WO2021118082A1 - 표시장치 및 이를 포함하는 비디오 월 디스플레이시스템 - Google Patents

표시장치 및 이를 포함하는 비디오 월 디스플레이시스템 Download PDF

Info

Publication number
WO2021118082A1
WO2021118082A1 PCT/KR2020/016018 KR2020016018W WO2021118082A1 WO 2021118082 A1 WO2021118082 A1 WO 2021118082A1 KR 2020016018 W KR2020016018 W KR 2020016018W WO 2021118082 A1 WO2021118082 A1 WO 2021118082A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
disposed
light emitting
display
Prior art date
Application number
PCT/KR2020/016018
Other languages
English (en)
French (fr)
Inventor
곽진오
복승룡
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to US17/784,455 priority Critical patent/US20230006103A1/en
Priority to CN202080084932.2A priority patent/CN114787901A/zh
Publication of WO2021118082A1 publication Critical patent/WO2021118082A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F27/00Combined visual and audible advertising or displaying, e.g. for public address
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/04Display device controller operating with a plurality of display units
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/16Use of wireless transmission of display information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a display device and a video wall display system including the same.
  • An object of the present invention is to provide a video wall display system including a plurality of display devices connected to a wireless network through an antenna pattern.
  • Another object to be solved by the present invention is to provide a video wall display system in which each of the display devices includes a light emitting device of a nano-scale to a micro-scale.
  • Another object of the present invention is to provide a video wall display system in which each of the display devices has an antenna for wireless power transfer for wireless charging.
  • a display device for solving the above problems includes a pixel circuit layer including a plurality of transistors, a first electrode and a second electrode formed on the same layer on the pixel circuit layer, and the first and a light emitting device disposed between an electrode and the second electrode, and an antenna pattern disposed on the light emitting device.
  • the display device may further include a first contact electrode electrically connecting one end of the light emitting device to the first electrode.
  • the antenna pattern may be formed on the same layer as the first contact electrode.
  • the antenna pattern and the first contact electrode may be electrically separated.
  • the display device may further include a second contact electrode electrically connecting the other end of the light emitting device to the second electrode.
  • the first contact electrode may be disposed on the second contact electrode.
  • the antenna pattern may overlap the second contact electrode, and the display device may further include an insulating layer disposed between the antenna pattern and the second contact electrode.
  • the display device may further include a first bridge pattern formed on the same layer as the second contact electrode, wherein the antenna pattern is connected to the first bridge pattern through a first contact hole formed in the insulating layer.
  • the first contact electrode, the second contact electrode, and the antenna pattern may be disposed on the same layer and may be electrically separated from each other.
  • the display device may further include a touch electrode pattern formed on the same layer as the antenna pattern.
  • the display device may further include a first contact electrode disposed on the same layer as the antenna pattern and the touch electrode pattern, wherein the first contact electrode electrically connects one end of the light emitting device and the first electrode.
  • the transmit/receive frequency of the antenna pattern may be 28 GHz to 39 GHz.
  • the antenna pattern may include a transparent conductive material.
  • the display device further includes a first contact electrode electrically connecting one end of the light emitting element to the first electrode, and a second contact electrode electrically connecting the other end of the light emitting element to the second electrode
  • the first contact electrode may be disposed on the second contact electrode
  • the antenna pattern may be disposed under the second contact electrode.
  • the display device further includes a first contact electrode electrically connecting one end of the light emitting element to the first electrode, and a second contact electrode electrically connecting the other end of the light emitting element to the second electrode
  • the antenna pattern may be disposed on the first contact electrode and the second contact electrode.
  • the display device may further include an encapsulation layer disposed on the first contact electrode and the second contact electrode, wherein the antenna pattern is disposed on the encapsulation layer, and the encapsulation layer includes at least one inorganic layer. , and an organic layer.
  • a video wall display system for solving the above problems is a video wall display system including a plurality of display devices, wherein each display device includes a display substrate and a display device of the display substrate. an antenna pattern disposed thereon, wherein the display substrate includes: a pixel circuit layer including a plurality of transistors; a first electrode and a second electrode formed on the same layer on the pixel circuit layer; and the first electrode; and a light emitting device disposed between the second electrodes.
  • the plurality of display devices may be connected through a wireless network.
  • the display substrate may include a bent area.
  • the display substrate of the video wall display system may further include an antenna for wireless power transmission disposed under the display substrate.
  • the display substrate of the video wall display system may further include a speaker module disposed under the display substrate.
  • the speaker module may include a first speaker electrode, a second speaker electrode, and a vibration layer disposed between the first speaker electrode and the second speaker electrode.
  • the vibration layer may include at least one of Poly Vinylidene Fluoride (PVDF), Zircon Titanium Interleaved Lead Ceramic (PZT), and Electro Active Polymer.
  • PVDF Poly Vinylidene Fluoride
  • PZT Zircon Titanium Interleaved Lead Ceramic
  • Electro Active Polymer Electro Active Polymer
  • a video wall display system for solving the above problems is a video wall display system including a plurality of display devices, wherein each display device includes a plurality of transistors and a plurality of light emitting devices. and a display substrate including elements, an antenna pattern disposed on the display substrate, and a network communication unit for transmitting and receiving wireless signals to and from other display devices in the video wall display system through the antenna pattern.
  • Each of the light emitting devices may have a diameter and a length ranging from several hundred nanoscale to several microscales.
  • the video wall display system may further include a control unit connected to at least one of the plurality of display devices through a wireless network, wherein a user's command may be input to the control unit.
  • a plurality of display devices in a video wall display system are connected through a wireless network, and a delay time between each display device can be minimized.
  • power can be supplied wirelessly to the video wall display system without a separate code.
  • durability and efficiency of the video wall display system may be excellent.
  • FIG. 1 is a perspective view of a video wall display system according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram of a first display device according to an embodiment of the present invention.
  • 3 and 4 are perspective and cross-sectional views illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 5 and 6 are perspective and cross-sectional views illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 7 and 8 are perspective and cross-sectional views illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 9 is a plan view illustrating a first display device according to an exemplary embodiment.
  • FIG. 10 is a schematic cross-sectional view of a first display device corresponding to line I1-I1' of FIG. 9 .
  • FIG. 11 is a circuit diagram illustrating an example of a sub-pixel included in the first display device of FIG. 9 .
  • 12 to 18 are circuit diagrams illustrating an example that may be applied to a unit pixel included in the sub-pixel of FIG. 11 .
  • 19 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in the first display device of FIG. 9 .
  • FIG. 20 is a plan layout view schematically illustrating an arrangement of another sub-pixel included in the first display device of FIG. 9 .
  • 21 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to the line I2-I2' of FIG. 19 in the first display device.
  • FIG. 22 is a cross-sectional view of the display substrate or the encapsulation layer corresponding to the line I3-I3' of FIG. 20 in the first display device.
  • FIG. 23 is a conceptual diagram illustrating a driving signal of each display device of a video wall display system according to an embodiment of the present invention.
  • FIG. 24 is a perspective view of a video wall display system according to another embodiment of the present invention.
  • 25 and 26 are cross-sectional views of a display substrate or an encapsulation layer of a first display device of a video wall display system according to another embodiment of the present invention.
  • 27 is a plan view schematically illustrating the arrangement of one sub-pixel included in the first display device of the video wall display system according to another embodiment of the present invention.
  • FIG. 28 is a cross-sectional view of the display substrate or the encapsulation layer corresponding to the line II2-II2' of FIG. 27 in the first display device.
  • 29 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • FIG. 30 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to a line III2-III2' of FIG. 29 in the first display device.
  • FIG. 31 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • FIG. 32 is a cross-sectional view of a display substrate or an encapsulation layer in the first display device of the video wall display system according to another embodiment of the present invention.
  • FIG. 33 is a modified example of FIG. 32 .
  • FIG. 34 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • 35 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to a line IV2- IV2' of FIG. 34 in the first display device.
  • FIG. 36 is a modified example of FIG. 34 .
  • FIG. 37 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • FIG. 38 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to the line V-V' of FIG. 37 in the first display device.
  • 39 is a perspective view of a first display device of a video wall display system according to another embodiment of the present invention.
  • FIG. 40 is a schematic cross-sectional view of the first display device shown in FIG. 39 .
  • FIG. 41 is an enlarged view of an area AA of FIG. 40 .
  • FIG. 42 is a modified example of FIG. 1 .
  • FIG. 1 is a perspective view of a video wall display system according to an embodiment of the present invention.
  • a video wall display system 1 includes a plurality of display devices DV1 to DV4 arranged in a predetermined order and a control unit MC connected to the display devices DV1 to DV4 through a wireless network. ) may be included.
  • Each of the display devices DV1 to DV4 receives a signal from the control unit MC and/or the adjacent display devices DV1 to DV4 through an antenna pattern provided inside the display devices DV1 to DV4, and receives a signal from the other adjacent display devices ( The signal can be sent back to DV1 to DV4).
  • the plurality of display devices DV1 to DV4 include first display devices DV1 to fourth display devices DV4, and the second display device DV2 is based on the first display device DV1.
  • ) is the lower side
  • the third display device DV3 is disposed on the left side
  • the fourth display device DV4 is disposed on the lower left side.
  • the control unit MC may function as a host system.
  • a host system For example, it may be implemented as any one of a television system, a home theater system, a set-top box, a navigation system, a DVD player, a Blu-ray player, a personal computer (PC), a mobile phone system, and a tablet.
  • PC personal computer
  • a user's command may be input to the control unit MC in various formats.
  • the control unit MC may include a touch input unit, and a command by a user's touch input may be input to the control unit MC.
  • the present invention is not limited thereto, and a user's command may be input to the control unit MC through an input method, a button input method, or the like through the remote control unit MC.
  • the display devices DV1 to DV4 may be used as large electronic devices such as televisions and monitors, as well as small and medium-sized electronic devices such as mobile phones, tablets, car navigation systems, game consoles, and smart watches.
  • the video wall display system 1 includes a display area DA and a non-display area NDA.
  • the display devices DV1 to DV4 include display areas DA1 to DA4 and non-display areas NDA1 to NDA4, respectively.
  • Each of the display areas DA1 to DA4 is defined as an area in which a corresponding image is displayed.
  • the non-display areas NDA1 to NDA4 are defined as areas in which an image is not displayed.
  • Each of the non-display areas NDA1 to NDA4 may be adjacent to each of the display areas DA1 to DA4.
  • the display areas DA1 to DA4 may have a rectangular shape.
  • the non-display areas NDA1 to NDA4 may have a shape surrounding the display areas DA1 to DA4.
  • the first display area DA1 surrounds the first non-display area NDA1
  • the second display area DA2 surrounds the second non-display area NDA2
  • the third display area DA3 may surround the third non-display area NDA3
  • the fourth display area DA4 may surround the fourth non-display area NDA4 .
  • the present invention is not limited thereto, and the shape of each of the display areas DA1 to DA4 and the shape of each of the non-display areas NDA1 to NDA4 may be relatively changed.
  • Each of the display areas DA1 to DA4 is parallel to a plane defined by the first direction DR1 and the second direction DR2 .
  • a thickness direction of each of the display devices DV1 to DV4 may be defined as a normal direction of each of the display areas DA1 to DA4 , and for example, the third direction DR3 may indicate.
  • an image in which images to be displayed on each display device DV1 to DV4 are merged may be displayed on the control unit MC, but the present invention is not limited thereto.
  • Each of the display devices DV1 to DV4 may display an image corresponding to its unique ID.
  • the control unit MC divides data corresponding to the first image IM1 to be displayed by the number of the display devices DV1 to DV4 and transmits some to the first display device DV1, and another A portion may be transmitted to the second display device DV2 , another portion may be transmitted to the third display device DV3 , and another portion may be transmitted to the fourth display device DV4 .
  • the first display device DV1 displays a first sub-image IM21 corresponding to the transmitted data
  • the second display device DV2 displays a second sub-image IM22 corresponding to the transmitted data
  • the third display device DV3 may display the third sub-image IM23 corresponding to the transmitted data
  • the fourth display device DV4 may display the fourth sub-image IM24 corresponding to the transmitted data.
  • the user sees each sub-image IM21 to IM24 displayed on the first to fourth display devices DV1 to DV4 and a new second image IM2 in which the first to fourth sub-images IM21 to IM24 are merged. ) can be recognized.
  • the second image IM2 may be recognized as an image that is substantially the same as that of the first image IM1 and has a different size to the user.
  • FIG. 2 is a control block diagram of a first display device according to an embodiment of the present invention.
  • the description of the control block diagram of the first display device DV1 may be substantially equally applied to the second to fourth display devices DV2 to DV4 , and thus a redundant description will be omitted.
  • the first display device DV1 includes a broadcast tuning unit 210 , a signal processing unit 220 , a display unit 230 , a speaker 240 , a user input unit 250 , an HDD 260 , and a network. It may include a communication unit 270 , a UI generating unit 280 , and a control unit 290 .
  • the broadcast tuning unit 210 tunes a predetermined channel frequency under the control of the controller 290 to be described later to receive a broadcast signal of the corresponding channel through an antenna, and includes a channel detection module (not shown) and an RF demodulation module (not shown). city) is included.
  • the broadcast signal demodulated by the broadcast tuning unit 210 is processed by the signal processing unit 220 and output to the display unit 230 and the speaker 240 .
  • the signal processing unit 220 may include a demultiplexer 221 , a video decoder 222 , a video processing unit 223 , an audio decoder 224 , and an additional data processing unit 225 .
  • the demultiplexer 221 separates the demodulated broadcast signal into a video signal, an audio signal, and additional data.
  • the separated video signal, audio signal, and additional data are restored by the video decoder 222 , the audio decoder 224 , and the additional data processing unit 225 , respectively.
  • the video decoder 222 , the audio decoder 224 , and the additional data processing unit 225 restore a decoding format corresponding to the encoding format when the broadcast signal is transmitted.
  • the decoded video signal is converted by the video processing unit 223 to fit the vertical frequency, resolution, aspect ratio, etc. that meet the output standard of the display unit 230 , and the decoded audio signal is output to the speaker 240 .
  • the display unit 230 includes a panel (not shown) provided with a first display area DA1 on which an image is displayed, and a panel driver (not shown) for controlling driving of the panel.
  • the user input unit 250 may receive a signal transmitted by the control unit MC.
  • the user input unit 250 allows the user to receive commands related to communication with other display devices DV2 to DV4 as well as data related to channel selection and UI (User Interface) menu selection and operation transmitted by the control unit MC. Data for selection and input may be provided to be input.
  • UI User Interface
  • the HDD 260 stores various software programs including OS programs, recorded broadcast programs, moving pictures, photos, and other data, and may be implemented using other storage media.
  • the network communication unit 270 is for short-distance communication with the control unit (MC) and other display devices (DV2 to DV4), and is a communication module including an antenna pattern that can implement mobile communication, data communication, Bluetooth, RF, Ethernet, etc. can be implemented
  • the network communication unit 270 is a technical standard or communication method for mobile communication (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access (CDMA2000)) through an antenna pattern to be described later. 2000), Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (EV-DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE) , Long Term Evolution-Advanced (LTE-A), 5G, etc.) may transmit/receive a radio signal with at least one of a base station, an external terminal, and a server on a mobile communication network.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access
  • EV-DO Enhanced Voice-Data Optimized or Enhanced Voice-Data Only
  • WCDMA Wideband CDMA
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High
  • the network communication unit 270 may transmit/receive a wireless signal in a communication network according to wireless Internet technologies through an antenna pattern to be described later.
  • wireless Internet technologies for example, WLAN (Wireless LAN), Wi-Fi (Wireless-Fidelity), Wi-Fi (Wireless Fidelity) Direct, DLNA (Digital Living Network Alliance), WiBro (Wireless Broadband), WiMAX (World Interoperability for Microwave Access), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), etc., and the antenna pattern (ANTE). ) transmits and receives data according to at least one wireless Internet technology within a range including Internet technologies not listed above.
  • the UI generator 280 generates a UI menu for communication with the control unit MC and other display devices DV2 to DV4, and may be implemented by an algorithm code and an OSD IC.
  • the UI menu for communication with the control unit (MC) and other display devices (DV2 to DV4) is a menu for designating a counterpart digital TV for communication and selecting a desired function.
  • the UI menu according to an embodiment of the present invention includes: May include, but is not limited to, "Power On/Off", “Channel Switching", “Recent Channel”, “Send Channel”, “Quality Settings”, “Audio Settings”, “Data Transfer”, “Data Update”, etc. it's not going to be
  • the control unit 290 is in charge of overall control of the first display device DV1 and is in charge of communication control of the control unit MC and other display devices DV2 to DV4, and a corresponding algorithm code for control is stored and , it can be implemented by the MCU (Micro Controller Unit) in which the stored algorithm code is executed.
  • the controller 290 transmits channel information and other data currently being viewed with other digital TVs within a communicable network. At this time, each digital TV transmits/receives various data regardless of the power on/off state. In the case of the power-off state, the power-off state is transmitted instead of channel information.
  • the control unit 290 controls to transmit the corresponding control command and data to the control unit MC and other display devices DV2 to DV4 through the network communication unit 270 according to the input and selection of the user input unit 250 .
  • a predetermined control command and data are input from the control unit MC and other display devices DV2 to DV4, an operation is performed according to the control command.
  • each display device DV1 to DV4 will be described with reference to the first display device DV1.
  • the description of the elements of the first display device DV1 may be substantially the same as the second to fourth display devices DV2 to DV4 , and thus a duplicate description will be omitted.
  • 3 and 4 are perspective and cross-sectional views illustrating a light emitting device according to an embodiment of the present invention.
  • the type and/or shape of the light emitting device LD according to the present invention is not limited thereto.
  • the light emitting device LD is interposed between the first conductive electrode layer 11 and the second conductive electrode layer 13 , and the first and second conductive electrode layers 11 and 13 . and an active layer 12 .
  • the light emitting device LD may be configured as a laminate in which the first conductive electrode layer 11 , the active layer 12 , and the second conductive electrode layer 13 are sequentially stacked along one direction.
  • the light emitting device LD may be provided in the shape of a rod extending in one direction.
  • the light emitting device LD may have one end and the other end along one direction.
  • one of the first and second conductive electrode layers 11 and 13 is disposed at one end of the light emitting device LD, and the first and second conductive electrode layers are disposed at the other end of the light emitting device LD.
  • the other one of (11, 13) may be disposed.
  • the light emitting device LD may be a bar-shaped light emitting diode manufactured in a bar shape.
  • the bar shape encompasses a rod-like shape, or a bar-like shape, longer in the longitudinal direction than in the width direction (ie, an aspect ratio greater than 1), such as a circular column or a polygonal column,
  • the shape of the cross section is not particularly limited.
  • a length L of the light emitting device LD may be greater than a diameter D (or a width of a cross-section) thereof.
  • the light emitting device LD may have a size as small as a nanoscale to a microscale, for example, a diameter D and/or a length L in a range of several hundred nanoscale to several microscales.
  • the size of the light emitting device LD is not limited thereto.
  • the size of the light emitting device LD may be variously changed according to design conditions of various devices using a light emitting device using the light emitting device LD as a light emitting unit, for example, the display devices DV1 to DV4. .
  • the first conductive electrode layer 11 may include at least one n-type semiconductor material.
  • the first conductive electrode layer 11 includes one of InAlGaN, GaN, AlGaN, InGaN, AlN, and InN, and an n-type semiconductor material doped with a first conductive dopant such as Si, Ge, Sn, etc. may include.
  • a first conductive dopant such as Si, Ge, Sn, etc.
  • the material constituting the first conductive electrode layer 11 is not limited thereto, and in addition to this, various materials may constitute the first conductive electrode layer 11 .
  • the active layer 12 is disposed on the first conductive electrode layer 11 and may be formed in a single or multiple quantum well structure.
  • a cladding layer (not shown) doped with a conductive dopant may be formed on the upper and/or lower portions of the active layer 12 .
  • the clad layer may be formed of an AlGaN layer or an InAlGaN layer.
  • a material such as AlGaN or AlInGaN may be used to form the active layer 12 , and in addition to this, various materials may constitute the active layer 12 .
  • the light emitting device LD When a voltage equal to or greater than the threshold voltage is applied to both ends of the light emitting device LD, the light emitting device LD may emit light while electron-hole pairs are combined in the active layer 12 .
  • the light emitting device LD By controlling the light emission of the light emitting device LD using this principle, the light emitting device LD may be used as a light emitting unit of various light emitting devices including pixels of the display devices DV1 to DV4.
  • the second conductive electrode layer 13 is disposed on the active layer 12 , and may include a semiconductor material of a type different from that of the first conductive electrode layer 11 .
  • the second conductive electrode layer 13 may include at least one p-type semiconductor material.
  • the second conductive electrode layer 13 may include a semiconductor material of at least one of InAlGaN, GaN, AlGaN, InGaN, AlN, and InN, and may include a p-type semiconductor material doped with a second conductive dopant such as Mg.
  • the material constituting the second conductive electrode layer 13 is not limited thereto, and various materials other than this may constitute the second conductive electrode layer 13 .
  • the light emitting device LD may further include an insulating film INF provided on a surface thereof.
  • the insulating film INF may be formed on the surface of the light emitting device LD to surround at least the outer peripheral surface of the active layer 12 , and may further surround one region of the first and second conductive electrode layers 11 and 13 .
  • the insulating film INF may expose both ends of the light emitting device LD having different polarities.
  • the insulating film INF may be formed at one end of each of the first and second conductive electrode layers 11 and 13 positioned at both ends of the light emitting element LD in the longitudinal direction, for example, two planes (ie, upper surfaces) of a cylinder. and the lower surface) may be exposed without being covered.
  • the insulating film INF may include at least one insulating material selected from among silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3), and titanium dioxide (TiO2), but is not limited thereto. . That is, the constituent material of the insulating film INF is not particularly limited, and the insulating film INF may be composed of various currently known insulating materials.
  • the light emitting device LD may further include additional components in addition to the first conductive electrode layer 11 , the active layer 12 , the second conductive electrode layer 13 , and/or the insulating film INF.
  • the light emitting device LD may include one or more phosphor layers, an active layer, a semiconductor material and/or one or more phosphor layers disposed on one end side of the first conductive electrode layer 11 , the active layer 12 and/or the second conductive electrode layer 13 .
  • An electrode layer may be additionally included.
  • 5 and 6 are perspective and cross-sectional views illustrating a light emitting device according to another embodiment of the present invention.
  • 7 and 8 are perspective and cross-sectional views illustrating a light emitting device according to another embodiment of the present invention.
  • the light emitting device LD may further include at least one electrode layer 14 disposed on one end side of the second conductive electrode layer 13 .
  • the light emitting device LD may further include at least one other electrode layer 15 disposed on one end of the first conductive electrode layer 11 .
  • each of the electrode layers 14 and 15 may be an ohmic contact electrode, but is not limited thereto.
  • each of the electrode layers 14 and 15 may include a metal or a conductive metal oxide, for example, chromium (Cr), titanium (Ti), aluminum (Al), gold (Au), nickel (Ni), These oxides or alloys, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), ZnO (Zinc Oxide), a transparent electrode material such as ITZO (Indium Tin Zinc Oxide) may be formed alone or by mixing.
  • the electrode layers 14 , 15 may be substantially transparent or translucent. Accordingly, light generated from the light emitting device LD may pass through the electrode layers 14 and 15 to be emitted to the outside of the light emitting device LD.
  • the insulating film INF may or may not at least partially surround the outer peripheral surfaces of the electrode layers 14 and 15 . That is, the insulating film INF may be selectively formed on the surfaces of the electrode layers 14 and 15 . In addition, the insulating film INF is formed to expose both ends of the light emitting device LD having different polarities, and for example, at least one region of the electrode layers 14 and 15 may be exposed. However, the present invention is not limited thereto, and the insulating film INF may not be provided.
  • An insulating film INF is provided on the surface of the light emitting element LD, for example, the surface of the active layer 12, so that the active layer 12 is formed on at least one electrode (eg, at both ends of the light emitting element LD). At least one of the connected contact electrodes) and the like) may be prevented from being short-circuited. Accordingly, electrical stability of the light emitting device LD may be secured.
  • the insulating film INF is formed on the surface of the light emitting device LD, surface defects of the light emitting device LD may be minimized, and lifetime and efficiency of the light emitting device LD may be improved. Furthermore, since the insulating film INF is formed on the light emitting device LD, an undesired short circuit between the light emitting devices LD may be prevented even when the plurality of light emitting devices LD are disposed close to each other.
  • the light emitting device LD may be manufactured through a surface treatment process (eg, coating).
  • a surface treatment process eg, coating
  • the light emitting devices LD are It can be uniformly dispersed without agglomeration non-uniformly in the solution.
  • the light emitting area is an area from which light is emitted by the light emitting devices LD, and may be distinguished from a non-emission area from which light is not emitted.
  • the insulating film INF itself may be formed as a hydrophobic film using a hydrophobic material, or a hydrophobic film made of a hydrophobic material may be additionally formed on the insulating film INF.
  • the hydrophobic material may be a material containing fluorine to exhibit hydrophobicity.
  • the hydrophobic material may be applied to the light emitting devices LD in the form of a self-assembled monolayer (SAM).
  • the hydrophobic material may include octadecyl trichlorosilane, fluoroalkyl trichlorosilane, perfluoroalkyl triethoxysilane, or the like.
  • the hydrophobic material may be a commercially available fluorine-containing material such as Teflon(TM) or Cytop(TM), or a material corresponding thereto.
  • the light emitting device including the light emitting element LD may be used in various types of devices requiring a light emitting unit, including the display devices DV1 to DV4 according to the present exemplary embodiment.
  • at least one micro light emitting device LD for example, a plurality of micro light emitting devices LD each having a size of a nano scale to a micro scale, is disposed in each pixel area of the display devices DV1 to DV4, , a light emitting unit of each pixel may be configured using the micro light emitting devices LD.
  • the field of application of the light emitting device LD is not limited to the display devices DV1 to DV4.
  • the light emitting device LD may be used in other types of devices requiring a light emitting unit, such as a lighting device.
  • FIG. 9 is a plan view illustrating a first display device according to an exemplary embodiment.
  • FIG. 9 illustrates a first display device DV1 that may use the light emitting devices LD described with reference to FIGS. 3 to 8 as a light emitting unit.
  • the first display device DV1 may include a base layer SUB1 (or a substrate) and pixels PXL disposed on the base layer SUB1 .
  • the first display device DV1 and the base layer SUB1 include the first display area DA1 in which an image is displayed and the first non-display area excluding the first display area DA1 . (NDA1). That is, a first display area DA1 and a first non-display area NDA1 may be defined in the base layer SUB1 .
  • the first display area DA1 may include a first sub display area DA11 in which an antenna pattern is disposed and a second sub display area DA12 in which an antenna pattern is not disposed.
  • the second sub display area DA12 may include a touch electrode pattern for sensing a user's touch input and/or a piezoelectric sensor pattern for sensing a user's press.
  • the present invention is not limited thereto, and in some embodiments, the first display area DA1 may be formed of only the first sub display area DA11 in which the antenna pattern is disposed.
  • the first sub display area DA11 may be located at the edge of the first display area DA1
  • the second sub display area DA12 may be located inside the first sub display area DA11 .
  • the base layer SUB1 may constitute a base member of the first display device DV1 .
  • the base layer SUB1 may constitute a base member of a lower panel (eg, a lower plate of the first display device DV1 ).
  • the base layer SUB1 may be a rigid substrate or a flexible substrate, and the material or properties thereof are not particularly limited.
  • the base layer SUB1 may be a rigid substrate made of glass or tempered glass, or a flexible substrate made of a thin film made of plastic or metal.
  • the base layer SUB1 may be a transparent substrate, but is not limited thereto.
  • the base layer SUB1 may be a translucent substrate, an opaque substrate, or a reflective substrate. This embodiment describes as an example that the base layer SUB1 is a flexible substrate.
  • the base layer SUB1 includes a first display area DA1 including a plurality of emission areas in which the pixel PXL is formed, and a first non-display area DA1 disposed outside the first display area DA1 . NDA1). Various wirings and/or built-in circuits connected to the pixels PXL of the first display area DA1 may be disposed in the first non-display area NDA1 .
  • the pixel PXL may include at least one light emitting device LD driven by a corresponding scan signal and a data signal, for example, at least one bar type light emitting diode according to any one of the embodiments of FIGS. 3 to 8 .
  • the pixel PXL may include a plurality of rod-shaped light emitting diodes having a size as small as a nano-scale to a micro-scale and connected in parallel to each other.
  • the plurality of rod-shaped light emitting diodes may constitute a light emitting unit of the pixel PXL.
  • the pixel PXL may include a plurality of sub-pixels.
  • the pixel PXL includes the first sub-pixel SPX11 , the second sub-pixel SPX12 , the third sub-pixel SPX13 , the fourth sub-pixel SPX21 , the fifth sub-pixel SPX22 , and the sixth sub-pixel SPX22 .
  • the sub-pixel SPX23 may be included.
  • the plurality of sub-pixels may be arranged in a matrix form.
  • the first sub-pixel SPX11 is disposed in one row and one column
  • the second sub-pixel SPX12 is disposed in one row and second column
  • the third sub-pixel SPX13 is disposed in one row and third column
  • the fourth sub-pixel SPX21 may be disposed in 2 rows and 1 column
  • the fifth sub-pixel SPX22 may be disposed in 2 rows and 2 columns
  • the sixth sub-pixel SPX23 may be disposed in 2 rows and 3 columns.
  • the column direction may be indicated by the first direction
  • the row direction may be indicated by the second direction.
  • the first sub-pixel SPX11 , the second sub-pixel SPX12 , the third sub-pixel SPX13 , and the fourth sub-pixel SPX21 may be located in the first sub-display area DA11 .
  • the fifth sub-pixel SPX22 and the sixth sub-pixel SPX23 may be located in the second sub-display area DA12 .
  • An antenna pattern may be disposed in the first sub-pixel SPX11 , the second sub-pixel SPX12 , the third sub-pixel SPX13 , and the fourth sub-pixel SPX21 positioned in the first sub-display area DA11 .
  • An antenna pattern may not be disposed and a touch electrode pattern and/or a piezoelectric sensor pattern may be disposed in the fifth sub-pixel SPX22 and the sixth sub-pixel SPX23 positioned in the second sub display area DA12 .
  • the first to sixth sub-pixels SPX11 to SPX23 may emit light in the same or different colors.
  • the first sub-pixel SPX11 and the fourth sub-pixel SPX21 may be red sub-pixels that emit red light
  • the second sub-pixel SPX12 and the fifth sub-pixel SPX22 emit green light. It may be a green sub-pixel
  • the third sub-pixel SPX13 and the sixth sub-pixel SPX23 may be blue sub-pixels emitting blue light.
  • the color, type, and/or number of the sub-pixels constituting the pixel PXL is not particularly limited, and, for example, the color of light emitted by each sub-pixel may be variously changed.
  • FIG. 9 illustrates an embodiment in which the pixels PXL are arranged in a matrix in the first display area DA1
  • the present invention is not limited thereto.
  • the pixels PXL may be arranged in various currently known pixel arrangement shapes.
  • FIG. 10 is a schematic cross-sectional view of a first display device corresponding to line I1-I1' of FIG. 9 .
  • the display substrate SUB_DA is a flexible substrate and may be made of a plastic material or a metal foil. That is, since the display substrate SUB_DA is formed of a flexible material, it can be bent as shown.
  • the plastic display substrate SUB_DA may include any one of PI (polyimide), PC (polycarbonate), PNB (polynorborneen), PET (polyethyleneterephthalate), PEN (polyethylenapthanate), and PES (polyethersulfone).
  • PI polyimide
  • PC polycarbonate
  • PNB polynorborneen
  • PET polyethyleneterephthalate
  • PEN polyethylenapthanate
  • PES polyethersulfone
  • a plurality of transistors and light emitting devices may be disposed in the first display area DA of the display substrate SUB_DA. A description of the plurality of transistors and light emitting devices will be described later. At least a portion of the first non-display area NDA1 of the display substrate SUB_DA may be the bending area BA, and pads (not shown) may be disposed in the first non-display area NDA1 of the display substrate SUB_DA. have.
  • two regions divided based on the bending region BA by the bending shape may face each other.
  • the two regions may overlap each other.
  • the expression “overlapping” means that the two components overlap in the thickness direction (the third direction DR3) of the first display device DV1 unless otherwise defined.
  • the antenna pattern ANTE, the touch electrode pattern TS, the piezoelectric sensor pattern FS, and the driving integrated circuit DIC are all disposed on the display substrate SUB_DA, but the cross-section of the first display device DV1 Based on , the antenna pattern ANTE, the touch electrode pattern TS, and the piezoelectric sensor pattern FS are located above the display substrate SUB_DA, and the driving integrated circuit DIC may be located below the display substrate SUB_DA. have.
  • the antenna pattern ANTE may be connected to a corresponding feed wire through a contact hole. Accordingly, the antenna pattern ANTE may be connected to the RF driver disposed on the first flexible circuit board FPC1 or the like through a feed wire. Therefore, the antenna pattern ANTE may be used as a patch antenna for mobile communication or as an antenna for an RFID tag for short-range communication.
  • a cushion member ADH may be disposed between the bent display substrates SUB_DA.
  • the cushion member ADH may be formed of various materials having a cushion.
  • the cushion member ADH may be formed of latex, sponge, urethane foam that is a foamable resin, EVA, silicone, or the like.
  • the cushion member ADH may be formed in the form of a tape having a cushion.
  • the cushion member ADH may be an adhesive member.
  • a first protective film PF1 and a second protective film PF2 may be disposed between the cushion member ADH and the display substrate SUB_DA.
  • the first protective film PF1 is disposed between the cushion member ADH and one region of the display substrate SUB_DA positioned relatively above, and the display substrate PF1 is positioned relatively lower than the cushion member ADH.
  • a second protective film PF2 may be disposed between other areas of SUB_DA.
  • Each of the first protective film PF1 and the second protective film PF2 includes polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), and polyethylene sulfide. , PES), but is not limited thereto.
  • the first protective film PF1 and the second protective film PF2 are disposed to entirely cover the rear surface of the display substrate SUB_DA. However, in order to reduce bending stress of the bending area BA, it may not be disposed on the rear surface of the portion where the bending area BA is formed.
  • An antenna pattern ANTE, a touch electrode pattern TS, and/or a piezoelectric sensor pattern FS may be disposed on the first display area DA1 of the display substrate SUB_DA.
  • the antenna pattern ANTE, the touch electrode pattern TS, and/or the piezoelectric sensor pattern FS may be simultaneously formed by the same process.
  • An encapsulation layer TFE may be disposed on the antenna pattern ANTE, the touch electrode pattern TS, and/or the piezoelectric sensor pattern FS.
  • the encapsulation layer TFE may be formed to cover the antenna pattern ANTE, the touch electrode pattern TS, and/or the piezoelectric sensor pattern FS, transistors, and light emitting devices to protect them from external moisture or air. .
  • a polarization layer POL may be disposed on the encapsulation layer TFE.
  • the polarization layer POL may overlap the encapsulation layer TFE.
  • the polarization layer POL may transmit light parallel to a polarization axis in one direction among light output from the light emitting device. In addition, the polarization layer POL may reduce external light reflection.
  • the polarization layer POL may be a coating type polarization layer POL or a polarization layer POL formed by deposition.
  • the polarization layer (POL) may be formed by coating a material including a dichroic dye and a liquid crystal compound.
  • a bending stress relieving member BFL may be disposed on the bending area BA of the display substrate SUB_DA.
  • the bending stress relieving member BFL may reduce bending stress of the substrate generated in the bending area BA.
  • the bending stress relief member BFL may include an adhesive formed of a resin. Since the bending stress relieving member BFL is cured while being attached to the outer surface of the bending area BA, the shape of the bent substrate may be more stably maintained.
  • the bending stress relieving member BFL may be formed of a thermosetting resin or an ultraviolet curable resin.
  • the driving integrated circuit DIC may be disposed on an area of the display substrate SUB_DA located at a relatively lower portion.
  • the driving integrated circuit DIC is mounted on the display substrate SUB_DA by a chip bonding process or a surface mounting process, and is bonded to a plurality of signal supply terminals and a plurality of signal input terminals.
  • the driving integrated circuit generates a data signal and a gate signal based on image data and a timing synchronization signal supplied from the outside through a plurality of signal input terminals, and applies the generated data signal and the gate signal to a corresponding signal supply terminal.
  • the first sub-image IM21 corresponding to the image data is displayed in the first display area DA1 by supplying each pixel PXL to drive the pixel PXL.
  • the first flexible circuit board FPC1 may be disposed on another area of the display substrate SUB_DA that is relatively lower.
  • a flexible printed circuit (FPC) may be applied to the first flexible circuit board FPC1, and driving elements for supplying image data and timing synchronization signals input from the outside to the driving integrated circuit (DIC) are formed in a surface mounting method. and a protection cap for protecting the driving elements may be formed.
  • the driving integrated circuit DIC may be electrically connected to the battery BAT.
  • the battery BAT may be disposed on the driving integrated circuit DIC, but the arrangement position is not limited thereto. That is, the battery BAT may be positioned lower than the driving integrated circuit DIC.
  • the battery BAT may supply power required to drive the first display device DV1 .
  • the battery BAT may be charged through an external power source.
  • the battery BAT may be electrically connected to the first antenna member WPT1 .
  • the first antenna member WPT1 may correspond to a wireless power transfer (WPT) antenna for wireless charging.
  • WPT wireless power transfer
  • the first antenna member WPT1 may be positioned lower than the battery BAT.
  • a second flexible circuit board FPC2 may be disposed on the first antenna member WPT1 .
  • a flexible printed circuit (FPC) may be applied to the second flexible circuit board FPC2 , wirings for supplying a power signal are formed in a surface mounting method, and a protection cap is formed to protect the wirings. may have been
  • a connection member CN may be disposed between the battery BAT and the first antenna member WPT1 .
  • the connecting member CN may be a flexible printed circuit (FPC) or a chip on film (COF).
  • connection member CN may connect the upper surface of the display substrate SUB_DA and the battery BAT and the first antenna member WPT1 .
  • the second antenna member WPT2 may be disposed on the connection member CN.
  • the second antenna member WPT2 may be disposed on the connection member CN such that an upper surface of the second antenna member WPT2 faces a side surface of the first display device DV1 .
  • the second antenna member is one of a wireless power transmission (WPT) antenna, a magnetic secure transmission (MST) antenna, a near field communication (NFC) antenna, and an RFID antenna for wireless charging, or a WPT antenna, an MST antenna, or an NFC
  • the antenna may be a 3-combo antenna configured in a combo form.
  • the frequency band may be 100 kHz to 300 kHz, and in the case of the NFC antenna, the frequency band may be 10 MHz to 20 MHz.
  • the window member WD may be disposed on the first display device DV1 and disposed on the polarization layer POL.
  • the window member WD may be made of glass, sapphire, plastic, or the like.
  • the window member WD may overlap both the first display area DA and the first non-display area NDA1 defined above.
  • window member WD is illustrated as a single layer, the window member WD may include a plurality of layers.
  • a black matrix BM may be disposed to overlap the first non-display area NDA1 on the rear surface of the window member WD.
  • the black matrix BM may include a light absorbing material or a light reflecting material.
  • the black matrix BM may include a black colored resin or a reflective metal such as chromium (Cr).
  • the black matrix BM may be positioned adjacent to the polarization layer POL.
  • the housing member FU mounts the aforementioned members and may be coupled to the window member WD.
  • the first buffer member BF1 may be disposed between the black matrix BM and the housing member FU in order to reduce the step difference or facilitate the coupling.
  • the second buffer member BF2 may be disposed between the battery, the first antenna member WPT1 , and the second flexible circuit board FPC2 .
  • the first buffer member BF1 and the second buffer member BF2 may include a resin.
  • 11 is a circuit diagram illustrating an example of a sub-pixel included in the first display device of FIG. 9 .
  • 11 illustrates first to sixth sub-pixels SPX11 to SPX23 included in the first display device DV1 of FIG. 9 .
  • each of the sub-pixels SPX11 to SPX23 may include a plurality of unit pixels SSPX11, SSPX12, and SSPX13.
  • the first to sixth sub-pixels SPX11 to SPX23 are respectively connected to the corresponding data lines Dj, Dj+1, Dj+2 and the corresponding scan lines Si and Si+1, Since the first to sixth sub-pixels SPX11 to SPX23 are substantially identical to each other, the first to sixth sub-pixels SPX11 to SPX23 will be described inclusively with the first sub-pixel SPX11 as the center. .
  • the first to sixth sub-pixels SPX11 to SPX23 include scan lines Si-1, Si, and Si+1 (where i is a natural number) and data lines Dj, Dj+1, Dj+2 (provided that i is a natural number). , j may be respectively arranged in regions partitioned by a natural number).
  • the first sub-pixel SPX11 is a region partitioned by the i-1 and i-th scan lines Si-1 and Si and the j-th and j+1th data lines Dj and Dj+1. can be placed in
  • the arrangement of the first to sixth sub-pixels SPX11 to SPX23 is not limited thereto.
  • the first sub-pixel SPX1 may be connected to the scan line Si and the data line Dj, and may also be connected to the first power line and the second power line.
  • the first power source VDD is applied to the first power line
  • the second power source VSS is applied to the second power line
  • each of the first and second power lines has a common connection to the plurality of sub-pixels. It may be wiring.
  • the first and second power sources VDD and VSS may have different potentials so that the first sub-pixel SPX1 emits light, and the first power source VDD is higher than the voltage level of the second power source VSS. It may have a high voltage level.
  • the first sub-pixel SPX1 may include at least one unit pixel SSPX1 to SSPXk (where k is a natural number).
  • Each of the unit pixels SSPX1 to SSPXk may be connected to the scan line Si and the data line Dj, and may also be connected to a first power line and a second power line.
  • Each of the unit pixels SSPX1 to SSPXk may emit light with a luminance corresponding to a data signal transmitted through the data line Dj in response to a scan signal transmitted through the scan line Si.
  • the unit pixels SSPX1 to SSPXk may include substantially the same pixel structure or pixel circuit.
  • the first sub-pixel SPX1 may include unit pixels SSPX1 to SSPXk that independently emit light in response to one scan signal and one data signal.
  • each of the unit pixels SSPX1 to SSPXk may be configured as an active pixel.
  • the type, structure, and/or driving method of the unit pixel applicable to the first display device DV1 of the present invention is not particularly limited.
  • the unit pixel may include pixels of the first display device DV1 having various currently known passive or active structures.
  • 12 to 18 are circuit diagrams illustrating an example that may be applied to a unit pixel included in the sub-pixel of FIG. 11 .
  • the description is based on one unit pixel in each drawing, and similar contents may be applied to the first to k-th unit pixels SSPX1 to SSPXk shown in FIG. 12 , and thus similar contents will be omitted. That is, the first to k-th unit pixels SSPX1 to SSPXk shown in FIG. 11 have substantially the same or similar structure, and the first unit pixel SSPX1 shown in FIGS. 12 to 18 is an example, The same or similar application may be applied to any one of the first to kth unit pixels SSPX1 to SSPXk of FIG. 11 .
  • the unit pixel SSPX1 may include a light source unit LSU that emits light with a luminance corresponding to a data signal.
  • the unit pixel SSPX1 may further selectively include a pixel circuit PXC for driving the light source unit LSU.
  • the light source unit LSU may include a plurality of light emitting devices LD electrically connected between the first power source VDD and the second power source VSS.
  • the light emitting devices LD may be connected to each other in a parallel structure, but the present invention is not limited thereto.
  • a plurality of light emitting devices LD may be connected in a parallel structure between the first power source VDD and the second power source VSS.
  • the first and second power sources VDD and VSS may have different potentials so that the light emitting devices LD emit light.
  • the first power VDD may be set as a high potential power
  • the second power VSS may be set as a low potential power.
  • the potential difference between the first and second power sources VDD and VSS is set to be greater than or equal to the threshold voltage of the light emitting elements LD during the light emission period of at least the unit pixel SSPX1 (or the first sub pixel SPX1). can be
  • the light emitting devices LD are connected in parallel in the same direction (for example, forward direction) between the first power source VDD and the second power source VSS is illustrated in an embodiment.
  • some of the light emitting devices LD may be connected in a forward direction between the first and second power sources VDD and VSS to constitute an effective light source, and others may be connected in a reverse direction.
  • the unit pixel SSPX1 may include only a single light emitting device LD (eg, a single effective light source connected in a forward direction between the first and second power sources VDD and VSS).
  • one end of each of the light emitting devices LD is commonly connected to the corresponding pixel circuit PXC through a first electrode, and a first power supply ( ) through the pixel circuit PXC and the first power line VDD) can be connected.
  • the other end of each of the light emitting elements LD may be commonly connected to the second power source VSS through the second electrode and the second power line.
  • the light source unit LSU may emit light with a luminance corresponding to the driving current supplied through the corresponding pixel circuit PXC. Accordingly, a predetermined image may be displayed in the first display area DA1 (refer to FIGS. 1 and 9 ).
  • the pixel circuit PXC may be connected to the scan line Si and the data line Dj corresponding to the corresponding sub-pixel (ie, the first sub-pixel SPX1 ). For example, when the first sub-pixel SPX1 is disposed in the i-th row and the j-th column of the first display area DA1 , the pixel circuit PXC of the unit pixel SSPX is in the first display area DA1 . may be connected to the i-th scan line Si and the j-th data line Dj.
  • the pixel circuit PXC may include first and second transistors T1 and T2 and a storage capacitor Cst.
  • the first transistor T1 may be connected between the first power source VDD and the light source unit LSU.
  • the gate electrode of the first transistor T1 may be connected to the first node N1 .
  • the first transistor T1 may control the driving current supplied to the light source unit LSU in response to the voltage of the first node N1 .
  • the second transistor T2 may be connected between the data line Dj and the first node N1 .
  • the gate electrode of the second transistor T2 may be connected to the scan line Si.
  • the second transistor T2 is turned on in response to a scan signal of a gate-on voltage (eg, a low voltage) from the scan line Si to electrically connect the data line Dj and the first node N1 .
  • a gate-on voltage eg, a low voltage
  • a data signal of a corresponding frame may be supplied to the data line Dj for each frame period, and the data signal may be transmitted to the first node N1 via the second transistor T2. Accordingly, the storage capacitor Cst may be charged with a voltage corresponding to the data signal.
  • One electrode of the storage capacitor Cst may be connected to the first power source VDD, and the other electrode may be connected to the first node N1 .
  • the storage capacitor Cst may charge a voltage corresponding to the data signal supplied to the first node N1 during each frame period and maintain the charged voltage until the data signal of the next frame is supplied.
  • the transistors included in the pixel circuit PXC for example, the first and second transistors T1 and T2 are all P-type transistors, but the present invention is not limited thereto. does not For example, at least one of the first and second transistors T1 and T2 may be changed to an N-type transistor.
  • both of the first and second transistors T1 and T2 may be N-type transistors.
  • the gate-on voltage of the scan signal for writing the data signal supplied to the data line Dj to the unit pixel SSPX1_1 in each frame period may be a high level voltage.
  • the voltage of the data signal for turning on the first transistor T1 may be a voltage having a waveform opposite to that of the embodiment of FIG. 12 .
  • a data signal having a higher voltage level may be supplied as the grayscale value to be expressed increases.
  • the unit pixel SSPX1_1 shown in FIG. 13 has the configuration and configuration of the unit pixel SSPX1_1 except that the connection positions of some circuit elements and the voltage levels of control signals (eg, scan signals and data signals) are changed according to the transistor type change.
  • the operation is substantially similar to the unit pixel SSPX1 of FIG. 12 . Accordingly, a detailed description of the unit pixel SSPX1_1 of FIG. 13 will be omitted.
