WO2021117271A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2021117271A1
WO2021117271A1 PCT/JP2020/023658 JP2020023658W WO2021117271A1 WO 2021117271 A1 WO2021117271 A1 WO 2021117271A1 JP 2020023658 W JP2020023658 W JP 2020023658W WO 2021117271 A1 WO2021117271 A1 WO 2021117271A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
sound control
radial direction
control body
holes
Prior art date
Application number
PCT/JP2020/023658
Other languages
English (en)
French (fr)
Inventor
大雅 石原
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP20900095.9A priority Critical patent/EP4074525A4/en
Publication of WO2021117271A1 publication Critical patent/WO2021117271A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/12Puncture preventing arrangements
    • B60C19/122Puncture preventing arrangements disposed inside of the inner liner

Definitions

  • the present invention relates to a pneumatic tire.
  • Patent Document 1 describes this kind of sound control body.
  • the sound control body can convert the vibration energy of air or gas in the tire cavity into thermal energy and suppress the cavity resonance in the tire cavity.
  • Patent Document 2 describes that a non-woven fabric is used as a sound control body.
  • the sound control bodies described in Patent Document 1 and Patent Document 2 are mounted on the inner surface of the tread portion. From the viewpoint of suppressing the cavity resonance in the lumen of the tire, the sound control body is preferably mounted not only on the inner surface of the tread portion but also on the inner surface of the sidewall portion.
  • the sound control bodies described in Patent Documents 1 and 2 are mounted on the inner surface of the sidewall portion, the sound control body cannot follow the repeated bending deformation that occurs in the sidewall portion, and the sound control body cannot follow the sound control body. There was a problem that it was damaged and deteriorated.
  • An object of the present invention is to provide a pneumatic tire provided with a sound control body having a shape that easily follows the bending deformation of the sidewall portion.
  • the pneumatic tire as the first aspect of the present invention includes a sound control body mounted on the inner surface of the sidewall portion, and the sound control body is formed with a plurality of through holes penetrating in the tire width direction.
  • the sound control body can be deformed in the tire radial direction by following the deformation of the sidewall portion in the tire radial direction and changing the length of the through hole in the tire radial direction.
  • FIG. 5 is an enlarged cross-sectional view showing a part of the tire circumferential cross section of the tire shown in FIG. 2 in an enlarged manner.
  • FIG. 5 is a schematic diagram which shows the outline of an example of the attachment method of the sound control body shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view of a part of a tire circumferential cross section of a pneumatic tire provided with a sound control body as a modification of the sound control body shown in FIG. 1.
  • FIG. 1 is a diagram showing a pneumatic tire 1 (hereinafter, simply referred to as “tire 1”) as an embodiment of a pneumatic tire according to the present invention. More specifically, FIG. 1 is a cross-sectional view of the tire 1 in the tire width direction.
  • the "tire width direction cross section” means a cross section in a plane parallel to the central axis of the tire and including the central axis of the tire.
  • the tire 1 of the present embodiment includes a pair of bead portions 2, a sidewall portion 3 connected to each bead portion 2, and a tread portion 4 connected to the sidewall portion 3. Further, the tire 1 includes a carcass 5 straddling between the pair of bead cores 2a embedded in the pair of bead portions 2.
  • the tire 1 includes a belt 6 arranged outside the tire radial direction A of the crown portion of the carcass 5. Further, the tire 1 includes a tread rubber 7 arranged outside the tire radial direction A of the belt 6 and a side rubber 8 arranged outside the tire width direction B of the side portion of the carcass 5. Further, the tire 1 includes an inner liner 9 laminated on the inner surface of the carcass 5.
  • the bead portion 2 of the tire 1 of the present embodiment includes a bead filler 2b arranged outside the tire radial direction A of the bead core 2a in addition to the bead core 2a described above.
  • the bead filler 2b of the present embodiment has a substantially triangular outer shape in a cross-sectional view in the tire width direction, but the cross-sectional shape thereof is not particularly limited.
  • the configuration of the bead portion 2 of the tire 1 is not limited to the configuration shown in FIG. Therefore, the cross-sectional shape, size, and material of the bead core 2a and the bead filler 2b are not particularly limited.
  • the tire 1 may be configured not to include the bead core 2a and the bead filler 2b.
  • the carcass 5 of the present embodiment is composed of one carcass ply made of organic fibers, but the structure of the carcass 5 is not particularly limited. Therefore, the number and materials of the carcass ply constituting the carcass 5 are not particularly limited.
  • the belt 6 of the present embodiment is composed of two belt layers 6a and 6b laminated in the tire radial direction A.
  • Each of the belt layers 6a and 6b is formed of a belt ply in which belt cords such as steel cords are inclined and arranged at an angle of 10 ° to 40 ° with respect to the tire circumferential direction C.
  • the two belt plies are stacked so that the directions of inclination of the belt cords are different from each other. Therefore, the belt cords intersect each other between the belt plies, the belt rigidity is increased, and the substantially entire width of the tread portion 4 can be reinforced by the tag effect.
  • the configuration of the belt 6 is not particularly limited. Therefore, the material of the belt cord in the belt 6, the number of driving, the inclination angle, the number of belt layers, and the like are not particularly limited.
  • the tread rubber 7 constitutes an outer surface of the tread portion 4 in the tire radial direction A (hereinafter, referred to as "tread outer surface").
  • tread outer surface On the outer surface of the tread, a tread pattern including a circumferential groove 7a extending in the tire circumferential direction C, a width direction groove (not shown) extending in the tire width direction B, and the like is formed.
  • the side rubber 8 constitutes the outer surface of the sidewall portion 3 in the tire width direction B, and is integrally formed with the above-mentioned tread rubber 7.
  • the materials of the tread rubber 7 and the side rubber 8 are also not particularly limited.
  • the inner liner 9 is laminated on the inner surface of the carcass 5, and is formed of, for example, butyl rubber having low air permeability.
  • the butyl rubber means butyl rubber and a halogenated butyl rubber which is a derivative thereof.
  • the inner liner 9 can also be formed of any known material, and the material is not particularly limited.
  • the tire 1 includes a sound control body 10 mounted on the inner surface of the sidewall portion 3.
  • the sound control body 10 may be attached only to the inner surface of one sidewall portion 3, but as in the present embodiment, the sidewall portions 3 on both sides are respectively attached. It is preferably mounted on the inner surface of the. By doing so, the cavity resonance can be further suppressed.
  • the sound control body 10 is a porous body such as a sponge material.
  • the sound control body 10 of the present embodiment has a flat outer shape in a cross-sectional view in the tire width direction shown in FIG. 1, but the shape thereof is not particularly limited.
  • the size of the sound control body 10 is not particularly limited, but the volume of the sound control body 10 is preferably 0.1% to 80% of the total volume of the lumen of the tire 1.
  • the sound control property can be improved by setting the volume of the sound control body 10 to 0.1% or more of the total volume of the lumen of the tire 1.
  • the volume of the sound control body 10 to 80% or less of the total volume of the lumen of the tire 1, the weight increase due to the sound control body 10 can be suppressed.
  • the “volume” referred to here is defined as a state in which the tire 1 is removed from the rim at room temperature and under normal pressure. Further, the “total product of the lumen of the tire” means the total product when the tire 1 is attached to the applicable rim and the specified internal pressure is applied.
  • the sponge material can be a sponge-like porous structure, and includes, for example, a so-called sponge having open cells in which rubber or synthetic resin is foamed. Further, the sponge material includes, in addition to the above-mentioned sponge, a web-like material in which animal fibers, plant fibers, synthetic fibers and the like are entwined and integrally connected.
  • the above-mentioned "porous structure” is not limited to a structure having open cells, but also includes a structure having closed cells.
  • the sponge material as described above converts the vibration energy of air in which the voids formed on the surface or inside vibrate into heat energy. As a result, cavity resonance in the lumen of the tire is suppressed, and as a result, road noise can be reduced.
  • the sponge material examples include synthetic resin sponges such as ether-based polyurethane sponges, ester-based polyurethane sponges, and polyethylene sponges, chloroprene rubber sponges (CR sponges), ethylene propylene diene rubber sponges (EPDM sponges), and nitrile rubber sponges (NBR).
  • a rubber sponge such as sponge) can be mentioned. From the viewpoints of sound control, lightness, adjustable foaming, durability and the like, it is preferable to use a polyurethane-based sponge containing an ether-based polyurethane sponge or a polyethylene-based sponge.
