WO2021120053A1 - 用于对天线振子性能一致性检测的检测工装 - Google Patents

用于对天线振子性能一致性检测的检测工装 Download PDF

Info

Publication number
WO2021120053A1
WO2021120053A1 PCT/CN2019/126300 CN2019126300W WO2021120053A1 WO 2021120053 A1 WO2021120053 A1 WO 2021120053A1 CN 2019126300 W CN2019126300 W CN 2019126300W WO 2021120053 A1 WO2021120053 A1 WO 2021120053A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna element
hollow cavity
shielding shell
filling block
block
Prior art date
Application number
PCT/CN2019/126300
Other languages
English (en)
French (fr)
Inventor
韩洪娟
岳月华
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/126300 priority Critical patent/WO2021120053A1/zh
Publication of WO2021120053A1 publication Critical patent/WO2021120053A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the invention relates to the technical field of antenna vibrator detection, and relates to a detection tool for detecting the consistency of antenna vibrator performance.
  • large-scale array antennas contain a large number of radiating elements-antenna elements.
  • the array antenna generally contains 64 or 96 dual-polarized antenna elements.
  • the types of the elements can be PCB elements, LDS elements, plastic plating elements, etc.
  • the performance consistency of the elements will eventually affect the performance consistency of the entire large-scale antenna array. .
  • testing the antenna elements before assembly can effectively reduce the risk of defects in the finished product.
  • the purpose of the present invention is to provide a testing tool for testing the performance consistency of the antenna oscillator, which overcomes the defects of the traditional technology, is a non-contact testing, simple operation, and can effectively reduce the risk of bad products.
  • the detection tool for detecting the consistency of the antenna vibrator performance of the present invention includes a shielding shell, a filling block, a pressing block and an SMA connector.
  • the shielding shell is arranged in a semi-closed shape with an opening at the top; inside the shielding shell There is a accommodating space for accommodating the filling block and the antenna element; the filling block is provided with a hollow cavity for fixing the antenna element; the pressing block is used to compress the upper end of the antenna element from the top opening
  • the bottom plate of the shielding shell is provided with a plurality of avoiding holes arranged adjacent to the hollow cavity, the avoiding holes are used for coupling and feeding the antenna oscillator after the inner core of the SMA connector is inserted;
  • the filling block is also provided with a positioning hole for fixing the inner core of the SMA connector.
  • the antenna element includes a radiating plate parallel to the bottom plate of the shielding shell and a supporting plate perpendicular to the radiating plate on the side of the radiating plate facing the bottom plate of the shielding shell ,
  • the surface of the support board is provided with a feeder circuit; the inner core of the SMA connector is inserted into the feeder circuit for coupling and feeding.
  • the hollow cavity includes a first hollow cavity that is contoured to the support plate.
  • the hollow cavity further includes a second hollow cavity that is contoured to the radiation plate.
  • the minimum vertical distance between the side wall of the shielding shell and the edge of the antenna element is greater than a quarter of the working wavelength of the antenna element.
  • the positioning hole and the avoiding hole are concentric circles; the diameter of the avoiding hole is larger than the diameter of the positioning hole, and the minimum vertical distance between the positioning hole and the hollow cavity is smaller than the The radius of the avoidance hole.
  • the top of the filling block and the side wall of the shielding shell form a stepped groove for positioning the pressing block.
  • the side of the pressing block facing the filling block is a flat surface.
  • the filling block is made of PTFE material.
  • the detection tool further includes a vector network analyzer connected to the SMA connector.
  • the present invention is provided with a filling block in the shielding shell, the filling block is provided with a hollow cavity for fixing the antenna vibrator, and the bottom plate of the shielding shell is provided with an escape hole for the insertion of the connector.
  • the hole and the hollow cavity are arranged adjacent to each other, so that there is a gap between the inner core of the connector and the antenna element, thereby overcoming the defects of the prior art and enabling non-contact coupling and feeding between them;
  • the operation of the present invention is simple and the test It is convenient and stable, avoids the appearance of the vibrator from abrasion, and can effectively reduce the risk of bad costs.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the detection tool of the present invention.