  • the structure of the pixel circuit PXC is not limited to the embodiments illustrated in FIGS. 12 and 13 . That is, the pixel circuit PXC may be configured with pixel circuits of various currently known structures and/or driving methods. For example, the pixel circuit PXC may be configured as in the embodiment illustrated in FIG. 14 .
  • the pixel circuit PXC in the unit pixel SSPX1_2 may be further connected to at least one other scan line (or control line) in addition to the corresponding scan line Si.
  • the pixel circuit PXC of the sub-pixel SPX (or the unit pixel SSPX included therein) disposed in the i-th row of the first display area DA1 may have an i-1 th scan line Si- 1) and/or the i+1-th scan line Si+1 may be further connected.
  • the pixel circuit PXC may be further connected to other power sources in addition to the first and second power sources VDD and VSS.
  • the pixel circuit PXC may also be connected to the initialization power source Vint.
  • the pixel circuit PXC may include seven transistors T1 to T7 .
  • the pixel circuit PXC may include first to seventh transistors T1 to T7 and a storage capacitor Cst.
  • the first transistor T1 may be connected between the first power source VDD and the light source unit LSU.
  • One electrode (eg, source electrode) of the first transistor T1 is connected to the first power source VDD through the fifth transistor T5 , and the other electrode (eg, the source electrode) of the first transistor T1 is connected to
  • the drain electrode may be connected to one electrode of the light source unit LSU (eg, the first electrode of the corresponding sub-pixel SPX) via the sixth transistor T6 .
  • the gate electrode of the first transistor T1 may be connected to the first node N1 .
  • the first transistor T1 may control the driving current supplied to the light source unit LSU in response to the voltage of the first node N1 .
  • the second transistor T2 may be connected between the data line Dj and one electrode of the first transistor T1 .
  • the gate electrode of the second transistor T2 may be connected to the corresponding scan line Si.
  • the second transistor T2 is turned on when a scan signal of a gate-on voltage is supplied from the scan line Si to electrically connect the data line Dj to one electrode of the first transistor T1 . Accordingly, when the second transistor T2 is turned on, the data signal supplied from the data line Dj may be transferred to the first transistor T1 .
  • the third transistor T3 may be connected between another electrode (eg, a drain electrode) of the first transistor T1 and the first node N1 .
  • the gate electrode of the third transistor T3 may be connected to the corresponding scan line Si.
  • the third transistor T3 is turned on when a scan signal of a gate-on voltage is supplied from the scan line Si to connect the first transistor T1 in a diode form.
  • the fourth transistor T4 may be connected between the first node N1 and the initialization power source Vint.
  • the gate electrode of the fourth transistor T4 may be connected to a previous scan line, for example, an i-1 th scan line Si-1.
  • the fourth transistor T4 is turned on when the scan signal of the gate-on voltage is supplied to the i-1 th scan line Si-1 to transfer the voltage of the initialization power Vint to the first node N1. have.
  • the voltage of the initialization power source Vint may be less than or equal to the lowest voltage of the data signal.
  • the fifth transistor T5 may be connected between the first power source VDD and the first transistor T1 .
  • the gate electrode of the fifth transistor T5 may be connected to a corresponding emission control line, for example, the i-th emission control line Ei.
  • the fifth transistor T5 is turned off when an emission control signal of a gate-off voltage (eg, a high voltage) is supplied to the emission control line Ei, and may be turned on in other cases.
  • a gate-off voltage eg, a high voltage
  • the sixth transistor T6 may be connected between the first transistor T1 and the first electrode of the light source unit LSU.
  • the gate electrode of the sixth transistor T6 may be connected to the corresponding emission control line, for example, the i-th emission control line Ei.
  • the sixth transistor T6 may be turned off when a light emission control signal having a gate-off voltage is supplied to the light emission control line Ei, and may be turned on in other cases.
  • the seventh transistor T7 may be connected between the first electrode of the light source unit LSU and the initialization power source Vint (or a third power line through which the initialization power is transmitted).
  • the gate electrode of the seventh transistor T7 may be connected to any one of the scan lines of the next stage, for example, the i+1th scan line Si+1.
  • the seventh transistor T7 is turned on when the scan signal of the gate-on voltage is supplied to the i+1th scan line Si+1 to apply the voltage of the initialization power source Vint to the first electrode of the light source unit LSU. can be supplied with In this case, the voltage of the first electrode of the light source unit LSU may be initialized during each initialization period in which the voltage of the initialization power Vint is transmitted to the light source unit LSU.
  • a control signal for controlling the operation of the seventh transistor T7 may be variously changed.
  • the gate electrode of the seventh transistor T7 may be connected to the scan line of the corresponding horizontal line, that is, the i-th scan line Si.
  • the seventh transistor T7 is turned on when the scan signal of the gate-on voltage is supplied to the i-th scan line Si to supply the voltage of the initialization power Vint to one electrode of the light source unit LSU.
  • the storage capacitor Cst may be connected between the first power source VDD and the first node N1 .
  • the storage capacitor Cst may store a data signal supplied to the first node N1 and a voltage corresponding to the threshold voltage of the first transistor T1 in each frame period.
  • the transistors included in the pixel circuit PXC for example, the first to seventh transistors T1 to T7 are all P-type transistors, but the present invention is not limited thereto. .
  • at least one of the first to seventh transistors T1 to T7 may be changed to an N-type transistor.
  • the pixel circuit PXC may be further connected to a line other than the data line Dj.
  • the pixel circuit PXC in the unit pixel SSPX1_3 may be connected to the sensing line SENj.
  • the pixel circuit PXC may include first to third transistors T1 to T3 and a storage capacitor Cst.
  • the first and second transistors T1 and T2 and the storage capacitor Cst are substantially the same as the first and second transistors T1 and T2 and the storage capacitor Cst described with reference to FIG. 13 , respectively, or Since they are similar, overlapping descriptions will not be repeated.
  • the third transistor T3 may be connected between the sensing line SENj and the second node N2 .
  • the gate electrode of the third transistor T3 is to be connected to a second scan line S2 different from the first scan line S1 (eg, a j+1th scan line Sj+1 different from the j-th scan line Sj).
  • the light source unit LSU may be connected between the second node N2 and a second power line (ie, a power line to which the second power VSS is applied).
  • the third transistor T3 is turned on in response to a scan signal of the gate-on voltage transmitted from the second scan line S2 to electrically connect the sensing line SENj and the second node N2 .
  • the third transistor T3 when the third transistor T3 is turned on while a driving current corresponding to the reference voltage flows through the first transistor T1 , the driving current flowing through the first transistor T1 is applied to the third transistor T3 ) and the sensing line SENj, and a signal corresponding to the characteristic (eg, Vth) of the first transistor T1 based on the driving current is externally provided through the sensing line SENj.
  • the characteristic eg, Vth
  • the pixel circuit PXC in the unit pixel SSPX1_4 may be connected to an initialization voltage line to which the initialization power Vint is provided.
  • the pixel circuit PXC may include first to fourth transistors T1 to T4 and a storage capacitor Cst.
  • the first to fourth transistors T1 to T4 and the storage capacitor Cst are the first and second transistors T1 and T2 described with reference to FIG. 12 , and the seventh and second transistors described with reference to FIG. 14 , respectively. Since the 6 transistors T7 and T6 and the storage capacitor Cst are substantially the same or similar to each other, overlapping descriptions will not be repeated.
  • the unit pixel SSPX1_5 is applied similarly to the unit pixel SSPX1_4 of FIG. 16 , but the second transistor may be an N-type transistor.
  • the unit pixel SSPX1_6 is applied similarly to the unit pixel SSPX1_4 of FIG. 16 , but the second transistor is an N-type transistor, and the fourth transistor T4 is the first transistor described with reference to FIG. 14 . The same as or similar to the 5 transistor may be applied.
  • the structure of the unit pixel SSPX1 applicable to the present invention is not limited to the embodiments illustrated in FIGS. 12 to 18 , and the unit pixel SSPX1 may have various currently known structures.
  • the pixel circuit PXC included in the unit pixel SSPX1 may include pixel circuits of various currently known structures and/or driving methods.
  • the unit pixel SSPX1 may be configured in a passive light emitting panel or the like. In this case, the pixel circuit PXC is omitted, and each of the first and second electrodes of the light source unit LSU may be directly connected to the scan line Si, the data line Dj, the power line, and/or the control line. have.
  • 19 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in the first display device of FIG. 9 .
  • 20 is a plan layout view schematically illustrating an arrangement of another sub-pixel included in the first display device of FIG. 9 .
  • 19 illustrates a second sub-pixel SPX12 among one sub-pixel disposed in the first sub-display area DA11
  • FIG. 20 illustrates a fifth sub-pixel among one sub-pixel disposed in the second sub display area DA12.
  • a pixel SPX22 is shown.
  • the unit pixel is centered on the light emitting unit LSU (refer to FIGS. 12 to 18 ) (or the light emitting element layer) included in the unit pixels SSPX1 to SSPX3 of each sub-pixel SPX12 and SPX22.
  • the structures of the ones SSPX1 to SSPX3 are shown. Since the first to third unit pixels SSPX1 to SSPX3 are substantially identical to each other, the light emitting unit LSU will be described based on the first unit pixel SSPX1 .
  • the first unit pixel SSPX1 of the second sub-pixel SPX12 includes a first electrode ETL1 and second electrodes ETL21 , ETL22 and ETL23 disposed to be spaced apart from each other, and the first and second At least one light emitting device LD connected between the second electrodes ETL1 , ETL21 , ETL22 , and ETL23 may be included.
  • the light emitting devices LD included in the same unit pixels SSPX1 to SSPX3 may emit light of the same color.
  • the first to third unit pixels SSPX1 to SSPX3 may define light emitting regions emitting light of different colors.
  • the first unit pixel SSPX1 includes light emitting devices LD that emit light in red
  • the second unit pixel SSPX2 includes light emitting devices LD that emit green light
  • the third unit pixel SSPX1 includes light emitting devices LD that emit green light.
  • the pixel SSPX3 may include light emitting devices LD that emit blue light.
  • all of the first to third unit pixels SSPX1 to SSPX3 may include light emitting devices LD that emit blue light.
  • At least a portion of the first to third unit pixels SSPX1 to SSPX3 has light conversion for converting the color of light emitted from the corresponding unit pixel.
  • Layers and/or color filters may be disposed.
  • the first electrode ETL1 may be an electrode shared by the first to third unit pixels SSPX1 to SSPX3.
  • the first to third unit pixels SSPX1 to SSPX3 may be disposed along the first direction DR1 .
  • the second electrodes ETL21 , ETL22 , and ETL23 may be disposed to be spaced apart from the first electrode at one side in the second direction DR2 .
  • the second electrodes ETL21 , ETL22 , and ETL23 in the first to third unit pixels SSPX1 to SSPX3 may be arranged in the first direction DR1 .
  • the first and second electrodes ETL1 , ETL21 , ETL22 , and ETL23 may be spaced apart from each other by a predetermined distance and disposed side by side (parallel).
  • the first electrode ETL1 may be a cathode electrode electrically connected to the second power source VSS.
  • the second electrodes ETL21 , ETL22 , and ETL23 may be anode electrodes electrically connected to the first power source VDD.
  • Light emitting devices LD having one end and the other end electrically connected to the first electrode ETL1 and the second electrodes ETL21 , ETL22 , and ETL23 are disposed, so that the first electrode ETL1 and each of the first electrodes ETL1 and the second electrodes ETL1 and ETL23 are disposed.
  • the two electrodes ETL21 , ETL22 , and ETL23 may be electrically connected.
  • one light emitting area may be defined per one unit pixel (eg, SSPX1).
  • the light-emitting area may be divided by the non-emissive area.
  • a pixel defining layer or a bank, a light blocking pattern that blocks light emitted from the light emitting device LD from being transmitted to another area may be overlapped in the non-emission area.
  • the second sub-pixel SPX12 may include a first contact electrode CNE1 electrically connecting the first electrode ETL1 and one end of the light emitting devices LD.
  • the first contact electrode CNE1 may overlap at least a partial region of the first electrode ETL1 .
  • the second sub-pixel SPX12 may include an antenna pattern ANTE that is simultaneously formed by the same process as that of the first contact electrode CNE1 .
  • the antenna pattern ANTE may be electrically separated from and insulated from the first contact electrode CNE1 .
  • the antenna pattern ANTE may have a shape surrounding the first contact electrodes CNE1 formed for each unit pixel.
  • the antenna pattern ANTE shown in this figure may correspond to the antenna pattern ANTE of FIG. 10 .
  • the antenna pattern ANTE may overlap each of the unit pixels SSPX1 to SSPX3.
  • the antenna pattern ANTE may be formed for each sub-pixel (eg, SPX11, SPX12, SPX13, SPX21, see FIG. 9 ) in the first sub-display area DA11.
  • the antenna pattern ANTE may be one electrode pattern formed for each sub-pixel.
  • the antenna patterns ANTE positioned in adjacent sub-pixels may be electrically connected to each other.
  • the shape of the antenna pattern ANTE is not limited thereto, and the antenna pattern ANTE may be formed for each unit pixel SSPX1 to SSPX3, and in this case, the antenna patterns ANTE are formed in separate connection patterns (not shown). ) may be electrically connected to each other through
  • touch electrode patterns TS are formed in the fifth sub-pixel SPX22 at positions corresponding to the antenna pattern ANTE instead of the antenna pattern ANTE formed in the second sub-pixel SPX12 of FIG. 19 . can be
  • the touch electrode patterns TS may be formed in each of the sub-pixels (eg, SPX21 and SPX22, see FIG. 9 ) in the second sub display area DA12 .
  • the touch electrode patterns TS are formed for each unit pixel SSPX1 to SSPX3, respectively, and the adjacent touch electrode patterns TS may be electrically separated and insulated.
  • the touch electrode patterns TS may correspond to the touch electrode patterns TS of FIG. 10 .
  • some of the touch electrode patterns TS correspond to the driving electrodes TE through which a driving signal flows, and the remaining portions of the touch electrode patterns TS correspond to the sensing electrodes RE through which a sensing signal flows. can do.
  • the driving electrode TE and the sensing electrode RE may sense an external input using a mutual-cap or self-cap method.
  • the arrangement shape of the touch electrode patterns TS is not limited thereto and may be formed for each sub-pixel. Also, in another embodiment, the touch electrode patterns TS in at least some sub-pixels in the second sub display area DA12 may be changed to the piezoelectric sensor pattern FS.
  • the arrangement structure of the first and second electrodes ETL1 , ETL21 , ETL22 , and ETL23 of the fifth sub-pixel SPX22 and the first contact electrode CNE1 is the same as that of the second sub-pixel SPX12 , so the description is duplicated is to be omitted.
  • 21 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to the line I2-I2' of FIG. 19 in the first display device.
  • 22 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to the line I3-I3' of FIG. 20 in the first display device.
  • the first display device DV1 may include a base layer SUB1 disposed under the display substrate SUB_DA. Since the description of the base layer SUB1 has been described above with reference to FIG. 9 , a duplicate description will be omitted.
  • a first buffer layer 111 is disposed on the base layer SUB1 .
  • the first buffer layer 111 serves to smooth the surface of the base layer SUB1 and prevent penetration of moisture or external air.
  • the first buffer layer 111 may be an inorganic layer.
  • the first buffer layer 111 may be a single layer or a multilayer layer.
  • a plurality of transistors Tdr and Tsw are disposed on the first buffer layer 111 .
  • each of the transistors Tdr and Tsw may be a thin film transistor.
  • the two transistors Tdr and Tsw shown in the figure correspond to a driving transistor and a switch transistor, respectively.
  • Each of the transistors Tdr and Tsw may include semiconductor patterns ACT1 and ACT2 , gate electrodes GE1 and GE2 , source electrodes SDE2 and SDE4 , and drain electrodes SDE1 and SDE3 , respectively.
  • the first transistor Tdr serving as the driving transistor may include a first semiconductor pattern ACT1 , a first gate electrode GE1 , a first source electrode SDE2 , and a first drain electrode SDE1 .
  • the second transistor Tsw that is a switch transistor may include a second semiconductor pattern ACT2 , a second gate electrode GE2 , a second source electrode SDE4 , and a second drain electrode SDE3 .
  • a semiconductor layer is disposed on the first buffer layer 111 .
  • the semiconductor layer may include the first semiconductor pattern ACT1 and the second semiconductor pattern ACT2 described above.
  • the semiconductor layer may further include a third semiconductor pattern ACT3 .
  • the semiconductor layer may include amorphous silicon, poly silicon, low temperature poly silicon, and an organic semiconductor.
  • the semiconductor layer may be an oxide semiconductor.
  • the semiconductor layer may include a channel region, a source region and a drain region doped with impurities, which are disposed on both sides of the channel region.
  • a first gate insulating layer 112 is disposed on the semiconductor layer.
  • the first gate insulating layer 112 may be an inorganic layer.
  • the first gate insulating layer 112 may be a single layer or a multilayer layer.
  • a first conductive layer is disposed on the first gate insulating layer 112 .
  • the first conductive layer may include the first gate electrode GE1 and the second gate electrode GE2 described above.
  • the first conductive layer may further include a first low power pattern VSSL1 .
  • the first conductive layer may be formed of a metal material having conductivity.
  • the first conductive layer may include molybdenum (Mo), aluminum (Al), copper (Cu), or titanium (Ti).
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • the first conductive layer may be a single layer or a multilayer layer.
  • the first low power pattern VSSL1 may be electrically connected to the second power line.
  • the first low power pattern VSSL1 is disposed in the first display area DA1 and may overlap the third semiconductor pattern ACT3 .
  • a second gate insulating layer 113 is disposed on the first conductive layer.
  • the second gate insulating layer 113 may be an inorganic layer.
  • the second gate insulating layer 113 may be a single layer or a multilayer layer.
  • a second conductive layer is disposed on the second gate insulating layer 113 .
  • the second conductive layer may include a third gate electrode GE4 .
  • the third gate electrode GE4 may be a gate electrode of another transistor (not shown), but is not limited thereto.
  • the second conductive layer may be formed of a metal material having conductivity.
  • the second conductive layer may include molybdenum (Mo), aluminum (Al), copper (Cu), or titanium (Ti).
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • the second conductive layer may be a single layer or a multilayer layer.
  • An interlayer insulating film 114 is disposed on the second conductive layer.
  • the interlayer insulating layer 114 may be an organic layer or an inorganic layer.
  • the interlayer insulating layer 114 may be a single layer or a multilayer layer.
  • a third conductive layer is disposed on the interlayer insulating layer 114 .
  • the third conductive layer may include the above-described source electrodes SDE2 and SDE4 and drain electrodes SDE1 and SDE3.
  • the third conductive layer may further include a second low power pattern VSSL2 .
  • the third conductive layer is formed of a metal material having conductivity.
  • the source electrodes SDE2 and SDE4, the drain electrodes SDE1 and SDE3, and the second low power pattern VSSL2 may include aluminum (Al), copper (Cu), titanium (Ti), and molybdenum (Mo). may include.
  • the second low power pattern VSSL2 may be electrically connected to the second power line.
  • the second low power pattern VSSL2 may contact the first low power pattern VSSL1 through a contact hole penetrating the second gate insulating layer 113 and the interlayer insulating layer 114 .
  • the second low power pattern VSSL2 is disposed in the first display area DA1 and may overlap the first low power pattern VSSL1 and the third semiconductor pattern ACT3 .
  • the source electrodes SDE2 and SDE4 and the drain electrodes SDE1 and SDE3 are not limited by their names. In another embodiment, the source electrodes SDE2 and SDE4 shown in FIG. 14 may perform a function of a drain electrode, and the drain electrodes SDE1 and SDE3 shown in FIG. 14 may perform a function of a source electrode. may be
  • the source electrodes SDE2 and SDE4 and the drain electrodes SDE1 and SDE3 are respectively connected to corresponding semiconductors through a contact hole penetrating the interlayer insulating layer 114 , the second gate insulating layer 113 , and the first gate insulating layer 112 .
  • Each of the patterns ACT1 and ACT2 may be electrically connected to a source region and a drain region.
  • the first display device DV1 may further include a storage capacitor disposed on the base layer SUB1 .
  • a first passivation layer 121 is disposed on the third conductive layer.
  • the first passivation layer 121 is disposed to cover the circuit portion including the transistors Tdr and Tsw.
  • the first passivation layer 121 may also be disposed on at least a portion of the first non-display area NDA1 .
  • the first passivation layer 121 may be a passivation layer or a planarization layer.
  • the passivation layer may include SiO2, SiNx, or the like, and the planarization layer may include a material such as acrylic or polyimide.
  • the first passivation layer 121 may include both a passivation layer and a planarization layer.
  • a passivation layer may be disposed on the third conductive layer and the interlayer insulating layer 114 , and a planarization layer may be disposed on the passivation layer.
  • a top surface of the first passivation layer 121 may be flat.
  • a fourth conductive layer may be disposed on the first passivation layer 121 .
  • the fourth conductive layer may include a power wiring, a signal wiring, and various conductive patterns such as a connection electrode.
  • the fourth conductive layer includes the first connection pattern CE1 disposed in the first display area DA1.
  • the fourth conductive layer is formed of a metal material having conductivity.
  • the fourth conductive layer may include aluminum (Al), copper (Cu), titanium (Ti), or molybdenum (Mo).
  • the first connection pattern CE1 may contact one of the source electrode SDE2 and the drain electrode SDE1 of the first transistor Tdr through a contact hole penetrating the first passivation layer 121 .
  • a second passivation layer 122 is disposed on the fourth conductive layer.
  • the second passivation layer 122 may be a passivation layer or a planarization layer.
  • the passivation layer may include SiO2, SiNx, or the like, and the planarization layer may include a material such as acrylic or polyimide.
  • the second passivation layer 122 may include both a passivation layer and a planarization layer.
  • the second passivation layer 122 may include an opening exposing an upper portion of a partial member of the partial fourth conductive layer included in the fourth conductive layer.
  • the second passivation layer 122 may include an opening exposing at least a portion of the first connection pattern CE1 .
  • the base layer SUB1 to the second passivation layer 122 will be referred to as a pixel circuit layer. That is, the pixel circuit layer corresponds to layers including a plurality of transistors on the display substrate SUB_DA.
  • the first display device DV1 includes first and second partition walls PW1 and PW2 sequentially disposed on the second passivation layer 122 , first and second electrodes ETL1 and ETL21 , and a first insulating layer. 131 , light emitting devices LD, a second insulating layer 132 , first and second contact electrodes CNE1 and CNE21 , a third insulating layer 133 , and a thin film encapsulation layer 141 . can
  • the first and second barrier ribs PW1 and PW2 may be disposed on the pixel circuit layer (ie, the second passivation layer 122 ).
  • the first and second barrier ribs PW1 and PW2 may protrude in a thickness direction (eg, a third direction DR3 ) on the pixel circuit layer.
  • the first and second partition walls PW1 and PW2 may have substantially the same height, but is not limited thereto.
  • the protrusion heights of the first and second partition walls PW1 and PW2 may be about 1.0 ⁇ m to 1.5 ⁇ m, respectively.
  • the first barrier rib PW1 may be disposed between the pixel circuit layer and the first electrode ETL1 .
  • the second barrier rib PW2 may be disposed between the pixel circuit layer and the second electrodes ETL21 , ETL22 , and ETL23 .
  • the first and second partition walls PW1 and PW2 may have various shapes.
  • the first and second partition walls PW1 and PW2 may have a trapezoidal cross-sectional shape in which the width becomes narrower toward the top as shown in the drawing.
  • each of the first and second partition walls PW1 and PW2 may have an inclined surface on at least one side surface.
  • first and second barrier ribs PW1 and PW2 may have a semicircle or semi-elliptical cross-section whose width becomes narrower toward the top.
  • each of the first and second partition walls PW1 and PW2 may have a curved surface on at least one side surface. That is, in the present invention, the shapes of the first and second partition walls PW1 and PW2 are not particularly limited, and may be variously changed. In addition, depending on the embodiment, at least one of the first and second partition walls PW1 and PW2 may be omitted or a position thereof may be changed.
  • the first and second partition walls PW1 and PW2 may include an insulating material including an inorganic material and/or an organic material.
  • the first and second barrier ribs PW1 and PW2 may include at least one inorganic layer including various currently known inorganic insulating materials including SiNx or SiOx.
  • the first and second barrier ribs PW1 and PW2 may include at least one organic layer and/or a photoresist layer including various currently known organic insulating materials, or include organic/inorganic materials in combination. It may be composed of a single-layer or multi-layer insulator. That is, the constituent materials of the first and second partition walls PW1 and PW2 may be variously changed.
  • first and second partition walls PW1 and PW2 may function as reflective members.
  • the first and second barrier ribs PW1 and PW2 guide the light emitted from each light emitting device LD in a desired direction together with the first and second electrodes ETL1 and ETL21 provided thereon in a desired direction. It may function as a reflective member that improves the light efficiency of the pixel PXL.
  • the first and second electrodes ETL1 and ETL21 may be respectively disposed on the first and second barrier ribs PW1 and PW2 .
  • the first and second electrodes ETL1 and ETL21 may be disposed to be spaced apart from each other.
  • the first and second electrodes ETL1 and ETL21 may be formed on the same layer.
  • the first and second electrodes ETL1 and ETL21 disposed on the first and second barrier ribs PW1 and PW2, respectively, are disposed on the first and second barrier ribs PW1 and PW2, respectively. It may have a shape corresponding to the shape.
  • the first and second electrodes ETL1 and ETL21 each have inclined surfaces or curved surfaces corresponding to the first and second partition walls PW1 and PW2 in the thickness direction of the first display device DV1 . can be protruded into
  • Each of the first and second electrodes ETL1 and ETL21 may include at least one conductive material.
  • each of the first and second electrodes ETL1 and ETL21 is Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Ti, a metal such as an alloy thereof, ITO, IZO, It may include at least one of a conductive oxide such as ZnO and ITZO, and a conductive polymer such as PEDOT, but is not limited thereto.
  • each of the first and second electrodes ETL1 and ETL21 may be configured as a single layer or a multilayer.
  • each of the first and second electrodes ETL1 and ETL21 may include at least one reflective electrode layer.
  • each of the first and second electrodes ETL1 and ETL21 includes at least one transparent electrode layer disposed on the upper and/or lower portion of the reflective electrode layer, and at least one covering the upper portion of the reflective electrode layer and/or the transparent electrode layer. It may optionally further include at least one of the conductive capping layers of the layer.
  • each of the reflective electrode layers of the first and second electrodes ETL1 and ETL21 may be formed of an electrode material having a uniform reflectance.
  • the reflective electrode layer may include at least one of metals such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, and alloys thereof, but is not limited thereto. That is, the reflective electrode layer may be formed of various reflective electrode materials.
  • each of the first and second electrodes ETL1 and ETL21 includes a reflective electrode layer, light emitted from both ends of each of the light emitting elements LD, that is, one end and the other end, is transmitted in the direction in which an image is displayed ( For example, it may be further progressed in the third direction DR3, the front direction).
  • first and second electrodes ETL1 and ETL21 have inclined surfaces or curved surfaces corresponding to the shapes of the first and second barrier ribs PW1 and PW2 , one end and the other end of the light emitting elements LD
  • first and second electrodes ETL1 and ETL21 When disposed to face the light emitting devices LD, light emitted from one end and other ends of each of the light emitting elements LD is reflected by the first and second electrodes ETL1 and ETL21 to further the first display device DV1 may proceed in a front direction (eg, a third direction DR3 that is an upper direction of the base layer SUB1 ). Accordingly, the efficiency of light emitted from the light emitting devices LD may be improved.
  • each of the transparent electrode layers of the first and second electrodes ETL1 and ETL21 may be formed of various transparent electrode materials.
  • the transparent electrode layer may include ITO, IZO, or ITZO, but is not limited thereto.
  • each of the first and second electrodes ETL1 and ETL21 may be configured as a triple layer having a stacked structure of ITO/Ag/ITO. As such, when the first and second electrodes ETL1 and ETL21 are formed of at least two or more multi-layers, a voltage drop due to a signal delay (RC delay) may be minimized. Accordingly, a desired voltage may be effectively transmitted to the light emitting devices LD.
  • RC delay signal delay
  • each of the first and second electrodes ETL1 and ETL21 includes a conductive capping layer covering the reflective electrode layer and/or the transparent electrode layer
  • the first and second electrodes ETL1 and ETL21 may Damage to the reflective electrode layer of the second electrodes ETL1 and ETL21 may be prevented.
  • the conductive capping layer may be selectively included in the first and second electrodes ETL1 and ETL21 and may be omitted in some embodiments.
  • the conductive capping layer may be regarded as a component of each of the first and second electrodes ETL1 and ETL21 or as a separate component disposed on the first and second electrodes ETL1 and ETL21. have.
  • the second electrodes ETL21 , ETL22 , and ETL23 may overlap the first connection pattern CE1 and at least a partial region.
  • the second electrodes ETL21 , ETL22 , and ETL23 may contact the first connection pattern CE1 through contact holes CH passing through the second passivation layer 122 .
  • a first insulating layer 131 may be disposed on one area of the first and second electrodes ETL1 and ETL21 in the first display area DA1 .
  • the first insulating layer 131 is formed to cover one region of the first and second electrodes ETL1 and ETL21 and exposes another region of the first and second electrodes ETL1 and ETL21 . It may include an opening to
  • the first insulating layer 131 may be formed to primarily cover the first and second electrodes ETL1 and ETL21 entirely. After the light emitting devices LD are supplied and aligned on the first insulating layer 131 , the first insulating layer 131 may be partially opened to expose the first and second electrodes ETL1 and ETL21 . . Alternatively, the first insulating layer 131 may be patterned in the form of an individual pattern that is locally disposed under the light emitting devices LD after the supply and alignment of the light emitting devices LD are completed.
  • the first insulating layer 131 is interposed between the first and second electrodes ETL1 and ETL21 and the light emitting devices LD, and at least one region of each of the first and second electrodes ETL1 and ETL21 is provided. can be exposed. After the first and second electrodes ETL1 and ETL21 are formed, the first insulating layer 131 is formed to cover the first and second electrodes ETL1 and ETL21, and in a subsequent process, the first and second electrodes ETL1 and ETL1 are formed. , ETL21) can be damaged or metal can be prevented from precipitating. In addition, the first insulating layer 131 may stably support each light emitting device LD. In some embodiments, the first insulating layer 131 may be omitted.
  • Light emitting devices LD may be supplied and aligned in this region of the first insulating layer 131 .
  • the light emitting elements LD are supplied through an inkjet method or the like, and the light emitting elements LD are applied to a predetermined alignment voltage (or alignment signal) applied to the first and second electrodes ETL1 and ETL21. may be aligned between the first and second electrodes ETL1 and ETL21.
  • the thickness of the first insulating layer 131 may be about 2500_ (Angstrom) to 3500_.
  • a bank BNK may be disposed on the first insulating layer 131 .
  • the bank BNK may be formed between other sub-pixels to surround each sub-pixel (SPX11 to SPX23 of FIG. 11 ), and may constitute a pixel defining layer that partitions the emission area.
  • the bank BNK may not be disposed between the unit pixels SSPX1 to SSPXk within the same sub-pixels SPX11 to SPX23, but is not limited thereto.
  • the second insulating layer 132 is disposed on the light emitting devices LD, in particular, the light emitting devices LD aligned between the first and second electrodes ETL1 and ETL21, and the light emitting devices ( LD) and the other ends may be exposed.
  • the second insulating layer 132 may be partially disposed on only one region of the light emitting devices LD without covering one end and other ends of the light emitting devices LD.
  • the second insulating layer 132 may be formed in an independent pattern on each light emitting region, but is not limited thereto.
  • the space when a spaced space exists between the first insulating layer 131 and the light emitting devices LD before the formation of the second insulating layer 132 , the space is It may be filled by the second insulating layer 132 . Accordingly, the light emitting devices LD may be more stably supported.
  • the thickness of the second insulating layer 132 may be about 7500_ to 8500_.
  • the first and second contact electrodes CNE1 and CNE21 may be disposed on the first and second electrodes ETL1 and ETL21 and one ends and other ends of the light emitting devices LD.
  • first and second contact electrodes CNE1 and CNE21 may be disposed on different layers as shown in FIGS. 21 and 22 .
  • the second contact electrode CNE21 may be disposed on the second electrodes ETL21 , ETL22 , and ETL23 to contact the second electrodes ETL21 , ETL22 , and ETL23 .
  • the second contact electrode CNE21 may be disposed to contact the second electrode ETL21 on a region of the second electrode ETL21 that is not covered by the first insulating layer 131 .
  • the second contact electrode CNE21 may be disposed on one end of the light emitting device adjacent to the second electrode ETL21 to be in contact with one end thereof. That is, the second contact electrode CNE21 may be disposed to cover one end of the light emitting devices LD and at least one region of the second electrode ETL21 corresponding thereto. Accordingly, one end of the light emitting devices LD may be electrically connected to each of the second electrodes ETL21.
  • first bridge pattern and the second bridge pattern may be disposed on the same layer as the second contact electrode CNE21 .
  • the first bridge pattern BE1 , the second bridge pattern BE2 , and the second contact electrode CNE21 may be simultaneously formed by the same process.
  • the first bridge pattern BE1 may electrically connect adjacent antenna patterns ANTE.
  • the first bridge pattern BE1 is disposed on the first insulating layer 131 and the bank BNK, and may be formed across the adjacent sub-pixels beyond the bank BNK.
  • the second bridge pattern BE2 may electrically connect the adjacent touch electrode patterns TS.
  • the second bridge pattern BE2 is disposed on the first insulating layer 131 and the bank BNK, and may be formed across the adjacent sub-pixels beyond the bank BNK.
  • the third insulating layer 133 includes first and second barrier ribs PW1 and PW2 , first and second electrodes ETL1 and ETL21 , light emitting devices LD, and second contact electrodes CNE1 and CNE21 . , first and second barrier ribs PW1 and PW2 , first and second electrodes ETL1 and ETL21 , and light emitting devices to cover the first and second bridge patterns BE1 and BE2 and the bank BNK It may be disposed on the LD, the second contact electrodes CNE1 and CNE21, the first and second bridge patterns BE1 and BE2, and the bank BNK.
  • the thickness of the third insulating layer 133 may be about 2500_ (Angstrom) to 3500_.
  • First contact holes exposing at least a portion of the first bridge pattern BE1 and second contact holes exposing at least a portion of the second bridge pattern BE2 may be formed in the third insulating layer 133 .
  • each of the first to third insulating layers 131 , 132 , and 133 may be configured as a single layer or multiple layers, and may include at least one inorganic insulating material and/or an organic insulating material. have.
  • each of the first to third insulating layers 131 , 132 , and 133 may include various types of currently known organic/inorganic insulating materials, including SiNx, and the first to third insulating layers (131, 132, 133) Each constituent material is not particularly limited.
  • first to third insulating layers 131 , 132 , and 133 include different insulating materials, or at least some of the first to third insulating layers 131 , 132 , and 133 have the same insulating material. may include.
  • a first contact electrode CNE1 may be disposed on the third insulating layer 133 .
  • the first contact electrode CNE1 may be disposed to contact the first electrode ETL1 on a region of the first electrode ETL1 not covered by the first insulating layer 131 .
  • the first contact electrode CNE1 may be disposed on other ends of the light emitting device adjacent to the first electrode ETL1 to be in contact with the other ends. That is, the first contact electrode CNE1 may be disposed to cover the other end of the light emitting devices LD and at least one region of the first electrode ETL1 corresponding thereto. Accordingly, the other ends of the light emitting devices LD may be electrically connected to each of the first electrodes ETL1 .
  • the antenna pattern ANTE and the touch electrode pattern TS may be disposed on the same layer as the first contact electrode CNE1 .
  • the antenna pattern ANTE, the touch electrode pattern TS, and the first contact electrode CNE1 may be simultaneously formed by the same process.
  • the first and second contact electrodes CNE1 and CNE21 may be formed of a transparent conductive material such as ITO, IZO, or ITZO so that light emitted from the light emitting devices LD may pass therethrough.
  • the antenna pattern ANTE and the touch electrode pattern TS may be formed of a transparent conductive material such as ITO, IZO, or ITZO.
  • the antenna pattern ANTE is in contact with the first bridge pattern BE1 through the first contact holes CNT1 , and the touch electrode pattern TS is connected to the second bridge pattern BE2 through the second contact holes CNT2 . can be contacted
  • An encapsulation layer 141 including at least one inorganic layer and/or an organic layer may be included on the antenna pattern ANTE, the touch electrode pattern TS, and the first contact electrode CNE1 .
  • the encapsulation layer 141 may be another insulating layer.
  • the encapsulation layer 141 corresponds to the encapsulation layer TFE of FIG. 10 .
  • the encapsulation layer 141 may be omitted.
  • the first and second barrier ribs PW1 and PW2 to the first contact electrode CNE1 will be referred to as light emitting device layers. That is, the light emitting device layer corresponds to layers including light emitting devices on the display substrate SUB_DA.
  • the electromagnetic wave of the antenna pattern ANTE may be radiated to the front or rear surface of the first display device DV1 .
  • the first display device DV1 since no other conductive material is disposed on the antenna pattern ANTE, communication is possible by minimizing loss in the 5G frequency band (eg, 28 GHz to 39 GHz band).
  • the description of the antenna pattern ANTE of the first display device DV1 may be similarly applied to the second to fourth display devices DV1 to DV4 .
  • FIG. 23 is a conceptual diagram illustrating a driving signal of each display device of a video wall display system according to an embodiment of the present invention.
  • each of the display devices DV1 to DV4 of the video wall display system 1 includes the above-described antenna pattern ANTE, and communication in the 5G frequency band is possible with a minimum loss rate.
  • the wireless signal SG_MC is provided from the control unit MC to each of the display devices DV1 to DV4, and the delay time between the signals SG1 to SG4 received by each of the display devices DV1 to DV4 ( latency) may be extremely short, or may not occur practically.
  • the user may feel the first to fourth sub-images IM21 to IM24 as one image by looking at each of the display devices DV1 to DV4 of the video wall display system 1 .
  • FIGS. 1 to 23 and the drawings are omitted, and the same or similar reference numerals are used.
  • FIG. 24 is a perspective view of a video wall display system according to another embodiment of the present invention.
  • the video wall display system 2 has a function of the control unit MC that is merged with the first display device DV1, compared to the video wall display system 1 of FIG. 1 . There is a difference in that.
  • the first display device DV1_MC may have both the function of the first display device DV1 described above with reference to FIGS. 1 and 2 and the function of the control unit MC.
  • descriptions of the first display device DV1_MC and the second to fourth display devices DV2 to DV4 may be similarly applied to the descriptions of FIGS. 3 to 23 , and thus duplicate descriptions will be omitted.
  • 25 and 26 are cross-sectional views of a display substrate or an encapsulation layer of a first display device of a video wall display system according to another embodiment of the present invention. 25 and 26 correspond to modified examples of FIGS. 21 and 22 , respectively.
  • the first display device of the video wall display system 3 has a first bridge pattern BE1_1 and a second bridge pattern ( BE1_1 ) and a second bridge pattern ( BE1_1 ) compared to the embodiments of FIGS. 21 and 22 .
  • BE2_1 is formed on the same layer as the first and second electrodes ETL1 and ETL21.
  • the antenna pattern ANTE contacts the second connection pattern CE2 formed on the same layer as the second contact electrode CNE21 through the first contact hole CNT1 , and the second connection pattern CE2 has the first bridge pattern (BE1_1) can be in contact.
  • the first bridge pattern BE1_1 may pass under the bank BNK and may be electrically connected to the antenna pattern ANTE of the adjacent sub-pixel.
  • the antenna pattern ANTE contacts the second connection pattern CE2 formed on the same layer as the second contact electrode CNE21 through the first contact hole CNT1 , and the second connection pattern CE2 has the first bridge pattern (BE1_1) can be in contact.
  • the first bridge pattern BE1_1 may pass under the bank BNK and may be electrically connected to the antenna pattern ANTE of the adjacent sub-pixel.
  • the touch electrode pattern TS (eg, the driving electrode TE) contacts the third connection pattern CE3 formed on the same layer as the second contact electrode CNE21 through the second contact hole, and the third connection pattern ( CE3 ) may contact the second bridge pattern BE2_1 .
  • the second bridge pattern BE2_1 may pass under the bank BNK and may be electrically connected to the touch electrode pattern TS of the adjacent sub-pixel.
  • FIG. 27 is a plan view schematically illustrating the arrangement of one sub-pixel included in the first display device of the video wall display system according to another embodiment of the present invention.
  • 28 is a cross-sectional view of the display substrate and the encapsulation layer corresponding to the line II2-II2' of FIG. 27 in the first display device.
  • the shape of the touch electrode pattern included in the fifth sub-pixel is the same as the shape of the antenna pattern included in the second sub-pixel, and only functions are different. to be omitted.
  • the antenna pattern ANTE and the touch electrode pattern are the second contacts, compared to the embodiments of FIGS. 19 and 21 . There is a difference in that it is formed on the same layer as the electrode CNE21.
  • the antenna pattern ANTE and the touch electrode pattern may be formed on the same layer as the second contact electrode CNE21.
  • the antenna pattern ANTE and the touch electrode pattern do not overlap the first contact electrode CNE1 and the second contact electrode CNE21, respectively, and may be electrically separated from each other.
  • the first contact electrode CNE1 and the second contact electrode CNE21 may be surrounded by the antenna pattern ANTE and the touch electrode pattern on a plane.
  • the first bridge pattern BE1_2 may be formed on the same layer as the second contact electrode CNE21 .
  • the first bridge pattern BE1_2 may be connected to the antenna pattern ANTE through a first contact hole.
  • the first bridge pattern BE1_2 may electrically connect adjacent inter-pixel antenna patterns ANTE beyond the bank BNK.
  • 29 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • 30 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to the line III2-III2' of FIG. 29 in the first display device.
  • the first display device of the video wall display system 5 has an antenna pattern ANTE, a touch electrode pattern, and a first contact compared to the embodiments of FIGS. 19 and 21 . There is a difference in that both the electrode CNE1 and the second contact electrode CNE21 are formed on the same layer.
  • the antenna pattern ANTE, the touch electrode pattern, the first contact electrode CNE1, and the second contact electrode CNE21 may be simultaneously formed by the same process.
  • the antenna pattern ANTE, the touch electrode pattern, the first contact electrode CNE1, and the second contact electrode CNE21 may be electrically isolated from each other.
  • the first contact electrode CNE1 and the second contact electrode CNE21 may be surrounded by the antenna pattern ANTE and the touch electrode pattern on a plane.
  • FIG. 31 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • the antenna pattern ANTE and the touch electrode pattern are the first electrode ETL1 and the second electrode ETL21 compared to the embodiment of FIG. 19 .
  • ETL22 and ETL23 are different in that they are formed on the same layer.
  • the antenna pattern ANTE, the touch electrode pattern, and the first electrode ETL1 and the second electrodes ETL21, ETL22, and ETL23 may be simultaneously formed by the same process.
  • the antenna pattern ANTE, the touch electrode pattern, and the first electrode ETL1 and the second electrodes ETL21, ETL22, and ETL23 may be electrically separated from each other.
  • FIG. 32 is a cross-sectional view of a display substrate or an encapsulation layer in the first display device of the video wall display system according to another embodiment of the present invention.
  • FIG. 33 is a modified example of FIG. 32 .
  • the first display device of the video wall display system 6 further includes a shielding electrode SM and an antenna pattern ANTE, compared to the embodiments of FIGS. 19 and 21 . and in that the touch electrode pattern is formed on the same layer as the shielding electrode SM.
  • a base shielding electrode SM may be formed on the first insulating layer 131 , the first electrode ETL1 , and the second electrode ETL21 to surround a region in which each light emitting device LD is aligned, and the light emitting device After the LDs are aligned, the base shielding electrode SM may be patterned to form the shielding electrode SM and the antenna pattern ANTE.
  • the base shielding electrode SM may include an external light absorbing material made of at least one of Cr/CrOx, CrOx, MoOx, carbon pigment, and RGB pigment.
  • the shielding electrode SM may be directly disposed under the second contact electrode CNE21.
  • the shielding electrode SM may be disposed between the second electrode ETL21 and the second contact electrode CNE21.
  • the antenna pattern ANTE may be formed to surround the first contact electrode CNE1 and the second contact electrode CNE21 .
  • the bridge pattern BE1_3 may be formed on the same layer as the second contact electrode CNE21.
  • the bridge pattern BE1_3 may be directly patterned on the antenna pattern ANTE to cross the bank BNK.
  • the bridge pattern BE1_3 may electrically connect the antenna patterns ANTE respectively disposed in adjacent sub-pixels.
  • the bridge pattern BE1_4 may be formed on the same layer as the first contact electrode CNE21.
  • the bridge pattern BE1_4 may be directly patterned on the antenna pattern ANTE to cross the bank BNK.
  • the bridge pattern BE1_4 may electrically connect the antenna patterns ANTE respectively disposed in adjacent sub-pixels.
  • FIG. 34 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • 35 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to a line IV2- IV2' of FIG. 34 in the first display device.
  • FIG. 36 is a modified example of FIG. 34 .
  • the conductive layer on which the antenna pattern ANTE is formed is the encapsulation layer ( 141), there is a difference in that it is separately placed on the
  • the antenna pattern ANTE is disposed on the encapsulation layer 141 and may be formed of multiple layers.
  • the antenna pattern ANTE may include a first antenna pattern layer ANTE1 and a second antenna pattern layer ANTE2 that are sequentially stacked.
  • the first antenna pattern layer ANTE1 may not overlap an area in which the light emitting elements LD are aligned.
  • the first antenna pattern layer ANTE1 may include a metal or transparent electrode capable of reflecting external light.
  • the first antenna pattern layer ANTE1 may include chromium (Cr), titanium (Ti), aluminum (Al), gold (Au), nickel (Ni), oxides or alloys thereof that can reflect external light.
  • it may include a transparent electrode material such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide (ITZO).
  • the second antenna pattern layer ANTE2 may include the transparent electrode material described above for example in the first antenna pattern layer ANTE1 .
  • the second antenna pattern layer ANTE2 may include a function of improving visibility due to reflection of external light.
  • the antenna pattern ANTE may include a slit pattern SLP.
  • the slit pattern SLP may include a function of improving visibility and reducing noise.
  • the antenna pattern ANTE may be removed from a portion where the slit pattern SLP is to be formed.
  • FIG. 37 is a plan layout diagram schematically illustrating an arrangement of one sub-pixel included in a first display device of a video wall display system according to another embodiment of the present invention.
  • 38 is a cross-sectional view of a display substrate or an encapsulation layer corresponding to the line V-V' of FIG. 37 in the first display device.
  • the first display device of the video wall display system 8 may have a circular region in which the light emitting elements LD are arranged, compared to the embodiments of FIGS. 19 and 21 . have.
  • a shape between the first electrode ELT1 and the second electrode ELT21 may be circular.
  • the second electrode ELT21 may have a circular shape, and the second electrode ELT21 may be surrounded by the first electrode ELT1 .
  • the light emitting elements LD may be radially disposed with respect to the second electrode ELT21. Accordingly, the light emitted from the light emitting devices LD is not concentrated in a specific direction, and the first display device having a uniform output light distribution may be provided.
  • partition wall is omitted in the drawing, it is not limited thereto.
  • FIG. 39 is a perspective view of a first display device of a video wall display system according to another embodiment of the present invention.
  • 40 is a schematic cross-sectional view of the first display device shown in FIG. 39 .
  • FIG. 41 is an enlarged view of an area AA of FIG. 40 .
  • the first display device of the video wall display system 9 according to the present embodiment is different from the embodiment of FIGS. 1 and 10 in that it further includes a speaker member.
  • the speaker member SPC may be disposed adjacent to a relatively lower area of the display substrate SUB_DA.
  • the speaker member SPC is disposed between the second protective film PF2 and the first flexible circuit board FPC1 .
  • the speaker member SPC may be directly mounted on the rear surface of the display substrate SUB_DA.
  • the speaker member SPC is positioned adjacent to the lower portion of the display substrate SUB_DA to prevent being viewed from the upper portion of the display substrate SUB_DA.
  • the speaker member SPC may output the first vibration by generating vibration in response to the first vibration signal.
  • the speaker member SPC may vibrate the display substrate SUB_DA through the first vibration to output a first sound.
  • the speaker member SPC may vibrate by the vibration layer 530 that is deformed in response to the first vibration signal.
  • the speaker member SPC may vibrate by electromagnetic force generated by flowing a current according to the first vibration signal to a coil surrounding the magnet.
  • the speaker member SPC generates sound by vibrating by the vibration layer 530 .
  • the speaker member SPC may include a first speaker electrode 510 , a second speaker electrode 520 , a vibration layer 530 , and a speaker substrate 540 .
  • the first speaker electrode 510 is disposed on the first surface of the speaker substrate 540
  • the vibration layer 530 is disposed on the first speaker electrode 510
  • the second speaker electrode 520 is disposed on the vibration layer 530 . This can be placed
  • the first speaker electrode 510 and the second speaker electrode 520 may be formed of a conductive material.
  • the conductive material may be a transparent conductive material such as indium tin oxide (ITO) and indium zinc oxide (IZO), an opaque metal material, a conductive polymer, carbon nanotube (CNT), or the like.
  • the vibration layer 530 may be a piezo actuator that is deformed according to a difference between the voltage applied to the first speaker electrode 510 and the voltage applied to the second speaker electrode 520 .
  • the vibrating layer 530 may be at least one of a piezoelectric material such as a polyvinylidene fluoride (PVDF) film, a zircon titanium interleaved lead ceramic (PZT), or an electroactive polymer.
  • PVDF polyvinylidene fluoride
  • PZT zircon titanium interleaved lead ceramic
  • the vibration layer 530 contracts, relaxes, or expands according to a difference between the first driving voltage applied to the first speaker electrode 510 and the second driving voltage applied to the second speaker electrode 520 .
  • the vibration layer 530 performs contraction and relaxation. will repeat As a result, the speaker member SPC vibrates, which causes the display substrate SUB_DA to vibrate up and down, so that the first sound can be output.
  • the speaker member SPC may reproduce a band of a mid-tone region and a high-pitched region.
  • the speaker member SPC may reproduce the first sound having a frequency of about 4 kHz to 20 kHz.
  • the speaker member SPC may be a tweeter.
  • FIG. 42 is a modified example of FIG. 1 .
  • the arrangement shape of the first to fourth display devices DV1 to DV4 in the video wall display system 1_1 according to the present embodiment may be irregular.
  • first to fourth display devices DV1 to DV4 may be connected to each other by the network communication unit 270 (refer to FIG. 2 ) through a wireless network, they can be freely arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