  • the hardness of the sponge material is not particularly limited, but is preferably in the range of 5 to 450 N. By setting the hardness to 5 N or more, the sound control property can be improved, while by setting the hardness to 450 N or less, the adhesive force of the sponge material can be increased.
  • the hardness of the sponge material is more preferably in the range of 8 to 300 N. By doing so, the above-mentioned effect can be further enhanced.
  • the "hardness" is a value measured in accordance with the method A of item 6.3 of the measurement methods of item 6 of JIS K6400.
  • the specific gravity of the sponge material is preferably 0.001 to 0.090.
  • the specific gravity of the sponge material is more preferably 0.003 to 0.080. By doing so, the above-mentioned effect can be further enhanced.
  • the "specific gravity” is a value obtained by converting the apparent density into the specific gravity in accordance with the measurement method of paragraph 5 of JIS K6400.
  • the tensile strength of the sponge material is preferably 20 to 500 kPa. By setting the tensile strength to 20 kPa or more, the adhesive strength can be improved, while by setting the tensile strength to 500 kPa or less, the productivity of the sponge material can be improved.
  • the tensile strength of the sponge material is more preferably 40 to 400 kPa. By doing so, the above-mentioned effect can be further enhanced.
  • the "tensile strength" is a value measured with a No. 1 dumbbell-shaped test piece in accordance with the measurement method of Section 10 of JIS K6400.
  • the elongation at break of the sponge material is preferably 110% or more and 800% or less.
  • the elongation at break of the sponge material is more preferably 130% or more and 750% or less. By doing so, the above-mentioned effect can be further enhanced.
  • the "elongation at break" is a value measured with a No. 1 dumbbell-shaped test piece in accordance with the measurement method of Section 10 of JIS K6400.
  • the tear strength of the sponge material is preferably 1 to 130 N / cm. By setting the tear strength to 1 N / cm or more, it is possible to suppress the occurrence of cracks in the sponge material, while by setting the tear strength to 130 N / cm or less, the manufacturability of the sponge material can be improved. Can be improved.
  • the tear strength of the sponge material is more preferably 3 to 115 N / cm. By doing so, the above-mentioned effect can be further enhanced.
  • the "tear strength" is a value measured with a No. 1 type test piece in accordance with the measurement method of Section 11 of JIS K6400.
  • the foaming rate of the sponge material is preferably 1% or more and 40% or less. By setting the foaming rate to 1% or more, the sound control property can be improved, while by setting the foaming rate to 40% or less, the productivity of the sponge material can be improved.
  • the foaming rate of the sponge material is more preferably 2 to 25%. By doing so, the above-mentioned effect can be further enhanced.
  • the "foaming ratio" means a value obtained by subtracting 1 from the ratio SG1 / SG2 of the specific gravity SG1 of the solid phase portion of the sponge material to the specific gravity SG2 of the sponge material and multiplying the value by 100.
  • the total mass of the sponge material is preferably 5 to 800 g. By setting the mass to 5 g or more, the sound damping property can be reduced, while by setting the mass to 800 g or less, the weight increase due to the sponge material can be suppressed.
  • the mass of the sponge material is preferably 20 to 600 g. By doing so, the above-mentioned effect can be further enhanced.
  • the material constituting the sound control body 10 is such that the cavity resonance energy can be reduced by relaxing, absorbing, converting the cavity resonance energy into another energy (for example, thermal energy), or the like.
  • the present invention is not limited to the above-mentioned porous material, and for example, a non-woven fabric made of organic fibers or inorganic fibers can also be used.
  • Examples of the organic fiber used in the sound control body 10 include rayon, polyethylene terephthalate, polyethylene naphthalate, polybenzimidazole, polyphenylene sulfide, polyvinyl alcohol, aliphatic polyamide, aromatic polyamide (aramid), aromatic polyimide and the like. .. Further, examples of the inorganic fiber used in the sound control body 10 include carbon fiber, fluorine fiber, glass fiber, metal fiber and the like. It should be noted that two or more kinds of different kinds of fibers can be mixed and used.
  • the length and diameter of the fibers constituting the non-woven fabric used for the sound control body 10 can be arbitrarily set.
  • the diameter of the fiber can be, for example, 100 nm to 200 ⁇ m.
  • the basis weight of the non-woven fabric used for the sound control body 10 is preferably 10 g / m 2 to 300 g / m 2 .
  • the basis weight is preferably 10 g / m 2 to 300 g / m 2 .
  • FIG. 2 is a cross-sectional view of the tire 1 in the tire circumferential direction.
  • the “tire circumferential cross section” means a cross section of the tire 1 on the tire equatorial plane CL.
  • the details of the cross section inside the tread portion 4 such as the belt 6 are omitted.
  • the sound control body 10 is formed with a plurality of through holes 11 penetrating in the tire width direction B.
  • the sound control body 10 can be deformed in the tire radial direction A by varying the length of the through hole 11 in the tire radial direction A following the deformation of the sidewall portion 3 in the tire radial direction A.
  • the sound control body 10 in which the through hole 11 is formed is more likely to follow the bending deformation of the sidewall portion 3 than the sound control body in which the through hole 11 is not formed. Therefore, it is possible to realize the sound control body 10 which is not easily damaged by the repeated bending deformation generated in the sidewall portion 3.
  • FIG. 3 is an enlarged cross-sectional view showing a part of the tire circumferential cross section of the tire 1 shown in FIG. 2 in an enlarged manner.
  • the region shown by the broken line in FIG. 2 is enlarged and shown, but it may be another region in the tire circumferential direction C.
  • a plurality of through holes 11 are formed at different positions in the tire circumferential direction C.
  • the through holes 11 are formed at different positions in the tire circumferential direction C means that there are at least two through holes 11 having no overlapping portion in the tire radial direction A.
  • the plurality of through holes 11 are arranged at predetermined intervals over the entire area of the tire circumferential direction C of the sound control body 10 attached to the inner surface of the sidewall portion 3. More preferred.
  • the sound control body 10 is attached along the inner surface of the sidewall portion 3 over the entire tire circumferential direction C. By doing so, it is possible to improve the sound control performance of the sound control body 10 as compared with the configuration in which the sound control body 10 is not attached to the entire area of the tire circumferential direction C.
  • a plurality of through holes 11 are formed at different positions in the tire radial direction A.
  • the through holes 11 are formed at different positions in the tire radial direction A means that there are at least two through holes 11 having no overlapping portion in the tire circumferential direction C.
  • the plurality of through holes 11 are arranged at predetermined intervals over the entire area of the tire radial direction A of the sound control body 10 attached to the inner surface of the sidewall portion 3. ..
  • At least one through hole 11 is a region of the tire circumferential direction C sandwiched between the two through holes 11a and 11b at both ends of the tire circumferential direction C in the sound control body 10 (hereinafter, hereafter. It is provided in the tire width direction cross-sectional view (see FIG. 1) at an arbitrary position in the “hole formation region X”). More specifically, as shown in FIG. 1, at least one through hole 11 is included in the tire width direction cross-sectional view of the tire 1 at an arbitrary position in the hole forming region X.
  • the through holes 11 By arranging the through holes 11 in this way, the variation in the tracking performance in which the sound control body 10 is deformed in accordance with the deformation of the tire radial direction A of the sidewall portion 3 in the tire circumferential direction C is further suppressed. it can.
  • Such an arrangement of the through holes 11 may not be realized by arranging the through holes 11 regularly. However, it is preferable that the through holes 11 are arranged in a staggered pattern as in the present embodiment. By doing so, the above-mentioned arrangement of the through holes 11 can be easily realized as compared with the configuration in which the through holes are arranged at random.
  • the through holes 11 located outside the tire radial direction A have a length in the tire circumferential direction C longer than the through holes 11 located inside the tire radial direction A. long.
  • the through hole 11c located on the outermost side of the tire radial direction A and the through hole 11d located on the innermost side in the tire radial direction A are in the tire circumferential direction. Compare the lengths of C.
  • the maximum length L1 of the through hole 11c in the tire circumferential direction C is longer than the maximum length L2 of the through hole 11d in the tire circumferential direction C.
  • the through hole 11 located outside the tire radial direction A has a length in the tire radial direction A longer than that of the through hole 11 located inside the tire radial direction A. short.
  • the lengths of the two through holes 11c and 11d described above in the tire radial direction A are compared.
