WO2021118113A1 - 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창 - Google Patents

투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창 Download PDF

Info

Publication number
WO2021118113A1
WO2021118113A1 PCT/KR2020/016785 KR2020016785W WO2021118113A1 WO 2021118113 A1 WO2021118113 A1 WO 2021118113A1 KR 2020016785 W KR2020016785 W KR 2020016785W WO 2021118113 A1 WO2021118113 A1 WO 2021118113A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
variable
polymer resin
light polarization
manufacturing
Prior art date
Application number
PCT/KR2020/016785
Other languages
English (en)
French (fr)
Inventor
유병석
Original Assignee
주식회사 지투비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지투비 filed Critical 주식회사 지투비
Priority to CN202080086171.4A priority Critical patent/CN114829990B/zh
Priority to US17/784,231 priority patent/US20230059639A1/en
Priority to EP20898441.9A priority patent/EP4075173A4/en
Publication of WO2021118113A1 publication Critical patent/WO2021118113A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/026Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169

Definitions

  • the present invention relates to a method for manufacturing a variable transmittance window in which a liquid-state optically polarizing suspension is dispersed in a specific polymer resin, and to a variable transmittance window manufactured by the method, and more particularly, the optically polarizing suspension is a spherical droplet
  • the present invention relates to a method for manufacturing a variable transmittance window dispersed in a specific polymer resin having excellent adhesion to a substrate as a separator in a shape and to a variable transmittance window manufactured by the method.
  • a general transmittance variable window (Light Valve) was first invented in 1934 by EH Land of the United States by US Patent Nos. 1,951,664 and 1,955,923, and its shape is of a liquid state between two transparent conductive substrates composed of narrow intervals. It is a structure in which a light polarization suspension is injected.
  • the degree of transmission, reflection, scattering and absorption is determined according to the shape, nature, concentration, and amount of irradiated light energy of the variable light polarization particles dispersed in the suspension.
  • the problem raised in the initial transmittance variable window was by preventing the sedimentation of the variable light polarization particles and increasing the dispersibility of the light polarization variable particles by adding a dispersing aid to the liquid phase injected between two transparent conductive substrates. was solved by filming the optically polarizing suspension of
  • variable light polarization particles in the light polarization suspension are arranged parallel to the electric field, so that they are converted to a colorless and transparent state.
  • variable transmittance window is also a film product due to the problem of low contact coefficient and adhesion with the ITO surface used as a transparent conductive film, which is mainly a silicone-based polymer or an acrylic polymer, which is positioned between the two transparent conductive substrates. It has the problem of adhesive durability of , and moreover, peeling phenomenon over time is emerging as a problem.
  • An object of the present invention is to use a liquid optically polarizing suspension dispersed in the form of droplets in a polymer resin or using a film having a structure in which droplets are irregularly connected. Particles that were raised as a problem in the prior art using a liquid optically polarizing suspension as it is Method for manufacturing a variable transmittance window capable of solving difficulties such as sedimentation, optical density change due to external environment, injecting liquid suspension, and maintaining a constant distance between substrates, and variable transmittance manufactured thereby to provide a window.
  • Another object of the present invention is to improve interfacial adhesion during product manufacturing and simplify the process by using an adhesive material as a polymer base material in which the optically polarizing suspension exists as a droplet or a linkage of droplets, as well as long-term use in a real environment It is to provide a method for manufacturing a variable transmittance window that can solve the peeling problem at the time of doing so, and a variable transmittance window manufactured thereby.
  • variable transmittance window manufactured by the method of manufacturing a transmittance variable window according to an embodiment of the present invention for solving the above technical problem is dispersed with 5 to 20 wt% of variable light polarization particles having a size of 0.2 to 0.5 ⁇ m showing light polarization characteristics
  • the optically polarizing suspension consisting of 2 to 10% by weight of the preparation and 80 to 93% by weight of the plasticizer suspending material consists of a film in which the optically polarizing suspension is dispersed in the form of fine droplets in a polymer resin having excellent adhesion to the substrate, and the droplets and the polymer resin are It is made in a weight ratio of 0.5 to 1:1.
  • variable light polarization particles of the present invention when the light polarization variable particles of the present invention are produced, the variable light polarization particles made by adding a polymer material that enhances the dispersion effect of the light polarization variable particles without affinity with the polymer resin, which is a film medium, are mixed with a plasticizer solution. It is characterized in that any one or two of the prepared liquid optically polarizing suspension or a liquid optically polarizing suspension prepared by adding a polymer dispersing agent to the liquid optically polarizing suspension is included.
  • the polymer resin solution having excellent adhesion to the substrate of the present invention is dissolved in a solvent and the liquid optical polarization suspension is mixed, and then prepared by a phase separation method by a thermal drying method.
  • the polymer resin of the present invention is polyvinyl butyral
  • the plasticizer is diisooctyl phthalate, dioctyl phthalate, butyl octyl phthalate, dioctyl isophthalate, trioctyldecyl trimellitate and trioctyldecyl trimellitate. It is characterized in that any one or more plasticizers among the plasticizers are used as a suspension material.
  • the polymer resin of the present invention is polyvinyl butyral
  • the suspension material constituting the optically polarizing suspension is one or more plasticizers selected from trioctyl trimellitate or trioctyldecyl trimellitate plasticizers. It is characterized in that it is used as
  • the dispersing aid of the present invention is an AB block copolymer of poly(neopentyl-block-hydroxyethyl methacrylate), acrylonitrile-styrene, and poly(neopentyl methacrylate-block-styrene). Or it is characterized by using a graft polymer.
  • variable transmittance window of the present invention and a transmittance variable window manufactured thereby facilitate the manufacture of large products such as window glass for construction, and the complicated manufacturing process in manufacturing liquid crystal display devices, i.e., alignment treatment, spacing treatment, sealing, There is an effect of simplifying the manufacturing process and improving characteristics because it does not require processes such as liquid crystal injection and polarizing plate attachment, and has a high contrast effect and excellent sharpness without viewing angle dependence.
  • FIG. 1 is a cross-sectional structure diagram showing a film-type transmittance variable window manufactured by the present invention
  • FIG. 2 is a cross-sectional structural view showing the principle that light polarization variable particles in a liquid light polarization suspension dispersed in the film for variable transmittance window of the present invention block incident light when no electric field is applied;
  • FIG. 3 is a cross-sectional structural view showing the principle that light polarization variable particles in a liquid light polarization suspension dispersed in the transmittance variable window film of the present invention transmit incident light when an electric field is applied.
  • film 2 polymer resin
  • FIG. 1 is a cross-sectional structural view showing a film-type variable transmittance window manufactured by the present invention
  • FIG. 2 is a case in which an electric field is not applied to the variable light polarization particles in the liquid light polarization suspension dispersed in the film for variable transmittance window of the present invention.
  • It is a cross-sectional structural diagram showing the principle of blocking incident light
  • FIG. 3 is a cross-sectional structural diagram showing the principle of transmitting incident light when the variable light polarization particles in the liquid light polarization suspension dispersed in the film for variable transmittance windows of the present invention are applied with an electric field. .
  • FIG. 1 is a transmittance variable window using the film 1 of the present invention, in which droplets 5 of a liquid optically polarizing suspension are dispersed by a phase separation method in a polymer resin 2 as a film medium. ) is sandwiched between two sheets of substrates 9 coated with a transparent conductive thin film 8, and a transmittance variable window is manufactured that does not require surrounding sealing treatment and use of a spacer.
  • the formation of the electric field can be artificially controlled by using the AC power supply 10 and operating the switch 12 .
  • variable particles in the suspension 3 constituting the droplet 5 of the light polarization suspension that is, the variable light polarization particles 4 have irregular Brownian motion
  • the incident light 13 is absorbed by the variable light polarization particles 4 , scattering and reflecting, so they are not transmitted.
  • FIG. 3 is a schematic diagram of the principle that incident light 13 is transmitted when the switch 12 of FIG. 1 is connected to the film 1 made by the present invention and an electric field is applied, and a polymer resin 2 used as a film medium ), droplets 5 of liquid optical polarization suspension are dispersed in the form of microdroplets, and variable optical polarization particles 4 suspended in the suspension 3 constituting the droplet 5 are formed between the electrodes. Since they are arranged in a direction parallel to the total length, the incident light 13 passes between the variable light polarization particles 4 and is transmitted because it proceeds in the long axis direction of the variable light polarization particles 4 .
  • a polymer resin (2) solution was prepared by dissolving 10 g of a polymer resin (2) as a film medium in 40 g of a solvent, and then 20 wt% of the variable light polarization particles (4), 65 wt% of a suspension and 15 wt% Add 5 g of liquid light polarization suspension (3) composed of a dispersing aid, mechanically mix for 30 minutes, and then mix in ultrasonic waves for about 2 hours. After repeating this mixing process two more times, it was degassed. The defoamed mixture is applied to a thickness of 200 ⁇ m on a glass or PET film substrate 9 coated with a transparent conductive thin film 8 .
  • the optically polarizing suspension 3 begins to phase-separate in the polymer resin 2 in the form of spherical droplets 5, and when the solvent is completely removed A film 1 having a dry thickness of about 50 ⁇ m is produced. Another substrate 9 was covered on this film 1 and an electrode was connected to prepare a transmittance variable window.
  • the content of the liquid optically polarizing suspension (3) of the same composition in the composition of Example 1 was changed from 6 g to 10 g to make a mixture, and prepared in the same manner.
  • the liquid optically polarizing suspension 3 in the polymer resin 2 is not dispersed into spherical droplets 5, but a film 1 having a structure in which the droplets 5 are connected to each other. was made
  • Light polarization variable particles (4) of Example 1 the variable light polarization particles (4) having a size within 0.1 ⁇ 1 ⁇ m, for example, light polarization variable particles of hydrocinchonidin with high electrical conductivity and excellent UV durability and thermal stability (4) was prepared in the same manner as in Example 1.
  • variable light polarization particle 4 of Example 1 the variable light polarization particle 4 having a size of within 0.1 to 1 ⁇ m, for example, a variable light polarization particle of Herapatite with high electrical conductivity and excellent UV durability and thermal stability ( 4) was prepared in the same manner as in Example 1.
  • Light polarization variable particles (4) of Example 1 the size of the variable light polarization variable particles (4) within 0.1 ⁇ 1 ⁇ m, for example, pyrazine dicarboxylic acid polycalcium iodine having high electrical conductivity and excellent UV durability and thermal stability It was prepared in the same manner as in Example 1 using the variable light polarization particles (4) of id.
  • Example 2 In the same manner as in Example 1, using an AB block copolymer of poly(neopentyl methacrylate-block-hydroxyethyl methacrylate), a high molecular material, as a dispersing aid that prevents crystal aggregation and improves dispersibility prepared.
  • Example 2 It was prepared in the same manner as in Example 1 using an A-B block copolymer of acrylonitrile-styrene, which is a high molecular material, as a dispersing aid that prevents crystal aggregation and improves dispersibility.
  • Example 2 It was prepared in the same manner as in Example 1 using an A-B block copolymer of poly(neopentyl methacrylate-block-styrene), which is a high molecular material, as a dispersing aid that prevents crystal aggregation and improves dispersibility.
  • Example 1 polyvinyl butyral was used as the polymer resin (2) and trioctyl trimellitate was used as the suspension material, and prepared in the same manner as in Example 1.
  • the polymer resin (2) of Example 9 was prepared in the same manner as in Example 9 using methyl ethyl ketone, methyl benzoate, toluene, xylene, and the like as a solvent.
  • Polyvinyl acetate was used instead of the polymer resin (2) of Example 1, and an edipate-based plasticizer was used to prepare in the same manner as in Example 1.
  • Polymer resin (2) of Example 11 was prepared in the same manner as in Example 1 using a solvent such as toluene or xylene as a solvent.
  • Polyurethane was used instead of the polymer resin (2) of Example 1, and phthalate, triphthalate, and melitate-based plasticizers were used as suspensions to prepare in the same manner as in Example 1.
  • the polymer resin (2) of Example 14 was prepared in the same manner as in Example 1 using a solvent such as toluene, xylene, methyl ethyl ketone, and ethyl acetate as a solvent.
  • the liquid light polarization suspension 3 made of a dispersing aid is dispersed in the form of fine droplets 5 or droplets 5 They have a structure that is irregularly connected to each other.
  • the light polarization suspension (3) used in the present invention is incompatible or partially compatible with 1 to 20 wt% of the variable light polarization particles (4) and the polymer resin (2) as a film medium, and the polymer resin (2) ), a plasticizer with a refractive index difference of within 0.02, more preferably within 0.01, is mixed in a ratio of 80 to 99 wt%.
  • variable light polarization particle 4 used here has no affinity with the polymer resin 2 to be the film medium and the variable light polarization particle 4 in the presence of a polymer dispersing agent that increases the dispersibility of the light polarization variable particle 4 Pyrazine 2,3-dicarboxylic acid, pyrazine 2,5-dicarboxylic acid, pyridine 2,5-dicarboxylic acid, hydroxyquinoline, hydrocinzonidine sulfate, and 2- It is a polyiodine compound made by reacting an iodine compound with one selected from hydroxypyridine.
  • Light polarization variable particles (4) (crystals) were disclosed in US Patent Publication Nos. 2,041,138 (E. H. Land), 2,306,108 (Land et al), 2,375,963 (Thomas), 4,270,841 (R. L. Saxe) and British Patent Publication 433,455.