표시장치 및 이를 포함하는 비디오 월 디스플레이시스템이 제공된다. 그 중 표시장치는 복수의 트랜지스터를 포함하는 화소 회로층, 상기 화소 회로층 상의 동일 층에 형성되는 제1 전극, 및 제2 전극, 상기 제1 전극과 상기 제2 전극 사이에 배치되는 발광 소자, 및 상기 발광 소자 상에 배치되는 안테나 패턴을 포함한다.

Description

표시장치 및 이를 포함하는 비디오 월 디스플레이시스템
본 발명은 표시장치 및 이를 포함하는 비디오 월 디스플레이시스템에 관한 것이다.
정보 디스플레이에 관한 관심이 고조되고 휴대가 가능한 정보 매체를 이용하려는 요구가 높아지면서, 표시 장치에 대한 요구 및 상업화가 중점적으로 이루어지고 있다.
본 발명이 해결하려는 과제는, 안테나 패턴을 통해 무선 네트워크로 연결된 복수의 표시장치를 구비한 비디오 월 디스플레이시스템을 제공하고자 하는 것이다.
본 발명이 해결하려는 다른 과제는, 상기 각 표시장치가 나노 스케일 내지 마이크로 스케일의 발광 소자를 포함하는 비디오 월 디스플레이시스템을 제공하고자 하는 것이다.
본 발명이 해결하려는 또 다른 과제는, 상기 각 표시장치가 무선 충전을 위한 무선 전력 전송용(Wireless Power Transfer) 안테나를 구비한 비디오 월 디스플레이시스템을 제공하고자 하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 표시장치는, 복수의 트랜지스터를 포함하는 화소 회로층, 상기 화소 회로층 상의 동일 층에 형성되는 제1 전극, 및 제2 전극, 상기 제1 전극과 상기 제2 전극 사이에 배치되는 발광 소자, 및 상기 발광 소자 상에 배치되는 안테나 패턴을 포함한다.
상기 표시장치는, 상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 제1 컨택 전극을 더 포함할 수 있다.
상기 안테나 패턴은 상기 제1 컨택 전극과 동일 층에 형성될 수 있다.
상기 안테나 패턴과 상기 제1 컨택 전극은 전기적으로 분리될 수 있다.
상기 표시장치는, 상기 발광 소자의 타 단부와 상기 제2 전극을 전기적으로 연결하는 제2 컨택 전극을 더 포함할 수 있다.
상기 제1 컨택 전극은 상기 제2 컨택 전극 상에 배치될 수 있다.
상기 안테나 패턴은 상기 제2 컨택 전극에 중첩되고, 상기 표시장치는, 상기 안테나 패턴과 상기 제2 컨택 전극 사이에 배치되는 절연층을 더 포함할 수 있다.
상기 표시장치는, 상기 제2 컨택 전극과 동일 층에 형성되는 제1 브릿지 패턴을 더 포함하되, 상기 안테나 패턴은 상기 절연층에 형성된 제1 컨택홀을 통해 상기 제1 브릿지 패턴에 연결될 수 있다.
상기 제1 컨택 전극, 상기 제2 컨택 전극, 및 상기 안테나 패턴은 동일층에 배치되되, 서로 전기적으로 분리될 수 있다.
상기 표시장치는, 상기 안테나 패턴과 동일층에 형성되는 터치 전극 패턴을 더 포함할 수 있다.
상기 표시장치는, 상기 안테나 패턴, 및 상기 터치 전극 패턴과 동일층에 배치되는 제1 컨택 전극을 더 포함하되, 상기 제1 컨택 전극은 상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결할 수 있다.
상기 안테나 패턴의 송수신 주파수는 28GHz 내지 39GHz일 수 있다.
상기 안테나 패턴은 투명 도전성 물질을 포함할 수 있다.
상기 표시장치는, 상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 제1 컨택 전극, 및 상기 발광 소자의 타 단부와 상기 제2 전극을 전기적으로 연결하는 제2 컨택 전극을 더 포함하되, 상기 제1 컨택 전극은 상기 제2 컨택 전극 상에 배치되고, 상기 안테나 패턴은 상기 제2 컨택 전극 하부에 배치될 수 있다.
상기 표시장치는, 상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 제1 컨택 전극, 및 상기 발광 소자의 타 단부와 상기 제2 전극을 전기적으로 연결하는 제2 컨택 전극을 더 포함하되, 상기 안테나 패턴은 상기 제1 컨택 전극, 및 상기 제2 컨택 전극 상에 배치될 수 있다.
상기 표시장치는, 상기 제1 컨택 전극, 및 상기 제2 컨택 전극 상에 배치되는 봉지층을 더 포함하되, 상기 안테나 패턴은 상기 봉지층 상에 배치되고, 상기 봉지층은 적어도 한 층의 무기막, 및 유기막을 포함할 수 있다.
또한, 상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 비디오 월 디스플레이시스템은, 복수의 표시장치를 구비한 비디오 월 디스플레이시스템에 있어서, 상기 각 표시장치는, 표시기판, 및 상기 표시기판의 상부에 배치된 안테나 패턴을 포함하되, 상기 표시기판은, 복수의 트랜지스터를 포함하는 화소 회로층, 상기 화소 회로층 상의 동일 층에 형성되는 제1 전극, 및 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 배치되는 발광 소자를 포함한다.
상기 복수의 표시장치는 무선 네트워크로 연결될 수 있다.
상기 표시기판은 벤딩된 영역을 포함할 수 있다.
상기 비디오 월 디스플레이시스템의 상기 표시기판은 상기 표시기판 하부에 배치되는 무선 전력 전송용 안테나를 더 포함할 수 잇다.
상기 비디오 월 디스플레이시스템의 상기 표시기판은 상기 표시기판 하부에 배치되는 스피커 모듈을 더 포함할 수 있다.
상기 스피커 모듈은, 제1 스피커 전극, 제2 스피커 전극, 및 상기 제1 스피커 전극과 상기 제2 스피커 전극 사이에 배치된 진동층을 포함할 수 있다.
상기 진동층은 PVDF(Poly Vinylidene Fluoride), PZT(지르콘 티탄삽 납 세라믹), 및 전기 활성 고분자(Electro Active Polymer) 중 적어도 하나를 포함할 수 있다.
또한, 상기 과제를 해결하기 위한 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템은, 복수의 표시장치들을 구비한 비디오 월 디스플레이 시스템에 있어서, 상기 각 표시장치는, 복수의 트랜지스터 및 복수의 발광 소자들을 포함하는 표시기판, 상기 표시기판 상에 배치되는 안테나 패턴, 및 상기 안테나 패턴을 통해 상기 비디오 월 디스플레이 시스템 내 다른 표시장치들과 무선 신호를 송수신하는 네트워크 통신부를 포함할 수 있다.
상기 각 발광 소자는 수백 나노 스케일 내지 수 마이크로 스케일 범위의 직경 및 길이를 가질 수 있다.
상기 비디오 월 디스플레이시스템은 상기 복수의 표시장치 중 적어도 하나에 무선 네트워크로 연결된 컨트롤 유닛을 더 포함하되, 상기 컨트롤 유닛은 사용자의 명령이 입력될 수 있다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면, 비디오 월 디스플레이시스템 내 복수의 표시장치들이 무선 네트워크로 연결되고, 각 표시장치 간 지연 시간을 최소화할 수 있다.
또한, 비디오 월 디스플레이시스템에 별도의 코드없이 무선으로 전력을 공급할 수 있다.
또한, 비디오 월 디스플레이시스템의 내구성 및 효율이 우수할 수 있다.
실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 비디오 월 디스플레이시스템에 대한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 제1 표시장치의 제어 블록도이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다.
도 5 및 도 6은 본 발명의 다른 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다.
도 7 및 도 8은 본 발명의 또 다른 실시예에 의한 발광 소자를 나타내는 사시도 및 단면도이다.
도 9는 본 발명의 일 실시예에 따른 제1 표시장치를 나타내는 평면도이다.
도 10은 도 9의 Ⅰ1-Ⅰ1’ 선에 대응하는 제1 표시장치의 개략적인 단면도이다.
도 11은 도 9의 제1 표시장치에 포함된 서브 화소의 일 예를 나타내는 회로도이다.
도 12 내지 도 18은 도 11의 서브 화소에 포함된 단위 화소로 적용될 수 있는 일 예를 나타내는 회로도들이다.
도 19는 도 9의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 20은 도 9의 제1 표시장치에 포함된 다른 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 21은 제1 표시장치에서 도 19의 Ⅰ2-Ⅰ2’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 22는 제1 표시장치에서 도 20의 Ⅰ3-Ⅰ3’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 23은 본 발명의 일 실시예에 따른 비디오 월 디스플레이시스템의 각 표시장치의 구동 신호를 나타낸 개념도이다.
도 24는 본 발명의 다른 실시예에 따른 비디오 월 디스플레이시스템에 대한 사시도이다.
도 25 및 도 26은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시 장치의 표시기판 내지 봉지층을 자른 단면도들이다.
도 27은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 28은 제1 표시장치에서 도 27의 Ⅱ2-Ⅱ2’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 29는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 30은 제1 표시장치에서 도 29의 Ⅲ2- Ⅲ2’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 31은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 32는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에서 표시기판 내지 봉지층을 자른 단면도이다.
도 33은 도 32의 일 변형예이다.
도 34는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 35는 제1 표시장치에서 도 34의 Ⅳ2- Ⅳ2’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 36은 도 34의 일 변형예이다.
도 37은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 38은 제1 표시장치에서 도 37의 Ⅴ-Ⅴ’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 39는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 대한 사시도이다.
도 40은 도 39에 도시된 제1 표시장치의 개략적인 단면도이다.
도 41은 도 40의 AA영역을 확대한 확대도이다.
도 42는 도 1의 일 변형예이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
소자(elements) 또는 층이 다른 소자 또는 층의 "상(on)"으로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 도면상의 동일한 구성 요소에 대해서는 동일하거나 유사한 참조 부호를 사용한다.
도 1은 본 발명의 일 실시예에 따른 비디오 월 디스플레이시스템에 대한 사시도이다.
도 1을 참조하면, 일 실시예로 비디오 월 디스플레이시스템(1)은 소정의 순서로 배열된 복수의 표시장치(DV1~DV4) 및 표시장치(DV1~DV4)와 무선 네트워크로 연결된 컨트롤 유닛(MC)을 포함할 수 있다. 각 표시장치(DV1~DV4)는 표시장치(DV1~DV4) 내부에 구비된 안테나 패턴을 통해 컨트롤 유닛(MC) 및/또는 인접한 표시장치(DV1~DV4)로부터 신호를 수신하고 다른 인접한 표시장치(DV1~DV4)로 그 신호를 다시 송신할 수 있다. 즉, 복수의 표시장치(DV1~DV4) 중 적어도 하나의 표시장치(DV1~DV4)가 영상신호를 입력 받으면 다른 표시장치(DV1~DV4)로 영상신호를 바이패스(Bypass)시키는 방식으로 모든 표시장치(DV1~DV4)에 영상신호를 전달할 수 있다. 각 표시장치(DV1~DV4)의 위치는 정해져 있지 않지만, 행렬형태로 나타내는 것이 바람직하다. 도 1은 가로 X 세로가 2 X 2의 행렬형태로 구성한 것이다. 여기서, 가로와 세로 중 적어도 어느 하나의 숫자는 증가 또는 감소될 수도 있다. 본 실시예에서, 복수의 표시장치(DV1~DV4)는 제1 표시장치(DV1) 내지 제4 표시장치(DV4)를 포함하되, 제1 표시장치(DV1)를 기준으로 제2 표시장치(DV2)는 하측, 제3 표시장치(DV3)는 좌측, 제4 표시장치(DV4)는 좌하측에 배치된 것을 예시했다.
컨트롤 유닛(MC)은 호스트 시스템으로서 기능을 수행할 수 있다. 예를 들어, 텔레비젼 시스템, 홈 시어터 시스템, 셋톱박스, 네비게이션 시스템, DVD 플레이어, 블루레이 플레이어, 개인용 컴퓨터(PC), 휴대전화 시스템(mobile phone system), 태블릿 중 어느 하나로 구현될 수 있다.
일 실시예로, 컨트롤 유닛(MC)에 사용자의 명령이 다양한 형식으로 입력될 수 있다. 예를 들어, 컨트롤 유닛(MC)은 터치 입력 유닛을 포함하고, 컨트롤 유닛(MC)에는 사용자의 터치 입력에 의한 명령이 입력될 수 있다. 다만, 이에 제한되는 것은 아니고, 리모트 컨트롤 유닛(MC)을 통한 입력 방식, 버튼 입력 방식 등을 통해 컨트롤 유닛(MC)에 사용자의 명령이 입력될 수도 있다.
일 실시예로, 표시장치(DV1~DV4)는 텔레비전, 모니터 등과 같은 대형 전자장치를 비롯하여, 휴대 전화, 태블릿, 자동차 네비게이션, 게임기, 스마트 와치 등과 같은 중소형 전자장치 등으로 사용될 수 있다.
비디오 월 디스플레이시스템(1)은 표시 영역(DA)과 비표시 영역(NDA)을 포함한다. 표시장치(DV1~DV4)는 각각 표시 영역(DA1~DA4)과 비표시 영역(NDA1~NDA4)을 포함한다.
각 표시 영역(DA1~DA4)은 대응하는 영상이 표시되는 영역으로 정의된다. 비표시 영역(NDA1~NDA4)은 영상이 표시되지 않는 영역으로 정의된다. 각 비표시 영역(NDA1~NDA4)은 각 표시 영역(DA1~DA4)에 인접할 수 있다. 표시 영역(DA1~DA4)은 사각형상일 수 있다. 비표시 영역(NDA1~NDA4)은 표시 영역(DA1~DA4)을 에워싸는 형상일 수 있다. 예를 들어, 제1 표시 영역(DA1)은 제1 비표시 영역(NDA1)에 에워싸고, 제2 표시 영역(DA2)은 제2 비표시 영역(NDA2)에 에워싸고, 제3 표시 영역(DA3)은 제3 비표시 영역(NDA3)에 에워싸고, 제4 표시 영역(DA4)은 제4 비표시 영역(NDA4)에 에워싸는 형상일 수 있다. 다만, 이에 제한되지 않고, 각 표시 영역(DA1~DA4)의 형상과 각 비표시 영역(NDA1~NDA4)의 형상은 상대적으로 변경될 수 있다.
각 표시 영역(DA1~DA4)은 제1 방향(DR1)과 제2 방향(DR2)이 정의하는 면과 평행하다. 각 표시장치(DV1~DV4)의 두께 방향은 각 표시 영역(DA1~DA4)의 법선 방향으로 정의될 수 있으며, 예를 들어, 제3 방향(DR3)이 지시할 수 있다.
일 실시예로, 컨트롤 유닛(MC)에는 각 표시장치(DV1~DV4)에 표시하고자 하는 영상들이 병합된 영상이 표시될 수 있지만, 이에 제한되는 것은 아니다.
각 표시장치(DV1~DV4)는 자신의 고유ID에 대응하는 영상을 표시할 수 있다. 예를 들어, 컨트롤 유닛(MC)은 표시하고자 하는 제1 이미지(IM1)에 해당하는 데이터를 표시장치(DV1~DV4)의 개수만큼 분할하여 일부를 제1 표시장치(DV1)에 전송하고, 다른 일부를 제2 표시장치(DV2)에 전송하고, 또 다른 일부를 제3 표시장치(DV3)에 전송하고, 또 다른 일부를 제4 표시장치(DV4)에 전송할 수 있다. 제1 표시장치(DV1)는 전송된 데이터에 대응하는 제1 서브 이미지(IM21)를 표시하고, 제2 표시장치(DV2)는 전송된 데이터에 대응하는 제2 서브 이미지(IM22)를 표시하고, 제3 표시장치(DV3)는 전송된 데이터에 대응하는 제3 서브 이미지(IM23)를 표시하고, 제4 표시장치(DV4)는 전송된 데이터에 대응하는 제4 서브 이미지(IM24)를 표시할 수 있다.
사용자는 제1 내지 제4 표시장치(DV1~DV4)에서 표시되는 각 서브 이미지(IM21~IM24)를 보고 제1 서브 이미지 내지 제4 서브 이미지(IM21~IM24)가 병합된 새로운 제2 이미지(IM2)로 인식할 수 있다. 제2 이미지(IM2)는 실질적으로 제1 이미지(IM1)와 형태가 같고 크기가 다른 이미지로 사용자에게 인식될 수 있다.
도 2는 본 발명의 일 실시예에 따른 제1 표시장치의 제어 블록도이다. 제1 표시장치(DV1)의 제어 블록도에 대한 설명은 제2 내지 제4 표시장치(DV2~DV4)에도 실질적으로 동일하게 적용될 수 있으므로 중복된 설명은 생략하기로 한다.
도 2를 참조하면, 제1 표시장치(DV1)는 방송튜닝부(210), 신호처리부(220), 디스플레이부(230), 스피커(240), 사용자입력부(250), HDD(260), 네트워크 통신부(270), UI생성부(280) 및 제어부(290)를 포함할 수 있다.
방송튜닝부(210)는 후술할 제어부(290)의 제어에 따라 소정 채널 주파수를 튜닝하여 해당 채널의 방송신호를 안테나로 수신하는 것으로, 채널 디텍션 모듈(미도시)과, RF 디모듈레이션 모듈(미도시)을 포함한다.
방송 튜닝부(210)에 의해 복조된 방송신호는 신호처리부(220)에 의해 처리되어 디스플레이부(230) 및 스피커(240)로 출력된다. 여기서, 신호처리부(220)는 디멀티플랙서(221), 비디오 디코더(222), 비디오처리부(223), 오디오 디코더(224) 및 부가데이터처리부(225)를 포함할 수 있다.
디멀티플랙서(221)는 복조된 방송신호를 비디오 신호, 오디오 신호, 부가 데이터로 분리한다. 분리된 비디오 신호, 오디오 신호, 부가 데이터는 각각 비디오 디코더(222), 오디오 디코더(224), 부가데이터처리부(225)에 의해 복원된다. 이때, 비디오 디코더(222), 오디오 디코더(224), 부가데이터처리부(225)는 방송신호 전송시의 인코딩 포맷에 대응하는 디코딩 포맷으로 복원한다.
한편, 디코딩된 비디오 신호는 비디오처리부(223)에 의해 디스플레이부(230)의 출력규격에 맞는 수직주파수, 해상도, 화면비율 등에 맞도록 변환되고, 디코딩된 오디오 신호는 스피커(240)로 출력된다.
디스플레이부(230)는 영상이 표시되는 제1 표시 영역(DA1)이 구비된 패널(미도시)과, 패널의 구동을 제어하는 패널구동부(미도시)를 포함한다.
사용자입력부(250)는 컨트롤 유닛(MC)이 전송하는 신호를 수신할 수 있다. 사용자입력부(250)는 컨트롤 유닛(MC)이 전송하는 채널의 선국, UI(User Interface)메뉴의 선택 및 조작에 관한 데이터뿐만 아니라, 타 표시장치(DV2~DV4)와의 통신에 관한 명령을 사용자가 선택, 입력에 대한 데이터가 입력될 수 있도록 마련될 수 있다.
HDD(260)는 OS프로그램을 비롯한 다양한 소프트웨어 프로그램, 녹화된 방송 프로그램, 동영상, 사진, 기타 데이터를 저장하는 것으로, 다른 저장매체에 의해서도 구현 가능하다.
네트워크 통신부(270)는 컨트롤 유닛(MC) 및 타 표시장치(DV2~DV4)와의 근거리 통신을 위한 것으로, 이동 통신, 데이터 통신, 블루투스, RF, 이더넷 등을 구현할 수 있는 안테나 패턴을 포함한 통신 모듈로 구현 가능하다.
네트워크 통신부(270)는 후술되는 안테나 패턴을 통해 이동 통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced), 5G 등)에 따라 구축된 이동 통신망 상에서 기지국, 외부의 단말, 서버 중 적어도 하나와 무선 신호를 송수신할 수도 있다.
또한, 네트워크 통신부(270)는 후술되는 안테나 패턴을 통해 무선 인터넷 기술들에 따른 통신망에서 무선 신호를 송수신할 수도 있다. 무선 인터넷 기술로는, 예를 들어 WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등이 있으며, 상기 안테나 패턴(ANTE)은 상기에서 나열되지 않은 인터넷 기술까지 포함한 범위에서 적어도 하나의 무선 인터넷 기술에 따라 데이터를 송수신하게 된다.
UI생성부(280)는 컨트롤 유닛(MC) 및 타 표시장치(DV2~DV4)와의 통신을 위한 UI메뉴를 생성하는 것으로, 알고리즘 코드 및 OSD IC에 의해 구현 가능하다. 컨트롤 유닛(MC) 및 타 표시장치(DV2~DV4)와의 통신을 위한 UI메뉴는 통신을 원하는 상대 디지털 TV의 지정 및 원하는 기능을 선택하기 위한 메뉴로서, 본 발명의 일 실시예에 따른 UI메뉴는 "전원 온/오프", "채널 전환", "최근 채널", " 채널 보내기", "화질 설정", "오디오 설정", "데이터 전송", "데이터 업데이트 " 등을 포함할 수 있지만, 이에 제한되는 것은 아니다.
제어부(290)는 제1 표시장치(DV1)의 전반적인 제어를 담당하고, 컨트롤 유닛(MC) 및 타 표시장치(DV2~DV4)의 통신 제어를 담당하는 것으로, 제어를 위한 해당 알고리즘 코드가 저장되고, 저장된 알고리즘 코드가 실행되는 MCU(Micro Controller Unit)에 의해 구현 가능하다. 제어부(290)는 통신 가능한 네트워크 내에 있는 타 디지털 TV와 현재 시청 중인 채널 정보 및 기타 데이터를 전송한다. 이때, 각 디지털 TV는 전원 온/오프 상태와 무관하게 각종 데이터를 송/수신하게 되는데, 전원 오프 상태일 경우에는 채널 정보 대신에 전원 오프 상태임을 전송하게 된다.
제어부(290)는 사용자입력부(250)의 입력 및 선택에 따라 해당 제어명령 및 데이터를 네트워크 통신부(270)를 통해 컨트롤 유닛(MC) 및 타 표시장치(DV2~DV4)로 전송하도록 제어한다. 물론, 컨트롤 유닛(MC) 및 타 표시장치(DV2~DV4)로부터 소정의 제어명령 및 데이터가 입력된 경우, 해당 제어명령에 따라 동작을 수행하게 된다.
이하, 제1 표시장치(DV1)를 기준으로 각 표시장치(DV1~DV4)를 구성하는 소자들에 대해 설명하기로 한다. 제1 표시장치(DV1)의 소자들에 대한 설명은 제2 내지 제4 표시장치(DV2~DV4)에도 실질적으로 동일하게 적용될 수 있으므로 중복된 설명은 생략하기로 한다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다.
도 3 및 도 4에서 원 기둥 형상의 막대형 발광 소자(LD)가 도시되었으나, 본 발명에 의한 발광 소자(LD)의 종류 및/또는 형상이 이에 한정되는 것은 아니다.
도 3 및 도 4를 참조하면, 발광 소자(LD)는, 제1 도전성 전극층(11) 및 제2 도전성 전극층(13)과, 제1 및 제2 도전성 전극층들(11, 13)의 사이에 개재된 활성층(12)을 포함할 수 있다. 일 예로, 발광 소자(LD)는 일 방향을 따라 제1 도전성 전극층(11), 활성층(12) 및 제2 도전성 전극층(13)이 순차적으로 적층된 적층체로 구성될 수 있다.
실시예에 따라, 발광 소자(LD)는 일 방향을 따라 연장된 막대 형상으로 제공될 수 있다. 발광 소자(LD)는 일 방향을 따라 일측 단부와 타측 단부를 가질 수 있다.
실시예에 따라, 발광 소자(LD)의 일측 단부에는 제1 및 제2 도전성 전극층들(11, 13) 중 하나가 배치되고, 발광 소자(LD)의 타측 단부에는 제1 및 제2 도전성 전극층들(11, 13) 중 나머지 하나가 배치될 수 있다.
실시예에 따라, 발광 소자(LD)는 막대 형상으로 제조된 막대형 발광 다이오드일 수 있다. 여기서, 막대 형상은 원 기둥 또는 다각 기둥 등과 같이 폭 방향보다 길이 방향으로 긴(즉, 종횡비가 1보다 큰) 로드 형상(rod-like shape), 또는 바 형상(bar-like shape)을 포괄하며, 그 단면의 형상이 특별히 한정되지는 않는다. 예를 들어, 발광 소자(LD)의 길이(L)는 그 직경(D)(또는, 횡단면의 폭)보다 클 수 있다.
실시예에 따라, 발광 소자(LD)는 나노 스케일 내지 마이크로 스케일 정도로 작은 크기, 일 예로 수백 나노 스케일 내지 수 마이크로 스케일 범위의 직경(D) 및/또는 길이(L)를 가질 수 있다. 다만, 발광 소자(LD)의 크기가 이에 한정되는 것은 아니다. 예를 들어, 발광 소자(LD)를 이용한 발광 장치를 발광 유닛으로 이용하는 각종 장치, 일 예로 표시장치(DV1~DV4) 등의 설계 조건에 따라 발광 소자(LD)의 크기는 다양하게 변경될 수 있다.
제1 도전성 전극층(11)은 적어도 하나의 n형 반도체 물질을 포함할 수 있다. 예를 들어, 제1 도전성 전극층(11)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 하나의 반도체 재료를 포함하며, Si, Ge, Sn 등과 같은 제1 도전성 도펀트가 도핑된 n형 반도체 물질을 포함할 수 있다. 다만, 제1 도전성 전극층(11)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제1 도전성 전극층(11)을 구성할 수 있다.
활성층(12)은 제1 도전성 전극층(11) 상에 배치되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 일 실시예에서, 활성층(12)의 상부 및/또는 하부에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있다. 일 예로, 클래드층은 AlGaN층 또는 InAlGaN층으로 형성될 수 있다. 실시예에 따라, AlGaN, AlInGaN 등의 물질이 활성층(12)을 형성하는 데에 이용될 수 있으며, 이 외에도 다양한 물질이 활성층(12)을 구성할 수 있다.
발광 소자(LD)의 양단에 문턱 전압 이상의 전압이 인가되면, 활성층(12)에서 전자-정공 쌍이 결합하면서 발광 소자(LD)가 발광할 수 있다. 이러한 원리를 이용하여 발광 소자(LD)의 발광을 제어함으로써, 발광 소자(LD)는 표시장치(DV1~DV4)의 화소를 비롯한 다양한 발광 장치의 발광 유닛으로 이용될 수 있다.
제2 도전성 전극층(13)은 활성층(12) 상에 배치되며, 제1 도전성 전극층(11)의 타입과 상이한 타입의 반도체 물질을 포함할 수 있다. 일 예로, 제2 도전성 전극층(13)은 적어도 하나의 p형 반도체 물질을 포함할 수 있다. 예를 들어, 제2 도전성 전극층(13)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 적어도 하나의 반도체 재료를 포함하며, Mg 등과 같은 제2 도전성 도펀트가 도핑된 p형 반도체 물질을 포함할 수 있다. 다만, 제2 도전성 전극층(13)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제2 도전성 전극층(13)을 구성할 수 있다.
실시예에 따라, 발광 소자(LD)는 표면에 제공된 절연성 피막(INF)을 더 포함할 수 있다. 절연성 피막(INF)은 적어도 활성층(12)의 외주면을 둘러싸도록 발광 소자(LD)의 표면에 형성될 수 있으며, 이외에도 제1 및 제2 도전성 전극층들(11, 13)의 일 영역을 더 둘러쌀 수 있다. 다만, 절연성 피막(INF)은 서로 다른 극성을 가지는 발광 소자(LD)의 양 단부를 노출할 수 있다. 예를 들어, 절연성 피막(INF)은 길이 방향 상에서 발광 소자(LD)의 양단에 위치한 제1 및 제2 도전성 전극층들(11, 13) 각각의 일단, 일 예로 원기둥의 두 평면(즉, 상부면 및 하부면)은 커버하지 않고 노출할 수 있다.
실시예에 따라, 절연성 피막(INF)은 이산화규소(SiO2), 질화규소(Si3N4), 산화알루미늄(Al2O3) 및 이산화타이타늄(TiO2) 중 적어도 하나의 절연 물질을 포함할 수 있으나, 이에 한정되지는 않는다. 즉, 절연성 피막(INF)의 구성 물질이 특별히 한정되지는 않으며, 상기 절연성 피막(INF)은 현재 공지된 다양한 절연 물질로 구성될 수 있다.
일 실시예에서, 발광 소자(LD)는 제1 도전성 전극층(11), 활성층(12), 제2 도전성 전극층(13) 및/또는 절연성 피막(INF) 외에도 추가적인 구성 요소를 더 포함할 수 있다. 예를 들면, 발광 소자(LD)는 제1 도전성 전극층(11), 활성층(12) 및/또는 제2 도전성 전극층(13)의 일단 측에 배치된 하나 이상의 형광체층, 활성층, 반도체 물질 및/또는 전극층을 추가적으로 포함할 수 있다.
도 5 및 도 6은 본 발명의 다른 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다. 도 7 및 도 8은 본 발명의 또 다른 실시예에 의한 발광 소자를 나타내는 사시도 및 단면도이다.
도 5 및 도 6을 참조하면, 발광 소자(LD)는 제2 도전성 전극층(13)의 일단 측에 배치되는 적어도 하나의 전극층(14)을 더 포함할 수 있다.
도 7 및 도 8을 참조하면, 발광 소자(LD)는 제1 도전성 전극층(11)의 일단 측에 배치되는 적어도 하나의 다른 전극층(15)을 더 포함할 수도 있다.
전극층들(14, 15) 각각은 오믹(Ohmic) 컨택 전극일 수 있으나, 이에 한정되지는 않는다. 또한, 전극층들(14, 15) 각각은 금속 또는 도전성 금속 산화물을 포함할 수 있으며, 일 예로, 크롬(Cr), 타이타늄(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), 이들의 산화물 또는 합금, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZnO(Zinc Oxide), ITZO(Indium Tin Zinc Oxide)와 같은 투명 전극 물질 등을 단독 또는 혼합하여 형성될 수 있다. 전극층들(14, 15)은 실질적으로 투명 또는 반투명할 수 있다. 이에 따라, 발광 소자(LD)에서 생성되는 빛이 전극층들(14, 15)을 투과하여 발광 소자(LD)의 외부로 방출될 수 있다.
실시예에 따라, 절연성 피막(INF)은 전극층들(14, 15)의 외주면을 적어도 부분적으로 감싸거나, 또는 감싸지 않을 수 있다. 즉, 절연성 피막(INF)은 전극층들(14, 15)의 표면에 선택적으로 형성될 수 있다. 또한, 절연성 피막(INF)은 서로 다른 극성을 가지는 발광 소자(LD)의 양단을 노출하도록 형성되며, 일 예로 전극층들(14, 15)의 적어도 일 영역을 노출할 수 있다. 다만, 이에 한정되는 것은 아니며, 절연성 피막(INF)이 제공되지 않을 수도 있다.
발광 소자(LD)의 표면, 예를 들어, 활성층(12)의 표면에 절연성 피막(INF)이 제공됨으로써, 활성층(12)이 적어도 하나의 전극(예를 들어, 발광 소자(LD)의 양단에 연결되는 컨택 전극들 중 적어도 하나의 컨택 전극) 등과 단락되는 것이 방지될 수 있다. 이에 따라, 발광 소자(LD)의 전기적 안정성이 확보될 수 있다.