  • Figure 2 is a bottom view of the inspection tool shown in Figure 1;
  • Figure 3 is a cross-sectional view at A-A shown in Figure 2;
  • FIG. 4 is a schematic diagram of the antenna element and the inner core of the SMA connector not shown in the cross-sectional view shown in FIG. 3;
  • Figure 5 is an enlarged view of B shown in Figure 3;
  • Fig. 6 is an enlarged view of C shown in Fig. 3;
  • Figure 7 is a bottom schematic view of the filling block of the present invention.
  • FIG. 8 is a schematic diagram of the structure of the shielding shell, the filling block and the antenna element of the present invention after being assembled;
  • FIG. 9 is a schematic diagram of the structure of the antenna element and the inner core of the SMA connector in the shielding shell of the present invention.
  • Fig. 10 is a schematic diagram of the structure of the antenna element of the present invention where the radiating plate is embedded in the pressure block.
  • shielding shell 11. avoidance hole; 20, filling block; 21, hollow cavity; 210, first hollow cavity; 211, second hollow cavity; 22, positioning hole; 30, pressure block; 40, SMA The inner core of the connector.
  • the detection tool of the present invention is used to detect the performance consistency of the antenna element.
  • the detection tool includes a shielding shell 10, a filling block 20, a pressure block 30 and an SMA connector.
  • the shielding shell 10 is in a semi-closed shape with an open top.
  • the shielding shell 10 is provided with a housing space for accommodating the filler block 20 and the antenna element; the filler block 20 is provided with a hollow cavity 21 for fixing the antenna element; the pressure block 30 is used for aligning from the top opening of the shielding shell 10 The upper end of the antenna vibrator is compressed; the bottom plate of the shielding shell 10 is provided with a plurality of avoidance holes 11 arranged adjacent to the hollow cavity 21, and the avoidance holes 11 are used for the inner core 40 of the SMA connector to be inserted into the antenna vibrator.
  • the filling block 20 is also provided with a positioning hole 22 for fixing the inner core 40 of the SMA connector.
  • a filling block 20 is provided in the shielding shell 10, and the filling block 20 is provided with a hollow cavity 21 for fixing the antenna element.
  • the bottom plate of the shielding shell 10 is provided with a hole for inserting the inner core 40 of the SMA connector.
  • the avoiding hole 11 is arranged adjacent to the hollow cavity 21, so that there is a gap between the inner core 40 of the SMA connector and the antenna element, thereby overcoming the defects of the prior art and making them a non-contact coupling feed. Electricity;
  • the present invention is simple to operate, convenient and stable to test, avoids the appearance of the vibrator from wear, and can effectively reduce the risk of bad costs.
  • the shielding shell 10 is used to shield the interference of electromagnetic wave signals outside the containing space.
  • the shielding shell 10 may be, but not limited to, a metal shell.
  • the shielding shell 10 can be, but not limited to, a square configuration.
  • the shielding shell 10 is a square configuration, wherein the minimum vertical distance between the sidewall of the shielding shell 10 and the edge of the antenna element is greater than four times the working wavelength of the antenna element. One part, so that the data detected by the antenna element in the shielding shell 10 is more accurate.
  • the side wall of the shielding shell 10 is provided with screw holes (not shown in the figure), and the screw holes are used to fix the filler block 20 and the shielding shell 10 through screws.
  • the number of avoidance holes 11 is four, and the position of the avoidance holes 11 is set according to the position of the feed end of the antenna element.
  • the positions of the avoidance holes 11 can be, but not limited to, a regular arrangement, namely Each escape hole 11 is arranged in a quadrangular shape aligned in pairs. Since the avoiding hole 11 and the hollow cavity 21 are adjacently arranged, and the positioning hole 22 and the hollow cavity 21 are dislocated and arranged adjacently, the inner core 40 of the SMA connector does not directly contact the feed end of the antenna oscillator.
  • a rubber ring is installed on the avoiding hole 11 to position the inner core 40 of the SMA connector And separated from the feed end of the antenna element.
  • the filling block 20 is filled in the accommodating space of the shielding shell 10, and the lower end of the antenna element is fixed in the shielding shell 10 through the hollow cavity 21 of the filling block 20, and the hollow cavity 21 penetrates the filling in the longitudinal direction.
  • the shape of the hollow cavity 21 is designed and adjusted according to the structure of the antenna element.