  • the polyiodide crystal is a herapite crystal produced by the reaction of quinine disulfate with iodine and HI, and when other salts of the quinine alkaloid system are also reacted with iodine or HI, polyiodide such as cinchonidin disulfate is formed do.
  • polyiodine Polyhalides such as compounds, polysalt compounds and polybromine compounds are synthesized.
  • the size of the variable light polarization particles (4) of the present invention is 1 ⁇ m or less, especially 0.1 ⁇ 0.3 ⁇ m A particle size is useful.
  • the size of the variable light polarization particle 4 is 1 ⁇ m or more, the transparency may be lowered even when an electric field is applied due to the dichroism of the particles remaining in the polymer resin 2 . have.
  • the dispersing aid used in the present invention serves as a dispersant in a specific suspension and is selectively attached and coated on optically polarized crystals to allow the optically polarization variable particles 4 to move smoothly into the phase-separated droplets 5 during phase separation.
  • an AB-type block copolymer that has no electrical conductivity while selectively dissolving, viscosity is not too high, and has no affinity with the film medium was used.
  • variable particles 4 are homogeneously dispersed, and the light polarization variable particles 4 are induced to be incorporated into the phase-separated droplets 5 during phase separation.
  • AB-type block copolymer examples include poly(neopentyl methacrylate-block-hydroxyethyl methacrylate), acrylonitrile-styrene, and poly(neopentyl methacrylate-block-styrene) block copolymers. useful.
  • the content of the A-B type block copolymer in the optically polarizing suspension (3) used in the present invention is preferably 10 wt% or less, effectively 2 to 5 wt%.
  • the response rate is slowed, and when the electric field strength is low, a problem of not being changed occurs.
  • Such liquid suspensions are required to have high electrical resistance, inertness, and low viscosity.
  • the transmittance variable window is manufactured using the film (1) according to the present invention, it is incompatible or partially compatible with the polymer resin (2) as the film medium, and the refractive index difference with the polymer resin (2) is within 0.02.
  • a plasticizer is selected.
  • phthalate dioctyl phthalate, diisooctyl phthalate, dibutyl phthalate, butyl octyl phthalate, etc.
  • isophthalate dioctyl isophthalate
  • meritate trioctyl trimellitate, trioctyl trimellitate, etc.
  • Octyldecyl trimellitate trienbutyl trimellitate, etc.
  • adipate-based dioctyl adipate, etc.
  • benzoate-based plasticizers diethyl glycol, dibenzoate, etc.
  • a suspension material having no affinity with water A method of making a film (1) by mechanically mixing it with an aqueous solution in which a water-soluble polymer is dissolved, making it an emulsion (the state in which the suspension is encapsulated in an aqueous polymer solution), and then coating it to a certain thickness and evaporating the moisture to make the film (1); There is a phase separation method by polymerization. Third, there is a phase separation method by temperature, and fourth, a phase separation method by solvent volatilization.
  • the optically polarizing suspension 3 is added to the polymer resin 2 as droplets. (5) It is difficult to disperse in the form or separate from the polymer resin (2), and the variable light polarization particles (4) are incorporated into the droplets (5) dispersed in the polymer resin (2) or the separated suspension (3). It was not used because it was difficult.
  • the method for manufacturing a variable transmittance window of the present invention and a transmittance variable window manufactured thereby increase the dispersibility of the variable light polarization particles 4 (0.1 to 1 ⁇ m in size) and are compatible with the polymer resin 2 (film medium).
  • the liquid optically polarizing suspension (3) made of a dispersing aid that can be easily moved into the separated body of (5) is mixed with the polymer resin (2) to form an emulsion, and then phase-separated.
  • a film (1) in which a liquid optically polarizing suspension (3) is dispersed in the form of fine droplets (5) in a specific polymer resin (2) or a film (1) having a structure in which droplets (5) are irregularly connected to each other ), a phase separation method by solvent volatilization, a phase separation method by polymerization, and a phase separation method by temperature were used.
  • the suspension 3 reacts with water and loses light polarization properties, so it is difficult to manufacture the film 1 having the same characteristics. have.
  • the liquid light polarization suspension 3 in which the light polarization variable particles 4 can be dispersed in the suspension 3 is used instead of the liquid crystal, unlike the transmittance variable window in the form of a film 1 using liquid crystal, the electric field Even when it is not applied, light is not scattered, so it has excellent clarity and shows a deep blue colored state with a wide viewing angle.
  • the amount of transmitted light can be arbitrarily adjusted by adjusting the content of the variable light polarization particles 4 or by adjusting the electric field strength, and the operating temperature range is -20 to 120° C., which is higher than that of the variable transmittance film 1 using liquid crystal. It is characterized in that the film (1) for variable transmittance windows, which is wide and has excellent durability against ultraviolet rays even without the addition of an ultraviolet absorber, is manufactured.
  • the first manufacturing method of the method for manufacturing a variable transmittance window of the present invention is a process of dissolving a polymer resin (2) in a specific solvent to make a homogeneous polymer resin (2) solution, and a liquid optically polarizing suspension (3) of the polymer
  • the process of homogeneously mixing with the resin (2) solution, and applying the mixed solution to a thickness of 10 to 200 micrometers on the glass or polymer film (1) coated with the transparent conductive thin film (8), and solvent in the atmosphere or at a constant temperature It was prepared using a phase separation method by solvent volatilization to volatilize.
  • the polymer resin (2) used in the phase separation method by solvent volatilization of the present invention has a refractive index in the range of 1.46 to 1.50 and is incompatible or partially compatible with the suspension material.
  • Polyvinyl butyral, polyurethane, polyvinyl acetate, polymethyl A thermoplastic resin such as methacrylate or cellulose acetate was selected.
  • the polymer resin (2) In order to mix the light polarization suspension (3) with the polymer resin (2), first, the polymer resin (2) must be dissolved in a specific solvent to prepare a solution of the polymer resin (2). [Table 2] below shows the properties and solvents of the polymer resin (2).
  • the resin solvent used in the present invention is an ester solvent such as isoamyl acetate, benzyl acetate, ethyl acetate, and methyl acetate that does not react with or affect the properties of the variable light polarization particles (4) in [Table 2] and methyl ethyl
  • a polymer resin (2) solution was prepared using an aromatic hydrocarbon-based solvent such as ketone and toluene and xylene. Information on the properties and solvents of these polymer resins (2) can be found in J. Brandrup et al, 'Polymer handbook' 3rd ed., John Wiley & sons. 1989. VII/379 - VII/403.
  • the film (1) When the film (1) is manufactured by the solvent volatilization method of the present invention, it is incompatible or partially compatible with the polymer resin (2), which is a film medium, and a liquid optically polarizing suspension (3) containing a plasticizer having a similar refractive index.
  • the polymer resin (2) is dissolved in a solvent that does not affect the optical properties of the variable light polarization particles (4) and mixed homogeneously.
  • the liquid optically polarizing suspension (3) is dispersed in the form of fine droplets (5) or the droplets (5) are irregularly connected to each other.
  • Another transparent conductive substrate 9 is attached on the film 1 made in this way to complete the film (1) type transmittance variable window.
  • the size of the dispersed droplet 5 is 1 ⁇ 30 ⁇ m
  • the size of the droplet 5, the shape of the droplet 5, and the shape in which the droplets 5 are irregularly connected are the volatilization rate of the solvent, the optical polarization
  • concentration of each component constituting the suspension (3), the viscosity of the solutions of the optically polarizing suspension (3) and the polymer resin (2) used, and the compatibility of the plasticizer as a suspending medium in the suspension (3) with the polymer resin (2) It is determined according to
  • the light polarization variable particles (4) contained in the dispersed fine droplets (5) or the suspension (3) separated in a connected structure are parallel to the entire length. As it is arranged, it becomes colorless and transparent.
  • variable coloration/discoloration speed is determined according to the viscosity of the liquid optically polarization suspension 3 , in particular, the amount of the dispersion aid added and the concentration of the plasticizer and the size and concentration of the optically polarization variable particles 4 .
  • the method for manufacturing a transmittance variable window using the second film (1) of the present invention and the transmittance variable window manufactured thereby are obtained by homogeneously mixing a liquid light polarization suspension (3) with a monomer or prepolymer of a polymer resin, and then the mixed solution is transparent
  • a liquid light polarization suspension (3) with a monomer or prepolymer of a polymer resin
  • the mixed solution is transparent
  • monomers such as methyl methacrylate and vinyl butyral, which are thermoplastic resins, and epoxy, silicone, urethane, etc., which are thermosetting resins, as the polymer resin (2).
  • the liquid light polarization suspension 3 used in the above-mentioned solvent volatilization method was used as it is, and when the polymer resin 2 as the film medium is a thermosetting resin, the film 1 is prepared according to the condensation reaction using a commercial epoxy.
  • benzol peroxide as a polymerization initiator was added to methyl methacrylate to prepare a film 1 according to a radical reaction.
  • the chain length of the polymer resin (2) becomes longer, and accordingly, the solubility of the optically polarizing suspension (3) is gradually reduced, so phase separation occurs depending on the degree of polymerization proceeding, and the liquid optically polarizing suspension (3) is a polymer resin ( 2) dispersed in fine droplets (5).
  • the size of the droplet 5 depends on the polymerization rate, the concentration of each component, the viscosity and diffusion rate of the optically polarizing suspension 3 and the polymer resin 2 used, and the polymer resin of the plasticizer contained in the optically polarizing suspension 3 . It is adjusted according to compatibility with (2).
  • the third method of manufacturing a transmittance variable window using the film (1) of the present invention and the transmittance variable window manufactured by the method are phase separation methods by temperature, and the thermoplastic resin, which is a film medium, is heated to a melting temperature above its melting temperature to be dissolved in solution, and then After homogeneously mixing the liquid optically polarizing suspension (3), when the mixture is cooled again slowly, phase separation occurs from a constant temperature to form a film (1) in which the liquid optically polarizing suspension (3) is dispersed in the polymer resin (2) lose
  • the liquid optically polarizing suspension 3 is dispersed in the form of fine droplets 5 or in the form of irregularly connected to each other.
  • the factors determining the size of the droplet 5, the shape of the droplet 5, and the shape in which the droplet 5 is connected are physical variables such as cooling rate and viscosity.
  • a plasticizer compatible with the polymer resin 2 is added to lower the melting temperature of the polymer resin 2, and then heated to make a solution.
  • a liquid optically polarizing suspension (3) containing a plasticizer that has no compatibility with the polymer resin (2) or exhibits only partial compatibility is added and mixed. This mixture is applied to a predetermined thickness on a transparent conductive substrate 9 heated to about 100° C. in advance, and cooled at a rate of 5 to 10° C./min to prepare a film 1 .
  • another transparent conductive substrate 9 is covered thereon and an electrode is attached to make a transmittance variable window, or another transparent conductive substrate 9 is covered on the coating layer before cooling and the electrode is attached to make a variable transmittance window.
  • the present invention is a film (1) capable of artificially controlling light transmittance by forming a full length, and when the full length is not formed, it maintains a vivid dark blue colored state without light scattering, and when the full length is formed, a colorless and transparent state is converted to This process exhibits reversible repetition characteristics of more than 200,000 times.
  • the refractive index of the plasticizer in the liquid light-polarizing suspension 3 and the refractive index of the polymer resin 2 as the film medium are matched, and an appropriate amount of dispersing aid is added.
  • the power source used is all kinds of periodic signals (AC) including sine wave, square wave and triangular wave, and it can be driven in the frequency range of 30 ⁇ 300 volts (RMS value) and 30 Hz ⁇ 10 kHz.
  • the response time to the electric field is within a few hundred milliseconds when discoloring (conversion from colored state to transparent state), and when colored (coloring from transparent state) transition) is within tens of milliseconds.
  • the transparent conductive substrate 9 used when manufacturing the transmittance variable window using the film 1 of the present invention uses a glass or polymer film 1 coated with a general transparent conductive thin film 8, Since the gap between the lower substrate 9 is narrow, it is also possible to use the substrate 9 on which a transparent insulating layer of about 200 to 1000 ⁇ is formed on the transparent conductive layer in order to prevent a short circuit caused by the mixing of foreign substances.
  • a conductive metal thin film such as aluminum, gold, or silver, which is a reflector, may be directly used as an electrode.
  • variable light polarization particles (4) If an electric field is not applied to the film (1) of the present invention, due to the Brownian motion of the variable light polarization particles (4) in the suspension, a vivid coloration state is shown due to the dichroism effect of the variable light polarization particles (4). .
  • variable light polarization particles (4) are arranged parallel to the electric field, and since a suspension material having a similar refractive index to that of the polymer resin (2) is used, it is converted to a colorless and transparent state, and scattering and transparency deterioration according to the viewing angle are reduced. none.
  • the transmittance variable window using the film (1) according to the present invention is a variety of flat display devices used in the electronic industry and video equipment for indoor partitions and architectural window glass, various instrument panels and replacements for the existing liquid crystal display devices, optical shutters, various indoor and outdoor advertisements And it can be used for a guide panel, a window glass of a car, a rearview mirror, and a sun roof, and it can be applied to glasses and safety glasses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명의 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창은, 광편광 특성을 나타내는 0.2 ~ 0.5㎛ 크기의 광편광 가변입자(4) 5 ~ 20중량%와 분산조제 2 ~ 10중량% 그리고 가소제인 현탁재 80 ~ 93중량%로 이루어진 광편광 현탁액(3)이 기판(9)과의 접착력이 우수한 고분자수지(2)내에 미세한 액적(5) 형태로 분산되어 있는 필름(1)으로 이루어지고, 상기 액적(5)과 고분자수지(2)는 0.5 ~ 1 : 1의 비율로 이루어지며, 상기 고분자수지(2)는 폴리비닐부티랄이며, 상기 광편광 현탁액(3)을 구성하는 현탁재는 트리옥틸트리멜리테이트 또는 트리옥틸데실트리멜리테이트계 가소제 중에서 어느 한 가지 이상의 가소제를 현탁재로 사용하는 것을 특징으로 한다.