또한, 발광 소자(LD)의 표면에 절연성 피막(INF)이 형성됨으로써, 발광 소자(LD)의 표면 결함이 최소화되고, 발광 소자(LD)의 수명 및 효율이 향상될 수 있다. 나아가, 발광 소자(LD)에 절연성 피막(INF)이 형성됨으로써, 다수의 발광 소자들(LD)이 서로 밀접하여 배치되더라도, 발광 소자들(LD)의 사이에서 원하지 않는 단락이 방지될 수 있다.
일 실시예에서, 발광 소자(LD)는 표면 처리 과정(예를 들어, 코팅)을 거쳐 제조될 수 있다. 예를 들어, 다수의 발광 소자들(LD)이 유동성의 용액(또는, 용매)에 혼합되어 각각의 발광 영역(일 예로, 각 화소의 발광 영역)에 공급될 때, 발광 소자들(LD)이 용액 내에서 불균일하게 응집하지 않고 균일하게 분산될 수 있다. 여기서, 발광 영역은 발광 소자들(LD)에 의해 광이 발산되는 영역으로, 광이 발산되지 않는 비발광 영역과 구별될 수 있다.
실시예들에 따라, 소수성 재료를 이용하여 절연성 피막(INF) 자체를 소수성 막으로 형성하거나, 절연성 피막(INF) 상에 소수성 재료로 이루어진 소수성 피막을 추가적으로 형성할 수 있다. 실시예에 따라, 소수성 재료는 소수성을 나타내도록 불소를 함유하는 재료일 수 있다. 또한, 실시예에 따라, 소수성 재료는 자기조립 단분자막(self-assembled monolayer; SAM)의 형태로 발광 소자들(LD)에 적용될 수 있다. 이 경우, 소수성 재료는 옥타데실 트라이클로로실란(octadecyl trichlorosilane), 플루오로알킬 트라이클로로실란(fluoroalkyl trichlorosilane), 퍼플루오로알킬 트라이에톡시실란(perfluoroalkyl triethoxysilane) 등을 포함할 수 있다. 또한, 소수성 재료는 테플론(TeflonTM)이나 사이토프(CytopTM)와 같은 상용화된 불소 함유 재료이거나, 이에 상응하는 재료일 수 있다.
발광 소자(LD)를 포함한 발광 장치는, 본 실시예에 따른 표시장치(DV1~DV4)를 비롯하여 발광 유닛을 필요로 하는 다양한 종류의 장치에서 이용될 수 있다. 예를 들어, 표시장치(DV1~DV4)의 각 화소 영역에 적어도 하나의 초소형 발광 소자(LD), 일 예로 각각 나노 스케일 내지 마이크로 스케일의 크기를 가진 복수의 초소형 발광 소자들(LD)을 배치하고, 상기 초소형 발광 소자들(LD)을 이용하여 각 화소의 발광 유닛을 구성할 수 있다. 다만, 본 발명에서 발광 소자(LD)의 적용 분야가 표시장치(DV1~DV4)에 한정되지는 않는다. 예를 들어, 발광 소자(LD)는 조명 장치 등과 같이 발광 유닛을 필요로 하는 다른 종류의 장치에도 이용될 수 있다.
도 9는 본 발명의 일 실시예에 따른 제1 표시장치를 나타내는 평면도이다. 실시예에 따라, 도 9에는 도 3 내지 도 8에서 설명한 발광 소자들(LD)을 발광 유닛으로서 이용할 수 있는 제1 표시장치(DV1)가 도시되어 있다.
제1 표시장치(DV1)는 베이스 층(SUB1)(또는, 기판)과, 베이스 층(SUB1) 상에 배치된 화소(PXL)들을 포함할 수 있다. 구체적으로, 제1 표시장치(DV1) 및 베이스 층(SUB1)은, 상술한 것과 같이, 영상이 표시되는 제1 표시 영역(DA1)과, 제1 표시 영역(DA1)을 제외한 제1 비표시 영역(NDA1)을 포함할 수 있다. 즉, 베이스 층(SUB1)에는 제1 표시 영역(DA1) 및 제1 비표시 영역(NDA1)이 정의될 수 있다.
일 실시예로, 제1 표시 영역(DA1)은 안테나 패턴이 배치되는 제1 서브 표시 영역(DA11) 및 안테나 패턴이 비배치되는 제2 서브 표시 영역(DA12)을 포함할 수 있다. 예를 들어, 제2 서브 표시 영역(DA12)에는 사용자의 터치 입력을 감지하는 터치 전극 패턴 및/또는 사용자의 누름을 감지하는 압전 센서 패턴을 포함할 수 있다. 다만, 이에 제한되는 것은 아니고, 실시예에 따라 제1 표시 영역(DA1)은 안테나 패턴이 배치되는 제1 서브 표시 영역(DA11)만으로 이루어질 수 있다.
일 실시예로, 제1 서브 표시 영역(DA11)은 제1 표시 영역(DA1)의 테두리에 위치하고, 제2 서브 표시 영역(DA12)은 제1 서브 표시 영역(DA11)의 내측에 위치할 수 있다.
베이스 층(SUB1)은 제1 표시장치(DV1)의 베이스 부재를 구성할 수 있다. 예를 들어, 베이스 층(SUB1)은 하부 패널(예를 들어, 제1 표시장치(DV1)의 하판)의 베이스 부재를 구성할 수 있다.
실시예에 따라, 베이스 층(SUB1)은 경성 기판 또는 가요성 기판일 수 있으며, 그 재료나 물성이 특별히 한정되지는 않는다. 일 예로, 베이스 층(SUB1)은 유리 또는 강화 유리로 구성된 경성 기판, 또는 플라스틱 또는 금속 재질의 박막 필름으로 구성된 가요성 기판일 수 있다. 또한, 베이스 층(SUB1)은 투명 기판일 수 있으나 이에 한정되지는 않는다. 일 예로, 베이스 층(SUB1)은 반투명 기판, 불투명 기판, 또는 반사성 기판일 수도 있다. 본 실시예는 베이스 층(SUB1)이 가요성 기판인 것을 예로서 설명한다.
베이스 층(SUB1) 상의 일 영역은 제1 표시 영역(DA1)으로 규정되어 화소들(PXL)이 배치되고, 나머지 영역은 제1 비표시 영역(NDA1)으로 규정된다. 일 예로, 베이스 층(SUB1)은, 화소(PXL)가 형성되는 복수의 발광 영역들을 포함한 제1 표시 영역(DA1)과, 제1 표시 영역(DA1)의 외곽에 배치되는 제1 비표시 영역(NDA1)을 포함할 수 있다. 제1 비표시 영역(NDA1)에는 제1 표시 영역(DA1)의 화소들(PXL)에 연결되는 각종 배선들 및/또는 내장 회로부가 배치될 수 있다.
화소(PXL)는 해당 주사 신호 및 데이터 신호에 의해 구동되는 적어도 하나의 발광 소자(LD), 일 예로 도 3 내지 도 8의 실시예들 중 어느 하나에 의한 적어도 하나의 막대형 발광 다이오드를 포함할 수 있다. 예를 들어, 화소(PXL)는, 나노 스케일 내지 마이크로 스케일 정도로 작은 크기를 가지며 서로 병렬로 연결된 복수의 막대형 발광 다이오드들을 포함할 수 있다. 복수의 막대형 발광 다이오드들은 화소(PXL)의 발광 유닛을 구성할 수 있다.
또한, 화소(PXL)는 복수의 서브 화소들을 포함할 수 있다. 일 예로, 화소(PXL)는 제1 서브 화소(SPX11), 제2 서브 화소(SPX12), 제3 서브 화소(SPX13), 제4 서브 화소(SPX21), 제5 서브 화소(SPX22) 및 제6 서브 화소(SPX23)를 포함할 수 있다. 복수의 서브 화소들은 행렬 형태로 배치될 수 있다. 예를 들어, 제1 서브 화소(SPX11)는 1행 1열에 배치되고, 제2 서브 화소(SPX12)는 1행 2열에 배치되고, 제3 서브 화소(SPX13)는 1행 3열에 배치되고, 제4 서브 화소(SPX21)는 2행 1열에 배치되고, 제5 서브 화소(SPX22)는 2행 2열에 배치되고, 제6 서브 화소(SPX23)는 2행 3열에 배치될 수 있다. 여기서 열방향은 제1 방향이 지시하고, 행방향은 제2 방향이 지시할 수 있다.
일 실시예로, 제1 서브 화소(SPX11), 제2 서브 화소(SPX12), 제3 서브 화소(SPX13) 및 제4 서브 화소(SPX21)는 제1 서브 표시 영역(DA11)에 위치할 수 있다. 제5 서브 화소(SPX22) 및 제6 서브 화소(SPX23)는 제2 서브 표시 영역(DA12)에 위치할 수 있다. 제1 서브 표시 영역(DA11)에 위치하는 제1 서브 화소(SPX11), 제2 서브 화소(SPX12), 제3 서브 화소(SPX13) 및 제4 서브 화소(SPX21)에는 안테나 패턴이 배치될 수 있다. 제2 서브 표시 영역(DA12)에 위치하는 제5 서브 화소(SPX22) 및 제6 서브 화소(SPX23)는 안테나 패턴이 비배치되고, 터치 전극 패턴 및/또는 압전 센서 패턴이 배치될 수 있다.
실시예에 따라, 제1 내지 제6 서브 화소들(SPX11~SPX23)은 동일하거나 다른 색상들로 발광할 수 있다. 일 예로, 제1 서브 화소(SPX11)와 제4 서브 화소(SPX21)는 적색으로 발광하는 적색 서브 화소일 수 있고, 제2 서브 화소(SPX12)와 제5 서브 화소(SPX22)는 녹색으로 발광하는 녹색 서브 화소일 수 있으며, 제3 서브 화소(SPX13)와 제6 서브 화소(SPX23)는 청색으로 발광하는 청색 서브 화소일 수 있다. 다만, 화소(PXL)를 구성하는 서브 화소들의 색상, 종류 및/또는 개수 등이 특별히 한정되지는 않으며, 일 예로 각각의 서브 화소들이 발하는 광의 색상은 다양하게 변경될 수 있다. 또한, 도 9에서는 제1 표시 영역(DA1)에서 화소(PXL)가 행렬 형태로 배열되는 실시예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 화소(PXL)는 현재 공지된 다양한 화소 배열 형태를 가지고 배치될 수 있다.
도 10은 도 9의 Ⅰ1-Ⅰ1' 선에 대응하는 제1 표시장치의 개략적인 단면도이다.
도 10을 참조하면, 표시기판(SUB_DA)은 플렉서블 기판으로서, 플라스틱 재질로 이루어지거나 또는 메탈 포일(metal foil)로 이루어질 수 있다. 즉, 표시기판(SUB_DA)은 가요성 재질로 형성되어 있기 때문에, 도시된 바와 같이 벤딩될 수 있다.
예를 들어, 플라스틱 재질의 표시기판(SUB_DA)은 PI(polyimide), PC(polycarbonate), PNB(polynorborneen), PET(polyethyleneterephthalate), PEN(polyethylenapthanate) 및 PES(polyethersulfone) 중에서 어느 하나의 재질을 포함할 수 있다. 이러한, 표시기판(SUB_DA)에는 제1 서브 표시 영역(DA11), 제2 서브 표시 영역(DA12)을 포함하는 제1 표시 영역(DA)과 비표시 영역(NDA)이 정의되어 있을 수 있다.
표시기판(SUB_DA)의 제1 표시 영역(DA)에 복수의 트랜지스터 및 발광 소자들이 배치될 수 있다. 복수의 트랜지스터 및 발광 소자들에 대한 설명은 후술된다. 표시기판(SUB_DA)의 제1 비표시 영역(NDA1)의 적어도 일부는 벤딩 영역(BA)이고, 표시기판(SUB_DA)의 제1 비표시 영역(NDA1)에 패드들(미도시)이 배치될 수 있다.
표시기판(SUB_DA)에서 벤딩 형상에 의해 벤딩 영역(BA)을 기준으로 나뉘어진 두 영역은 서로 대향할 수 있다. 상기 두 영역은 서로 중첩될 수 있다. 본 명세서에서 “중첩된다”라고 표현하면, 다른 정의가 없는 한 두 구성이 제1 표시장치(DV1)의 두께 방향(제3 방향(DR3))으로 중첩(overlap)되는 것을 의미한다.
이에 따라, 안테나 패턴(ANTE), 터치 전극 패턴(TS), 압전 센서 패턴(FS), 구동 집적 회로(DIC)는 모두 표시기판(SUB_DA) 상에 배치되나, 제1 표시장치(DV1)의 단면을 기준으로, 안테나 패턴(ANTE), 터치 전극 패턴(TS), 압전 센서 패턴(FS)은 표시기판(SUB_DA) 상부에 위치하고, 구동 집적 회로(DIC)는 표시기판(SUB_DA) 하부에 위치할 수 있다.
명확히 도시하진 않았지만, 안테나 패턴(ANTE)은 컨택홀을 통해 대응하는 피드 배선에 연결될 수 있다. 이로 인해, 안테나 패턴(ANTE)은 피드 배선을 통해 제1 연성 회로 기판(FPC1)등에 배치된 RF 구동부에 연결될 수 있다. 그러므로, 안테나 패턴(ANTE)은 이동통신을 위한 패치 안테나(patch antenna)로 사용되거나, 근거리 통신을 위한 RFID 태그용 안테나로 사용될 수 있다.
벤딩된 표시기판(SUB_DA) 사이에 쿠션 부재(ADH)가 배치될 수 있다. 쿠션 부재(ADH)는 쿠션을 가지고 있는 다양한 물질로 형성될 수 있다. 예를 들어, 쿠션 부재(ADH)는, 라텍스, 스펀지, 발포성 수지인 우레탄 폼, EVA, 실리콘 등으로 형성될 수 있다. 또한, 쿠션 부재(ADH)는 쿠션을 가지고 있는 테이프 형태로 형성될 수도 있다. 또한, 쿠션 부재(ADH)는 접착 부재일 수도 있다.
쿠션 부재(ADH)와 표시기판(SUB_DA) 사이에 제1 보호 필름(PF1)과 제2 보호 필름(PF2)이 배치될 수 있다. 예를 들어, 쿠션 부재(ADH)와 상대적으로 상부에 위치한 표시기판(SUB_DA)의 일 영역 사이에 제1 보호 필름(PF1)이 배치되고, 쿠션 부재(ADH)와 상대적으로 하부에 위치한 표시기판(SUB_DA)의 다른 영역 사이에 제2 보호 필름(PF2)이 배치될 수 있다.
제1 보호 필름(PF1)과 제2 보호 필름(PF2)은 각각 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌 나프탈레이트(polyethylene naphthalate, PEN), 폴리이미드(polyimide, PI), 폴리에틸렌 설파이드(polyethylene sulfide, PES), 같은 플라스틱으로 형성될 수 있지만 이에 제한되지 않는다. 제1 보호 필름(PF1)과 제2 보호 필름(PF2)은 표시기판(SUB_DA)의 배면을 전체적으로 덮도록 배치된다. 그러나 벤딩 영역(BA)의 벤딩 응력(bending stress)을 감소시키기 위해 벤딩 영역(BA)이 형성된 부분의 배면에는 배치되지 않을 수 있다.
표시기판(SUB_DA)의 제1 표시 영역(DA1) 상에 안테나 패턴(ANTE), 터치 전극 패턴(TS) 및/또는 압전 센서 패턴(FS)이 배치될 수 있다. 일 실시예로, 안테나 패턴(ANTE), 터치 전극 패턴(TS) 및/또는 압전 센서 패턴(FS)은 동일한 공정에 의해 동시에 형성될 수 있다.
안테나 패턴(ANTE), 터치 전극 패턴(TS) 및/또는 압전 센서 패턴(FS) 상에 봉지층(TFE)이 배치될 수 있다. 봉지층(TFE)은 안테나 패턴(ANTE), 터치 전극 패턴(TS) 및/또는 압전 센서 패턴(FS)과 트랜지스터, 발광 소자들을 외부의 수분 또는 공기 등으로부터 보호하기 위해 이들을 덮도록 형성될 수 있다.
봉지층(TFE) 상에 편광층(POL)이 배치될 수 있다. 편광층(POL)은 봉지층(TFE)과 중첩할 수 있다.
편광층(POL)은 발광 소자로부터 출력된 광 중 일 방향의 편광축에 평행한 광을 투과시킬 수 있다. 또한, 편광층(POL)은 외광 반사를 감소시킬 수 있다. 편광층(POL)은 코팅형 편광층(POL) 또는 증착에 의하여 형성된 편광층(POL)일 수 있다. 편광층(POL)은 이색성 염료 및 액정 화합물을 포함한 물질을 코팅하여 형성된 것일 수 있다.
표시기판(SUB_DA)의 벤딩 영역(BA) 상에 벤딩 응력 완화 부재(BFL)가 배치될 수 있다. 벤딩 응력 완화 부재(BFL)는 벤딩 영역(BA)에서 발생하는 기판의 벤딩 응력(bending stress)을 감소시킬 수 있다.
벤딩 응력 완화 부재(BFL)는 수지(resin)로 형성된 점착제를 포함할 수 있다. 벤딩 응력 완화 부재(BFL)가 벤딩 영역(BA)의 외부면에 부착된 상태에서 경화되기 때문에, 구부러진 기판의 형상이 보다 더 안정적으로 유지될 수 있다. 벤딩 응력 완화 부재(BFL)는 열경화 수지 또는 자외선경화 수지 등으로 형성될 수 있다.
상대적으로 하부에 위치한 표시기판(SUB_DA)의 일 영역 상에 구동 집적 회로(DIC)가 배치될 수 있다. 구동 집적 회로(DIC)는 칩 본딩 공정 또는 표면 실장 공정에 의해 표시기판(SUB_DA)에 실장되어, 복수의 신호 공급 단자와 복수의 신호 입력 단자에 본딩된다.
구동 집적 회로(DIC)는 복수의 신호 입력 단자를 통해 외부로부터 공급되는 영상 데이터 및 타이밍 동기 신호에 기초하여 데이터 신호 및 게이트 신호를 생성하고, 생성된 데이터 신호 및 게이트 신호를 해당하는 신호 공급 단자에 공급하여 각 화소(PXL)를 구동함으로써 제1 표시 영역(DA1)에 영상 데이터에 대응되는 제1 서브 이미지(IM21)를 표시한다.
상대적으로 하부에 위치한 표시기판(SUB_DA)의 다른 영역 상에 제1 연성 회로 기판(FPC1)이 배치될 수 있다. 제1 연성 회로 기판(FPC1)은 FPC(Flexible Printed Circuit)가 적용될 수 있으며, 외부로부터 입력되는 영상 데이터 및 타이밍 동기 신호를 구동 집적 회로(DIC)로 공급하기 위한 구동 소자들이 표면 실장 방식으로 형성되어 있고, 구동 소자들을 보호하기 위한 보호 캡(protection cap)이 형성되어 있을 수 있다.
구동 집적 회로(DIC)는 배터리(BAT)와 전기적으로 연결될 수 있다. 일 실시예로, 배터리(BAT)는 구동 집적 회로(DIC) 상에 배치될 수 있으나, 배치 위치에 제한되는 것은 아니다. 즉, 배터리(BAT)는 구동 집적 회로(DIC)보다 더 하부에 위치할 수 있다.
배터리(BAT)는 제1 표시장치(DV1)의 구동에 필요한 전원을 공급할 수 있다. 배터리(BAT)는 외부 전원을 통해 충전될 수 있다.
배터리(BAT)는 제1 안테나 부재(WPT1)와 전기적으로 연결될 수 있다. 일 실시예로, 제1 안테나 부재(WPT1)는 무선 충전을 위한 무선 전력 전송용(Wireless Power Transfer, 이하 WPT) 안테나에 해당할 수 있다.
제1 안테나 부재(WPT1)는 배터리(BAT)보다 더 하부에 위치할 수 있다.
제1 안테나 부재(WPT1) 상에 제2 연성 회로 기판(FPC2)이 배치될 수 있다. 제2 연성 회로 기판(FPC2)은 FPC(Flexible Printed Circuit)가 적용될 수 있으며, 전원 신호를 공급하기 위한 배선들이 표면 실장 방식으로 형성되어 있고, 상기 배선들을 보호하기 위한 보호 캡(protection cap)이 형성되어 있을 수 있다.
배터리(BAT)와 제1 안테나 부재(WPT1) 사이에 연결 부재(CN)가 배치될 수 있다. 연결 부재(CN)는 FPC(Flexible Printed Circuit) 또는 COF(Chip On Film)가 적용될 수 있다.
명확히 도시하진 않았지만, 연결 부재(CN)는 표시기판(SUB_DA)의 상면과 배터리(BAT)와 제1 안테나 부재(WPT1) 사이를 연결할 수 있다.
연결 부재(CN) 상에 제2 안테나 부재(WPT2)가 배치될 수 있다. 제2 안테나 부재(WPT2)는 제2 안테나 부재(WPT2)의 상면이 제1 표시장치(DV1)의 측면을 향하도록 연결 부재(CN) 상에 배치될 수 있다.
제2 안테나 부재(WPT2)는 무선 충전을 위한 무선 전력 전송용(WPT) 안테나, MST(Magnetic Secure Transmission) 안테나, NFC(Near Field Communication) 안테나 및 RFID 안테나 중 하나이거나, WPT 안테나, MST 안테나, NFC 안테나가 콤보 형태로 이루어진 3-콤보 안테나일 수도 있다. 여기서, 제2 안테나 부재(WPT2)가 WPT 안테나의 경우 주파수 대역이 100kHz 내지 300kHz일 수 있고, NFC 안테나인 경우 주파수 대역이 10MHz 내지 20MHz일 수 있다.
윈도우 부재(WD)는 제1 표시장치(DV1)의 상부에 배치되고, 편광층(POL) 상에 위치할 수 있다. 예시적으로, 윈도우 부재(WD)는 유리, 사파이어, 플라스틱 등으로 구성될 수 있다. 윈도우 부재(WD)는 앞서 정의된 제1 표시 영역(DA) 및 제1 비표시 영역(NDA1)에 모두 중첩할 수 있다.
또한, 윈도우 부재(WD)가 단일층으로 도시되었지만, 윈도우 부재(WD)는 복수 개의 층들을 포함할 수도 있다.
윈도우 부재(WD) 배면에서 제1 비표시 영역(NDA1)과 중첩하도록 블랙 매트릭스(BM)가 배치될 수 있다. 블랙 매트릭스(BM)는 광 흡수 물질 또는 광 반사 물질을 포함할 수 있다. 예를 들어, 블랙 매트릭스(BM)는 흑색으로 착색된 수지나 크롬(Cr) 등의 반사성 금속 등을 포함할 수 있다.
블랙 매트릭스(BM)는 편광층(POL)에 인접하여 위치할 수 있다.
하우징 부재(FU)는 앞서 설명한 부재들을 실장하며, 윈도우 부재(WD)와 결합될 수 있다.
하우징 부재(FU)와 윈도우 부재(WD)가 결합할 때, 단차를 줄이거나 결합을 용이하게 하기 위해, 블랙 매트릭스(BM)와 하우징 부재(FU) 사이에 제1 버퍼 부재(BF1)가 배치될 수 있다.
몇몇 실시예에서, 베터리, 제1 안테나 부재(WPT1), 제2 연성 회로 기판(FPC2) 사이에 제2 버퍼 부재(BF2)가 배치될 수 있다. 일 실시예로, 제1 버퍼 부재(BF1)와 제2 버퍼 부재(BF2)는 수지를 포함할 수 있다.
도 11은 도 9의 제1 표시장치에 포함된 서브 화소의 일 예를 나타내는 회로도이다. 도 11에는 도 9의 제1 표시장치(DV1)에 포함된 제1 내지 제6 서브 화소들(SPX11~SPX23)이 도시되어 있다.
도 11을 참조하면, 일 실시예로, 서브 화소들(SPX11~SPX23) 각각은 복수의 단위 화소들(SSPX11, SSPX12, SSPX13)을 포함할 수 있다.
제1 내지 제6 서브 화소들(SPX11~SPX23)은 대응하는 데이터선들(Dj, Dj+1, Dj+2) 및 대응하는 주사선들(Si, Si+1)에 각각 연결된다는 점을 제외하고, 제1 내지 제6 서브 화소들(SPX11~SPX23)은 상호 실질적으로 동일하므로, 제1 서브 화소(SPX11)를 중심으로 제1 내지 제6 서브 화소들(SPX11~SPX23)을 포괄하여 설명하기로 한다.
제1 내지 제6 서브 화소들(SPX11~SPX23)은 주사선들(Si-1, Si, Si+1)(단, i는 자연수) 및 데이터선들(Dj, Dj+1, Dj+2)(단, j는 자연수)에 의해 구획된 영역들에 각각 배치될 수 있다. 예를 들어, 제1 서브 화소(SPX11)는 제i-1 및 제i 주사선들(Si-1, Si) 및 제j 및 제j+1 데이터선들(Dj, Dj+1)에 의해 구획된 영역에 배치될 수 있다. 다만, 제1 내지 제6 서브 화소들(SPX11~SPX23)의 배치가 이에 한정되는 것은 아니다.
제1 서브 화소(SPX1)는 주사선(Si) 및 데이터선(Dj)에 연결되고, 또한, 제1 전원선 및 제2 전원선에 연결될 수 있다. 여기서, 제1 전원선에는 제1 전원(VDD)이 인가되고, 제2 전원선에는 제2 전원(VSS)이 인가되며, 제1 및 제2 전원선들 각각은 복수의 서브 화소들에 연결되는 공통 배선일 수 있다. 제1 및 제2 전원들(VDD, VSS)은 제1 서브 화소(SPX1)가 발광할 수 있도록 서로 다른 전위를 가질 수 있으며, 제1 전원(VDD)은 제2 전원(VSS)의 전압 레벨보다 높은 전압 레벨을 가질 수 있다.
일 실시예로, 제1 서브 화소(SPX1)는 적어도 하나의 단위 화소들(SSPX1 내지 SSPXk)(단, k는 자연수)을 포함할 수 있다.
단위 화소들(SSPX1 내지 SSPXk) 각각은 주사선(Si) 및 데이터선(Dj)에 연결되고, 또한, 제1 전원선 및 제2 전원선에 연결될 수 있다. 단위 화소들(SSPX1 내지 SSPXk) 각각은 주사선(Si)을 통해 전송되는 주사 신호에 응답하여 데이터선(Dj)을 통해 전송되는 데이터 신호에 대응하는 휘도로 발광할 수 있다. 단위 화소들(SSPX1 내지 SSPXk)은 상호 실질적으로 동일한 화소 구조 또는 화소 회로를 포함할 수 있다.
즉, 제1 서브 화소(SPX1)는 하나의 주사 신호 및 하나의 데이터 신호에 응답하여 상호 독립적으로 발광하는 단위 화소들(SSPX1 내지 SSPXk)을 포함할 수 있다.
일 실시예로, 단위 화소들(SSPX1 내지 SSPXk)(또는, 서브 화소들(SPX1 내지 SPX3)) 각각은 능동형 화소로 구성될 수 있다. 다만, 본 발명의 제1 표시장치(DV1)에 적용될 수 있는 단위 화소의 종류, 구조 및/또는 구동 방식이 특별히 한정되지는 않는다. 예를 들어, 단위 화소는 현재 공지된 다양한 수동형 또는 능동형 구조를 가진 제1 표시장치(DV1)의 화소로 구성될 수 있다.
도 12 내지 도 18은 도 11의 서브 화소에 포함된 단위 화소로 적용될 수 있는 일 예를 나타내는 회로도들이다.
각 도면마다 하나의 단위 화소를 기준으로 설명하며, 도 12에 도시된 제1 내지 제k 단위 화소들(SSPX1 내지 SSPXk)에 유사한 내용이 적용될 수 있는바, 상기 유사한 내용은 생략하기로 한다. 즉, 도 11에 도시된 제1 내지 제k 단위 화소들(SSPX1 내지 SSPXk)은 실질적으로 동일 또는 유사한 구조를 가지며, 도 12 내지 도 18에 도시된 제1 단위 화소(SSPX1)는 예시적인 것으로, 도 11의 제1 내지 제k 단위 화소들(SSPX1 내지 SSPXk) 중 어느 하나에 동일 또는 유사하게 적용될 수 있다.
먼저 도 12를 참조하면, 단위 화소(SSPX1)는 데이터 신호에 대응하는 휘도로 발광하는 광원 유닛(LSU)을 포함할 수 있다. 또한, 단위 화소(SSPX1)는, 광원 유닛(LSU)을 구동하기 위한 화소 회로(PXC)를 선택적으로 더 포함할 수 있다.
실시예에 따라, 광원 유닛(LSU)은 제1 전원(VDD)과 제2 전원(VSS)의 사이에 전기적으로 연결된 복수의 발광 소자들(LD)을 포함할 수 있다. 일 실시예에서, 발광 소자들(LD)은 서로 병렬 구조로 연결될 수 있으나, 이에 한정되지는 않는다. 예를 들어, 제1 전원(VDD)과 제2 전원(VSS)의 사이에, 복수의 발광 소자들(LD)이 병렬 구조로 연결될 수도 있다.
제1 및 제2 전원들(VDD, VSS)은 발광 소자들(LD)이 발광할 수 있도록 서로 다른 전위를 가질 수 있다. 예를 들어, 제1 전원(VDD)은 고전위 전원으로 설정되고, 제2 전원(VSS)은 저전위 전원으로 설정될 수 있다. 여기서, 제1 및 제2 전원들(VDD, VSS)의 전위 차는 적어도 단위 화소(SSPX1)(또는, 제1 서브 화소(SPX1))의 발광 기간 동안 발광 소자들(LD)의 문턱 전압 이상으로 설정될 수 있다.
한편, 도 12에서는 발광 소자들(LD)이 제1 전원(VDD)과 제2 전원(VSS)의 사이에 서로 동일한 방향(일 예로, 순방향)으로 병렬 연결된 실시예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 발광 소자들(LD) 중 일부는 제1 및 제2 전원들(VDD, VSS)의 사이에 순방향으로 연결되어 각각의 유효 광원을 구성하고, 다른 일부는 역방향으로 연결될 수도 있다. 다른 예로, 단위 화소(SSPX1)가 단일의 발광 소자(LD)(예를 들어, 제1 및 제2 전원들(VDD, VSS)의 사이에 순방향으로 연결된 단일의 유효 광원)만을 포함할 수도 있다.
실시예에 따라, 발광 소자들(LD) 각각의 일 단부는, 제1 전극을 통해 해당 화소 회로(PXC)에 공통으로 접속되며, 화소 회로(PXC) 및 제1 전원선을 통해 제1 전원(VDD)에 접속될 수 있다. 발광 소자들(LD) 각각의 다른 단부는, 제2 전극 및 제2 전원선을 통해 제2 전원(VSS)에 공통으로 접속될 수 있다.
광원 유닛(LSU)은 해당 화소 회로(PXC)를 통해 공급되는 구동 전류에 대응하는 휘도로 발광할 수 있다. 이에 따라, 제1 표시 영역(DA1; 도 1, 도 9 참조)에서 소정의 영상이 표시될 수 있다.
화소 회로(PXC)는 해당 서브 화소(즉, 제1 서브 화소(SPX1))에 대응하는 주사선(Si) 및 데이터선(Dj)에 접속될 수 있다. 예를 들어, 제1 서브 화소(SPX1)가 제1 표시 영역(DA1)의 i번째 행 및 j번째 열에 배치된 경우, 단위 화소(SSPX)의 화소 회로(PXC)는 제1 표시 영역(DA1)의 i번째 주사선(Si) 및 j번째 데이터선(Dj)에 접속될 수 있다.
화소 회로(PXC)는 제1 및 제2 트랜지스터들(T1, T2)과 스토리지 커패시터(Cst)를 포함할 수 있다.
제1 트랜지스터(T1, 또는, 구동 트랜지스터)는 제1 전원(VDD)과 광원 유닛(LSU) 사이에 접속될 수 있다. 제1 트랜지스터(T1)의 게이트 전극은 제1 노드(N1)에 접속될 수 있다. 제1 트랜지스터(T1)는 제1 노드(N1)의 전압에 대응하여 광원 유닛(LSU)으로 공급되는 구동 전류를 제어할 수 있다.
제2 트랜지스터(T2, 또는, 스위칭 트랜지스터)는 데이터선(Dj)과 제1 노드(N1)의 사이에 접속될 수 있다. 제2 트랜지스터(T2)의 게이트 전극은 주사선(Si)에 접속될 수 있다.
제2 트랜지스터(T2)는, 주사선(Si)으로부터 게이트-온 전압(예컨대, 로우 전압)의 주사 신호에 응답하여 턴-온되어, 데이터선(Dj)과 제1 노드(N1)를 전기적으로 연결할 수 있다.
프레임 기간마다 데이터선(Dj)으로 해당 프레임의 데이터 신호가 공급되고, 데이터 신호는 제2 트랜지스터(T2)를 경유하여 제1 노드(N1)로 전달될 수 있다. 이에 따라, 스토리지 커패시터(Cst)에는 데이터 신호에 대응하는 전압이 충전될 수 있다.
스토리지 커패시터(Cst)의 일 전극은 제1 전원(VDD)에 접속되고, 다른 전극은 제1 노드(N1)에 접속될 수 있다. 스토리지 커패시터(Cst)는 각각의 프레임 기간 동안 제1 노드(N1)로 공급되는 데이터 신호에 대응하는 전압을 충전하고, 다음 프레임의 데이터 신호가 공급될 때까지 충전된 전압을 유지할 수 있다.
한편, 도 12에서는 화소 회로(PXC)에 포함되는 트랜지스터들, 일 예로, 제1 및 제2 트랜지스터들(T1, T2)이 모두 P타입의 트랜지스터들인 것으로 도시되어 있으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 제1 및 제2 트랜지스터들(T1, T2) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
예를 들어, 도 13에 도시된 바와 같이, 제1 및 제2 트랜지스터들(T1, T2)은 모두 N타입의 트랜지스터들일 수 있다. 이 경우, 각각의 프레임 기간 마다 데이터선(Dj)으로 공급되는 데이터 신호를 단위 화소(SSPX1_1)에 기입하기 위한 주사 신호의 게이트-온 전압은 하이 레벨 전압일 수 있다. 유사하게, 제1 트랜지스터(T1)를 턴-온시키기 위한 데이터 신호의 전압은 도 12의 실시예와 상반된 파형의 전압일 수 있다. 일 예로, 도 13의 실시예에서는 표현하고자 하는 계조 값이 클수록 보다 높은 전압 레벨을 가진 데이터 신호가 공급될 수 있다.
도 13에 도시된 단위 화소(SSPX1_1)는, 트랜지스터 타입 변경에 따라 일부 회로 소자의 접속 위치 및 제어 신호들(일 예로, 주사 신호 및 데이터 신호)의 전압 레벨이 변경되는 것을 제외하고, 그 구성 및 동작이 도 12의 단위 화소(SSPX1)와 실질적으로 유사하다. 따라서, 도 13의 단위 화소(SSPX1_1)에 대한 상세한 설명은 생략하기로 한다.
한편, 화소 회로(PXC)의 구조가 도 12 및 도 13에 도시된 실시예에 한정되지는 않는다. 즉, 화소 회로(PXC)는 현재 공지된 다양한 구조 및/또는 구동 방식의 화소 회로로 구성될 수 있다. 예를 들어, 화소 회로(PXC)는 도 14에 도시된 실시예와 같이 구성될 수도 있다.
