁基非晶合金/纳米晶合金熔体粘度的方法
CN111115567A (zh) 一种用于mems晶圆级封装的应力补偿方法
Dawson et al. Tribo-induced melting transition at a sliding asperity contact
CN114636698A (zh) 一种金属纳米线材料的原位制备-测试一体化装置和方法
US20180155183A1 (en) Low friction coating formed of boron-doped zinc oxide thin film and micromachine
Yang et al. AFM characterization of nanopositioner in-plane stiffnesses
Iwata et al. Microelectrophoresis deposition using a nanopipette for three-dimensional structures
Matsui et al. A versatile micro-mechanical tester for actin stress fibers isolated from cells
Whitehead et al. Atomic ForceMicroscopy for Live-Cell and Hydrogel Measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956482

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19956482

Country of ref document: EP

Kind code of ref document: A1