Description

투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창
본 발명은 액체 상태의 광편광 현탁액이 특정 고분자수지 내에 분산되어 있는 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창에 관한 것으로서, 더욱 상세하게는 광편광 현탁액이 미세한 액적 또는 액적들이 구형의 액적 형태의 분리체로 기판과의 접착력이 우수한 특정 고분자수지 내에 분산되어 있는 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창에 관한 것이다.
일반적인 투과도 가변창(Light Valve)은 1934년 미국의 E. H. 랜드(E. H. Land)의 미국특허공보 1,951,664와 1,955,923에 의해 최초로 발명된 것으로, 그 형태는 좁은 간격으로 이루어진 두 장의 투명전도성 기판 사이에 액체 상태의 광편광 현탁액이 주입된 구조이다.
E. H. 랜드의 발명에 의하면 두 장의 투명전도성 기판 사이에 주입되어 있는 액상의 광편광 현탁액은 전계가 인가되지 않은 상태에서는 현탁액 중에 분산되어 있는 작은 광편광 가변입자들의 브라운 운동으로 인하여 입사광 중의 대부분의 빛은 입자에 의해 반사, 산란 또는 흡수되고 극히 일부만이 투과된다.
즉 현탁액에 분산되어 있는 광편광 가변입자의 모양, 성질, 농도 그리고 조사되는 빛에너지의 양에 따라 투과, 반사, 산란 및 흡수의 정도가 결정된다.
위의 구조에 전계를 인가하면 상, 하 두 장의 투명전도성 기판을 통하여 현탁액에 전장이 형성되며, 광편광 기능을 나타내는 입자들이 분극을 일으켜 전장에 따라 평행하게 배열되기 때문에 입자와 입자 사이 혹은 입자의 장축을 통하여 빛이 투과되어 궁극적으로는 투명하게 된다.
광편광 가변입자의 침강을 방지하였고, 분산조제를 첨가하여 광편광 가변입자의 분산성을 높여줌으로써 응집을 방지하여 초기의 투과도 가변창에서 제기되었던 문제점은 두 장의 투명전도성 기판 사이에 주입되어 있는 액상의 광편광 현탁액을 필름화함으로써 해결하였다.
국내 공개특허 10-1992-0011659, 일본 공개특허 평6-129168, 미국 특허 USP5,409734, US6900923 및 US7791788에 상기 문제를 해결한 발명이 개시되어 있다.
즉 필름에 전계를 인가하지 않으면 필름 내에 분산되어 있는 액상 광편광 현탁액의 액적 또는 분리체 내에 들어 있는 광편광 가변입자들의 브라운 운동으로 인하여 광편광 가변입자의 이색성효과(dichroism)에 의한 선명한 착색 상태를 나타낸다.
그리고 필름매질인 고분자수지와 굴절율이 일치하는 현탁재를 사용함에 의해 전계를 인가하면 광편광 현탁액 중의 광편광 가변입자들이 전장에 평행하게 배열되므로 무색 투명한 상태로 전환되게 된다.
또한 필름 형태로 제작되기 때문에 종래기술에 의한 투과도 가변창 제조 시에 대두되었던 문제점들을 해결할 수 있다.
그러나 이 투과도 가변창 역시 두 장의 투명전도성 기판 사이에 위치하게 되는 물질이 주로 실리콘계 폴리머 또는 아크릴계 폴리머로서 투명전도막으로 사용하는 ITO표면과의 접촉계수, 부착력이 낮은 문제, 즉 약한 접착력으로 인해 필름 제품의 접착내구성의 문제를 안고 있으며 더욱이 시간경과에 따른 박리현상이 문제점으로 대두되고 있다.
본 발명의 목적은 액상 광편광 현탁액이 고분자수지 내에 액적 형태로 분산되어 있거나 또는 액적들이 불규칙하게 연결되어 있는 구조의 필름을 이용하면 액체 상태의 광편광 현탁액을 그대로 사용한 종래기술에서 문제점으로 제기되었던 입자 침강문제, 외부환경에 의한 광학밀도 변화의 문제, 액상의 현탁액을 주입하는 문제, 기판 사이의 간격을 일정하게 유지하는 문제 등의 어려움을 해결할 수 있는 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창을 제공하는데 있다.
본 발명의 다른 목적은 광편광 현탁액이 액적 혹은 액적의 연결체로 존재하게 되는 고분자 모재로서 접착력이 있는 물질을 사용함에 의해 제품 제조 시의 계면 접착력을 증진시키고 공정을 단순화함은 물론 실제 환경에서 장기간 사용하였을 때의 박리문제를 해결할 수 있는 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창을 제공하는데 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 투과도 가변창의 제조방법에 의해 제조된 투과도 가변창은, 광편광 특성을 나타내는 0.2 ~ 0.5㎛ 크기의 광편광 가변입자 5 ~ 20중량%와 분산조제 2 ~ 10중량% 그리고 가소제인 현탁재 80 ~ 93중량%로 이루어진 광편광 현탁액이 기판과의 접착력이 우수한 고분자수지내에 미세한 액적 형태로 분산되어 있는 필름으로 이루어지고, 상기 액적과 상기 고분자수지는 0.5 ~ 1 : 1의 중량 비율로 이루어진다.
다른 실시예로서, 본 발명의 광편광 가변입자의 제조 시 필름매질인 고분자수지와 친화력이 없으면서 광편광 가변입자의 분산효과를 높여주는 고분자물질을 첨가하여 만든 광편광 가변입자를 가소제 용액에 혼합하여 만든 액상 광편광 현탁액 또는 상기 액상 광편광 현탁액에 고분자분산제를 추가로 첨가하여 제조한 액상 광편광 현탁액 중에서 어느 한 가지 또는 두 가지가 포함되는 것을 특징으로 한다.
다른 실시예로서, 본 발명의 기판과의 접착력이 우수한 고분자수지를 용매로 용해시킨 고분자수지 용액과 액상 광편광 현탁액을 혼합한 후, 열건조방법에 의한 상분리법에 의하여 제조하는 특징으로 한다.
다른 실시예로서, 본 발명의 고분자수지는 폴리비닐부티랄이며, 가소제는 디이소옥틸프탈레이트, 디옥틸프탈레이트, 부틸옥틸프탈레이트, 디옥틸이소프탈레이트, 트리옥틸데실트리멜리테이트와 트리옥틸데실트리멜리테이트계 가소제 중에서 어느 한 가지 이상의 가소제를 현탁재로 사용하는 것을 특징으로 한다.
다른 실시예로서, 본 발명의 고분자수지는 폴리비닐부티랄이며, 상기 광편광 현탁액을 구성하는 현탁재는 트리옥틸트리멜리테이트 또는 트리옥틸데실트리멜리테이트계 가소제 중에서 어느 한 가지 이상의 가소제를 현탁재로 사용하는 것을 특징으로 한다.
다른 실시예로서, 본 발명의 분산조제는 폴리(네오펜틸-블록-하이드록시에틸메타크릴레이트), 아크릴로나이트릴-스타일렌, 폴리(네오펜틸메타크릴레이트-블록-스타일렌)의 A-B 블록 공중합체 또는 그라프트 중합체를 사용하는 것을 특징으로 한다.
본 발명의 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창은 건축용 창호유리와 같은 대형 제품의 제조가 용이하고, 액정표시소자 제조 시의 복잡한 제조공정 즉, 배향처리, 간격유지처리, 밀봉, 액정주입, 편광판 부착과 같은 공정이 필요없고, 대비효과가 높고, 시야각 의존성이 없는 선명도가 우수한 평면표시소자를 제조할 수 있으므로 제조공정의 단순화 및 특성을 향상시킨 효과가 있다.
도 1은 본 발명에 의해 제조된 필름형 투과도 가변창을 나타낸 단면구조도,
도 2는 본 발명의 투과도 가변창용 필름 중에 분산되어 있는 액상 광편광 현탁액 중의 광편광 가변입자들이 전계가 인가되지 않은 경우 입사광을 차단하는 원리를 나타낸 단면구조도,
도 3은 본 발명의 투과도 가변창용 필름 중에 분산되어 있는 액상 광편광 현탁액 중의 광편광 가변입자들이 전계가 인가되는 경우 입사광을 투과시키는 원리를 나타낸 단면구조도이다.
*도면 중 주요 부호에 대한 설명*
1 : 필름 2 : 고분자수지
3 : 현탁액 4 : 가변입자
5 : 액적 8 : 투명전도성 박막
9 : 기판 10 : 교류전원
12 : 스위치 13 : 입사광
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면 도 1 내지 도 3을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 구성은 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
도 1은 본 발명에 의해 제조된 필름형 투과도 가변창을 나타낸 단면구조도이고, 도 2는 본 발명의 투과도 가변창용 필름 중에 분산되어 있는 액상 광편광 현탁액 중의 광편광 가변입자들이 전계가 인가되지 않은 경우 입사광을 차단하는 원리를 나타낸 단면구조도이며, 도 3은 본 발명의 투과도 가변창용 필름 중에 분산되어 있는 액상 광편광 현탁액 중의 광편광 가변입자들이 전계가 인가되는 경우 입사광을 투과시키는 원리를 나타낸 단면구조도이다.