도 14을 참조하면, 단위 화소(SSPX1_2) 내 화소 회로(PXC)는 해당 주사선(Si) 외에도 적어도 하나의 다른 주사선(또는, 제어선)에 더 접속될 수 있다. 예를 들어, 제1 표시 영역(DA1)의 i번째 행에 배치된 서브 화소(SPX)(또는, 이에 포함된 단위 화소(SSPX))의 화소 회로(PXC)는 i-1번째 주사선(Si-1) 및/또는 i+1번째 주사선(Si+1)에 더 접속될 수 있다. 또한, 실시예에 따라 화소 회로(PXC)는 제1 및 제2 전원들(VDD, VSS) 외에 다른 전원에 더 연결될 수 있다. 예를 들어, 화소 회로(PXC)는 초기화 전원(Vint)에도 연결될 수 있다.
실시예에 따라, 화소 회로(PXC)는 7개의 트랜지스터들(T1 내지 T7)을 포함할 수 있다. 상기 화소 회로(PXC)는 제1 내지 제7 트랜지스터들(T1 내지 T7)과 스토리지 커패시터(Cst)를 포함할 수 있다.
제1 트랜지스터(T1)는 제1 전원(VDD)과 광원 유닛(LSU) 사이에 접속될 수 있다. 제1 트랜지스터(T1)의 일 전극(예를 들어, 소스 전극)은 제5 트랜지스터(T5)를 통해 제1 전원(VDD)에 접속되고, 제1 트랜지스터(T1)의 다른 전극(예를 들어, 드레인 전극)은 제6 트랜지스터(T6)를 경유하여 광원 유닛(LSU)의 일 전극(예를 들어, 해당 서브 화소(SPX)의 제1 전극)에 접속될 수 있다. 제1 트랜지스터(T1)의 게이트 전극은 제1 노드(N1)에 접속될 수 있다. 제1 트랜지스터(T1)는 제1 노드(N1)의 전압에 대응하여 광원 유닛(LSU)으로 공급되는 구동 전류를 제어할 수 있다.
제2 트랜지스터(T2)는 데이터선(Dj)과 제1 트랜지스터(T1)의 일 전극 사이에 접속될 수 있다. 제2 트랜지스터(T2)의 게이트 전극은 해당 주사선(Si)에 접속될 수 있다. 제2 트랜지스터(T2)는 주사선(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 데이터선(Dj)을 제1 트랜지스터(T1)의 일 전극에 전기적으로 연결할 수 있다. 따라서, 제2 트랜지스터(T2)가 턴-온되면, 데이터선(Dj)으로부터 공급되는 데이터 신호가 제1 트랜지스터(T1)로 전달될 수 있다.
제3 트랜지스터(T3)는 제1 트랜지스터(T1)의 다른 전극(예를 들어, 드레인 전극)과 제1 노드(N1) 사이에 접속될 수 있다. 제3 트랜지스터(T3)의 게이트 전극은 해당 주사선(Si)에 접속될 수 있다. 제3 트랜지스터(T3)는 주사선(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 제1 트랜지스터(T1)를 다이오드 형태로 연결할 수 있다.
제4 트랜지스터(T4)는 제1 노드(N1)와 초기화 전원(Vint) 사이에 접속될 수 있다. 제4 트랜지스터(T4)의 게이트 전극은 이전 주사선, 일 예로 i-1번째 주사선(Si-1)에 접속될 수 있다. 제4 트랜지스터(T4)는 i-1번째 주사선(Si-1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 제1 노드(N1)로 전달할 수 있다. 여기서, 초기화 전원(Vint)의 전압은 데이터 신호의 최저 전압 이하일 수 있다.
제5 트랜지스터(T5)는 제1 전원(VDD)과 제1 트랜지스터(T1) 사이에 접속될 수 있다. 제5 트랜지스터(T5)의 게이트 전극은 해당 발광 제어선, 일 예로 i번째 발광 제어선(Ei)에 접속될 수 있다. 제5 트랜지스터(T5)는 발광 제어선(Ei)으로 게이트-오프 전압(일 예로, 하이 전압)의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온될 수 있다.
제6 트랜지스터(T6)는 제1 트랜지스터(T1)와 광원 유닛(LSU)의 제1 전극 사이에 접속될 수 있다. 제6 트랜지스터(T6)의 게이트 전극은 해당 발광 제어선, 일 예로 i번째 발광 제어선(Ei)에 접속될 수 있다. 제6 트랜지스터(T6)는 발광 제어선(Ei)으로 게이트-오프 전압의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온될 수 있다.
제7 트랜지스터(T7)는 광원 유닛(LSU)의 제1 전극과 초기화 전원(Vint)(또는, 초기화 전원을 전송하는 제3 전원선)의 사이에 접속될 수 있다. 제7 트랜지스터(T7)의 게이트 전극은 다음 단의 주사선들 중 어느 하나, 일 예로 i+1번째 주사선(Si+1)에 접속될 수 있다. 제7 트랜지스터(T7)는 i+1번째 주사선(Si+1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 광원 유닛(LSU)의 제1 전극으로 공급할 수 있다. 이 경우, 광원 유닛(LSU)으로 초기화 전원(Vint)의 전압이 전달되는 각각의 초기화 기간 동안, 광원 유닛(LSU)의 제1 전극의 전압이 초기화될 수 있다.
제7 트랜지스터(T7)의 동작을 제어하기 위한 제어 신호는 다양하게 변경될 수 있다. 예를 들어, 제7 트랜지스터(T7)의 게이트 전극이 해당 수평 라인의 주사선, 즉, i번째 주사선(Si)에 연결될 수도 있다. 이 경우, 제7 트랜지스터(T7)는 i번째 주사선(Si)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 광원 유닛(LSU)의 일 전극으로 공급할 수 있다.
스토리지 커패시터(Cst)는 제1 전원(VDD)과 제1 노드(N1)의 사이에 접속될 수 있다. 스토리지 커패시터(Cst)는 각 프레임 기간에 제1 노드(N1)로 공급되는 데이터 신호 및 제1 트랜지스터(T1)의 문턱전압에 대응하는 전압을 저장할 수 있다.
한편, 도 14에서는 화소 회로(PXC)에 포함되는 트랜지스터들, 예를 들어 제1 내지 제7 트랜지스터들(T1 내지 T7)을 모두 P타입의 트랜지스터들로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 일 예로, 제1 내지 제7 트랜지스터들(T1 내지 T7) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
실시예에 따라 화소 회로(PXC)는 데이터선(Dj) 외에 다른 배선에 더 연결될 수 있다.
도 15를 참조하면, 단위 화소(SSPX1_3) 내 화소 회로(PXC)는 센싱선(SENj)에 연결될 수 있다. 화소 회로(PXC)는 제1 내지 제3 트랜지스터들(T1 내지 T3)과 스토리지 커패시터(Cst)를 포함할 수 있다. 제1 및 제2 트랜지스터들(T1, T2) 및 스토리지 커패시터(Cst)는, 도 13을 참조하여 설명한 제1 및 제2 트랜지스터들(T1, T2) 및 스토리지 커패시터(Cst)와 각각 실질적으로 동일하거나 유사하므로, 중복되는 설명은 반복하지 않기로 한다.
제3 트랜지스터(T3)는 센싱선(SENj)과 제2 노드(N2) 사이에 접속될 수 있다. 제3 트랜지스터(T3)의 게이트 전극은 제1 주사선(S1)과 다른 제2 주사선(S2)(예를 들어, j번째 주사선(Sj)과 다른 j+1번째 주사선(Sj+1))에 연결될 수 있다.
광원 유닛(LSU)은 제2 노드(N2) 및 제2 전원선(즉, 제2 전원(VSS)이 인가된 전원선) 사이에 연결될 수 있다.
제3 트랜지스터(T3)는 제2 주사선(S2)으로부터 전송되는 게이트-온 전압의 주사 신호에 응답하여 턴-온되어, 센싱선(SENj)과 제2 노드(N2)를 전기적으로 연결할 수 있다.
예를 들어, 제1 트랜지스터(T1)에 기준 전압에 대응하는 구동 전류가 흐르는 상태에서 제3 트랜지스터(T3)가 턴온되는 경우, 제1 트랜지스터(T1)를 통해 흐르는 구동 전류가 제3 트랜지스터(T3) 및 센싱선(SENj)을 통해 외부 센싱 장치에 제공되며, 상기 구동 전류에 기초하여 제1 트랜지스터(T1)의 특성(예를 들어, Vth)에 대응하는 신호가 센싱선(SENj)을 통해 외부로 출력될 수 있다.
도 16을 참조하면, 단위 화소(SSPX1_4) 내 화소 회로(PXC)는 초기화 전원(Vint)이 제공되는 초기화 전압선에 연결될 수 있다. 화소 회로(PXC)는 제1 내지 제4 트랜지스터들(T1 내지 T4)과 스토리지 커패시터(Cst)를 포함할 수 있다. 제1 내지 제4 트랜지스터들(T1 내지 T4) 및 스토리지 커패시터(Cst)는, 각각 도 12를 참조하여 설명한 제1 및 제2 트랜지스터들(T1, T2), 도 14를 참조하여 설명한 제7 및 제6 트랜지스터(T7, T6) 및 스토리지 커패시터(Cst)와 각각 실질적으로 동일하거나 유사하므로, 중복되는 설명은 반복하지 않기로 한다.
도 17을 참조하면, 단위 화소(SSPX1_5)는 도 16의 단위 화소(SSPX1_4)와 유사하게 적용되되, 제2 트랜지스터가 N타입의 트랜지스터일 수 있다.
도 18을 참조하면, 단위 화소(SSPX1_6)는 도 16의 단위 화소(SSPX1_4)와 유사하게 적용되되, 제2 트랜지스터가 N타입의 트랜지스터이고, 제4 트랜지스터(T4)가 도 14를 참조하여 설명한 제5 트랜지스터와 동일하거나 유사하게 적용될 수 있다.
또한, 본 발명에 적용될 수 있는 단위 화소(SSPX1)의 구조가 도 12 내지 도 18에 도시된 실시예들에 한정되지는 않으며, 단위 화소(SSPX1)는 현재 공지된 다양한 구조를 가질 수 있다. 예를 들어, 단위 화소(SSPX1)에 포함된 화소 회로(PXC)는 현재 공지된 다양한 구조 및/또는 구동 방식의 화소 회로로 구성될 수 있다. 또한, 단위 화소(SSPX1)는 수동형 발광 패널 등의 내부에 구성될 수도 있다. 이 경우, 화소 회로(PXC)는 생략되고, 광원 유닛(LSU)의 제1 및 제2 전극들 각각은 주사선(Si), 데이터선(Dj), 전원선 및/또는 제어선 등에 직접 접속될 수도 있다.
도 19는 도 9의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다. 도 20은 도 9의 제1 표시장치에 포함된 다른 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다. 도 19는 제1 서브 표시 영역(DA11)에 배치되는 일 서브 화소 중 제2 서브 화소(SPX12)를 도시했고, 도 20은 제2 서브 표시 영역(DA12)에 배치되는 일 서브 화소 중 제5 서브 화소(SPX22)를 도시했다.
도 19 및 도 20에는 각 서브 화소(SPX12, SPX22)의 단위 화소들(SSPX1 내지 SSPX3)에 포함된 발광 유닛(LSU, 도 12 내지 도 18 참조)(또는, 발광 소자층)을 중심으로 단위 화소들(SSPX1 내지 SSPX3)의 구조가 도시되어 있다. 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3)은 상호 실질적으로 동일하므로, 제1 단위 화소(SSPX1)를 중심으로 발광 유닛(LSU)을 설명하기로 한다.
도 19를 참조하면, 제2 서브 화소(SPX12)의 제1 단위 화소(SSPX1)는 서로 이격되어 배치된 제1 전극(ETL1) 및 제2 전극들(ETL21, ETL22, ETL23)과, 제1 및 제2 전극들(ETL1, ETL21, ETL22, ETL23)의 사이에 연결된 적어도 하나의 발광 소자(LD)를 포함할 수 있다.
실시예에 따라, 동일한 단위 화소(SSPX1 내지 SSPX3)에 포함된 발광 소자들(LD)은 동일한 색상의 빛을 방출할 수 있다. 실시예에 따라, 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3)은 상이한 색상들의 빛을 방출하는 발광 영역을 정의할 수도 있다. 일 예로, 제1 단위 화소(SSPX1)는 적색으로 발광하는 발광 소자들(LD)을 포함하고, 제2 단위 화소(SSPX2)는 녹색으로 발광하는 발광 소자들(LD)을 포함하고, 제3 단위 화소(SSPX3)는 청색으로 발광하는 발광 소자들(LD)을 포함할 수 있다. 다른 예로, 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3)은 모두 청색의 빛을 방출하는 발광 소자들(LD)을 포함할 수도 있다. 이 경우, 풀-컬러의 화소(PXL)를 구성하기 위하여, 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3) 중 적어도 일부의 상부에는 해당 단위 화소에서 방출되는 빛의 색상을 변환하기 위한 광 변환층 및/또는 컬러 필터가 배치될 수도 있다.
일 실시예로, 제1 전극(ETL1)은 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3)이 공유하는 전극일 수 있다. 이 경우, 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3)은 제1 방향(DR1)을 따라 배치될 수 있다.
제2 전극들(ETL21, ETL22, ETL23)은 제1 전극으로부터 제2 방향(DR2) 일측에 이격되어 배치될 수 있다. 제1 내지 제3 단위 화소들(SSPX1 내지 SSPX3) 내 제2 전극들(ETL21, ETL22, ETL23)은 제1 방향(DR1)으로 배열될 수 있다.
제1 및 제2 전극들(ETL1, ETL21, ETL22, ETL23)은 소정의 간격만큼 이격되어 나란히(평행하게) 배치될 수 있다.
일 실시예로, 제1 전극(ETL1)은 제2 전원(VSS)에 전기적으로 접속된 캐소드 전극일 수 있다. 제2 전극들(ETL21, ETL22, ETL23)은 제1 전원(VDD)에 전기적으로 접속된 애노드 전극일 수 있다. 제1 전극(ETL1)과 제2 전극들(ETL21, ETL22, ETL23)에 각각 일 단부와 타 단부가 전기적으로 연결되는 발광 소자들(LD)이 배치됨으로써, 제1 전극(ETL1)과 각각의 제2 전극들(ETL21, ETL22, ETL23)은 전기적으로 연결될 수 있다.
일 실시예로, 하나의 단위 화소(예, SSPX1) 당 하나의 발광 영역을 정의할 수 있다. 발광 영역은 비발광 영역에 의해 구분될 수 있다. 명확히 도시하진 않았지만, 비발광 영역에는 발광 소자(LD)로부터 발산된 광이 다른 영역으로 투과되는 것을 차단하는 화소 정의막(또는, 뱅크, 차광 패턴) 등이 중첩되도록 배치될 수 있다.
일 실시예로, 제2 서브 화소(SPX12)는 제1 전극(ETL1)과 발광 소자들(LD)의 일 단부를 전기적으로 연결하는 제1 컨택 전극(CNE1)을 포함할 수 있다. 제1 컨택 전극(CNE1)은 제1 전극(ETL1)의 적어도 일부 영역과 중첩될 수 있다.
제2 서브 화소(SPX12)는 제1 컨택 전극(CNE1)과 동일한 공정에 의해 동시에 형성되는 안테나 패턴(ANTE)을 포함할 수 있다. 안테나 패턴(ANTE)은 제1 컨택 전극(CNE1)과 전기적으로 분리되어 절연될 수 있다. 안테나 패턴(ANTE)은 단위 화소마다 형성된 제1 컨택 전극(CNE1)들을 둘러싸는 형태일 수 있다. 본 도면에서 도시된 안테나 패턴(ANTE)은 도 10의 안테나 패턴(ANTE)에 대응될 수 있다.
안테나 패턴(ANTE)은 각 단위 화소들(SSPX1 내지 SSPX3)과 중첩할 수 있다. 안테나 패턴(ANTE)은 제1 서브 표시 영역(DA11) 내 서브 화소들(예, SPX11, SPX12, SPX13, SPX21, 도 9 참조) 마다 각각 형성될 수 있다. 안테나 패턴(ANTE)은 각 서브 화소 마다 형성된 하나의 전극 패턴일 수 있다. 명확히 도시되진 않았지만 인접한 서브 화소들에 위치한 안테나 패턴(ANTE)은 서로 전기적으로 연결될 수 있다. 다만, 안테나 패턴(ANTE)의 형상은 이에 제한되지 않고, 안테나 패턴(ANTE)이 각 단위 화소(SSPX1 내지 SSPX3)마다 형성될 수도 있고, 이 경우 안테나 패턴(ANTE)들은 별도의 연결 패턴(미도시)을 통해 서로 전기적으로 연결될 수도 있다.
도 20을 참조하면, 제5 서브 화소(SPX22)에는 도 19의 제2 서브 화소(SPX12)에 형성된 안테나 패턴(ANTE) 대신 안테나 패턴(ANTE)에 대응되는 위치에 터치 전극 패턴(TS)들이 형성될 수 있다.
터치 전극 패턴(TS)들은 제2 서브 표시 영역(DA12) 내 서브 화소들(예, SPX21, SPX22, 도 9 참조) 마다 각각 형성될 수 있다. 터치 전극 패턴(TS)들은 각 단위 화소(SSPX1 내지 SSPX3)마다 각각 형성되며, 인접한 터치 전극 패턴(TS)은 전기적으로 분리되어 절연될 수 있다. 본 도면에서 터치 전극 패턴(TS)들은 도 10의 터치 전극 패턴(TS)에 대응될 수 있다.
일 실시예로, 터치 전극 패턴(TS)들 중 일부는 구동 신호가 흐르는 구동 전극(TE)에 해당하고, 터치 전극 패턴(TS)들 중 나머지 일부는 센싱 신호가 흐르는 센싱 전극(RE)에 해당할 수 있다. 구동 전극(TE)과 센싱 전극(RE)은 뮤추얼 캡(mutual-cap) 또는 셀프 캡(self-cap) 방식으로 외부 입력을 감지할 수 있다.
다만, 터치 전극 패턴(TS)들의 배치 형상은 이에 제한되는 것은 아니고 서브 화소들 마다 각각 형성될 수도 있다. 또한, 다른 실시예에서 제2 서브 표시 영역(DA12) 내 적어도 일부 서브 화소에서 터치 전극 패턴(TS)들은 압전 센서 패턴(FS)으로 변경될 수도 있다.
제5 서브 화소(SPX22)의 제1 및 제2 전극들(ETL1, ETL21, ETL22, ETL23), 제1 컨택 전극(CNE1)들의 배치구조는 제2 서브 화소(SPX12)에서와 동일하므로 중복된 설명은 생략하기로 한다.
도 21은 제1 표시장치에서 도 19의 Ⅰ2-Ⅰ2'선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다. 도 22는 제1 표시장치에서 도 20의 Ⅰ3-Ⅰ3'선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 21 및 도 22를 참조하면, 제1 표시장치(DV1)는 표시기판(SUB_DA) 하부에 배치된 베이스 층(SUB1)을 포함할 수 있다. 베이스 층(SUB1)에 대한 설명은 도 9에서 상술하였으므로 중복된 설명은 생략하기로 한다.
베이스 층(SUB1) 상에는 제1 버퍼층(111)이 배치된다. 제1 버퍼층(111)은 베이스 층(SUB1)의 표면을 평활하게 하고, 수분 또는 외부 공기의 침투를 방지하는 기능을 한다. 제1 버퍼층(111)은 무기막일 수 있다. 제1 버퍼층(111)은 단일막 또는 다층막일 수 있다
제1 버퍼층(111) 상에는 복수의 트랜지스터들(Tdr, Tsw)이 배치된다. 여기서, 각 트랜지스터들(Tdr, Tsw)은 박막 트랜지스터일 수 있다. 도면에 도시된 두 트랜지스터들(Tdr, Tsw)은 각각 구동 트랜지스터와 스위치 트랜지스터에 해당한다.
각 트랜지스터들(Tdr, Tsw)은 각각 반도체 패턴(ACT1, ACT2), 게이트 전극(GE1, GE2), 소스 전극(SDE2, SDE4), 드레인 전극(SDE1, SDE3)을 포함할 수 있다. 예를 들어, 구동 트랜지스터인 제1 트랜지스터(Tdr)는 제1 반도체 패턴(ACT1), 제1 게이트 전극(GE1), 제1 소스 전극(SDE2) 및 제1 드레인 전극(SDE1)을 포함할 수 있다. 스위치 트랜지스터인 제2 트랜지스터(Tsw)는 제2 반도체 패턴(ACT2), 제2 게이트 전극(GE2), 제2 소스 전극(SDE4) 및 제2 드레인 전극(SDE3)을 포함할 수 있다.
구체적으로 설명하면, 제1 버퍼층(111) 상에 반도체층이 배치된다. 반도체층은 상술한 제1 반도체 패턴(ACT1) 및 제2 반도체 패턴(ACT2)을 포함할 수 있다. 또한, 반도체층은 제3 반도체 패턴(ACT3)을 더 포함할 수 있다.
반도체층은 비정질 실리콘(amorphous silicon), 폴리 실리콘(poly silicon), 저온 폴리 실리콘(low temperature poly silicon) 및 유기 반도체를 포함할 수 있다. 다른 실시예에서, 반도체층은 산화물 반도체일 수도 있다. 명확히 도시하지는 않았지만, 반도체층은 채널 영역과, 채널 영역의 양 측에 배치되며, 불순물이 도핑된 소스 영역 및 드레인 영역을 포함할 수 있다.
반도체층 상에는 제1 게이트 절연막(112)이 배치된다. 제1 게이트 절연막(112)은 무기막일 수 있다. 제1 게이트 절연막(112)은 단일막 또는 다층막일 수 있다.
제1 게이트 절연막(112) 상에는 제1 도전층이 배치된다. 제1 도전층은 상술한 제1 게이트 전극(GE1) 및 제2 게이트 전극(GE2)을 포함할 수 있다. 또한, 제1 도전층은 제1 저전원 패턴(VSSL1)을 더 포함할 수 있다. 제1 도전층은 도전성을 가지는 금속 물질로 형성될 수 있다. 예를 들면, 제1 도전층은 몰리브덴(Mo), 알루미늄(Al), 구리(Cu), 타이타늄(Ti)을 포함할 수 있다. 제1 도전층은 단일막 또는 다층막일 수 있다.
제1 저전원 패턴(VSSL1)은 제2 전원선과 전기적으로 연결될 수 있다. 제1 저전원 패턴(VSSL1)은 제1 표시 영역(DA1)에 배치되며, 제3 반도체 패턴(ACT3)과 중첩할 수 있다.
제1 도전층 상에 제2 게이트 절연막(113)이 배치된다. 제2 게이트 절연막(113)은 무기막일 수 있다. 제2 게이트 절연막(113)은 단일막 또는 다층막일 수 있다.
제2 게이트 절연막(113) 상에는 제2 도전층이 배치된다. 제2 도전층은 제3 게이트 전극(GE4)을 포함할 수 있다. 제3 게이트 전극(GE4)은 도시되지 않은 다른 트랜지스터의 게이트 전극일 수 있으나, 이에 제한되는 것은 아니다. 제2 도전층은 도전성을 가지는 금속 물질로 형성될 수 있다. 예를 들면, 제2 도전층은 몰리브덴(Mo), 알루미늄(Al), 구리(Cu), 타이타늄(Ti)을 포함할 수 있다. 제2 도전층은 단일막 또는 다층막일 수 있다.
제2 도전층 상에는 층간 절연막(114)이 배치된다. 층간 절연막(114)은 유기막 또는 무기막일 수 있다. 층간 절연막(114)은 단일막 또는 다층막일 수 있다.
층간 절연막(114) 상에는 제3 도전층이 배치된다. 제3 도전층은 상술한 소스 전극들(SDE2, SDE4) 및 드레인 전극들(SDE1, SDE3)을 포함할 수 있다. 또한, 제3 도전층은 제2 저전원 패턴(VSSL2)을 더 포함할 수 있다. 제3 도전층은 도전성을 가지는 금속 물질로 형성된다. 예를 들면, 소스 전극들(SDE2, SDE4), 드레인 전극들(SDE1, SDE3) 및 제2 저전원 패턴(VSSL2)은 알루미늄(Al), 구리(Cu), 타이타늄(Ti), 몰리브덴(Mo)을 포함할 수 있다.
제2 저전원 패턴(VSSL2)은 제2 전원선과 전기적으로 연결될 수 있다. 제2 저전원 패턴(VSSL2)은 제2 게이트 절연막(113) 및 층간 절연막(114)을 관통하는 컨택홀을 통해 제1 저전원 패턴(VSSL1)과 접촉할 수 있다. 제2 저전원 패턴(VSSL2)은 제1 표시 영역(DA1)에 배치되며, 제1 저전원 패턴(VSSL1) 및 제3 반도체 패턴(ACT3)과 중첩할 수 있다.
소스 전극들(SDE2, SDE4) 및 드레인 전극들(SDE1, SDE3)은 명칭에 제한되는 것은 아니다. 다른 실시예에서, 도 14에 도시된 소스 전극들(SDE2, SDE4)이 드레인 전극의 기능을 수행할 수도 있고, 도 14에 도시된 드레인 전극들(SDE1, SDE3)이 소스 전극의 기능을 수행할 수도 있다.
소스 전극들(SDE2, SDE4)과 드레인 전극들(SDE1, SDE3)은 층간 절연막(114), 제2 게이트 절연막(113) 및 제1 게이트 절연막(112)을 관통하는 컨택홀을 통하여 대응되는 각 반도체 패턴(ACT1, ACT2)의 소스 영역 및 드레인 영역에 각각 전기적으로 연결될 수 있다.
별도 도시하지는 않았지만, 제1 표시장치(DV1)는 베이스 층(SUB1) 상에 배치된 스토리지 커패시터를 더 포함할 수도 있다.
제3 도전층 상에 제1 보호층(121)이 배치된다. 여기서, 제1 보호층(121)은 트랜지스터들(Tdr, Tsw)를 포함하는 회로부를 덮도록 배치된다. 제1 보호층(121)은 제1 비표시 영역(NDA1)의 적어도 일부에도 배치될 수 있다. 제1 보호층(121)은 패시베이션막 또는 평탄화막일 수 있다. 패시베이션막은 SiO2, SiNx 등을 포함할 수 있고, 평탄화막은 아크릴, 폴리이미드와 같은 재질을 포함할 수 있다. 제1 보호층(121)은 패시베이션막과 평탄화막을 모두 포함할 수도 있다. 이 경우, 제3 도전층 및 층간 절연막(114) 상에 패시베이션막이 배치되고, 패시베이션막 상에 평탄화막이 배치될 수 있다. 제1 보호층(121)의 상면은 평탄할 수 있다.
제1 보호층(121)의 상에는 제4 도전층이 배치될 수 있다. 제4 도전층은 전원 배선, 신호 배선, 및 연결 전극과 같은 여러 도전 패턴 등을 포함할 수 있다. 도면상 제4 도전층은 제1 표시 영역(DA1)에 배치되는 제1 연결 패턴(CE1)을 포함하는 것을 예시했다. 제4 도전층은 도전성을 가지는 금속 물질로 형성된다. 예를 들면, 제4 도전층은 알루미늄(Al), 구리(Cu), 타이타늄(Ti), 몰리브덴(Mo)을 포함할 수 있다.
제1 연결 패턴(CE1)은 제1 보호층(121)을 관통하는 일 컨택홀을 통해 제1 트랜지스터(Tdr)의 소스 전극(SDE2) 및 드레인 전극(SDE1) 중 어느 하나에 접촉할 수 있다.
제4 도전층 상에 제2 보호층(122)이 배치된다. 제2 보호층(122)은 패시베이션막 또는 평탄화막일 수 있다. 패시베이션막은 SiO2, SiNx 등을 포함할 수 있고, 평탄화막은 아크릴, 폴리이미드와 같은 재질을 포함할 수 있다. 제2 보호층(122)은 패시베이션막과 평탄화막을 모두 포함할 수도 있다.
한편, 제2 보호층(122)은 제4 도전층에 포함된 일부 제4 도전층의 일부 부재의 상부를 노출하는 개구부를 포함할 수 있다. 예를 들어, 제2 보호층(122)은 제1 연결 패턴(CE1)의 적어도 일부를 노출하는 개구부를 포함할 수 있다.
본 명세서에서, 베이스 층(SUB1) 내지 제2 보호층(122)을 화소 회로층이라고 명명하기로 한다. 즉, 화소 회로층은 표시기판(SUB_DA)에서 복수의 트랜지스터를 포함하는 층들에 해당한다.
제1 표시장치(DV1)는 제2 보호층(122) 상에 순차적으로 배치된 제1 및 제2 격벽들(PW1, PW2), 제1 및 제2 전극(ETL1, ETL21), 제1 절연층(131), 발광 소자들(LD), 제2 절연층(132), 제1 및 제2 컨택 전극들(CNE1, CNE21), 제3 절연층(133) 및 박막 봉지층(141)을 포함할 수 있다.
제1 및 제2 격벽들(PW1, PW2)은 화소 회로층(즉, 제2 보호층(122)) 상에 배치될 수 있다. 제1 및 제2 격벽들(PW1, PW2)은 화소 회로층 상에서 두께 방향(예, 제3 방향(DR3))으로 돌출될 수 있다. 실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 실질적으로 서로 동일한 높이를 가질 수 있으나, 이에 한정되지는 않는다. 예를 들어, 제1 및 제2 격벽들(PW1, PW2)의 돌출 높이는 각각 약 1.0μm 내지 1.5μm일 수 있다.
일 실시예로, 제1 격벽(PW1)은, 화소 회로층과 제1 전극(ETL1)의 사이에 배치될 수 있다. 제2 격벽(PW2)은, 화소 회로층과 제2 전극들(ETL21, ETL22, ETL23)의 사이에 배치될 수 있다.
실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 다양한 형상을 가질 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 도면에 도시된 바와 같이 상부로 갈수록 폭이 좁아지는 사다리꼴의 단면 형상을 가질 수 있다. 이 경우, 제1 및 제2 격벽들(PW1, PW2) 각각은 적어도 일 측면에서 경사면을 가질 수 있다.
도시하진 않았지만, 다른 예로, 제1 및 제2 격벽들(PW1, PW2)은 상부로 갈수록 폭이 좁아지는 반원 또는 반타원의 단면을 가질 수도 있다. 이 경우, 제1 및 제2 격벽들(PW1, PW2) 각각은 적어도 일 측면에서 곡면을 가질 수 있다. 즉, 본 발명에서 제1 및 제2 격벽들(PW1, PW2)의 형상이 특별히 한정되지는 않으며, 이는 다양하게 변경될 수 있다. 또한, 실시예에 따라서는 제1 및 제2 격벽들(PW1, PW2) 중 적어도 하나가 생략되거나, 그 위치가 변경될 수도 있다.
제1 및 제2 격벽들(PW1, PW2)은 무기 재료 및/또는 유기 재료를 포함하는 절연 물질을 포함할 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 SiNx 또는 SiOx 등을 비롯하여 현재 공지된 다양한 무기 절연 물질을 포함하는 적어도 한 층의 무기막을 포함할 수 있다. 또는, 제1 및 제2 격벽들(PW1, PW2)은 현재 공지된 다양한 유기 절연 물질을 포함하는 적어도 한 층의 유기막 및/또는 포토레지스트막 등을 포함하거나, 유/무기 물질을 복합적으로 포함하는 단일층 또는 다중층의 절연체로 구성될 수도 있다. 즉, 제1 및 제2 격벽들(PW1, PW2)의 구성 물질은 다양하게 변경될 수 있다.
일 실시예에서, 제1 및 제2 격벽들(PW1, PW2)은 반사 부재로 기능할 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 그 상부에 제공된 제1 및 제2 전극(ETL1, ETL21)과 함께 각각의 발광 소자(LD)에서 출사되는 광을 원하는 방향으로 유도하여 화소(PXL)의 광 효율을 향상시키는 반사 부재로 기능할 수 있다.
제1 및 제2 격벽들(PW1, PW2)의 상부에는 제1 및 제2 전극(ETL1, ETL21)이 각각 배치될 수 있다. 제1 및 제2 전극(ETL1, ETL21)은 서로 이격되어 배치될 수 있다. 제1 및 제2 전극(ETL1, ETL21)은 동일 층에 형성될 수 있다.
일 실시예로, 제1 및 제2 격벽들(PW1, PW2)의 상부에 각각 배치되는 제1 및 제2 전극(ETL1, ETL21) 등은 제1 및 제2 격벽들(PW1, PW2) 각각의 형상에 상응하는 형상을 가질 수 있다. 예를 들어, 제1 및 제2 전극(ETL1, ETL21)은, 제1 및 제2 격벽들(PW1, PW2)에 대응하는 경사면 또는 곡면을 각각 가지면서, 제1 표시장치(DV1)의 두께 방향으로 돌출될 수 있다.
제1 및 제2 전극(ETL1, ETL21) 각각은 적어도 하나의 도전성 물질을 포함할 수 있다. 일 예로, 제1 및 제2 전극(ETL1, ETL21) 각각은, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Ti, 이들의 합금과 같은 금속, ITO, IZO, ZnO, ITZO와 같은 도전성 산화물, PEDOT와 같은 도전성 고분자 중 적어도 하나의 물질을 포함할 수 있으나, 이에 한정되지는 않는다.
또한, 제1 및 제2 전극(ETL1, ETL21) 각각은 단일층 또는 다중층으로 구성될 수 있다. 일 예로, 제1 및 제2 전극(ETL1, ETL21) 각각은 적어도 한 층의 반사 전극층을 포함할 수 있다. 또한, 제1 및 제2 전극(ETL1, ETL21) 각각은, 반사 전극층의 상부 및/또는 하부에 배치되는 적어도 한 층의 투명 전극층과, 상기 반사 전극층 및/또는 투명 전극층의 상부를 커버하는 적어도 한 층의 도전성 캡핑층 중 적어도 하나를 선택적으로 더 포함할 수 있다.