  • the antenna element includes a radiating plate parallel to the bottom plate of the shielding housing 10 and a radiating plate.
  • a support plate perpendicular to the radiation plate facing the bottom plate of the shielding shell 10, the surface of the support plate is provided with a feeder line, and the inner core 40 of the SMA connector is inserted into the feeder line to couple and feed. Please refer to FIGS.
  • the hollow cavity 21 includes a first hollow cavity 210 that is contoured to the support plate. It can be understood that the structure of the first hollow cavity 210 is substantially the same as or complementary to the structure of the support plate, and is used for accommodating The support plate is fixed. In this embodiment, the orthographic projection of the outer contour of the first hollow cavity 210 on the bottom plate and the orthographic projection of the support plate on the bottom plate of the shielding shell 10 coincide.
  • the hollow cavity 21 also includes a second hollow cavity 211 that is contoured to the radiation plate. It can be understood that the structure of the second hollow cavity 211 is substantially the same as or complementary to the structure of the radiation plate, and is used to accommodate the radiation plate.
  • the orthographic projection of the outer contour of the second hollow cavity 211 on the bottom plate and the orthographic projection of the radiation plate on the bottom plate of the shielding shell 10 coincide.
  • the antenna element adopts a differential feed element, four parts of the antenna element need to be coupled and fed. Therefore, the first hollow cavity 210 adopts a cross-shaped slot.
  • the positioning hole 22 and the avoiding hole 11 are concentric circles.
  • the diameter of the avoiding hole 11 is larger than the diameter of the inner core 40 of the SMA connector, which can be understood as .
  • the diameter of the avoiding hole 11 is greater than the diameter of the positioning hole 22, and the minimum vertical distance between the positioning hole 22 and the hollow cavity 21 is smaller than the radius of the avoiding hole 11.
  • the positioning hole 22 is cylindrical, which is adjusted according to the structure of the inner core 40 of the SMA connector.
  • the top of the filling block 20 and the side wall of the shielding shell 10 form a stepped groove for positioning the pressure block 30, and the upper end of the antenna element is placed in the stepped groove so that the pressure block 30 After pressing down, the antenna element can be fixed.
  • the filling block 20 can be made of a material with better dielectric properties according to the actual conditions of the antenna element to be tested.
  • the filling block 20 is made of PTFE (Poly tetra fluoroethylene) material.
  • FIG. 3 is a diagram after the pressure block 30 presses down the antenna element.
  • the lower end of the pressure block 30 is accommodated in the stepped groove between the filling block 20 and the shielding shell 10 for fixing the antenna element .
  • the side of the pressure block 30 facing the filling block 20 is a flat surface; the pressure block 30 is made of a material with better dielectric properties.
  • the pressure block 30 It is made of PTFE material.
  • the inspection tooling also includes a vector network analyzer (not shown) connected to the SMA connector.
  • the SMA connector is welded on the outside of the bottom of the shielding shell 10 to test the performance of the antenna oscillator and screen out unqualified oscillators that exceed the index requirements to avoid Affect the performance of the entire product.
  • the test tool of the present invention can also be adjusted according to the working frequency band and structure of the vibrator, such as the size of the shielding shell 10 and so on.
  • FIG. 10 it is a schematic diagram of the structure of the antenna element of the present invention where the radiating plate is embedded in the pressing block 30.
  • the embodiment in this figure has roughly the same structure as the above-mentioned embodiment, except that the pressing block 30 faces the filling block 30.
  • One surface of the block 20 is provided with a groove that is contoured to the radiator plate. It can be understood that the structure of the groove is substantially the same as or complementary to that of the radiator plate, and is used to accommodate and fix the radiator plate.
  • the groove The orthographic projection of the outer contour of the groove on the pressure block 30 coincides with the orthographic projection of the radiation plate on the pressure block 30.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种用于对天线振子性能一致性检测的检测工装,包括屏蔽壳体、填充块、压块及SMA连接器,屏蔽壳体呈顶部开口的半封闭状设置,屏蔽壳体内设有用于收容填充块和天线振子的收容空间;填充块上设有用于固定天线振子的镂空腔;压块用于对天线振子的上端部进行压紧;屏蔽壳体的底板上设有多个与所述镂空腔相邻设置的避让孔,避让孔用于供SMA连接器的内芯插入后与天线振子进行耦合馈电,填充块上还设有用于固定SMA连接器的内芯的定位孔。本发明的结构克服了现有技术的缺陷,通过避让孔与镂空腔相邻设置,使得连接器的内芯与天线振子之间具有间隙,使它们之间为非接触式耦合馈电,避免了振子外观磨损,能够有效降低成本的不良风险。