상세하게 설명하면, 도 1은 본 발명의 필름(1)을 이용한 투과도 가변창으로서, 필름매질인 고분자수지(2) 내에 액상 광편광 현탁액의 액적(5)이 상분리법에 의해 분산된 필름(1)이 투명전도성 박막(8)이 코팅되어 있는 두 장의 기판(9)사이에 끼워져 있는 구조로서 주변의 밀봉처리 및 간격 유지재의 사용이 필요없는 투과도 가변창이 제조된다. 교류전원(10)을 사용하고 스위치(12)의 조작에 의해 전장의 형성을 인위적으로 조절할 수 있다.
도 2는 본 발명의 필름(1)에 도 1의 스위치(12)가 단락되어 전계가 인가되지 않은 경우 입사광이 차단되는 원리를 도식화한 것으로서, 필름매질인 고분자수지(2)에 분산되어 있는 액상 광편광 현탁액의 액적(5)을 구성하는 현탁액(3) 내부의 가변입자, 즉 광편광 가변입자(4)들이 불규칙적인 브라운운동하기 떄문에 입사광(13)은 광편광 가변입자(4)에 흡수, 산란 및 반사되어 투과되지 못한다.
도 3은 본 발명에 의해 만들어진 필름(1)에 도 1의 스위치(12)가 결선되어 전계가 인가된 경우, 입사광(13)이 투과되는 원리를 도식화한 것으로서, 필름매질로 사용한 고분자수지(2)에 액상 광편광 현탁액의 액적(5)이 미세액적 상태로 분산되어 있으며, 액적(5)을 구성하는 현탁액(3)의 내부에 부유되어 있는 광편광 가변입자(4)들이 전극사이에 형성되는 전장과 평행한 방향으로 배열되기 때문에 입사광(13)이 광편광 가변입자(4) 사이를 통과하게 되고, 또한 광편광 가변입자(4)의 장축 방향으로 진행되기 때문에 투과된다.
이때 고분자수지(2)의 굴절율과 현탁재인 가소제의 굴절율을 일치시키면 시야각도에 따른 산란 및 투명성의 저하가 없는 고품질의 제품이 제조된다.
[실시예 1]
10g의 필름매질인 고분자수지(2)를 40g의 용매로 용해시켜 고분자수지(2) 용액을 만든 다음 여기에 20 중량%의 광편광 가변입자(4), 65 중량%의 현탁재 및 15중량%의 분산조제로 구성된 액상 광편광 현탁액(3) 5g을 첨가하여 30 분간 기계적으로 혼합한 후 약 2시간 동안 초음파에서 혼합한다. 이와 같은 혼합공정을 2차례 더 반복해서 실시한 후 탈포시켰다. 탈포된 혼합물을 투명전도성 박막(8)이 코팅된 유리 또는 피.이.티(PET) 필름 기판(9)상에 200㎛ 두께로 도포한다. 이후 상온 또는 50 ~ 90℃로 조절된 가열조 내에서 용매를 휘발시키면 광편광 현탁액(3)이 구형의 액적(5) 상태로 고분자수지(2) 내에서 상분리되기 시작하며, 용매가 완전히 제거되면 건조 두께가 50㎛ 정도의 필름(1)이 제조된다. 이 필름(1) 위에 또 다른 기판(9)을 덮고 전극을 연결하여 투과도 가변창을 제조하였다.
[실시예 2]
실시예 1의 조성물 중 동일 조성의 액상 광편광 현탁액(3) 함량을 6g 부터 10g까지 변화시켜 가며 혼합물을 만들고, 동일한 방법으로 제조하였다. 이 경우 현탁액(3)의 함량이 많아질수록 고분자수지(2) 내의 액상 광편광 현탁액(3)은 구형의 액적(5)으로 분산되지 않고 액적(5)이 서로 연결된 구조의 필름(1)이 만들어졌다.
[실시예 3]
실시예 1의 광편광 가변입자(4)로 크기가 0.1 ~ 1㎛ 이내인 광편광 가변입자(4), 예로서 전기전도성이 높고 자외선 내구성과 열적 안정성이 우수한 하이드로신초나이딘의 광편광 가변입자(4)를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 4]
실시예 1의 광편광 가변입자(4)로 크기가 0.1 ~ 1㎛ 이내인 광편광 가변입자(4), 예로서 전기전도성이 높고 자외선 내구성과 열적 안정성이 우수한 헤라파타이트의 광편광 가변입자(4)를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 5]
실시예 1의 광편광 가변입자(4)로 크기가 0.1 ~ 1㎛ 이내인 광편광 가변입자(4), 예로서 전기전도성이 높고 자외선 내구성과 열적 안정성이 우수한 피라진디카복실릭에시드폴리칼슘요오다이드의 광편광 가변입자(4)를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 6]
결정의 응집을 방지하고 분산성을 향상시켜 주는 분산조제로 고분자물질인 폴리(네오펜틸메타크릴레이트-블록-하이드록시에틸메타크릴레이트)의 A-B 블록 공중합체를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 7]
결정의 응집을 방지하고 분산성을 향상시켜 주는 분산조제로 고분자물질인 아크릴로나이트릴-스타일렌의 A-B 블록 공중합체를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 8]
결정의 응집을 방지하고 분산성을 향상시켜 주는 분산조제로 고분자물질인 폴리(네오펜틸메타크릴레이트-블록-스타일렌)의 A-B 블록 공중합체를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 9]
실시예 1에서 고분자수지(2)로서 폴리비닐부티랄 그리고 현탁재로는 트리옥틸트리멜리테이트를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 10]
실시예 9의 고분자수지(2) 용매로서 메틸에틸케톤, 메틸벤조에이트, 톨루엔, 크실렌 등을 사용하여 실시예 9와 동일한 방법으로 제조하였다.
[실시예 11]
실시예 1의 고분자수지(2) 대신에 폴리비닐아세테이트를 사용하고 에디페이트계 가소제를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 12
실시예 11의 가소제 대신에 프탈레이트계, 세바케이트계 가소제를 사용하여 실시예 11과 동일한 방법으로 제조하였다.
[실시예 13]
실시예 11의 고분자수지(2) 용매로서 톨루엔, 크실렌 등의 용매를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 14]
실시예 1의 고분자수지(2) 대신에 폴리우레탄을 사용하고 현탁재로 프탈레이트, 트리프탈레이트, 멜리테이트계 가소제를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
[실시예 15]
실시예 14의 고분자수지(2) 용매로서 톨루엔, 크실렌, 메틸에틸케톤, 에틸아세테이트 등의 용매를 사용하여 실시예 1과 동일한 방법으로 제조하였다.
이와 같이 본 발명의 투과도 가변창은 필름(1)을 형성하는 고분자수지(2) 내에는 분산조제로 이루어진 액상 광편광 현탁액(3)이 미세한 액적(5) 형태로 분산되어 있거나 또는 액적(5)이 서로 불규칙하게 연결되어 있는 구조를 갖는다.
본 발명에 사용되는 광편광 현탁액(3)은 광편광 가변입자(4) 1 ~ 20 중량%와, 필름매질인 고분자수지(2)와 비상용성이거나 또는 부분적인 상용성을 나타내며, 고분자수지(2)와의 굴절율 차이가 0.02 이내, 더 적합하기는 0.01 이내의 가소제인 현탁재가 80 ~ 99 중량%의 비율로 혼합되어 있다.
여기에 사용된 광편광 가변입자(4)는 필름매질이 될 고분자수지(2)와 친화력이 없으며 광편광 가변입자(4)의 분산성을 높여주는 고분자분산제의 존재하에서 광편광 가변입자(4)의 기초 형성물질인 피라진 2,3-디카르복실릭에시드, 피라진 2,5-디카르복실릭에시드, 피리딘 2,5-디카르복실릭에시드, 하이드록시퀴놀린, 하이드로신초나이딘설페이트 그리고 2-하이드록시피리딘 중에서 선택된 한 가지의 물질과 요오드화합물을 반응시켜 만들어진 폴리요오드화합물이다. 광편광 가변입자(4)(결정)는 미국 특허공보 2,041,138(E. H. Land), 2,306,108(Land et al), 2,375,963(Thomas), 4,270,841(R. L. Saxe)와 영국 특허공보 433,455에 의해 개시되었다.
상기 폴리요오드화물 결정은 이황산퀴닌이 요오드와 HI 등과 반응하여 생성된 헤라파이트결정이며, 퀴닌알칼로이드 계통의 다른 종류의 염도 요오드 또는 HI 와 함께 반응시키면 이황산신초나이딘과 같은 폴리요오드화물을 형성한다.
또한 요오드화물, 염화물, 브롬화물 중의 한 가지와 알칼리 또는 알칼리토류의 할로겐화물 및/또는 할로겐화 수소산 중의 한 가지, 그리고 피라진카르복실산, 피리딘카르복실산 중의 한 가지를 선택하여 이들을 함께 반응시키면 폴리요오드화합물, 폴리염화합물 그리고 폴리브롬화합물 등의 폴리할로겐화물이 합성된다.