실시예에 따라, 제1 및 제2 전극(ETL1, ETL21) 각각의 반사 전극층은, 균일한 반사율을 갖는 전극 물질로 구성될 수 있다. 일 예로, 반사 전극층은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, 이들의 합금과 같은 금속 중 적어도 하나를 포함할 수 있으나, 이에 한정되지는 않는다. 즉, 반사 전극층은 다양한 반사성 전극 물질로 구성될 수 있다. 제1 및 제2 전극(ETL1, ETL21) 각각이 반사 전극층을 포함할 경우, 발광 소자들(LD) 각각의 양단, 즉, 일 단부들 및 타 단부들에서 방출되는 광을 화상이 표시되는 방향(일 예로, 제3 방향(DR3), 정면 방향)으로 더욱 진행되게 할 수 있다. 특히, 제1 및 제2 전극(ETL1, ETL21)이 제1 및 제2 격벽들(PW1, PW2)의 형상에 대응되는 경사면 또는 곡면을 가지면서 발광 소자들(LD)의 일 단부들 및 타 단부들에 마주하도록 배치되면, 발광 소자들(LD) 각각의 일 단부들 및 타 단부들에서 출사된 광은 제1 및 제2 전극(ETL1, ETL21)에 의해 반사되어 더욱 제1 표시장치(DV1)의 정면 방향(일 예로, 베이스 층(SUB1)의 상부 방향인 제3 방향(DR3))으로 진행될 수 있다. 이에 따라, 발광 소자들(LD)에서 출사되는 광의 효율이 향상될 수 있다.
또한, 제1 및 제2 전극(ETL1, ETL21) 각각의 투명 전극층은, 다양한 투명 전극 물질로 구성될 수 있다. 일 예로, 투명 전극층은 ITO, IZO 또는 ITZO를 포함할 수 있으나, 이에 한정되지는 않는다. 일 실시예에서, 제1 및 제2 전극(ETL1, ETL21) 각각은, ITO/Ag/ITO의 적층 구조를 가지는 3중층으로 구성될 수 있다. 이와 같이, 제1 및 제2 전극(ETL1, ETL21)이 적어도 2중층 이상의 다중층으로 구성되면, 신호 지연(RC delay)에 의한 전압 강하를 최소화할 수 있다. 이에 따라, 발광 소자들(LD)로 원하는 전압을 효과적으로 전달할 수 있게 된다.
추가적으로, 제1 및 제2 전극(ETL1, ETL21) 각각이, 반사 전극층 및/또는 투명 전극층을 커버하는 도전성 캡핑층을 포함하게 되면, 화소(PXL)의 제조 공정 등에서 발생하는 불량으로 인해 제1 및 제2 전극(ETL1, ETL21)의 반사 전극층 등이 손상되는 것을 방지할 수 있다. 다만, 도전성 캡핑층은 제1 및 제2 전극(ETL1, ETL21)에 선택적으로 포함될 수 있는 것으로서, 실시예에 따라서는 생략될 수 있다. 또한, 도전성 캡핑층은 제1 및 제2 전극(ETL1, ETL21) 각각의 구성 요소로 간주되거나, 또는 상기 제1 및 제2 전극(ETL1, ETL21) 상에 배치된 별개의 구성 요소로 간주될 수도 있다.
일 실시예로, 제2 전극들(ETL21, ETL22, ETL23)은 제1 연결 패턴(CE1)과 적어도 일부 영역이 중첩될 수 있다. 제2 전극들(ETL21, ETL22, ETL23)은 제2 보호층(122)을 관통하는 컨택홀들(CH)을 통해 제1 연결 패턴(CE1)에 접촉될 수 있다.
제1 표시 영역(DA1)에서 제1 및 제2 전극(ETL1, ETL21)의 일 영역 상에는 제1 절연층(131)이 배치될 수 있다. 예를 들어, 제1 절연층(131)은, 제1 및 제2 전극(ETL1, ETL21)의 일 영역을 커버하도록 형성되며, 제1 및 제2 전극(ETL1, ETL21)의 다른 일 영역을 노출하는 개구부를 포함할 수 있다.
일 실시예에서, 제1 절연층(131)은, 일차적으로 제1 및 제2 전극(ETL1, ETL21)을 전면적으로 커버하도록 형성될 수 있다. 제1 절연층(131) 상에 발광 소자들(LD)이 공급 및 정렬된 이후, 제1 절연층(131)은 제1 및 제2 전극(ETL1, ETL21)을 노출하도록 부분적으로 개구될 수 있다. 또는, 제1 절연층(131)은, 발광 소자들(LD)이 공급 및 정렬이 완료된 이후, 발광 소자들(LD)의 하부에 국부적으로 배치되는 개별 패턴의 형태로 패터닝될 수도 있다.
즉, 제1 절연층(131)은 제1 및 제2 전극(ETL1, ETL21)과 발광 소자들(LD)의 사이에 개재되되, 제1 및 제2 전극(ETL1, ETL21) 각각의 적어도 일 영역을 노출할 수 있다. 제1 절연층(131)은 제1 및 제2 전극(ETL1, ETL21)이 형성된 이후 제1 및 제2 전극(ETL1, ETL21)을 커버하도록 형성되어, 후속 공정에서 제1 및 제2 전극(ETL1, ETL21)이 손상되거나 금속이 석출되는 것을 방지할 수 있다. 또한, 제1 절연층(131)은, 각각의 발광 소자(LD)를 안정적으로 지지할 수 있다. 실시예에 따라서는 제1 절연층(131)은 생략될 수도 있다.
제1 절연층(131)이 영역에는 발광 소자들(LD)이 공급 및 정렬될 수 있다. 일 예로, 잉크젯 방식 등을 통해 발광 소자들(LD)이 공급되고, 발광 소자들(LD)은 제1 및 제2 전극(ETL1, ETL21)에 인가되는 소정의 정렬 전압(또는, 정렬 신호)에 의해 제1 및 제2 전극(ETL1, ETL21)의 사이에 정렬될 수 있다.
일 실시예로, 제1 절연층(131)의 두께는 약 2500_(옴스트롱) 내지 3500_일 수 있다.
제1 절연층(131) 상에는 뱅크(BNK)가 배치될 수 있다. 일 예로, 뱅크(BNK)는 각 서브 화소(도 11의 SPX11~SPX23)를 둘러싸도록 다른 서브 화소들 사이에 형성되어, 발광 영역을 구획하는 화소 정의막을 구성할 수 있다.
실시예들에 따라, 뱅크(BNK)는, 동일 서브 화소(SPX11~SPX23) 내 단위 화소들(SSPX1~SSPXk) 사이에는 배치되지 않을 수 있으나, 이에 한정되는 것은 아니다.
제2 절연층(132)은, 발광 소자들(LD), 특히, 제1 및 제2 전극(ETL1, ETL21)의 사이에 정렬된 발광 소자들(LD)의 상부에 배치되며, 발광 소자들(LD)의 일 단부들 및 타 단부들을 노출할 수 있다. 예를 들어, 제2 절연층(132)은 발광 소자들(LD)의 일 단부들 및 타 단부들은 커버하지 않고, 발광 소자들(LD)의 일 영역 상부에만 부분적으로 배치될 수 있다. 제2 절연층(132)은 각각의 발광 영역 상에 독립된 패턴으로 형성될 수 있으나, 이에 한정되지는 않는다. 또한, 도 21 및 도 22에 도시된 바와 같이, 제2 절연층(132)의 형성 이전에 제1 절연층(131)과 발광 소자들(LD)의 사이에 이격 공간이 존재하였을 경우, 공간은 제2 절연층(132)에 의해 채워질 수 있다. 이에 따라, 발광 소자들(LD)은 보다 안정적으로 지지될 수 있다.
일 실시예로, 제2 절연층(132)의 두께는 약 7500_ 내지 8500_일 수 있다.
제1 및 제2 컨택 전극들(CNE1, CNE21)은, 제1 및 제2 전극(ETL1, ETL21)과, 발광 소자들(LD)의 일 단부들 및 타 단부들 상에 배치될 수 있다.
일 실시예에서, 제1 및 제2 컨택 전극들(CNE1, CNE21)은, 도 21 및 도 22에 도시된 바와 같이 서로 다른 층에 배치될 수 있다.
제2 컨택 전극(CNE21)은 제2 전극들(ETL21, ETL22, ETL23)과 접촉되도록 제2 전극들(ETL21, ETL22, ETL23) 상에 배치될 수 있다. 일 예로, 제2 컨택 전극(CNE21)은 제1 절연층(131)에 의해 커버되지 않은 제2 전극(ETL21)의 일 영역 상에서 제2 전극(ETL21)과 접촉되도록 배치될 수 있다. 또한, 제2 컨택 전극(CNE21)은 제2 전극(ETL21)에 인접한 발광 소자의 일 단부들과 접촉되도록 상기 일 단부들 상에 배치될 수 있다. 즉, 제2 컨택 전극(CNE21)은 발광 소자들(LD)의 일 단부와 이에 대응하는 제2 전극(ETL21)의 적어도 일 영역을 커버하도록 배치될 수 있다. 이에 의해, 발광 소자들(LD)의 일 단부가 각 제2 전극(ETL21)에 전기적으로 연결될 수 있다.
한편, 제2 컨택 전극(CNE21)과 동일한 층에 제1 브릿지 패턴 및 제2 브릿지 패턴이 배치될 수 있다. 제1 브릿지 패턴(BE1), 제2 브릿지 패턴(BE2) 및 제2 컨택 전극(CNE21)은 동일한 공정에 의해 동시에 형성될 수 있다.
제1 브릿지 패턴(BE1)은 인접하는 안테나 패턴(ANTE)들을 전기적으로 연결할 수 있다. 제1 브릿지 패턴(BE1)은 제1 절연층(131) 및 뱅크(BNK) 상에 배치되며, 뱅크(BNK)를 넘어 인접한 서브 화소에 걸쳐 형성될 수 있다.
제2 브릿지 패턴(BE2)은 인접하는 터치 전극 패턴(TS)들을 전기적으로 연결할 수 있다. 제2 브릿지 패턴(BE2)은 제1 절연층(131) 및 뱅크(BNK) 상에 배치되며, 뱅크(BNK)를 넘어 인접한 서브 화소에 걸쳐 형성될 수 있다.
제3 절연층(133)은, 제1 및 제2 격벽들(PW1, PW2), 제1 및 제2 전극(ETL1, ETL21), 발광 소자들(LD), 제2 컨택 전극(CNE1, CNE21), 제1 및 제2 브릿지 패턴(BE1, BE2) 및 뱅크(BNK)를 커버하도록, 제1 및 제2 격벽들(PW1, PW2), 제1 및 제2 전극(ETL1, ETL21), 발광 소자들(LD), 제2 컨택 전극(CNE1, CNE21), 제1 및 제2 브릿지 패턴(BE1, BE2) 및 뱅크(BNK) 상에 배치될 수 있다.
일 실시예로, 제3 절연층(133)의 두께는 약 2500_(옴스트롱) 내지 3500_일 수 있다. 제3 절연층(133)에는 제1 브릿지 패턴(BE1)의 적어도 일부를 노출하는 제1 컨택홀들 및 제2 브릿지 패턴(BE2)의 적어도 일부를 노출하는 제2 컨택홀들이 형성될 수 있다.
실시예에 따라, 제1 내지 제3 절연층들(131, 132, 133) 각각은, 단일층 또는 다중층으로 구성될 수 있으며, 적어도 하나의 무기 절연 재료 및/또는 유기 절연 재료를 포함할 수 있다. 예를 들어, 제1 내지 제3 절연층들(131, 132, 133) 각각은, SiNx를 비롯하여 현재 공지된 다양한 종류의 유/무기 절연 물질을 포함할 수 있으며, 제1 내지 제3 절연층들(131, 132, 133) 각각의 구성 물질이 특별히 한정되지는 않는다. 또한, 제1 내지 제3 절연층들(131, 132, 133)은 서로 다른 절연 물질을 포함하거나, 또는 제1 내지 제3 절연층들(131, 132, 133) 중 적어도 일부는 서로 동일한 절연 물질을 포함할 수 있다.
제3 절연층(133) 상에 제1 컨택 전극(CNE1)이 배치될 수 있다. 일 예로, 제1 컨택 전극(CNE1)은 제1 절연층(131)에 의해 커버되지 않은 제1 전극(ETL1)의 일 영역 상에서 제1 전극(ETL1)과 접촉되도록 배치될 수 있다. 또한, 제1 컨택 전극(CNE1)은 제1 전극(ETL1)에 인접한 발광 소자의 타 단부들과 접촉되도록 상기 타 단부들 상에 배치될 수 있다. 즉, 제1 컨택 전극(CNE1)은 발광 소자들(LD)의 타 단부와 이에 대응하는 제1 전극(ETL1)의 적어도 일 영역을 커버하도록 배치될 수 있다. 이에 의해, 발광 소자들(LD)의 타 단부가 각 제1 전극(ETL1)에 전기적으로 연결될 수 있다.
한편, 제1 컨택 전극(CNE1)과 동일한 층에 안테나 패턴(ANTE) 및 터치 전극 패턴(TS)이 배치될 수 있다. 안테나 패턴(ANTE), 터치 전극 패턴(TS) 및 제1 컨택 전극(CNE1)은 동일한 공정에 의해 동시에 형성될 수 있다.
일 실시예로, 제1 및 제2 컨택 전극들(CNE1, CNE21)은 발광 소자들(LD)로부터 방출되는 광이 투과할 수 있도록 ITO, IZO, ITZO와 같은 투명 도전성 물질로 구성될 수 있다. 마찬가지로, 안테나 패턴(ANTE) 및 터치 전극 패턴(TS)은 ITO, IZO, ITZO와 같은 투명 도전성 물질로 구성될 수 있다.
안테나 패턴(ANTE)은 제1 컨택홀(CNT1)들을 통해 제1 브릿지 패턴(BE1)에 접촉하고, 터치 전극 패턴(TS)은 제2 컨택홀(CNT2)들을 통해 제2 브릿지 패턴(BE2)에 접촉할 수 있다.
안테나 패턴(ANTE), 터치 전극 패턴(TS) 및 제1 컨택 전극(CNE1) 상에 적어도 한 층의 무기막 및/또는 유기막을 포함하는 봉지층(141)을 포함할 수 있다. 봉지층(141)은 또 하나의 절연층일 수 있다. 여기서 봉지층(141)은 도 10의 봉지층(TFE)에 대응한다. 실시예에 따라 봉지층(141)은 생략될 수도 있다.
본 명세서에서, 제1 및 제2 격벽들(PW1, PW2) 내지 제1 컨택 전극(CNE1)을 발광 소자층이라고 명명하기로 한다. 즉, 발광 소자층은 표시기판(SUB_DA)에서 발광 소자들을 포함하는 층들에 해당한다.
안테나 패턴(ANTE)의 전자기파는 제1 표시장치(DV1)의 전면 또는 후면으로 방사될 수 있다. 특히, 제1 표시장치(DV1)는 안테나 패턴(ANTE) 상에 다른 도전 물질이 배치되지 않으므로, 5G 주파수 대역(예컨대, 28GHz 내지 39GHz 대역)에서 손실(loss)을 최소화하여 통신이 가능하다.
제1 표시장치(DV1)의 안테나 패턴(ANTE)에 대한 설명은 제2 내지 제4 표시장치(DV1~DV4)에도 마찬가지로 적용될 수 있다.
도 23은 본 발명의 일 실시예에 따른 비디오 월 디스플레이시스템의 각 표시장치의 구동 신호를 나타낸 개념도이다.
도 23을 참조하면, 비디오 월 디스플레이시스템(1)의 각 표시장치(DV1~DV4)는 상술한 안테나 패턴(ANTE)을 구비하며, 최소한의 손실률로 5G 주파수 대역의 통신이 가능하다.
이에 따라, 컨트롤 유닛(MC)으로부터 각 표시장치(DV1~DV4)에 무선 신호(SG_MC)가 제공되고, 각 표시장치(DV1~DV4)가 수신한 신호들(SG1~SG4) 사이의 지연 시간(latency)이 극히 짧거나, 실질적으로 발생하지 않을 수 있다.
이에 따라, 사용자는 비디오 월 디스플레이시스템(1)의 각 표시장치(DV1~DV4)를 보고 제1 내지 제4 서브 이미지(IM21~IM24)가 하나의 이미지처럼 느낄 수 있다.
다음으로, 다른 실시예에 따른 비디오 월 디스플레이시스템에 대해 설명하기로 한다. 이하, 도 1 내지 도 23과 도면상의 동일한 구성 요소에 대해서는 설명을 생략하고, 동일하거나 유사한 참조 부호를 사용하였다.
도 24는 본 발명의 다른 실시예에 따른 비디오 월 디스플레이시스템에 대한 사시도이다.
도 24를 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(2)은 도 1의 비디오 월 디스플레이시스템(1) 대비, 컨트롤 유닛(MC)의 기능이 제1 표시장치(DV1)에 병합되어 있는 점에서 그 차이가 있다.
제1 표시장치(DV1_MC)는 도 1 및 도 2에서 상술한 제1 표시장치(DV1)기능과 컨트롤 유닛(MC)의 기능을 함께 가질 수 있다. 이외, 제1 표시장치(DV1_MC) 및 제2 내지 제4 표시장치(DV2~DV4)에 대한 설명은 도 3 내지 도 23에서 설명한 내용이 유사하게 적용될 수 있으므로, 중복된 설명은 생략하기로 한다.
도 25 및 도 26은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시 장치의 표시기판 내지 봉지층을 자른 단면도들이다. 도 25 및 도 26은 각각 도 21 및 도 22의 변형예에 해당한다.
도 25 및 도 26을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(3)의 제1 표시장치는 도 21 및 도 22의 실시예 대비, 제1 브릿지 패턴(BE1_1) 및 제2 브릿지 패턴(BE2_1)이 제1 전극 및 제2 전극(ETL1, ETL21)과 동일한 층에 형성되는 점에서 그 차이가 있다.
안테나 패턴(ANTE)은 제1 컨택홀(CNT1)을 통해 제2 컨택 전극(CNE21)과 동일한 층에 형성된 제2 연결 패턴(CE2)에 접촉하고, 제2 연결 패턴(CE2)은 제1 브릿지 패턴(BE1_1)과 접촉할 수 있다. 제1 브릿지 패턴(BE1_1)은 뱅크(BNK)의 하부를 지나 인접한 서브 화소의 안테나 패턴(ANTE)과 전기적으로 연결될 수 있다.
안테나 패턴(ANTE)은 제1 컨택홀(CNT1)을 통해 제2 컨택 전극(CNE21)과 동일한 층에 형성된 제2 연결 패턴(CE2)에 접촉하고, 제2 연결 패턴(CE2)은 제1 브릿지 패턴(BE1_1)과 접촉할 수 있다. 제1 브릿지 패턴(BE1_1)은 뱅크(BNK)의 하부를 지나 인접한 서브 화소의 안테나 패턴(ANTE)과 전기적으로 연결될 수 있다.
터치 전극 패턴(TS)(예, 구동 전극(TE))은 제2 컨택홀을 통해 제2 컨택 전극(CNE21)과 동일한 층에 형성된 제3 연결 패턴(CE3)에 접촉하고, 제3 연결 패턴(CE3)은 제2 브릿지 패턴(BE2_1)과 접촉할 수 있다. 제2 브릿지 패턴(BE2_1)은 뱅크(BNK)의 하부를 지나 인접한 서브 화소의 터치 전극 패턴(TS)과 전기적으로 연결될 수 있다.
도 27은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다. 도 28은 제1 표시장치에서 도 27의 Ⅱ2-Ⅱ2'선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다. 이하에서는, 제5 서브 화소에 포함된 터치 전극 패턴의 형상은 제2 서브 화소에 포함된 안테나 패턴의 형상과 동일하고 기능만 차이가 있으므로, 제2 서브 화소를 기준으로 설명하되, 중복된 설명은 생략하기로 한다.
도 27 및 도 28을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(4)의 제1 표시장치는 도 19 및 도 21의 실시예 대비, 안테나 패턴(ANTE) 및 터치 전극 패턴이 제2 컨택 전극(CNE21)과 동일층에 형성되는 점에서 그 차이가 있다.
안테나 패턴(ANTE) 및 터치 전극 패턴은 제2 컨택 전극(CNE21)과 동일층에 형성될 수 있다. 안테나 패턴(ANTE) 및 터치 전극 패턴은 각각 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)과 비중첩 하며, 서로 전기적으로 분리될 수 있다. 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)은 평면상 안테나 패턴(ANTE) 및 터치 전극 패턴에 둘러싸일 수 있다.
제1 브릿지 패턴(BE1_2)은 제2 컨택 전극(CNE21)과 동일한 층이 형성될 수 있다. 제1 브릿지 패턴(BE1_2)은 제1 컨택홀을 통해 안테나 패턴(ANTE)과 연결될 수 있다. 제1 브릿지 패턴(BE1_2)은 뱅크(BNK)를 넘어 인접한 화소간 안테나 패턴(ANTE)들을 전기적으로 연결할 수 있다.
도 29는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다. 도 30은 제1 표시장치에서 도 29의 Ⅲ2- Ⅲ2'선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 29 및 도 30을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(5)의 제1 표시장치는 도 19 및 도 21의 실시예 대비, 안테나 패턴(ANTE), 터치 전극 패턴, 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)이 모두 동일층에 형성되는 점에서 그 차이가 있다.
안테나 패턴(ANTE), 터치 전극 패턴, 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)은 동일한 공정에 의해 동시에 형성될 수 있다. 안테나 패턴(ANTE), 터치 전극 패턴, 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)은 서로 전기적으로 분리될 수 있다. 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)은 평면상 안테나 패턴(ANTE) 및 터치 전극 패턴에 둘러싸일 수 있다.
도 31은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다.
도 31을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치는 도 19의 실시예 대비, 안테나 패턴(ANTE) 및 터치 전극 패턴이 제1 전극(ETL1) 및 제2 전극(ETL21, ETL22, ETL23)과 동일한 층에 형성되는 점에서 그 차이가 있다.
안테나 패턴(ANTE), 터치 전극 패턴이, 제1 전극(ETL1) 및 제2 전극(ETL21, ETL22, ETL23)은 동일한 공정에 의해 동시에 형성될 수 있다. 안테나 패턴(ANTE), 터치 전극 패턴이, 제1 전극(ETL1) 및 제2 전극(ETL21, ETL22, ETL23)은 서로 전기적으로 분리될 수 있다.
도 32는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에서 표시기판 내지 봉지층을 자른 단면도이다. 도 33은 도 32의 일 변형예이다.
도 32를 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(6)의 제1 표시장치는 도 19 및 도 21의 실시예 대비, 차폐 전극(SM)을 더 포함하는 점과 안테나 패턴(ANTE) 및 터치 전극 패턴이 차폐 전극(SM)과 동일층에 형성되는 점에서 그 차이가 있다.
제1 절연층(131), 제1 전극(ETL1) 및 제2 전극(ETL21) 상에 각 발광 소자(LD)들이 정렬되는 영역을 둘러싸도록 베이스 차폐 전극(SM)이 형성될 수 있고, 발광 소자(LD)들이 정렬된 뒤, 베이스 차폐 전극(SM)을 패터닝하여 차폐 전극(SM)과 안테나 패턴(ANTE)을 형성할 수 있다.
일 실시예로, 베이스 차폐 전극(SM)은 Cr/CrOx, CrOx, MoOx, 탄소 안료, RGB안료 중 적어도 하나로 이루어진 외광 흡수재료를 포함할 수 있다.
일 실시예로, 차폐 전극(SM)은 제2 컨택 전극(CNE21) 하부에 직접 배치될 수 있다. 차폐 전극(SM)은 제2 전극(ETL21)과 제2 컨택 전극(CNE21) 사이에 배치될 수 있다.
명확히 도시되진 않았지만, 안테나 패턴(ANTE)은 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE21)을 둘러싸도록 형성될 수 있다.
일 실시예로, 브릿지 패턴(BE1_3)은 제2 컨택 전극(CNE21)과 동일한 층에 형성될 수 있다. 브릿지 패턴(BE1_3)은 안테나 패턴(ANTE) 상에 직접 패터닝되어, 뱅크(BNK)를 넘어가도록 형성될 수 있다. 브릿지 패턴(BE1_3)은 인접한 서브 화소에 각각 배치된 안테나 패턴(ANTE)들을 전기적으로 연결시킬 수 있다.
도 33을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(6_1)에서 브릿지 패턴(BE1_4)은 제1 컨택 전극(CNE21)과 동일한 층에 형성될 수 있다. 브릿지 패턴(BE1_4)은 안테나 패턴(ANTE) 상에 직접 패터닝되어, 뱅크(BNK)를 넘어가도록 형성될 수 있다. 브릿지 패턴(BE1_4)은 인접한 서브 화소에 각각 배치된 안테나 패턴(ANTE)들을 전기적으로 연결시킬 수 있다.
도 34는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다. 도 35는 제1 표시장치에서 도 34의 Ⅳ2- Ⅳ2’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다. 도 36은 도 34의 일 변형예이다.
도 34 및 도 35를 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(7)의 제1 표시장치는 도 19 및 도 21의 실시예 대비, 안테나 패턴(ANTE)이 형성된 도전층이 봉지층(141) 상에 별도 배치되는 점에서 그 차이가 있다.
일 실시예로, 안테나 패턴(ANTE)은 봉지층(141) 상에 배치되며, 다중층으로 이루어질 수 있다. 예를 들어, 안테나 패턴(ANTE)은 차례로 적층된 제1 안테나 패턴층(ANTE1)과 제2 안테나 패턴층(ANTE2)을 포함할 수 있다.
제1 안테나 패턴층(ANTE1)은 발광 소자(LD)가 정렬되는 영역과 비중첩할 수 있다. 일 실시예로 제1 안테나 패턴층(ANTE1)은 외광을 반사할 수 있는 금속 또는 투명 전극을 포함할 수 있다. 일 예로, 제1 안테나 패턴층(ANTE1)은 외광을 반사할 수 있는 크롬(Cr), 타이타늄(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), 이들의 산화물 또는 합금을 포함하거나, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZnO(Zinc Oxide), ITZO(Indium Tin Zinc Oxide)와 같은 투명 전극 물질을 포함할 수 있다.
제2 안테나 패턴층(ANTE2)은 제1 안테나 패턴층(ANTE1)에서 예로서 상술한 투명 전극 물질을 포함할 수 있다. 제2 안테나 패턴층(ANTE2)은 외광 반사로 인한 시인성을 개선하는 기능을 포함할 수 있다.
도 36을 참조하면, 안테나 패턴(ANTE)은 슬릿 패턴(SLP)을 포함할 수도 있다. 이러한 슬릿 패턴(SLP)은 시인성을 개선하고, 노이즈를 감소하는 기능을 포함할 수 있다.
안테나 패턴(ANTE)이 형성되는 과정에서, 슬릿 패턴(SLP)이 형성될 부분에 안테나 패턴(ANTE)이 제거될 수 있다.
도 37은 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 포함된 일 서브 화소의 배치를 개략적으로 나타내는 평면 배치도이다. 도 38은 제1 표시장치에서 도 37의 Ⅴ-Ⅴ’선에 대응하는 표시기판 내지 봉지층을 자른 단면도이다.
도 37 및 도 38을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(8)의 제1 표시장치는 도 19 및 도 21의 실시예 대비, 발광 소자(LD)가 배열되는 영역이 원형일 수 있다.
제1 전극(ELT1)과 제2 전극(ELT21) 사이의 형상은 원형일 수 있다. 제2 전극(ELT21)은 원형일 수 있고, 제2 전극(ELT21)은 제1 전극(ELT1)에 둘러싸일 수 있다. 발광 소자들(LD)은 제2 전극(ELT21)을 중심으로 방사형으로 배치될 수 있다. 이에 따라, 발광 소자들(LD)에서 방출된 광은 특정 방향으로 집중되지 않고, 균일한 출광 분포를 가지는 제1 표시장치를 제공할 수 있다.
도면상 격벽이 생략된 것으로 도시하였지만, 이에 제한되는 것은 아니다.
도 39는 본 발명의 또 다른 실시예에 따른 비디오 월 디스플레이시스템의 제1 표시장치에 대한 사시도이다. 도 40은 도 39에 도시된 제1 표시장치의 개략적인 단면도이다. 도 41은 도 40의 AA영역을 확대한 확대도이다.
도 39 내지 도 41을 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(9)의 제1 표시장치는 도 1 및 도 10의 실시예 대비, 스피커 부재를 더 포함하는 점에서 그 차이가 있다.
스피커 부재(SPC)는 표시기판(SUB_DA)에서 상대적으로 하부에 위치한 영역에 인접하여 배치될 수 있다. 본 실시예에서 스피커 부재(SPC)는 제2 보호 필름(PF2)과 제1 연성 회로 기판(FPC1) 사이에 배치되는 것을 예시했다. 다른 실시예에서 스피커 부재(SPC)는 표시기판(SUB_DA)의 배면에 직접 실장될 수도 있다.
스피커 부재(SPC)는 표시기판(SUB_DA)의 하부에 인접해 위치해 표시기판(SUB_DA)의 상부에서 시인되는 것을 방지한다.
스피커 부재(SPC)는 제1 진동 신호에 응답하여 진동을 발생함으로써 제1 진동을 출력할 수 있다. 스피커 부재(SPC)는 제1 진동을 통해 표시기판(SUB_DA)을 진동시켜 제1 음향을 출력할 수 있다. 이를 위해, 스피커 부재(SPC)는 제1 진동 신호에 응답하여 변형되는 진동층(530)에 의해 진동할 수 있다. 또는, 스피커 부재(SPC)는 자석을 감싸는 코일에 제1 진동 신호에 따른 전류를 흘림으로써 발생하는 전자기력에 의해 진동할 수 있다. 이하에서는, 스피커 부재(SPC)가 진동층(530)에 의해 진동함으로써 음향을 발생하는 것을 중심으로 설명하였다.
스피커 부재(SPC)는 제1 스피커 전극(510), 제2 스피커 전극(520), 진동층(530) 및 스피커 기판(540)을 포함할 수 있다.
제1 스피커 전극(510)은 스피커 기판(540)의 제1 면 상에 배치되고, 제1 스피커 전극(510) 상에는 진동층(530)이 배치되며, 진동층(530) 상에는 제2 스피커 전극(520)이 배치될 수 있다.
제1 스피커 전극(510)과 제2 스피커 전극(520)은 도전성 물질로 형성될 수 있다. 예를 들어, 도전성 물질은 ITO(indium Tin Oxide) 및 IZO(indium Zinc Oxide)와 같은 투명 도전성 물질(transparent conductive material), 불투명한 금속 물질, 도전성 폴리머, 탄소 나노 튜브(CNT) 등일 수 있다.
진동층(530)은 제1 스피커 전극(510)에 인가된 전압과 제2 스피커 전극(520)에 인가된 전압 차에 따라 변형되는 피에조 액츄에이터(piezo actuator)일 수 있다. 이 경우, 진동층(530)은 PVDF(Poly Vinylidene Fluoride) 필름이나 PZT(지르콘 티탄삽 납 세라믹) 등의 압전체, 전기 활성 고분자(Electro Active Polymer) 중 적어도 어느 하나일 수 있다.
이 경우, 진동층(530)은 제1 스피커 전극(510)에 인가되는 제1 구동 전압과 제2 스피커 전극(520)에 인가되는 제2 구동 전압 간의 차이에 따라 수축하거나 이완 또는 팽창하게 된다. 제1 스피커 전극(510)에 인가되는 제1 구동 전압과 제2 스피커 전극(520)에 인가되는 제2 구동 전압이 정극성과 부극성으로 교대로 반복되는 경우, 진동층(530)은 수축과 이완을 반복하게 된다. 이로 인해, 스피커 부재(SPC)는 진동하게 되며, 이로 인해 표시기판(SUB_DA)은 상하로 진동하므로 제1 음향을 출력할 수 있다.
일 실시예로, 스피커 부재(SPC)는 중음 영역과 고음 영역의 대역을 재생할 수 있다. 예를 들어, 스피커 부재(SPC)는 약 4kHz 내지 20kHz 대역의 주파수의 제1 음향을 재생할 수 있다. 예를 들어, 스피커 부재(SPC)는 트위터(tweeter)일 수 있다.
도 42는 도 1의 일 변형예이다.
도 42를 참조하면, 본 실시예에 따른 비디오 월 디스플레이시스템(1_1)에서 제1 내지 제4 표시장치(DV1~DV4)의 배치 형태가 비정형일 수 있다.
제1 내지 제4 표시장치(DV1~DV4)는 각각 네트워크 통신부(270, 도 2 참조) 서로 무선 네트워크로 연결될 수 있으므로, 자유로운 배치가 가능하다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (26)