  • the maximum length L3 of the through hole 11c in the tire radial direction A is shorter than the maximum length L4 of the through hole 11d in the tire radial direction A.
  • the through holes 11c become the through holes 11d when the sidewall portion 3 is bent and deformed in the tire radial direction A.
  • it is easily crushed in the tire radial direction A. That is, in the sound control body 10, the deformation ability in the tire radial direction A on the outer side of the tire radial direction A can be increased more than the deformation ability in the tire radial direction A on the inner side of the tire radial direction A.
  • the tire radial direction of the through holes 11 is suppressed while suppressing a large variation in the deformation performance in the tire radial direction A depending on the position of the tire radial direction A.
  • the lengths of A and the tire circumferential direction C it is possible to adjust the deformation performance in the tire radial direction A depending on the position of the tire radial direction A.
  • the sound control body 10 in the tire radial direction A at the position outside the tire radial direction A of the sidewall portion 3 which is easily bent and deformed when the tire rolls.
  • the sound control body 10 in the vicinity of the bead portion 2 fixed to the rim so as not to be bent and deformed when the tire rolls, that is, at the position inside the tire radial direction A of the sidewall portion 3, the sound control body 10 is in the tire radial direction A. It is hard to transform into.
  • the sidewall portion 3 is reinforced by the sound control body 10, and bending deformation in the tire radial direction A is suppressed.
  • the two through holes 11c and 11d described above are examples, and in the present embodiment, the two through holes 11 having the same relationship as the above "L1> L2 and L3 ⁇ L4" are the through holes 11c and 11d. It is not limited to 11d. More specifically, in the present embodiment, if any two through holes 11 have different positions in the tire radial direction A, the same relationship as the above "L1> L2 and L3 ⁇ L4" is established.
  • the outer edge 12 on the outer side in the tire radial direction A is pulled in the tire circumferential direction C from the natural state, and the inner edge 13 on the inner side in the tire radial direction A is in the natural state. Is attached to the inner surface of the sidewall portion 3 in a state of being compressed in the tire circumferential direction C.
  • the "natural state” means a state in which no external force other than gravity is applied in the atmosphere.
  • the position outside the tire radial direction A is in a “sparse” state, and the position inside the tire radial direction A is in a “dense” state.
  • the sidewall portion 3 is formed by the sound control body 10. It is reinforced and bending deformation in the tire radial direction A is suppressed.
  • the tire 1 satisfies both the above-mentioned "sparse and dense” relationship and the above-mentioned "L1> L2 and L3 ⁇ L4" length relationship. By doing so, the above-mentioned action and effect can be further enhanced.
  • FIG. 4 is a schematic diagram showing an outline of an example of a method of attaching the sound control body 10 of the present embodiment.
  • the sound control body 10 is composed of a strip-shaped body extending linearly in a natural state before being attached to the inner surface of the sidewall portion 3.
  • the band-shaped body constituting the sound control body 10 is attached on the inner surface of the sidewall portion 3 along the tire circumferential direction C.
  • the band-shaped body constituting the sound control body 10 is a fixing member such as a double-sided adhesive tape or an adhesive while bending both end faces in the band width direction in an arc shape so as to follow the tire circumferential direction C. Is attached to the inner surface of the sidewall portion 3 (see the arrow in FIG. 4). By doing so, the band-shaped body constituting the sound control body 10 is in a state where the outer edge 12 on the outer side in the tire radial direction A is pulled in the tire circumferential direction C from the natural state, and is on the inner side in the tire radial direction A.
  • the inner edge 13 can be attached to the inner surface of the sidewall portion 3 in a state where the inner edge 13 is compressed in the tire circumferential direction C rather than the natural state. That is, the above-mentioned "sparse and dense" relationship can be realized. Further, when the source hole which is the base of the through hole 11 having the same shape and the same area is formed regardless of the position in the tire radial direction A, the outer edge 12 can be obtained by adopting the mounting method shown in FIG. Is pulled in the tire circumferential direction C, and the inner edge 13 is compressed in the tire circumferential direction C. That is, by attaching such a strip-shaped body to the inner surface of the sidewall portion 3 by the attachment method shown in FIG. 4, the above-mentioned length relationship of "L1> L2 and L3 ⁇ L4" can be realized.
  • the through hole 11 of the sound control body 10 of the present embodiment has a substantially rhombic shape in the tire circumferential cross-sectional view shown in FIGS. 2 and 3, but this shape is not particularly limited.
  • the through hole 11 of the sound control body 10 may have, for example, a polygonal shape other than a rhombus, a circular shape, an oval shape, or the like.
  • a plurality of recesses 14 are formed on the outer edge 12 and the inner edge 13 of the sound control body 10 of the present embodiment at intervals in the tire circumferential direction C.
  • the sound control body 10 is easily deformed along the tire circumferential direction C on the inner surface of the sidewall portion 3. More specifically, the presence of the recess 14 makes it easier for the outer edge 12 to be pulled and deformed in the tire peripheral direction C, and for the inner edge 13 to be easily compressed and deformed in the tire peripheral direction C. Therefore, for example, even if the mounting method as shown in FIG. 4 is adopted, the sound control body 10 can be easily mounted on the inner surface of the sidewall portion 3 along the tire circumferential direction C.
  • the recess 14 is not limited to the V-shaped notch portion 14a as in the present embodiment.
  • the recess 14 may be, for example, a notch portion having a different shape such as a U-shaped notch portion, or a linear slit portion as shown in FIG. The slit portion as the recess 14 will be described later (see FIG. 5).
  • the sealant layer 15 is laminated on the inner surface of the tread portion 4.
  • the sound control body 10 is formed with a plurality of through holes 11, the sound control body 10 is not easily damaged even if it is attached to the inner surface of the sidewall portion 3, and the durability can be improved.
  • the sealant layer 15 can be provided on the inner surface of the tread portion 4.
  • the sealant layer 15 is unlikely to adhere to the sound control body 10.
  • the sealant layer 15 is laminated only on the inner surface of the tread portion 4 in the tire width direction B.
  • the sound control body 10 of the present embodiment is attached only on the inner surface of the sidewall portion 3, but is not limited to this configuration.
  • the sound control body 10 may extend on the inner surface of the tread portion 4 in addition to the inner surface of the sidewall portion 3 as long as it does not overlap with the sealant layer 15 in the tire width direction B.
  • a sealant liquid which is an adhesive fluid can be used, and for example, a conventionally known sealant for puncture sealing can be used.
  • a sealant for example, a silicone compound, a styrene compound, a urethane compound, an ethylene compound, a gel sheet containing polybutene and a terpene resin as main components, or the like can be used.
  • FIG. 5 is a diagram showing a tire 21 including a sound control body 30 as a modification of the sound control body 10 shown in FIGS. 1 to 4.
  • the tire 21 differs from the tire 1 described above only in the configuration of the sound control body, and has the same other configurations. Therefore, among the sound control bodies 30, only the differences from the sound control body 10 described above (see FIG. 3 and the like) will be described here.
  • FIG. 5 is an enlarged cross-sectional view showing the same position as the sound control body 10 of FIG. 3 among the sound control bodies 30.
  • the sound control body 30 is different in the shape of the through hole and the recess as compared with the sound control body 10 (see FIG. 3 and the like) described above.
  • the through hole 31 of the sound control body 30 shown in FIG. 5 is formed by a slit extending in the tire radial direction A.
  • the through hole 31 may be such a slit.
  • the recess 34 of the sound control body 30 shown in FIG. 5 is composed of a slit portion 34a extending in the tire radial direction A.
  • the recess 34 may be such a slit portion 34a.
  • both the through hole 31 and the recess 34 of the sound control body 30 into a slit shape, as in the case of the sound control body 10 shown in FIGS. 1 to 4, as compared with the configuration in which the through hole 31 and the recess 34 are not provided, It becomes easy to follow the bending of the sidewall portion 3. Further, the sound control body 30 shown in FIG. 5 is easier to secure the volume than the sound control body 10 shown in FIGS. 1 to 4. Therefore, the sound control performance can be further improved.
  • the pneumatic tire according to the present invention is not limited to the configuration specifically shown in the above-described embodiment and modification, and can be variously modified or modified as long as it does not deviate from the claims.
  • the present invention relates to a pneumatic tire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