본 발명의 광편광 가변입자(4)의 크기는 1㎛ 이하, 특히 0.1 ~ 0.3㎛ 크기의 입자가 유용하다. 광편광 가변입자(4)의 크기가 1㎛이상일 경우에는 고분자수지(2) 내에 잔존하는 입자의 이색성효과(dichroism)로 인하여 전계가 인가된 경우에도 투명성(clarity)이 저하되는 문제가 발생할 수 있다.
본 발명에서 사용한 분산조제는 특정 현탁재 내에서 분산제의 역할을 하며 광편광 결정에 선택적으로 부착·피복되어 상분리시, 광편광 가변입자(4)가 상분리된 액적(5) 내로 원활히 이동할 수 있게 해주며, 현탁액(3)에는 선택적으로 용해되면서 전기전도성이 없고, 점도가 너무 높지 않으면서 필름매질과는 친화성이 없는 A-B형 블록코폴리머를 사용하였다.
즉 이와 같은 2중 중합체를 사용하면 A 또는 B 단편중 어느한 단편은 광편광 가변입자(4)의 표면에 피복되고, 나머지 단편은 현탁액(3)에 용해됨에 따라 현탁액(3) 내에서 광편광 가변입자(4)가 균질하게 분산되고, 또한 상분리시 광편광 가변입자(4)가 상분리되는 액적(5) 내로 함입되도록 유도한다.
이와 같은 A-B형 블록코폴리머로서는 폴리(네오펜틸메타크릴레이트-블록-하이드록시에틸메타크릴레이트), 아크릴로나이트릴-스타일렌 그리고 폴리(네오펜틸메타크릴레이트-블록-스타일렌) 블록코폴리머 등이 유용하다.
이들 2중 중합체에 관한 상세한 내용은 A. Noshay & J.E. Mc Grath, "Block copolymers-overview & critical survey", Academic Press,1977. P 83-163 과 R. J. Ceresa, "Block and Graft Copolymer", Butterworths, Co., 1962.에 상술되어 있다.
본 발명에서 사용한 광편광 현탁액(3) 내의 A-B형 블록코폴리머의 함유량은 10 중량% 이하, 효과적으로는 2 ~ 5 중량%가 유용하다. 이보다 많은 양의 A-B형 블록코폴리머가 함유될 경우 감응속도가 늦어지며, 또한 전계강도가 낮은 경우에는 가변되지 않는 문제가 발생한다. 이 밖에도 인산염계의 계면활성제를 분산조제로 사용하여도 가변특성이 있는 제품을 제조할 수 있다.
현탁재는 미국특허 제1,951,664, 2,290,581, 3,625,869, 4,442,019에 에스테르, 오일, 방향족 알콜, 방향족 에스테르를 사용하는 것이 개시되어 있다.
이와 같은 액상 현탁재는 전기저항성이 높고, 비활성이며, 저점도의 것이 요구된다. 본 발명에 의한 필름(1)을 사용하여 투과도 가변창을 제조할 때에는 필름매질인 고분자수지(2)와 비상용성이거나 또는 부분적인 상용성을 나타내며, 고분자수지(2)와의 굴절율 차이가 0.02 이내인 가소제가 선택된다. 이러한 가소제로 본 발명에서는 프탈레이트계(디옥틸프탈레이트, 디이소옥틸프탈레이트, 디부틸프탈레이트, 부틸옥틸프탈레이트 등), 이소프탈레이트계(디옥틸이소프탈레이트), 메리테이트계(트리옥틸트리멜리테이트, 트리옥틸데실트리멜리테이트, 트리엔부틸트리멜리테이트 등), 아디페이트계(디옥틸아디페이트 등), 벤조에이트계(디에틸글리콜, 디벤조에이트 등)의 가소제가 사용될 수 있으며, 이들 가소제와 고분자수지(2)와의 상용성에 대한 상세한 정보는 J. K. Sears et al, "The technology of plasticizer", John Wiley & sons, N.Y. (1982) P 966-1077에 상술되어 있다.
본 발명에 따른 필름(1)을 제조하는데 사용할 수 있는 가소제와 고분자수지(2)와의 상용성은 아래 [표 1]과 같다.
Figure PCTKR2020016785-appb-T000001
특정 액체가 고분자수지(2)에 미세한 액적(5) 형태로 분산되어 있는 구조 또는 액적(5)이 연결된 구조의 필름(1)을 제조하는 방법에는 첫째, 물과는 친화성이 전혀 없는 현탁재를 수용성 고분자물질이 용해되어 있는 수용액과 기계적으로 혼합하여 에멀젼 상태(고분자 수용액 내에서 현탁재가 캡슐화된 상태)로 만든 다음 일정한 두께로 코팅한 후 수분을 증발시켜 필름(1)을 만드는 방법, 둘째, 중합에 의한 상분리법이 있다. 셋째, 온도에 의한 상분리법, 넷째, 용매 휘발에 의한 상분리법 등이 있다.
이와 같은 방법들은 액정을 이용한 투과도 가변창 제조에 일부 이용되고 있었으나, 선행기술에 의한 광편광 현탁액을 이용하여 필름(1)을 제조할 경우에는 광편광 현탁액(3)을 고분자수지(2) 내에 액적(5) 형태로 분산시키거나 고분자수지(2)와 분리시키는 것도 어려울 뿐만 아니라 고분자수지(2) 내에 분산된 액적(5) 또는 분리된 현탁액(3) 내로 광편광 가변입자(4)가 함입되는 것이 어렵기 때문에 사용되지 못하였다.
한편 본 발명의 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창은, 광편광 가변입자(4)(0.1 ~ 1㎛ 크기)의 분산성을 높여주고 고분자수지(2)(필름매질)와 상용성이 없거나 부분적인 상용성을 나타내며 고분자수지(2)와의 굴절율의 차이가 0.02 이내인 가소제와, 입자의 응집 및 침적을 방지하고 상분리 시 광편광 가변입자(4)가 미세한 액적(5) 또는 액적(5)의 분리체 내로 쉽게 이동할 수 있게 하는 분산조제로 이루어진 액상 광편광 현탁액(3)를 고분자수지(2) 물질과 혼합하여 에멀젼 상태로 만든 다음, 상분리하면 된다.
본 발명에서는 액상의 광편광 현탁액(3)이 특정 고분자수지(2) 내에 미세한 액적(5) 형태로 분산되어 있는 필름(1) 또는 액적(5)이 불규칙하게 서로 연결되어 있는 구조의 필름(1)을 제조하기 위하여 용매휘발에 의한 상분리법, 중합에 의한 상분리법 그리고 온도에 의한 상분리법 등을 사용하였다.
그러나 액정을 사용한 투과도 가변창의 제조에 사용되는 방법인 에멀젼에 의한 방법을 사용한 경우에는 현탁액(3)이 수분과 반응하여 광편광 특성을 상실하기 때문에 동일한 특성의 필름(1)을 제조하기 어려운 문제가 있다.
본 발명에서는 액정 대신에 광편광 가변입자(4)가 현탁액(3) 내에 분산될 수 있는 액상 광편광 현탁액(3)을 사용하였기 때문에 액정을 이용한 필름(1) 형태의 투과도 가변창과는 달리 전계가 인가되지 않은 경우에도 빛이 산란되지 않아 선명도가 우수하고 시야각이 넓은 짙은 청색의 착색 상태를 나타낸다.
그리고 광편광 가변입자(4)의 함량을 조절하거나 또는 전계강도를 조절함으로써 투과되는 광량을 임의대로 조절할 수 있을 뿐만 아니라 사용온도 범위도 -20 ~ 120℃로서 액정을 이용한 투과도 가변성 필름(1) 보다 넓으며, 자외선 흡수제를 첨가하지 않아도 자외선에 대한 내구성이 우수한 투과도 가변창용 필름(1)을 제조한 것에 특징이 있다.
본 발명의 투과도 가변창 제조방법 중 첫 번째 제조방법은, 먼저 고분자수지(2)를 특정한 용매로 용해시켜 균질한 고분자수지(2) 용액을 만드는 과정과 액상의 광편광 현탁액(3)을 상기 고분자수지(2) 용액과 균질하게 혼합하는 과정, 그리고 혼합용액을 투명전도성 박막(8)이 코팅된 유리 또는 고분자 필름(1) 위에 10 ~ 200 마이크로메타의 두께로 도포하고 대기 중 또는 일정한 온도에서 용매를 휘발시키는 용매휘발에 의한 상분리법을 이용하여 제조하였다.
이때 고분자수지(2)가 경화되면 그 위에 또 다른 투명전도성 유리 또는 투명전도성 기판(9)을 가열압착시켜 투과도 가변창을 제조하였다.
본 발명의 용매휘발에 의한 상분리법에서 사용한 고분자수지(2)는 굴절율이 1.46 ~ 1.50 범위이고 현탁재와 비상용성이거나 부분적인 상용성을 나타내는 폴리비닐부티랄, 폴리우레탄, 폴리비닐아세테이트, 폴리메틸메타크릴레이트, 셀루로스아세테이트 등의 열가소성수지를 선택하였다.
광편광 현탁액(3)을 고분자수지(2)와 혼합하기 위해서는 우선 고분자수지(2)를 특정 용매로 용해시켜 고분자수지(2) 용액을 만들어야 한다. 아래 [표 2]는 고분자수지(2)의 특성 및 용매를 나타내고 있다.
본 발명에서 사용한 수지용매는 [표 2] 중에서 광편광 가변입자(4)와 반응하거나 그 특성에 영향을 미치지 않는 이소아밀아세테이트, 벤질아세테이트, 에틸아세테이트, 메틸아세테이트 등의 에스테르계의 용매와 메틸에틸케톤 그리고 톨루엔, 크실렌 등의 아로마틱 하이드로카본계의 용매를 사용하여 고분자수지(2) 용액을 만들었다. 이들 고분자수지(2)의 특성 및 용매에 대한 정보는 J. Brandrup et al, 'Polymer handbook' 3rd ed., John Wiley & sons. 1989. VII/379 - VII/403에 기술되어 있다.