Description

用于对天线振子性能一致性检测的检测工装 技术领域
本发明涉及天线振子检测技术领域,具有涉及一种用于对天线振子性能一致性检测的检测工装。
背景技术
大规模的阵列天线作为5G通信的关键技术,其包含了大量的辐射单元-天线振子。目前,阵列天线一般包含64或者96个双极化天线振子,振子的类型可以为PCB振子、LDS振子、塑料电镀振子等等,振子的性能一致性最终会影响整个大规模天线阵的性能一致性。为了保证最终组装后的天线阵的性能,提升产品良率,在组装前,对天线振子进行测试,能够有效降低成品的不良风险。
目前,用于天线产品的测试工装大部分是采用直接馈电的方式进行测试,上述直接馈电方式容易造成工装的pin针损坏,或者天线振子的弹片磨损报废,而且还会对产品外观有影响。
技术问题
本发明的目的在于提供一种用于对天线振子性能一致性检测的检测工装,其克服了传统技术的缺陷,其为非接触式检测,操作简单,能够有效降低成品的不良风险。
技术解决方案
本发明的用于对天线振子性能一致性检测的检测工装,包括屏蔽壳体、填充块、压块及SMA连接器,所述屏蔽壳体呈顶部开口的半封闭状设置;所述屏蔽壳体内设有用于收容所述填充块和天线振子的收容空间;所述填充块上设有用于固定天线振子的镂空腔;所述压块用于从所述顶部开口对天线振子的上端部进行压紧;所述屏蔽壳体的底板上设有多个与所述镂空腔相邻设置的避让孔,所述避让孔用于供所述SMA连接器的内芯插入后与天线振子进行耦合馈电;所述填充块上还设有用于固定所述SMA连接器的内芯的定位孔。
作为本发明的进一步改进,所述天线振子包括与所述屏蔽壳体的底板平行的辐射板及位于所述辐射板朝向所述屏蔽壳体的底板一侧的与所述辐射板垂直的支撑板,所述支撑板的表面设有馈电线路;所述SMA连接器的内芯插入后与所述馈电线路耦合馈电。
作为本发明的进一步改进,所述镂空腔包括与所述支撑板仿形设置的第一镂空腔。
作为本发明的进一步改进,所述镂空腔还包括与所述辐射板仿形设置的第二镂空腔。
作为本发明的进一步改进,所述屏蔽壳体的侧壁与天线振子边缘的最小垂直距离大于天线振子的工作波长的四分之一。
作为本发明的进一步改进,所述定位孔与所述避让孔为同心圆;所述避让孔的直径大于所述定位孔的直径,所述定位孔与所述镂空腔的最小垂直距离小于所述避让孔的半径。
作为本发明的进一步改进,所述填充块的顶部与所述屏蔽壳体的侧壁形成用于定位所述压块的阶梯槽。
作为本发明的进一步改进,所述压块朝向所述填充块的一面为平整面。
作为本发明的进一步改进,所述填充块采用PTFE材料制备而成。
作为本发明的进一步改进,所述检测工装还包括连接所述SMA连接器的矢量网络分析仪。
有益效果
本发明的有益效果是:本发明通过在屏蔽壳体内设置有填充块,填充块内设有用于固定天线振子的镂空腔,屏蔽壳体的底板上设有用于供连接器插入的避让孔,避让孔与镂空腔相邻设置,使得连接器的内芯与天线振子之间具有间隙,从而克服了现有技术的缺陷,使它们之间为非接触式耦合馈电;本发明的操作简单,测试方便且稳定,避免了振子外观磨损,能够有效降低成本的不良风险。
附图说明
图1是本发明的检测工装的立体结构示意图;
图2是图1所示的检测工装的仰视图;
图3是图2所示的A-A处的截面图;
图4是图3所示的截面图中未示天线振子和SMA连接器的内芯的示意图;
图5是图3所示的B处的放大图;
图6是图3所示的C处的放大图;
图7是本发明的填充块的底部示意图;
图8是本发明的屏蔽壳体、填充块与天线振子组装后的结构示意图;
图9是本发明的天线振子、SMA连接器的内芯在屏蔽壳体内的结构示意图;
图10是本发明的天线振子的辐射板嵌于压块内的结构示意图。
其中,10、屏蔽壳体;11、避让孔;20、填充块;21、镂空腔;210、第一镂空腔;211、第二镂空腔;22、定位孔;30、压块;40、SMA连接器的内芯。
本发明的实施方式
下面结合附图对本发明的以下实施例进行详细描述。