本発明に係る空気入りタイヤは、サイドウォール部の内面上に取り付けられている制音体を備え、前記制音体には、タイヤ幅方向に貫通する複数の貫通孔が形成されており、前記制音体は、前記サイドウォール部のタイヤ径方向の変形に追従して前記貫通孔のタイヤ径方向の長さを変動させることで、タイヤ径方向に変形可能である。

Description

空気入りタイヤ
 本発明は空気入りタイヤに関する。
 従来から、タイヤの内腔内で生じる空気やガスの共鳴振動(空洞共鳴)を低減するため、タイヤ内面に、スポンジ材からなる制音体を配置することが知られている。特許文献1には、この種の制音体が記載されている。制音体は、タイヤの内腔内での空気やガスの振動エネルギーを熱エネルギーへと変換し、タイヤの内腔内での空洞共鳴を抑制することができる。また、特許文献2には、制音体として不織布を用いることが記載されている。
特開2005-254924号公報 特開2016-210250号公報
 特許文献1及び特許文献2に記載されている制音体は、トレッド部の内面上に取り付けられている。タイヤの内腔内での空洞共鳴を抑制する観点では、制音体は、トレッド部の内面上に限られず、サイドウォール部の内面上においても取り付けられることが好ましい。しかしながら、特許文献1及び特許文献2に記載されている制音体をサイドウォール部の内面上に取り付けた場合に、サイドウォール部に生じる繰り返し屈曲変形に制音体が追従しきれず、制音体が破損して劣化する問題があった。
 本発明は、サイドウォール部の屈曲変形に追従し易い形状を有する制音体を備える空気入りタイヤを提供することを目的とする。
 本発明の第1の態様としての空気入りタイヤは、サイドウォール部の内面上に取り付けられている制音体を備え、前記制音体には、タイヤ幅方向に貫通する複数の貫通孔が形成されており、前記制音体は、前記サイドウォール部のタイヤ径方向の変形に追従して前記貫通孔のタイヤ径方向の長さを変動させることで、タイヤ径方向に変形可能である。
 本発明によれば、サイドウォール部の屈曲変形に追従し易い形状を有する制音体を備える空気入りタイヤを提供することができる。
本発明の一実施形態としての空気入りタイヤのタイヤ幅方向断面図である。 図1に示す空気入りタイヤのタイヤ周方向断面図である。 図2に示すタイヤのタイヤ周方向断面の一部を拡大して示す拡大断面図である。 図1に示す制音体の取り付け方法の一例の概要を示す概要図である。 図1に示す制音体の変形例としての制音体を備える空気入りタイヤのタイヤ周方向断面の一部を拡大した拡大断面図である。
 以下、本発明に係る空気入りタイヤの実施形態について図面を参照して例示説明する。各図において共通する部材・部位には同一の符号を付している。
 図1は、本発明に係る空気入りタイヤの一実施形態としての空気入りタイヤ1(以下、単に「タイヤ1」と記載する。)を示す図である。より具体的に、図1は、タイヤ1のタイヤ幅方向断面図である。「タイヤ幅方向断面」とは、タイヤの中心軸線に平行で、タイヤの中心軸線を含む平面での断面を意味する。
 図1に示すように、本実施形態のタイヤ1は、一対のビード部2と、この各ビード部2に連なるサイドウォール部3と、このサイドウォール部3に連なるトレッド部4と、を備える。また、タイヤ1は、一対のビード部2に埋設された一対のビードコア2a間に跨るカーカス5を備える。タイヤ1は、カーカス5のクラウン部のタイヤ径方向Aの外側に配置されているベルト6を備える。また、タイヤ1は、ベルト6のタイヤ径方向Aの外側に配置されているトレッドゴム7と、カーカス5のサイド部のタイヤ幅方向Bの外側に配置されているサイドゴム8と、を備える。更に、タイヤ1は、カーカス5の内面に積層されているインナーライナ9を備える。
 図1に示すように、本実施形態のタイヤ1のビード部2は、上述したビードコア2aに加えて、ビードコア2aのタイヤ径方向Aの外側に配置されるビードフィラ2bを備える。本実施形態のビードフィラ2bは、タイヤ幅方向断面視で略三角形の外形を有するが、その断面形状は特に限定されない。更に、タイヤ1のビード部2の構成は、図1に示す構成に限られない。したがって、ビードコア2a及びビードフィラ2bの断面形状、大きさ、材質についても特に限定されない。更に、タイヤ1は、ビードコア2a及びビードフィラ2bを備えない構成であってもよい。
 本実施形態のカーカス5は、有機繊維からなる1枚のカーカスプライで構成されているが、カーカス5の構成は特に限定されない。したがって、カーカス5を構成するカーカスプライの枚数や材質も特に限定されない。
 本実施形態のベルト6は、タイヤ径方向Aに積層されている2層のベルト層6a、6bから構成されている。各ベルト層6a、6bは、スチールコード等のベルトコードがタイヤ周方向Cに対して10°~40°の角度で傾斜配列されているベルトプライから形成されている。2枚のベルトプライは、ベルトコードの傾斜の向きを互いに違えて重ね置きされている。そのため、ベルトコードがベルトプライ間相互で交差し、ベルト剛性が高められ、トレッド部4の略全幅をタガ効果により補強することができる。但し、ベルト6の構成は特に限定されない。したがって、ベルト6におけるベルトコードの材質、打ち込み数、傾斜角度、ベルト層の数等、は特に限定されない。
 トレッドゴム7は、トレッド部4のタイヤ径方向Aの外側の面(以下、「トレッド外面」と記載する。)を構成している。トレッド外面には、タイヤ周方向Cに延在する周方向溝7a、タイヤ幅方向Bに延在する図示しない幅方向溝等、を含むトレッドパターンが形成されている。サイドゴム8は、サイドウォール部3のタイヤ幅方向Bの外側の面を構成しており、上述のトレッドゴム7と一体で形成されている。トレッドゴム7及びサイドゴム8の材質についても特に限定されない。
 インナーライナ9は、カーカス5の内面に積層されており、例えば空気透過性の低いブチル系ゴムにより形成されている。なお、ブチル系ゴムとは、ブチルゴム、及びその誘導体であるハロゲン化ブチルゴムを意味する。但し、インナーライナ9についても既知の任意の材料により形成可能であり、その材質は特に限定されない。
 図1に示すように、タイヤ1は、サイドウォール部3の内面上に取り付けられている制音体10を備える。図1に示すように、制音体10は、制音体10は、一方のサイドウォール部3の内面のみに取り付けられていてもよいが、本実施形態のように両側のサイドウォール部3それぞれの内面上に取り付けられていることが好ましい。このようにすることで、空洞共鳴を、より抑制できる。
 制音体10は、例えばスポンジ材等の多孔質体である。本実施形態の制音体10は、図1に示すタイヤ幅方向断面視において扁平状の外形を有するが、その形状は特に限定されない。また、制音体10の寸法等も特には限定されないが、制音体10の体積は、タイヤ1の内腔の全体積の0.1%~80%とすることが好ましい。制音体10の体積をタイヤ1の内腔の全体積の0.1%以上とすることで制音性を高めることができる。その一方で、制音体10の体積をタイヤ1の内腔の全体積の80%以下とすることで、制音体10による重量増を抑制することができる。ここでいう「体積」は、常温、常圧下での、タイヤ1をリムから取り外した状態でのものとする。また、「タイヤの内腔の全体積」は、タイヤ1を適用リムに装着し、規定内圧を充填した際の全体積をいうものとする。