본 발명의 용매 휘발법에 의한 필름(1) 제조시에는 필름매질인 고분자수지(2)에 대하여 비상용성이거나 혹은 부분적인 상용성을 나타내며, 굴절율이 비슷한 가소제가 들어 있는 액상 광편광 현탁액(3)과 광편광 가변입자(4)의 광학적 특성에 영향을 미치지 않는 용매로 고분자수지(2)를 용해하여 균질하게 혼합한다.
Figure PCTKR2020016785-appb-T000002
이 혼합용액을 투명전도성 기판(9) 위에 일정한 두께로 코팅한 후 상온 또는 일정한 온도에서 용매를 휘발시키면 고분자수지(2)가 고화되면서 상분리가 일어나 액상 광편광 현탁액(3)이 고분자수지(2) 내에 분산되어 있는 필름(1)이 만들어진다.
이때 고분자수지(2)와 액상 광편광 현탁액(3)의 혼합비율에 따라 액상 광편광 현탁액(3)은 미세한 액적(5) 형태 또는 액적(5)이 불규칙하게 서로 연결되어 있는 형태로 분산되기 때문에 이와 같이 만들어진 필름(1) 위에 또 다른 투명전도성 기판(9)을 부착하여 필름(1)형 투과도 가변창을 완성시킨다.
이 경우 분산된 액적(5)의 크기는 1 ~ 30㎛이며, 액적(5)의 크기, 액적(5)의 형태 그리고 액적(5)이 불규칙하게 연결되어 있는 형태는 용매의 휘발속도, 광편광 현탁액(3)을 구성하고 있는 각 성분의 농도, 사용된 광편광 현탁액(3)과 고분자수지(2) 용액의 점도 그리고 현탁액(3) 내의 현탁매체인 가소제의 고분자수지(2)에 대한 상용성 등에 따라 결정된다.
본 발명에 의한 필름(1)을 사용한 투과도 가변창에 전계를 인가하면 분산된 미세한 액적(5) 또는 연결된 구조로 분리된 현탁액(3) 내에 들어 있는 광편광 가변입자(4)가 전장에 평행하게 배열되므로 무색, 투명해진다.
이때 착·소색 가변속도는 액상 광편광 현탁액(3)의 점도, 특히 분산조제의 첨가량과 가소제의 농도 및 광편광 가변입자(4)의 크기와 농도에 따라 결정된다.
본 발명의 두번째 필름(1)을 사용한 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창은 액상 광편광 현탁액(3)을 고분자수지의 모노머 또는 프리폴리머와 균질하게 혼합한 후, 이 혼합용액을 투명전도성 박막(8)이 코팅된 유리 또는 기타 투명전도성 기판(9) 위에 10 ~ 200 마이크로메타 두께로 도포하고 또 다른 투명전도성 박막(8)이 형성된 기판(9)을 덮은 후 중합시켜 제조하는 중합에 의한 상분리법으로서, 이 방법에서는 고분자수지(2)로서 열가소성수지인 메틸메타크릴레이트, 비닐부티랄 등의 모노머와 열경화성수지인 에폭시, 실리콘, 우레탄 등의 사용이 가능하다.
본 발명에서는 위에서 언급한 용매휘발법에서 사용한 액상 광편광 현탁액(3)을 그대로 사용하였고, 필름매질인 고분자수지(2)가 열경화성 수지인 경우 상업용 에폭시를 사용하여 축합반응에 따라 필름(1)을 제조하였으며, 열가소성수지인 경우에는 메틸메타크릴레이드에 중합개시제로 과산화벤졸을 첨가하여 라디칼반응에 따라 필름(1)을 제조하였다. 중합이 진행됨에 따라 고분자수지(2)의 체인 길이가 길어지고 이에 따라 광편광 현탁액(3)의 용해도는 점차로 감소되므로 중합진행 정도에 따라 상분리가 일어나며, 액상 광편광 현탁액(3)은 고분자수지(2) 내에 미세한 액적(5)으로 분산된다.
이 경우 액적(5)의 크기는 중합속도, 각 성분의 농도, 사용된 광편광 현탁액(3)과 고분자수지(2)의 점도 및 확산속도 그리고 광편광 현탁액(3) 내에 들어 있는 가소제의 고분자수지(2)에 대한 상용성 등에 따라 조절된다.
본 발명의 세번째 필름(1)을 사용한 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창은, 온도에 의한 상분리법으로서 필름매질인 열가소성수지를 그 용융온도 이상으로 가열하여 용액화시킨 다음 여기에 액상 광편광 현탁액(3)을 균질하게 혼합한 후, 이 혼합액을 다시 서서히 냉각시키면 일정한 온도에서부터 상분리가 일어나 액상 광편광 현탁액(3)이 고분자수지(2) 내에 분산되어 있는 필름(1)이 만들어 진다.
이때 고분자수지(2)와 액상 광편광 현탁액(3)의 혼합비율에 따라 액상 광편광 현탁액(3)은 미세한 액적(5) 형태 또는 액적(5)이 불규칙하게 서로 연결되어 있는 형태로 분산된다. 이 경우 액적(5)의 크기, 액적(5)의 형태 그리고 액적(5)이 연결되어 있는 형태를 결정하는 요인은 냉각속도, 점도 등과 같은 물리적 변수이다.
이러한 제조방법으로는 고분자수지(2)의 용융온도를 낮추기 위하여 고분자수지(2)와 상용성이 있는 가소제를 첨가한 후 가열하여 용액으로 만든다. 이 가열된 고분자수지(2) 용액에 고분자수지(2)와 상용성이 없거나 또는 부분적 상용성만을 나타내는 가소제가 들어 있는 액상 광편광 현탁액(3)을 첨가하여 혼합한다. 이 혼합물을 미리 100℃ 정도로 가열된 투명전도성 기판(9)위에 일정한 두께로 도포하고 5 ~ 10℃/분의 속도로 냉각시켜 필름(1)을 제조한다.
위의 공정으로 필름(1)이 완성되면 그 위에 또 다른 투명전도성 기판(9)을 덮고 전극을 부착하여 투과도 가변창을 만들거나 또는 냉각전에 도포층 위에 또 다른 투명전도성 기판(9)을 덮고 전극을 부착하여 투과도 가변창을 만든다.
본 발명은 전장의 형성에 의해 인위적으로 광투과율을 조절할 수 있는 필름(1)으로서 전장이 형성되지 않은 경우에는 빛의 산란이 없는 선명한 암청색의 착색 상태를 유지하고, 전장이 형성되면 무색, 투명한 상태로 전환된다. 이 과정은 20만회 이상의 가역적 반복특성을 나타낸다. 무색, 투명한 상태에서의 투과율 증진과 착색된 상태에서의 선명도 증진은 액상 광편광 현탁액(3) 중에 들어 있는 가소제의 굴절율과 필름매질인 고분자수지(2)의 굴절율을 일치시키고 적당량의 분산조제를 첨가함으로써 가능하다. 사용하는 전원은 정현파, 구형파 및 삼각파를 포함하는 모든 종류의 주기성 신호(교류)이며, 30 ~ 300 볼트(실효값)와 30 Hz ~ 10 kHz 의 주파수 범위에서 구동이 가능하다.
즉 전계인가 또는 무인가에 따라 투명해지거나 착색되며, 전계에 대한 감응시간은 소색시(착색 상태에서 투명 상태로의 전환)에는 수백 밀리초(mili-second) 이내이고, 착색시(투명 상태에서 착색 상태로의 전환)는 수십 밀리초(mili-second) 이내이다.
본 발명의 필름(1)을 이용하여 투과도 가변창을 제조할 때 사용되는 투명전도성 기판(9)은 일반적인 투명전도성 박막(8)이 코팅되어 있는 유리 또는 고분자 필름(1)을 사용하지만, 상,하 기판(9)의 간격이 좁아 이물질의 혼입 등으로 인하여 발생되는 단락현상을 방지하기 위하여 투명전도층 위에 200 ~ 1000 Å 내외의 투명절연층이 형성되어 있는 기판(9)의 사용도 가능하다.
또한 반사형의 투과도 가변창의 경우(예로서 자동차용 후사경등)는 반사체인 알루미늄, 금 또는 은과 같은 전도성 금속박막을 전극으로 직접 이용할 수도 있다.
본 발명의 필름(1)에 전계를 인가하지 않으면 현탁재 내에서의 광편광 가변입자(4)들의 브라운운동 때문에 광편광 가변입자(4)의 이색성효과(dichroism)에 의한 선명한 착색 상태를 나타낸다.
그러나 전계가 인가되면 광편광 가변입자(4)들이 전장에 평행하게 배열되고 고분자수지(2)와 굴절율이 비슷한 현탁재를 사용하였기 때문에 무색 투명한 상태로 전환되며, 시야각도에 따른 산란 및 투명성 저하가 없다.
또한 필름(1) 형태로 제작되기 때문에 액상 광편광 현탁액(3)을 그대로 사용하는 종래기술에 의한 투과도 가변창 제조 시에 대두되었던 문제점들을 해결하였다.
본 발명에 의한 필름(1)을 이용한 투과도 가변창은 실내 칸막이 및 건축용 창유리 전자산업 및 영상기기에서 사용되는 각종 평면표시소자, 각종 계기판과 기존의 액정표시소자의 대체품, 광셔터, 각종 옥내외 광고 및 안내 표시판, 자동차의 창유리, 후사경 그리고 지붕창유리(sun roof) 등에 사용될 수 있으며, 안경 및 보안경 등에도 적용할 수 있다.
한편, 본 발명은 상술한 실시예로만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 수정 및 변형하여 실시할 수 있고, 그러한 수정 및 변형이 가해진 기술사상 역시 이하의 특허청구범위에 속하는 것으로 보아야 한다.