  1. 복수의 트랜지스터를 포함하는 화소 회로층;
    상기 화소 회로층 상의 동일 층에 형성되는 제1 전극, 및 제2 전극;
    상기 제1 전극과 상기 제2 전극 사이에 배치되는 발광 소자; 및
    상기 발광 소자 상에 배치되는 안테나 패턴을 포함하는 표시장치.
  2. 제1 항에 있어서,
    상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 제1 컨택 전극을 더 포함하는 표시장치.
  3. 제2 항에 있어서,
    상기 안테나 패턴은 상기 제1 컨택 전극과 동일 층에 형성되는 표시장치.
  4. 제3 항에 있어서,
    상기 안테나 패턴과 상기 제1 컨택 전극은 전기적으로 분리된 표시장치.
  5. 제3 항에 있어서,
    상기 발광 소자의 타 단부와 상기 제2 전극을 전기적으로 연결하는 제2 컨택 전극을 더 포함하는 표시장치.
  6. 제5 항에 있어서,
    상기 제1 컨택 전극은 상기 제2 컨택 전극 상에 배치되는 표시장치.
  7. 제5 항에 있어서,
    상기 안테나 패턴은 상기 제2 컨택 전극에 중첩되고,
    상기 안테나 패턴과 상기 제2 컨택 전극 사이에 배치되는 절연층을 더 포함하는 표시장치.
  8. 제7 항에 있어서,
    상기 제2 컨택 전극과 동일 층에 형성되는 제1 브릿지 패턴을 더 포함하되,
    상기 안테나 패턴은 상기 절연층에 형성된 제1 컨택홀을 통해 상기 제1 브릿지 패턴에 연결되는 표시장치.
  9. 제5 항에 있어서,
    상기 제1 컨택 전극, 상기 제2 컨택 전극, 및 상기 안테나 패턴은 동일층에 배치되되, 서로 전기적으로 분리된 표시장치.
  10. 제1 항에 있어서,
    상기 안테나 패턴과 동일층에 형성되는 터치 전극 패턴을 더 포함하는 표시장치.
  11. 제10 항에 있어서,
    상기 안테나 패턴, 및 상기 터치 전극 패턴과 동일층에 배치되는 제1 컨택 전극을 더 포함하되,
    상기 제1 컨택 전극은 상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 표시장치.
  12. 제1 항에 있어서,
    상기 안테나 패턴의 송수신 주파수는 28GHz 내지 39GHz인 표시장치.
  13. 제1 항에 있어서,
    상기 안테나 패턴은 투명 도전성 물질을 포함하는 표시장치.
  14. 제1 항에 있어서,
    상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 제1 컨택 전극; 및
    상기 발광 소자의 타 단부와 상기 제2 전극을 전기적으로 연결하는 제2 컨택 전극을 더 포함하되,
    상기 제1 컨택 전극은 상기 제2 컨택 전극 상에 배치되고,
    상기 안테나 패턴은 상기 제2 컨택 전극 하부에 배치되는 표시장치.
  15. 제1 항에 있어서,
    상기 발광 소자의 일 단부와 상기 제1 전극을 전기적으로 연결하는 제1 컨택 전극; 및
    상기 발광 소자의 타 단부와 상기 제2 전극을 전기적으로 연결하는 제2 컨택 전극을 더 포함하되,
    상기 안테나 패턴은 상기 제1 컨택 전극, 및 상기 제2 컨택 전극 상에 배치되는 표시장치.
  16. 제15 항에 있어서,
    상기 제1 컨택 전극, 및 상기 제2 컨택 전극 상에 배치되는 봉지층을 더 포함하되,
    상기 안테나 패턴은 상기 봉지층 상에 배치되고,
    상기 봉지층은 적어도 한 층의 무기막, 및 유기막을 포함하는 표시장치.
  17. 복수의 표시장치들을 구비한 비디오 월 디스플레이시스템에 있어서,
    상기 복수의 표시장치들 각각은,
    표시기판; 및
    상기 표시기판의 상부에 배치된 안테나 패턴을 포함하되,
    상기 표시기판은,
    복수의 트랜지스터를 포함하는 화소 회로층;
    상기 화소 회로층 상의 동일 층에 형성되는 제1 전극, 및 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 배치되는 발광 소자를 포함하는 비디오 월 디스플레이시스템.
  18. 제17 항에 있어서,
    상기 복수의 표시장치들은 무선 네트워크로 연결된 비디오 월 디스플레이시스템.
  19. 제17 항에 있어서,
    상기 표시기판은 벤딩된 영역을 포함하는 비디오 월 디스플레이시스템.
  20. 제17 항에 있어서,
    상기 표시기판 하부에 배치되는 무선 전력 전송용 안테나를 더 포함하는 비디오 월 디스플레이시스템.
  21. 제17 항에 있어서,
    상기 표시기판 하부에 배치되는 스피커 모듈을 더 포함하는 비디오 월 디스플레이시스템.
  22. 제21 항에 있어서,
    상기 스피커 모듈은,
    제1 스피커 전극, 제2 스피커 전극, 및 상기 제1 스피커 전극과 상기 제2 스피커 전극 사이에 배치된 진동층을 포함하는 비디오 월 디스플레이시스템.
  23. 제22 항에 있어서,
    상기 진동층은 PVDF(Poly Vinylidene Fluoride), PZT(지르콘 티탄삽 납 세라믹), 및 전기 활성 고분자(Electro Active Polymer) 중 적어도 하나를 포함하는 비디오 월 디스플레이시스템.
  24. 복수의 표시장치들을 구비한 비디오 월 디스플레이시스템에 있어서,
    상기 복수의 표시장치들 각각은,
    복수의 트랜지스터 및 복수의 발광 소자들을 포함하는 표시기판;
    상기 표시기판 상에 배치되는 안테나 패턴; 및
    상기 안테나 패턴을 통해 상기 비디오 월 디스플레이 시스템 내 다른 표시장치들과 무선 신호를 송수신하는 네트워크 통신부를 포함하는 비디오 월 디스플레이시스템.
  25. 제24 항에 있어서,
    상기 복수의 발광 소자들 각각은 수백 나노 스케일 내지 수 마이크로 스케일 범위의 직경 및 길이를 갖는 비디오 월 디스플레이시스템.
  26. 제24 항에 있어서,
    상기 복수의 표시장치들 중 적어도 하나에 무선 네트워크로 연결된 컨트롤 유닛을 더 포함하되,
    상기 컨트롤 유닛은 사용자의 명령이 입력되는 비디오 월 디스플레이시스템.
PCT/KR2020/016018 2019-12-11 2020-11-13 표시장치 및 이를 포함하는 비디오 월 디스플레이시스템 WO2021118082A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/784,455 US20230006103A1 (en) 2019-12-11 2020-11-13 Display device and video wall display system including same
CN202080084932.2A CN114787901A (zh) 2019-12-11 2020-11-13 显示装置及包括该显示装置的视频墙显示系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190165087A KR20210074458A (ko) 2019-12-11 2019-12-11 표시장치 및 이를 포함하는 비디오 월 디스플레이시스템
KR10-2019-0165087 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021118082A1 true WO2021118082A1 (ko) 2021-06-17