如图1至图6所述示:
本发明的检测工装,用于对天线振子的性能一致性进行检测,该检测工装包括屏蔽壳体10、填充块20、压块30及SMA连接器,屏蔽壳体10呈顶部开口的半封闭状设置,屏蔽壳体10内设有用于收容填充块20和天线振子的收容空间;填充块20上设有用于固定天线振子的镂空腔21;压块30用于从屏蔽壳体10的顶部开口对天线振子的上端部进行压紧;屏蔽壳体10的底板上设有多个与镂空腔21相邻设置的避让孔11,避让孔11用于供SMA连接器的内芯40插入后与天线振子进行耦合馈电;填充块20上还设有用于固定SMA连接器的内芯40的定位孔22。
本发明通过在屏蔽壳体10内设置有填充块20,填充块20内设有用于固定天线振子的镂空腔21,屏蔽壳体10的底板上设有用于供SMA连接器的内芯40插入的避让孔11,避让孔11与镂空腔21相邻设置,使得SMA连接器的内芯40与天线振子之间具有间隙,从而克服了现有技术的缺陷,使它们之间为非接触式耦合馈电;本发明的操作简单,测试方便且稳定,避免了振子外观磨损,能够有效降低成本的不良风险。
请再参阅图1和图2,屏蔽壳体10用于屏蔽收容空间外的电磁波信号的干扰,屏蔽壳体10可以为但不仅限于为金属材质的壳体。该屏蔽壳体10可以为但不仅限于为方形设置,具体的,屏蔽壳体10为正方形设置,其中,屏蔽壳体10的侧壁与天线振子边缘的最小垂直距离大于天线振子的工作波长的四分之一,使得天线振子在屏蔽壳体10内所检测得出的数据更准确。在另一实施例中,屏蔽壳体10的侧壁上设有螺丝孔(图上未示),螺丝孔通过螺丝将填充块20与屏蔽壳体10固定连接。再参阅图2和图4,避让孔11的数量为四个,避让孔11的位置是根据天线振子的馈电端的位置进行设置,各避让孔11的位置可以为但不仅限于为规整排列,即各避让孔11形成两两对齐的四边状设置。由于避让孔11与镂空腔21为相邻设置,且定位孔22与镂空腔21为错位且相邻设置,使得SMA连接器的内芯40不与天线振子的馈电端直接接触。为了更好地保证SMA连接器的内芯40插入避让孔11后与天线振子的馈电端不直接接触馈电,避让孔11上安装有胶圈,以便将SMA连接器的内芯40进行定位及与天线振子的馈电端隔开。
请再参阅图3,填充块20填充在屏蔽壳体10的收容空间内,并通过填充块20的镂空腔21将天线振子的下端部固定在屏蔽壳体10内,该镂空腔21纵向贯穿填充块20的两端部,镂空腔21的形状是根据天线振子的结构进行设计及调整,又如图3和图9所示,天线振子包括屏蔽壳体10的底板平行的辐射板以及位于辐射板朝向屏蔽壳体10的底板一侧的与辐射板垂直的支撑板,支撑板的表面设有馈电线路,SMA连接器的内芯40插入后与馈电线路耦合馈电。请再次参阅图3和图4,镂空腔21包括与支撑板仿形设置的第一镂空腔210,可理解为,第一镂空腔210的结构与支撑板的结构大致相同或者互补,用于收容并固定支撑板,在本实施例中,第一镂空腔210的外轮廓在底板上的正投影和支撑板在屏蔽壳体10的底板上的正投影重合。镂空腔21还包括与辐射板仿形设置的第二镂空腔211,可理解为,第二镂空腔211的结构与辐射板的结构大致相同或者互补,用于收容辐射板,在本实施例中,第二镂空腔211的外轮廓在底板上的正投影和辐射板在屏蔽壳体10的底板上的正投影重合。如图8和图9所示,由于天线振子采用的是差分馈电振子,需要对其四个部分进行耦合馈电,因此第一镂空腔210采用的是十字交叉形槽。
再参阅图5和图7,定位孔22与避让孔11为同心圆,为了便于SMA连接器的内芯40的插入,避让孔11的直径大于SMA连接器的内芯40的直径,可理解为,避让孔11的直径大于定位孔22的直径,定位孔22与镂空腔21的最小垂直距离小于避让孔11的半径。其中,该定位孔22为圆柱状,其根据SMA连接器的内芯40的结构做相应的调整。