Claims (7)

  1. 광편광 특성을 나타내는 0.2 ~ 0.5㎛ 크기의 광편광 가변입자(4) 5 ~ 20중량%와 분산조제 2 ~ 10중량% 그리고 가소제인 현탁재 80 ~ 93중량%로 이루어진 광편광 현탁액(3)이 기판(9)과의 접착력이 우수한 고분자수지(2)내에 미세한 액적(5) 형태로 분산되어 있는 필름(1)으로 이루어지고,
    상기 액적(5)과 상기 고분자수지(2)는 0.5 ~ 1 : 1의 중량 비율로 이루어진 것을 특징으로 하는 투과도 가변창의 제조방법.
  2. 청구항 1에 있어서,
    상기 광편광 가변입자(4)의 제조 시 필름매질인 고분자수지(2)와 친화력이 없으면서 광편광 가변입자(4)의 분산효과를 높여주는 고분자물질을 첨가하여 만든 광편광 가변입자(4)를 가소제 용액에 혼합하여 만든 액상 광편광 현탁액(3) 또는 상기 액상 광편광 현탁액(3)에 고분자분산제를 추가로 첨가하여 제조한 액상 광편광 현탁액(3) 중에서 어느 한 가지 또는 두 가지가 포함되는 것을 특징으로 하는 투과도 가변창의 제조방법.
  3. 청구항 2에 있어서,
    상기 기판(9)과의 접착력이 우수한 고분자수지(2)를 용매로 용해시킨 고분자수지(2) 용액과 액상 광편광 현탁액(3)을 혼합한 후, 열건조방법에 의한 상분리법에 의하여 제조하는 특징으로 하는 투과도 가변창의 제조방법.
  4. 청구항 3에 있어서,
    상기 고분자수지(2)는 폴리비닐부티랄이며, 가소제는 디이소옥틸프탈레이트, 디옥틸프탈레이트, 부틸옥틸프탈레이트, 디옥틸이소프탈레이트, 트리옥틸데실트리멜리테이트와 트리옥틸데실트리멜리테이트계 가소제 중에서 어느 한 가지 이상의 가소제를 현탁재로 사용하는 것을 특징으로 하는 투과도 가변창의 제조방법.
  5. 청구항 1에 있어서,
    상기 고분자수지(2)는 폴리비닐부티랄이며, 상기 광편광 현탁액(3)을 구성하는 현탁재는 트리옥틸트리멜리테이트 또는 트리옥틸데실트리멜리테이트계 가소제 중에서 어느 한 가지 이상의 가소제를 현탁재로 사용하는 것을 특징으로 하는 투과도 가변창의 제조방법.
  6. 청구항 1에 있어서,
    상기 분산조제는 폴리(네오펜틸-블록-하이드록시에틸메타크릴레이트), 아크릴로나이트릴-스타일렌, 폴리(네오펜틸메타크릴레이트-블록-스타일렌)의 A-B 블록 공중합체 또는 그라프트 중합체를 사용하는 것을 특징으로 하는 투과도 가변창의 제조방법.
  7. 청구항 1 내지 청구항 6 중 어느 한 항의 제조방법에 의해 제조된 투과도 가변창.
PCT/KR2020/016785 2019-12-11 2020-11-25 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창 WO2021118113A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080086171.4A CN114829990B (zh) 2019-12-11 2020-11-25 光阀的制备方法及通过该方法制备的光阀
US17/784,231 US20230059639A1 (en) 2019-12-11 2020-11-25 Method for manufacturing light valve windows and light valve windows manufactured thereby
EP20898441.9A EP4075173A4 (en) 2019-12-11 2020-11-25 METHOD FOR PRODUCING A LIGHT VALVE AND LIGHT VALVE PRODUCED THEREFROM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190164514A KR102151969B1 (ko) 2019-12-11 2019-12-11 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창
KR10-2019-0164514 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021118113A1 true WO2021118113A1 (ko) 2021-06-17

Family

ID=72470781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016785 WO2021118113A1 (ko) 2019-12-11 2020-11-25 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창

Country Status (5)

Country Link
US (1) US20230059639A1 (ko)
EP (1) EP4075173A4 (ko)
KR (1) KR102151969B1 (ko)
CN (1) CN114829990B (ko)
WO (1) WO2021118113A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151969B1 (ko) * 2019-12-11 2020-09-04 주식회사 지투비 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창
KR20220098848A (ko) 2021-01-05 2022-07-12 김규민 빛 투과도 조절 가능한 창문
KR20220105894A (ko) 2021-01-21 2022-07-28 주식회사 지투비 열선반사유리와 결합된 투과도 가변창 및 그 제조 방법
KR20230087959A (ko) 2021-12-10 2023-06-19 주식회사 지투비 투과도 가변창 제조방법
KR102506282B1 (ko) * 2022-02-25 2023-03-07 주식회사 지투비 액상의 분산안정제를 포함하는 분극입자 현탁액, 이를 이용한 투과도 가변 필름 및 그 제조방법