 制音体10がスポンジ材である場合、スポンジ材は、海綿状の多孔構造体とすることができ、例えば、ゴムや合成樹脂を発泡させた連続気泡を有する、いわゆるスポンジを含む。また、スポンジ材は、上述のスポンジの他に、動物繊維、植物繊維又は合成繊維等を絡み合わせて一体に連結したウエブ状のものを含む。なお、上述の「多孔構造体」は、連続気泡を有する構造体に限らず、独立気泡を有する構造体も含む意味である。上述のようなスポンジ材は、表面や内部に形成される空隙が振動する空気の振動エネルギーを熱エネルギーに変換する。これにより、タイヤの内腔での空洞共鳴が抑制され、その結果、ロードノイズを低減することができる。
 スポンジ材の材料としては、例えば、エーテル系ポリウレタンスポンジ、エステル系ポリウレタンスポンジ、ポリエチレンスポンジなどの合成樹脂スポンジ、クロロプレンゴムスポンジ(CRスポンジ)、エチレンプロピレンジエンゴムスポンジ(EPDMスポンジ)、ニトリルゴムスポンジ(NBRスポンジ)などのゴムスポンジが挙げられる。制音性、軽量性、発泡の調節可能性、耐久性などの観点を考慮すれば、エーテル系ポリウレタンスポンジを含むポリウレタン系又はポリエチレン系等のスポンジを用いることが好ましい。
 本実施形態のように、制音体10がスポンジ材である場合は、スポンジ材の硬度は、特には限定されないが、5~450Nの範囲とすることが好ましい。硬度を5N以上とすることにより、制音性を向上させることができ、一方で、硬度を450N以下とすることにより、スポンジ材の接着力を増大させることができる。なお、スポンジ材の硬度は、8~300Nの範囲とすることがより好ましい。このようにすることで、上述の効果をより高めることができる。ここで、「硬度」とは、JIS K6400の第6項の測定法のうち、6.3項のA法に準拠して測定された値とする。
 また、スポンジ材の比重は、0.001~0.090とすることが好ましい。スポンジ材の比重を0.001以上とすることにより、制音性を向上させることができ、一方で、スポンジ材の比重を0.090以下とすることにより、スポンジ材による重量増を抑制することができる。なお、スポンジ材の比重は、0.003~0.080とすることがより好ましい。このようにすることで、上述の効果をより高めることができる。ここで、「比重」とは、JIS K6400の第5項の測定法に準拠し、見かけ密度を比重に換算した値とする。
 また、スポンジ材の引張り強さは、20~500kPaとすることが好ましい。引張り強さを20kPa以上とすることにより、接着力を向上させることができ、一方で、引張り強さを500kPa以下とすることにより、スポンジ材の生産性を向上させることができる。なお、スポンジ材の引張り強さは、40~400kPaとすることがより好ましい。このようにすることで、上述の効果をより高めることができる。ここで、「引張り強さ」とは、JIS K6400の第10項の測定法に準拠し、1号形のダンベル状試験片で測定した値とする。
 また、スポンジ材の破断時の伸びは、110%以上800%以下とすることが好ましい。破断時の伸びを110%以上とすることにより、スポンジ材にクラックが発生するのを抑制することができ、一方で、破断時の伸びを800%以下とすることにより、スポンジ材の生産性を向上させることができる。なお、スポンジ材の破断時の伸びは、130%以上750%以下とすることがより好ましい。このようにすることで、上述の効果をより高めることができる。ここで、「破断時の伸び」とは、JIS K6400の第10項の測定法に準拠し、1号形のダンベル状試験片で測定した値とする。
 また、スポンジ材の引裂強さは、1~130N/cmとすることが好ましい。引裂強さを1N/cm以上とすることにより、スポンジ材にクラックが発生するのを抑制することができ、一方で、引裂強さを130N/cm以下とすることにより、スポンジ材の製造性を向上させることができる。なお、スポンジ材の引裂強さは、3~115N/cmとすることがより好ましい。このようにすることで、上述の効果をより高めることができる。ここで、「引裂強さ」とは、JIS K6400の第11項の測定法に準拠し、1号形の試験片で測定した値とする。
 また、スポンジ材の発泡率は、1%以上40%以下とすることが好ましい。発泡率を1%以上とすることにより、制音性を向上させることができ、一方で、発泡率を40%以下とすることにより、スポンジ材の生産性を向上させることができる。なお、スポンジ材の発泡率は、2~25%とすることがより好ましい。このようにすることで、上述の効果をより高めることができる。ここで、「発泡率」とは、スポンジ材の固相部の比重SG1の、スポンジ材の比重SG2に対する比SG1/SG2から1を引いて、その値に100を乗じた値をいう。
 また、スポンジ材の全体の質量は、5~800gとすることが好ましい。質量を5g以上とすることにより、制音性を低減することができ、一方で、質量を800g以下とすることにより、スポンジ材による重量増を抑制することができる。なお、スポンジ材の質量は、20~600gとすることが好ましい。このようにすることで、上述の効果をより高めることができる。
 制音体10を構成する材料は、空洞共鳴エネルギーの緩和、吸収、別のエネルギー(例えば、熱エネルギー)への変換、等によって、空洞共鳴エネルギーを低減するようにすることができるものであればよく、上述した多孔質体に限られるものではなく、例えば、有機繊維や無機繊維からなる不織布等を用いることもできる。
 制音体10に用いる有機繊維の例としては、レーヨンやポリエチレンテレフタレート、ポリエチレンナフタレート、ポリベンゾイミダゾール、ポリフェニレンサルファイド、ポリビニルアルコール、脂肪族ポリアミド、芳香族ポリアミド(アラミド)、芳香族ポリイミド等が挙げられる。また、制音体10に用いる無機繊維の例としては、炭素繊維やフッ素繊維、ガラス繊維、金属繊維等が挙げられる。なお、異なる種類の繊維を2種以上混合して用いることもできる。
 また、制音体10に用いる不織布を構成する繊維の長さや径は、任意に設定することができる。特には限定されないが、繊維の径は、例えば100nm~200μmとすることができる。
 また、制音体10に用いる不織布の目付けは、10g/m~300g/mであることが好ましい。目付けを10g/m以上とすることにより、繊維をより均一にすることができ、一方で、300g/mとすることにより、制音体10を設けたことによる過度の重量増を招かないようにすることができる。