请再参阅图6和图8,填充块20的顶部与屏蔽壳体10的侧壁形成用于定位压块30的阶梯槽,阶梯槽内供天线振子的上端部的放置,使得对压块30下压后可对天线振子进行固定。填充块20可以根据待测试的天线振子的实际情况选择介电性能较好的材料,在本实施例中,填充块20选用PTFE(Poly tetra fluoroethylene)材料制备而成。
请参阅图3,为压块30对天线振子下压后的图,该压块30的下端部容置于填充块20与屏蔽壳体10之间的阶梯槽内,用于将天线振子进行固定。其中,为了避免压块30对天线振子造成损坏,压块30朝向填充块20的一面为平整面;压块30选择介电性能较好的材料制备而成,在本实施例中,压块30选用PTFE材料制备而成。
检测工装还包括连接SMA连接器的矢量网络分析仪(图未示),SMA连接器焊接在屏蔽壳体10的底部外侧,对天线振子的性能进行测试,筛选超出指标要求的不合格振子,避免影响整个产品性能。本发明的测试工装还可以根据振子工作频段以及结构做相应调整,如屏蔽壳体10的尺寸大小等等。
如图10所示,为本发明的天线振子的辐射板嵌于压块30内的结构示意图,该图中实施例与上述的实施例的结构大致相同,不同之处在于:压块30朝向填充块20的一面上设有与辐射板仿形设置的凹槽,可理解为,凹槽的结构与辐射板的结构大致相同或者互补,用于收容并固定辐射板,在本实施例中,凹槽的外轮廓在压块30上的正投影和辐射板在压块30上的正投影重合。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种用于对天线振子性能一致性检测的检测工装,其特征在于:包括屏蔽壳体、填充块、压块及SMA连接器,所述屏蔽壳体呈顶部开口的半封闭状设置;所述屏蔽壳体内设有用于收容所述填充块和天线振子的收容空间;所述填充块上设有用于固定天线振子的镂空腔;所述压块用于从所述顶部开口对天线振子的上端部进行压紧;所述屏蔽壳体的底板上设有多个与所述镂空腔相邻设置的避让孔,所述避让孔用于供所述SMA连接器的内芯插入后与天线振子进行耦合馈电;所述填充块上还设有用于固定所述SMA连接器的内芯的定位孔。
  2. 根据权利要求1所述的检测工装,其特征在于:所述天线振子包括与所述屏蔽壳体的底板平行的辐射板及位于所述辐射板朝向所述屏蔽壳体的底板一侧的与所述辐射板垂直的支撑板,所述支撑板的表面设有馈电线路;所述SMA连接器的内芯插入后与所述馈电线路耦合馈电。
  3. 根据权利要求2所述的检测工装,其特征在于:所述镂空腔包括与所述支撑板仿形设置的第一镂空腔。
  4. 根据权利要求3所述的检测工装,其特征在于:所述镂空腔还包括与所述辐射板仿形设置的第二镂空腔。
  5. 根据权利要求1所述的检测工装,其特征在于:所述屏蔽壳体的侧壁与天线振子边缘的最小垂直距离大于天线振子的工作波长的四分之一。
  6. 根据权利要求1所述的检测工装,其特征在于:所述定位孔与所述避让孔为同心圆;所述避让孔的直径大于所述定位孔的直径,所述定位孔与所述镂空腔的最小垂直距离小于所述避让孔的半径。
  7. 根据权利要求1所述的检测工装,其特征在于:所述填充块的顶部与所述屏蔽壳体的侧壁形成用于定位所述压块的阶梯槽。
  8. 根据权利要求1所述的检测工装,其特征在于:所述压块朝向所述填充块的一面为平整面。
  9. 根据权利要求1所述的检测工装,其特征在于:所述填充块采用PTFE材料制备而成。
  10. 根据权利要求1所述的检测工装,其特征在于:所述检测工装还包括连接所述SMA连接器的矢量网络分析仪。
PCT/CN2019/126300 2019-12-18 2019-12-18 用于对天线振子性能一致性检测的检测工装 WO2021120053A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126300 WO2021120053A1 (zh) 2019-12-18 2019-12-18 用于对天线振子性能一致性检测的检测工装