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1951664A (en) 1932-12-03 1934-03-20 Land Edwin Herbert Colloidal suspensions and the process of making same
US1955923A (en) 1932-08-11 1934-04-24 Land Edwin Herbert Light valve and method of operation
GB433455A (en) 1933-01-16 1935-08-15 Edwin Herbert Land Improvements in and relating to polarizing bodies
US2041138A (en) 1930-03-10 1936-05-19 Sheet Polarizer Company Inc Process of forming improved light polarizing bodies
US2290581A (en) 1939-02-17 1942-07-21 Rca Corp Light valve
US3625869A (en) 1965-09-28 1971-12-07 Alvin M Marks Method of increasing the resistivity of a dipole suspension
US3859005A (en) 1973-08-13 1975-01-07 Albert L Huebner Erosion reduction in wet turbines
US4270841A (en) 1978-10-31 1981-06-02 Research Frontiers Incorporated Light valve containing suspension of perhalide of alkaloid acid salt
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4826405A (en) 1985-10-15 1989-05-02 Aeroquip Corporation Fan blade fabrication system
KR920011659A (ko) 1990-12-14 1992-07-24 강진구 로보트의 원점복귀 방법
JPH06129168A (ja) 1992-01-10 1994-05-10 Hankuk Glass Ind Inc 光偏光懸濁液が高分子樹脂内に分散されている調光窓用フィルムおよびその製造方法
US5409734A (en) 1992-01-10 1995-04-25 Hankuk Glass Industries, Inc. Making liquid suspension type light valve film
KR960014118A (ko) * 1994-10-04 1996-05-22 귄터 슈마허 · 클라우스 로이터 퀴놀론- 및 나프티리돈카르복실산 유도체
JP2002214653A (ja) * 2001-01-16 2002-07-31 Hitachi Chem Co Ltd 調光材料、調光フィルム及び調光フィルムの製造方法
US6900923B2 (en) 2003-06-18 2005-05-31 Research Frontiers Incorporated Siloxane matrix polymers and SPD light valve films incorporating same
JP2006064832A (ja) * 2004-08-25 2006-03-09 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよびその製造方法
US7791788B2 (en) 2006-02-21 2010-09-07 Research Frontiers Incorporated SPD light valves incorporating films comprising improved matrix polymers and methods for making such matrix polymers
KR20150081274A (ko) * 2012-10-31 2015-07-13 쌩-고벵 글래스 프랑스 Pdlc 층을 포함하는 가변성 광 산란 시스템
KR20180121123A (ko) * 2017-04-28 2018-11-07 전자부품연구원 투과도 가변소자 및 스마트 윈도우
KR102151969B1 (ko) * 2019-12-11 2020-09-04 주식회사 지투비 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2189789T3 (es) * 1991-11-01 2003-07-16 Research Frontiers Inc Valvula de luz que emplea una pelicula que comprende una suspension liquida encapsulada, y metodo de fabricacion de dicha pelicula.
FR2779839B1 (fr) * 1998-06-10 2003-06-06 Saint Gobain Vitrage Systeme electrocommandable a proprietes optiques variables
TWI239333B (en) * 2000-11-16 2005-09-11 Hoffmann La Roche Benzodiazepine derivatives as GABA A receptor modulators
JP2005300962A (ja) * 2004-04-13 2005-10-27 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよび調光ガラスならびにその製造方法
US7847033B2 (en) * 2005-07-08 2010-12-07 Research Frontiers Incorporated Materials and methods for improving properties of SPD emulsions and films
JP2007169330A (ja) * 2005-12-19 2007-07-05 Fujifilm Corp 透明フィルム、光学フィルム、透明フィルムの製造方法、偏光板、及び画像表示装置
JP4380714B2 (ja) * 2007-03-07 2009-12-09 セイコーエプソン株式会社 偏光素子の製造方法
JP2010126624A (ja) * 2008-11-27 2010-06-10 Dic Corp 分散剤、偏光性粒子の製造方法、分散樹脂組成物、硬化性組成物及び懸濁粒子デバイス用フィルム
EE05425B1 (et) * 2009-03-25 2011-06-15 Tartu �likool Meetod muudetava l„bilaskvusega pinnakatte valmistamiseks ja muudetava l„bilaskvusega elektrooptiline element
JP2011141393A (ja) * 2010-01-06 2011-07-21 Casio Computer Co Ltd 液晶表示装置
US8922872B2 (en) * 2012-02-10 2014-12-30 Research Frontiers Incorporated SPD films with darker off-state transmittances and lighter on-state transmittances
JP2014197163A (ja) * 2013-01-17 2014-10-16 株式会社ダイセル 半透明拡散型偏光積層体及びその用途
CN208060892U (zh) * 2017-09-28 2018-11-06 浙江精一新材料科技有限公司 一种透明导电膜和光传输控制装置
CN107765451A (zh) * 2017-09-28 2018-03-06 中山市珀丽优材料科技有限公司 透明导电膜及其制备方法和光传输控制装置及其制备方法
US11106107B2 (en) * 2018-09-09 2021-08-31 Zhejiang Jingyi New Material Technology Co., Ltd Ultra-flexible and robust silver nanowire films for controlling light transmission and method of making the same
CN109856884A (zh) * 2018-11-19 2019-06-07 浙江精一新材料科技有限公司 一种悬浮粒子可控光阀的制备方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041138A (en) 1930-03-10 1936-05-19 Sheet Polarizer Company Inc Process of forming improved light polarizing bodies
US1955923A (en) 1932-08-11 1934-04-24 Land Edwin Herbert Light valve and method of operation
US1951664A (en) 1932-12-03 1934-03-20 Land Edwin Herbert Colloidal suspensions and the process of making same
GB433455A (en) 1933-01-16 1935-08-15 Edwin Herbert Land Improvements in and relating to polarizing bodies
US2290581A (en) 1939-02-17 1942-07-21 Rca Corp Light valve
US3625869A (en) 1965-09-28 1971-12-07 Alvin M Marks Method of increasing the resistivity of a dipole suspension
US3859005A (en) 1973-08-13 1975-01-07 Albert L Huebner Erosion reduction in wet turbines
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4270841A (en) 1978-10-31 1981-06-02 Research Frontiers Incorporated Light valve containing suspension of perhalide of alkaloid acid salt
US4826405A (en) 1985-10-15 1989-05-02 Aeroquip Corporation Fan blade fabrication system
KR920011659A (ko) 1990-12-14 1992-07-24 강진구 로보트의 원점복귀 방법
JPH06129168A (ja) 1992-01-10 1994-05-10 Hankuk Glass Ind Inc 光偏光懸濁液が高分子樹脂内に分散されている調光窓用フィルムおよびその製造方法
US5409734A (en) 1992-01-10 1995-04-25 Hankuk Glass Industries, Inc. Making liquid suspension type light valve film
KR960014118A (ko) * 1994-10-04 1996-05-22 귄터 슈마허 · 클라우스 로이터 퀴놀론- 및 나프티리돈카르복실산 유도체
JP2002214653A (ja) * 2001-01-16 2002-07-31 Hitachi Chem Co Ltd 調光材料、調光フィルム及び調光フィルムの製造方法
US6900923B2 (en) 2003-06-18 2005-05-31 Research Frontiers Incorporated Siloxane matrix polymers and SPD light valve films incorporating same
JP2006064832A (ja) * 2004-08-25 2006-03-09 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよびその製造方法
US7791788B2 (en) 2006-02-21 2010-09-07 Research Frontiers Incorporated SPD light valves incorporating films comprising improved matrix polymers and methods for making such matrix polymers
KR20150081274A (ko) * 2012-10-31 2015-07-13 쌩-고벵 글래스 프랑스 Pdlc 층을 포함하는 가변성 광 산란 시스템
KR20180121123A (ko) * 2017-04-28 2018-11-07 전자부품연구원 투과도 가변소자 및 스마트 윈도우
KR102151969B1 (ko) * 2019-12-11 2020-09-04 주식회사 지투비 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. NOSHAYJ.E. MC GRATH: "Block Copolymers-Overview & Critical Survey", 1977, ACADEMIC PRESS, pages: 83 - 163
J. BRANDRUP ET AL.: "Polymer Handbook", 1989, JOHN WILEY & SONS, pages: 379 - 403
J. K. SEARS ET AL.: "The technology of plasticizer", 1982, JOHN WILEY & SONS, pages: 966 - 1077
R. J. CERESA: "Block and Graft Copolymer", 1962, BUTTERWORTHS, CO.
See also references of EP4075173A4

Also Published As

Publication number Publication date
US20230059639A1 (en) 2023-02-23
CN114829990B (zh) 2024-05-07
KR102151969B1 (ko) 2020-09-04
CN114829990A (zh) 2022-07-29
EP4075173A4 (en) 2024-01-03
EP4075173A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021118113A1 (ko) 투과도 가변창의 제조방법 및 그에 의해 제조된 투과도 가변창
KR960014118B1 (ko) 광편광현탁액이 고분자수지내에 분산된 투과도 가변창용 필름 및 그 제조방법
US5728251A (en) Light modulating film of improved UV stability for a light valve
US4550982A (en) All-solid-state display including an organic electrochromic layer with ion donor/acceptor
EP3639088B1 (en) Electro-optic media including encapsulated pigments in gelatin binder
CA2249854C (en) Ultraviolet radiation-curable light-modulating film for a light valve, and method of making same
US5409734A (en) Making liquid suspension type light valve film
US9638979B2 (en) Light control film
EP0434812A4 (en) Reverse mode microdroplet liquid crystal light shutter displays
JP2002189123A (ja) 調光材料、調光フィルム及び調光フィルムの製造方法
CN115503307B (zh) 一种光热双响应智能窗及其制备方法
JP2992137B2 (ja) 全固体調光装置
JP2002214653A (ja) 調光材料、調光フィルム及び調光フィルムの製造方法
US6271956B1 (en) Method and materials for enhancing the adhesion of SPD films, and light valves comprising same
CN112147808B (zh) 一种智能玻璃以及制备方法、显示装置
JP2002082364A (ja) 調光材料、調光フィルム及び調光フィルムの製造方法
WO2024143796A1 (ko) 카본블랙을 이용한 광대역 광셔터
KR20220105894A (ko) 열선반사유리와 결합된 투과도 가변창 및 그 제조 방법
JPH0215236A (ja) 選択的眺め角度を有する液晶光変調材料
WO2023199989A1 (ja) 調光装置
JPH11287980A (ja) 液晶光学素子
WO2022103099A1 (ko) 스마트 윈도우용 광투과 조절 패널 및 이를 구비하는 차량용 스마트 윈도우
WO2022085841A1 (ko) 고분자 분산 액정 표시 장치 및 이의 제조방법
JPH0731220Y2 (ja) 合わせ板ガラス
JP2023537793A (ja) Ir安定およびuv安定切替可能パネルならびにその作製および使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020898441

Country of ref document: EP

Effective date: 20220711