 図2は、タイヤ1のタイヤ周方向断面図である。「タイヤ周方向断面」とは、タイヤ1のタイヤ赤道面CLでの断面図を意味する。なお、図2では、ベルト6などのトレッド部4の内部の断面詳細は省略されている。図1、図2に示すように、制音体10には、タイヤ幅方向Bに貫通する複数の貫通孔11が形成されている。制音体10は、サイドウォール部3のタイヤ径方向Aの変形に追従して貫通孔11のタイヤ径方向Aの長さを変動させることで、タイヤ径方向Aに変形可能である。このような貫通孔11が形成されている制音体10は、貫通孔11が形成されていない制音体と比較して、サイドウォール部3の屈曲変形に追従し易い。そのため、サイドウォール部3に発生する繰り返し屈曲変形に対して破損し難い制音体10を実現できる。
 図3は、図2に示すタイヤ1のタイヤ周方向断面の一部を拡大して示す拡大断面図である。図3では、図2において破線で示す領域を拡大して示しているが、タイヤ周方向Cにおいて別の領域であってもよい。
 図2、図3に示すように、貫通孔11は、タイヤ周方向Cの異なる位置に複数形成されていることが好ましい。「貫通孔11がタイヤ周方向Cの異なる位置に形成されている」とは、タイヤ径方向Aにおいて重なる部分がない少なくとも2つの貫通孔11があることを意味する。これにより、サイドウォール部3のタイヤ径方向Aの変形に追従して制音体10が変形する追従性能について、タイヤ周方向Cでのばらつきを抑制できる。換言すれば、複数の貫通孔11は、サイドウォール部3の内面に取り付けられている制音体10のタイヤ周方向Cの全域に亘って、所定の間隔を隔てて配置されていることが、より好ましい。
 また、図2、図3に示すように、制音体10は、サイドウォール部3の内面に沿ってタイヤ周方向C全域に亘って取り付けられていることが好ましい。このようにすることで、制音体10がタイヤ周方向Cの全域に取り付けられていない構成と比較して、制音体10による制音性能を高めることができる。
 また、図2、図3に示すように、貫通孔11は、タイヤ径方向Aの異なる位置に複数形成されていることが好ましい。「貫通孔11がタイヤ径方向Aの異なる位置に形成されている」とは、タイヤ周方向Cにおいて重なる部分がない少なくとも2つの貫通孔11があることを意味する。これにより、サイドウォール部3のタイヤ径方向Aの変形に追従して制音体10が変形する追従性能について、タイヤ径方向Aでのばらつきを抑制できる。換言すれば、複数の貫通孔11は、サイドウォール部3の内面に取り付けられている制音体10のタイヤ径方向Aの全域に亘って、所定の間隔を隔てて配置されていることが好ましい。
 更に、本実施形態のタイヤ1では、少なくとも1つの貫通孔11が、制音体10においてタイヤ周方向Cの両端にある2つの貫通孔11a、11bに挟まれるタイヤ周方向Cの領域(以下、「孔形成領域X」と記載する。)での任意の位置でのタイヤ幅方向断面視(図1参照)において、設けられている。より具体的には、図1に示すように、孔形成領域Xにおける任意の位置でのタイヤ1のタイヤ幅方向断面視では、少なくとも1つの貫通孔11が含まれる。このような貫通孔11の配置とすることで、サイドウォール部3のタイヤ径方向Aの変形に追従して制音体10が変形する追従性能について、タイヤ周方向Cでのばらつきを、より抑制できる。このような貫通孔11の配置は、貫通孔11を規則的に配列することで実現されなくてもよい。但し、本実施形態のように、貫通孔11が千鳥状に配置されていることが好ましい。このようにすることで、貫通孔をランダムに配置する構成と比較して、上述の貫通孔11の配置を容易に実現できる。
 また、図3に示すように、貫通孔11のうち、タイヤ径方向A外側に位置する貫通孔11は、タイヤ径方向A内側に位置する貫通孔11よりも、タイヤ周方向Cの長さが長い。図3では、一例として、タイヤ周方向Cの同位置において、タイヤ径方向Aの最も外側に位置する貫通孔11cと、タイヤ径方向Aの最も内側に位置する貫通孔11dと、のタイヤ周方向Cの長さを比較する。貫通孔11cのタイヤ周方向Cの最大長さL1は、貫通孔11dのタイヤ周方向Cの最大長さL2よりも長い。
 更に、図3に示すように、貫通孔11のうち、タイヤ径方向A外側に位置する貫通孔11は、タイヤ径方向A内側に位置する貫通孔11よりも、タイヤ径方向Aの長さが短い。図3では、一例として、上述した2つの貫通孔11c、11dのタイヤ径方向Aの長さを比較する。貫通孔11cのタイヤ径方向Aの最大長さL3は、貫通孔11dのタイヤ径方向Aの最大長さL4よりも短い。
 このように、貫通孔11c、11dについて、L1>L2、かつ、L3<L4とすることで、サイドウォール部3のタイヤ径方向Aでの屈曲変形時において、貫通孔11cが、貫通孔11dと比較して、タイヤ径方向Aに潰れ易い。つまり、制音体10において、タイヤ径方向A外側におけるタイヤ径方向Aでの変形能力を、タイヤ径方向A内側におけるタイヤ径方向Aでの変形能力よりも高めることができる。上述したように、貫通孔11をタイヤ径方向Aに複数配置することで、タイヤ径方向Aの位置によるタイヤ径方向Aでの変形性能の大きなばらつきを抑制しつつ、貫通孔11のタイヤ径方向A及びタイヤ周方向Cの長さを調整することで、タイヤ径方向Aの位置によるタイヤ径方向Aでの変形性能の調整が可能である。特に、本実施形態の制音体10のように、L1>L2、かつ、L3<L4とすることが好ましい。このようにすることで、タイヤ転動時に屈曲変形し易いサイドウォール部3のタイヤ径方向A外側の位置で、制音体10のタイヤ径方向Aへの変形能力を高めることができる。これに対して、タイヤ転動時に屈曲変形しないようにリムに固定されるビード部2の近傍、すなわち、サイドウォール部3のタイヤ径方向A内側の位置では、制音体10がタイヤ径方向Aに変形し難い。これにより、サイドウォール部3のビード部2近傍の位置は、サイドウォール部3が制音体10により補強され、タイヤ径方向Aでの屈曲変形が抑制される。
 なお、上述した2つの貫通孔11c、11dは例示であり、本実施形態において上記「L1>L2、かつ、L3<L4」と同様の関係が成立する2つの貫通孔11は、貫通孔11c、11dに限定されない。より具体的に、本実施形態では、タイヤ径方向Aの位置が異なる任意の2つの貫通孔11であれば、上記「L1>L2、かつ、L3<L4」と同様の関係が成立する。
 更に、本実施形態の制音体10は、タイヤ径方向A外側の外縁12が自然状態よりもタイヤ周方向Cに引っ張られた状態で、かつ、タイヤ径方向A内側の内縁13が自然状態よりもタイヤ周方向Cに圧縮された状態で、サイドウォール部3の内面に取り付けられている。「自然状態」とは、大気中において重力以外の外力が何ら付加されていない状態を意味する。換言すれば、本実施形態の制音体10では、タイヤ径方向Aの外側の位置が「疎」の状態となり、タイヤ径方向Aの内側の位置が「密」な状態となる。このようにすることで、タイヤ転動時に屈曲変形し易いサイドウォール部3のタイヤ径方向A外側の位置で、制音体10のタイヤ径方向Aへの変形能力を高めることができる。その一方で、タイヤ転動時に屈曲変形しないようにリムに固定されるビード部2の近傍、すなわち、サイドウォール部3のタイヤ径方向A内側の位置では、サイドウォール部3が制音体10により補強され、タイヤ径方向Aでの屈曲変形が抑制される。なお、本実施形態のように、タイヤ1は、上述の「疎密」の関係と、上述した「L1>L2、かつ、L3<L4」の長さ関係とを両方充足することが好ましい。このようにすることで、上記作用効果を、より高めることができる。