Family

ID=76330523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016018 WO2021118082A1 (ko) 2019-12-11 2020-11-13 표시장치 및 이를 포함하는 비디오 월 디스플레이시스템

Country Status (4)

Country Link
US (1) US20230006103A1 (ko)
KR (1) KR20210074458A (ko)
CN (1) CN114787901A (ko)
WO (1) WO2021118082A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220007830A (ko) * 2020-07-10 2022-01-19 삼성디스플레이 주식회사 회로 기판 및 이를 포함하는 표시 장치
WO2024005312A1 (ko) * 2022-06-27 2024-01-04 삼성전자 주식회사 전자 장치 및 전자 장치의 확장 디스플레이 설정 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180000707A (ko) * 2015-10-23 2018-01-03 애플 인크. 이중 주파수 패치 안테나를 구비한 무선 충전 및 통신 시스템
KR20180016175A (ko) * 2016-08-05 2018-02-14 한국산업기술대학교산학협력단 월 디스플레이 시스템 및 월 디스플레이 시스템 운용 방법
KR20180072909A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
US20190028669A1 (en) * 2017-07-18 2019-01-24 Lg Display Co., Ltd. Display Apparatus
US20190173034A1 (en) * 2016-07-15 2019-06-06 Samsung Display Co., Ltd. Light emitting display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180014255A (ko) * 2009-11-13 2018-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 이 표시 장치를 구비한 전자 기기
US10756118B2 (en) * 2016-11-30 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
KR102389346B1 (ko) * 2017-04-03 2022-04-25 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180000707A (ko) * 2015-10-23 2018-01-03 애플 인크. 이중 주파수 패치 안테나를 구비한 무선 충전 및 통신 시스템
US20190173034A1 (en) * 2016-07-15 2019-06-06 Samsung Display Co., Ltd. Light emitting display device
KR20180016175A (ko) * 2016-08-05 2018-02-14 한국산업기술대학교산학협력단 월 디스플레이 시스템 및 월 디스플레이 시스템 운용 방법
KR20180072909A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
US20190028669A1 (en) * 2017-07-18 2019-01-24 Lg Display Co., Ltd. Display Apparatus

Also Published As

Publication number Publication date
KR20210074458A (ko) 2021-06-22
US20230006103A1 (en) 2023-01-05
CN114787901A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2019208880A1 (ko) 발광 장치, 이를 구비한 표시 장치, 및 그의 제조 방법
WO2020013403A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 포함한 표시 장치
WO2020059989A1 (ko) 표시 장치 및 그의 제조 방법
WO2020017719A1 (ko) 발광 장치 및 이를 구비한 표시 장치
WO2020080624A1 (ko) 표시 장치
EP3837718A1 (en) Display module and manufacturing method of display module
WO2021125421A1 (ko) 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2020111417A1 (ko) 표시 장치 및 그의 제조 방법
WO2020171322A1 (ko) 발광 소자 및 이를 구비한 표시 장치
WO2020054994A1 (ko) 유기 발광표시 장치
WO2021118082A1 (ko) 표시장치 및 이를 포함하는 비디오 월 디스플레이시스템
WO2020130493A1 (en) Display module and manufacturing method of display module
WO2022114734A1 (ko) 디스플레이 모듈
WO2021118081A1 (ko) 표시 장치 및 그의 제조 방법
WO2023277504A1 (ko) 화소 및 이를 구비한 표시 장치
WO2022103144A1 (ko) 디스플레이 모듈 및 이를 포함하는 디스플레이 장치
WO2022086021A1 (ko) 표시 장치
WO2021010627A1 (ko) 화소, 이를 구비한 표시 장치 및 그의 제조 방법
WO2023211102A1 (ko) 표시 장치
WO2023146054A1 (ko) 표시 장치 및 이를 포함하는 타일형 표시 장치
WO2022108307A1 (ko) 디스플레이 모듈, 디스플레이 장치 및 그 제조방법
WO2022139330A1 (ko) 표시 장치
WO2022085923A1 (ko) 표시 장치 및 그의 제조 방법
WO2023128564A1 (ko) 표시 장치
WO2023146060A1 (ko) 표시 장치 및 이를 포함한 타일형 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899463

Country of ref document: EP

Kind code of ref document: A1