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126300 WO2021120053A1 (zh) 2019-12-18 2019-12-18 用于对天线振子性能一致性检测的检测工装

Publications (1)

Publication Number Publication Date
WO2021120053A1 true WO2021120053A1 (zh) 2021-06-24

Family

ID=76477005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126300 WO2021120053A1 (zh) 2019-12-18 2019-12-18 用于对天线振子性能一致性检测的检测工装

Country Status (1)

Country Link
WO (1) WO2021120053A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448787B1 (en) * 2000-08-30 2002-09-10 Rockwell Collins, Inc. Apparatus and method for measuring and tuning circularly polarized antennas
CN101750552A (zh) * 2008-12-10 2010-06-23 中国科学院自动化研究所 一种rfid标签天线一致性的基准测试系统及方法
CN102944756A (zh) * 2012-11-06 2013-02-27 西安开容电子技术有限责任公司 一种小型屏蔽效能测试工装
CN205656250U (zh) * 2016-04-06 2016-10-19 深圳市信维通信股份有限公司 一种天线测试治具
CN207396616U (zh) * 2017-11-10 2018-05-22 浙江嘉康电子股份有限公司 多馈针天线测试工装
CN207623415U (zh) * 2017-12-22 2018-07-17 深圳市德富莱智能科技股份有限公司 5g多天线整机天线测试平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448787B1 (en) * 2000-08-30 2002-09-10 Rockwell Collins, Inc. Apparatus and method for measuring and tuning circularly polarized antennas
CN101750552A (zh) * 2008-12-10 2010-06-23 中国科学院自动化研究所 一种rfid标签天线一致性的基准测试系统及方法
CN102944756A (zh) * 2012-11-06 2013-02-27 西安开容电子技术有限责任公司 一种小型屏蔽效能测试工装
CN205656250U (zh) * 2016-04-06 2016-10-19 深圳市信维通信股份有限公司 一种天线测试治具
CN207396616U (zh) * 2017-11-10 2018-05-22 浙江嘉康电子股份有限公司 多馈针天线测试工装
CN207623415U (zh) * 2017-12-22 2018-07-17 深圳市德富莱智能科技股份有限公司 5g多天线整机天线测试平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOU JIANQIANG, NIU ZHONG-QI: "Research on the Measurement System for Terminal Antenna Quality Conformability", XI'AN DIANZI KE JI DAXUE XUEBAO - JOURNAL OF XIADIAN UNIVERSITY, XI'AN DIANZI KE JI DAXUE, XI'AN,, CN, vol. 36, no. 4, 1 August 2009 (2009-08-01), CN, pages 675 - 679, XP055822187, ISSN: 1001-2400 *

Similar Documents

Publication Publication Date Title
US10446985B2 (en) Electrical connector with shield plate
US20180238957A1 (en) Ic socket
CN102047502A (zh) 具有波导连接器功能的可表面贴装天线、通信系统、转接器以及包含天线装置的结构
US9257761B2 (en) Electrical coaxial connector
CN109926676B (zh) Smp连接器的焊接装置及焊接方法
US20170093009A1 (en) Dielectric Waveguide Socket
CN102570132A (zh) 具有成形电介质插件用于控制阻抗的电连接器
US9157933B2 (en) Test device for wireless electronic devices
CN111512495A (zh) 腔支承贴片天线
WO2021120053A1 (zh) 用于对天线振子性能一致性检测的检测工装
CN104300194A (zh) 表面贴装式微波环行器
CN110233357A (zh) 一种afu天线结构
CN111505393A (zh) 用于对天线振子性能一致性检测的检测工装
CN208109945U (zh) 一种用于辅助天线测试的电路板以及天线测试工装
CN108680797B (zh) 一种天线测试方法以及天线测试设备
US11624758B2 (en) Test kit for testing a device under test
TW201733206A (zh) 毫米波天線裝置及其毫米波天線陣列裝置
CN213581171U (zh) 一种型芯及包括该型芯的导电组件
CN210111018U (zh) 一种双脊波导和一种裸芯片测试装置
CN204464640U (zh) 一种bnc连接器
CN103217593A (zh) 无线电子装置的测试设备
CN217387535U (zh) 一种面板天线
CN212751849U (zh) 充电器
CN220774755U (zh) 一种新型渐变背腔双极化毫米波天线
CN219393700U (zh) 毫米波背腔贴片天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956944

Country of ref document: EP

Kind code of ref document: A1