 上述した「L1>L2、かつ、L3<L4」の長さ関係、及び、上述した「疎密」の関係は、例えば図4に示す制音体10の取り付け方法により実現可能である。図4は、本実施形態の制音体10の取り付け方法の一例の概要を示す概要図である。図4に示すように、制音体10は、サイドウォール部3の内面に取り付けられる前の自然状態において、直線状に延在する帯状体により構成されている。図4に示すように、制音体10を構成する帯状体は、サイドウォール部3の内面上にタイヤ周方向Cに沿って取り付けられる。より具体的に、制音体10を構成する帯状体は、帯幅方向の両端面をタイヤ周方向Cに沿わせるように円弧状に湾曲させながら、例えば両面粘着テープや接着剤などの固着部材を用いて、サイドウォール部3の内面に取り付けられる(図4の矢印参照)。このようにすることで、制音体10を構成する帯状体を、タイヤ径方向A外側の外縁12が自然状態よりもタイヤ周方向Cに引っ張られた状態で、かつ、タイヤ径方向A内側の内縁13が自然状態よりもタイヤ周方向Cに圧縮された状態で、サイドウォール部3の内面に取り付けることができる。つまり、上述の「疎密」の関係を実現できる。また、タイヤ径方向Aの位置によらず同形状・同面積の、貫通孔11の基となる源孔が形成されている場合には、図4に示す取り付け方法を採用することで、外縁12がタイヤ周方向Cで引っ張られ、内縁13がタイヤ周方向Cで圧縮される。つまり、このような帯状体を図4に示す取り付け方法でサイドウォール部3の内面に取り付けることで、上述の「L1>L2、かつ、L3<L4」の長さ関係を実現できる。
 また、本実施形態の制音体10の貫通孔11は、図2、図3に示すタイヤ周方向断面視において、略菱形の形状を有しているが、この形状は特に限定されない。制音体10の貫通孔11は、例えば、菱形以外の多角形状、円形状、オーバル形状等であってもよい。
 更に、図3に示すように、本実施形態の制音体10の外縁12及び内縁13には、タイヤ周方向Cに間隔を隔てて複数の凹部14が形成されている。このような凹部14が形成されていることで、制音体10をサイドウォール部3の内面上でタイヤ周方向Cに沿って変形し易い。より具体的に、凹部14の存在により、外縁12はタイヤ周方向Cに引っ張り変形し易くなり、内縁13はタイヤ周方向Cに圧縮変形し易くなる。そのため、例えば図4に示すような取り付け方法を採用しても、制音体10を容易にサイドウォール部3の内面上にタイヤ周方向Cに沿って容易に取り付けることができる。なお、凹部14は、本実施形態のようなV字状のノッチ部14aに限られない。凹部14は、例えば、U字状のノッチ部など別の形状のノッチ部や、図5に示すような線状のスリット部であってもよい。凹部14としてのスリット部については後述する(図5参照)。
 また、図1に示すように、タイヤ1では、トレッド部4の内面上に、シーラント層15が積層されている。上述したように、制音体10に複数の貫通孔11が形成されているため、制音体10をサイドウォール部3の内面に取り付けても破損し難く、耐久性を高めることができる。換言すれば、制音体10によれば、トレッド部4の内面に取り付けなくてもよい。したがって、本実施形態のタイヤ1のように、シーラント層15を、トレッド部4の内面上に設けることができる。このように、タイヤ内面において制音体10とシーラント層15との配置位置を異ならせることができるため、シーラント層15が制音体10と粘着し難い。これにより、シーラント層15の粘着性能が劣化し難く、シーラント層15によるシール性能の耐久性を高めることができる。シーラント層15は、タイヤ幅方向Bにおいて、トレッド部4の内面上のみに積層されている。なお、本実施形態の制音体10については、サイドウォール部3の内面上のみに取り付けられているが、この構成に限られない。制音体10は、サイドウォール部3の内面上に加えて、シーラント層15とタイヤ幅方向Bで重ならない限り、トレッド部4の内面上にまで及んでいてもよい。
 シーラント層15には、粘着性の流動体であるシーラント液を用いることができ、例えば、パンクシール用のシーラント剤として従来公知のものなどを用いることができる。シーラント剤としては、例えば、シリコーン系化合物、スチレン系化合物、ウレタン系化合物、エチレン系化合物、ポリブテンとテルペン樹脂とを主成分とするゲルシートからなるもの等を用いることができる。
 図5は、図1~図4に示す制音体10の変形例としての制音体30を備えるタイヤ21を示す図である。タイヤ21は、上述したタイヤ1と比較して、制音体の構成のみが相違し、その他の構成は共通する。したがって、ここでは制音体30のうち、上述した制音体10(図3等参照)との相違点のみ説明する。なお、図5は、制音体30のうち、図3の制音体10と同じ位置を示す拡大断面図である。
 図5に示すように、制音体30は、上述した制音体10(図3等参照)と比較して、貫通孔及び凹部の形状が相違する。図5に示す制音体30の貫通孔31は、タイヤ径方向Aに延在するスリットにより構成されている。貫通孔31は、このようなスリットであってもよい。
 また、図5に示す制音体30の凹部34は、タイヤ径方向Aに延在するスリット部34aにより構成されている。凹部34は、このようなスリット部34aであってもよい。
 制音体30の貫通孔31及び凹部34をいずれもスリット状とすることで、図1~図4に示す制音体10と同様、貫通孔31及び凹部34を設けない構成と比較して、サイドウォール部3の屈曲に追従し易くなる。更に、図5に示す制音体30では、図1~図4に示す制音体10と比較して、体積を確保し易い。そのため、制音性能を、より高めることができる。
 本発明に係る空気入りタイヤは、上述した実施形態及び変形例において具体的に示す構成に限られず、請求の範囲を逸脱しない限り、種々の変形・変更が可能である。
 本発明は空気入りタイヤに関する。
1、21:タイヤ、 2:ビード部、 2a:ビードコア、 2b:ビードフィラ、 3:サイドウォール部、 4:トレッド部、 5:カーカス、 6:ベルト、 6a、6b:ベルト層、 7:トレッドゴム、 7a:周方向溝、 8:サイドゴム、 9:インナーライナ、 10、30:制音体、 11、11a、11b、11c、11d、31:貫通孔、 12:外縁、 13:内縁、 14、34:凹部、 14a:ノッチ部、 15:シーラント層、 34a:スリット部、 A:タイヤ径方向、 B:タイヤ幅方向、 C:タイヤ周方向、 CL:タイヤ赤道面、 L1、L2:貫通孔のタイヤ周方向の最大長さ、 L3、L4:貫通孔のタイヤ径方向の最大長さ、 X:孔形成領域

Claims (9)

  1.  サイドウォール部の内面上に取り付けられている制音体を備え、
     前記制音体には、タイヤ幅方向に貫通する複数の貫通孔が形成されており、
     前記制音体は、前記サイドウォール部のタイヤ径方向の変形に追従して前記貫通孔のタイヤ径方向の長さを変動させることで、タイヤ径方向に変形可能である、空気入りタイヤ。
  2.  前記貫通孔は、タイヤ周方向の異なる位置に複数形成されている、請求項1に記載の空気入りタイヤ。
  3.  前記貫通孔は、タイヤ径方向の異なる位置に複数形成されている、請求項2に記載の空気入りタイヤ。
  4.  前記貫通孔は、前記制音体においてタイヤ周方向の両端にある2つの貫通孔に挟まれるタイヤ周方向領域での任意の位置でのタイヤ幅方向断面視において、少なくとも1つ設けられている、請求項3に記載の空気入りタイヤ。
  5.  前記貫通孔は、千鳥状に配置されている、請求項4に記載の空気入りタイヤ。
  6.  前記貫通孔のうち、タイヤ径方向外側に位置する貫通孔は、タイヤ径方向内側に位置する貫通孔よりも、タイヤ周方向の長さが長く、
     前記貫通孔のうち、タイヤ径方向外側に位置する貫通孔は、タイヤ径方向内側に位置する貫通孔よりも、タイヤ径方向の長さが短い、請求項3から5のいずれか1つに記載の空気入りタイヤ。
  7.  前記制音体は、タイヤ径方向外側の外縁が自然状態よりもタイヤ周方向に引っ張られた状態で、かつ、タイヤ径方向内側の内縁が自然状態よりもタイヤ周方向に圧縮された状態で、前記サイドウォール部の内面に取り付けられている、請求項1から6のいずれか1つに記載された空気入りタイヤ。
  8.  前記制音体の前記外縁及び前記内縁には、タイヤ周方向に間隔を隔てて複数の凹部が形成されている、請求項7に記載の空気入りタイヤ。
  9.  トレッド部の内面上には、シーラント層が積層されている、請求項1から8のいずれか1つに記載の空気入りタイヤ。
PCT/JP2020/023658 2019-12-10 2020-06-16 空気入りタイヤ WO2021117271A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20900095.9A EP4074525A4 (en) 2019-12-10 2020-06-16 PNEUMATIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019223173A JP7352458B2 (ja) 2019-12-10 2019-12-10 空気入りタイヤ
JP2019-223173 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021117271A1 true WO2021117271A1 (ja) 2021-06-17

Family

ID=76311567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023658 WO2021117271A1 (ja) 2019-12-10 2020-06-16 空気入りタイヤ

Country Status (3)

Country Link
EP (1) EP4074525A4 (ja)
JP (1) JP7352458B2 (ja)
WO (1) WO2021117271A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080969A (ja) * 2006-09-27 2008-04-10 Bridgestone Corp 空気入りタイヤ及び車輪構造
JP2008174080A (ja) * 2007-01-18 2008-07-31 Bridgestone Corp 空気入りタイヤ
JP2009023548A (ja) * 2007-07-20 2009-02-05 Bridgestone Corp 空気入りタイヤ
JP2009034924A (ja) * 2007-08-02 2009-02-19 Bridgestone Corp 空気入りタイヤの製造方法及び空気入りタイヤ
JP2009126463A (ja) * 2007-11-27 2009-06-11 Bridgestone Corp タイヤ
JP2011020479A (ja) * 2009-07-13 2011-02-03 Sumitomo Rubber Ind Ltd 制音体付空気入りタイヤ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664168A (en) * 1985-01-22 1987-05-12 The Uniroyal Goodrich Tire Company Self-sealing tire with edge strips for tire sealant
JP4984633B2 (ja) 2006-05-10 2012-07-25 横浜ゴム株式会社 空気入りタイヤ
DE102015212488A1 (de) * 2015-07-03 2017-01-05 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080969A (ja) * 2006-09-27 2008-04-10 Bridgestone Corp 空気入りタイヤ及び車輪構造
JP2008174080A (ja) * 2007-01-18 2008-07-31 Bridgestone Corp 空気入りタイヤ
JP2009023548A (ja) * 2007-07-20 2009-02-05 Bridgestone Corp 空気入りタイヤ
JP2009034924A (ja) * 2007-08-02 2009-02-19 Bridgestone Corp 空気入りタイヤの製造方法及び空気入りタイヤ
JP2009126463A (ja) * 2007-11-27 2009-06-11 Bridgestone Corp タイヤ
JP2011020479A (ja) * 2009-07-13 2011-02-03 Sumitomo Rubber Ind Ltd 制音体付空気入りタイヤ

Also Published As

Publication number Publication date
JP2021091302A (ja) 2021-06-17
EP4074525A4 (en) 2023-04-19
EP4074525A1 (en) 2022-10-19
JP7352458B2 (ja) 2023-09-28

Similar Documents

Publication Publication Date Title
US20100012244A1 (en) Tire noise reduction device and pneumatic tire
US20140246133A1 (en) Tire containing a component for reducing vibration-generated noise in a tire and method for reducing tire noise
JP2011178308A (ja) 非空気圧タイヤ
WO2020121573A1 (ja) 乗用車用空気入りラジアルタイヤ
US20200164702A1 (en) Pneumatic tire
CN111225804B (zh) 充气轮胎
JP6674773B2 (ja) 吸音部材および空気入りタイヤ
WO2021117271A1 (ja) 空気入りタイヤ
CN109476181B (zh) 充气轮胎
JP7482963B2 (ja) 乗用車用空気入りラジアルタイヤ
JP4428061B2 (ja) 空気入りタイヤ
JP7348009B2 (ja) 空気入りタイヤ
JP7441015B2 (ja) 空気入りタイヤ
JP2015105000A (ja) 空気入りタイヤ
WO2020121568A1 (ja) 乗用車用空気入りラジアルタイヤ
JP2020172204A (ja) 空気入りタイヤ
CN111225805B (zh) 充气轮胎
JP2013169826A (ja) 空気入りタイヤ
WO2020121571A1 (ja) 乗用車用空気入りラジアルタイヤ
WO2020121572A1 (ja) 乗用車用空気入りラジアルタイヤ
WO2020225937A1 (ja) 空気入りタイヤ
WO2020121567A1 (ja) 乗用車用空気入りラジアルタイヤ
WO2020121570A1 (ja) 乗用車用空気入りラジアルタイヤ
JP6674772B2 (ja) 空気入りタイヤ、空気入りタイヤとリムとの組立体、およびリム
JP2020093679A (ja) 乗用車用空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020900095

Country of ref document: EP

Effective date: 20220711