WO2021117192A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2021117192A1
WO2021117192A1 PCT/JP2019/048741 JP2019048741W WO2021117192A1 WO 2021117192 A1 WO2021117192 A1 WO 2021117192A1 JP 2019048741 W JP2019048741 W JP 2019048741W WO 2021117192 A1 WO2021117192 A1 WO 2021117192A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
current
determination
sunset
Prior art date
Application number
PCT/JP2019/048741
Other languages
English (en)
French (fr)
Inventor
朋也 勝倉
義大 多和田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201980101281.0A priority Critical patent/CN114556259B/zh
Priority to JP2021563539A priority patent/JP7160214B2/ja
Priority to US17/754,539 priority patent/US11973351B2/en
Priority to PCT/JP2019/048741 priority patent/WO2021117192A1/ja
Publication of WO2021117192A1 publication Critical patent/WO2021117192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Definitions

  • This application relates to a power converter.
  • the output DC voltage of the solar cell panel drops significantly when clouds cover the solar cell panel during the day.
  • it may be erroneously determined as sunset. If the sunset determination accuracy is low, there is a problem that the operation mode may be switched to the static power compensation mode even though the normal power generation mode should be maintained.
  • the present application has been made to solve the above-mentioned problems, and an object of the present application is to provide an improved power conversion device for appropriately performing mode switching according to the power generation status of the solar cell panel. To do.
  • the power converter for this application is It is provided with a DC terminal connected to the solar cell panel and an AC terminal connected to the AC power system, converts the DC power generated by the solar cell panel into AC power, and supplies the AC power to the AC power system.
  • Power conversion circuit and A current detecting means for detecting a direct current flowing between the solar cell panel and the power conversion circuit, and A power generation mode that controls the power conversion circuit so as to output the active power of the DC power generated by the solar cell panel to the AC power system, and the power conversion circuit so as to output the ineffective power to the AC power system.
  • a control circuit comprising an ineffective power compensation mode for controlling the above, and performing mode switching between the power generation mode and the ineffective power compensation mode based on the magnitude of the direct current detected by the current detecting means. To be equipped.
  • the control circuit may perform at least one of "sunset determination” and “sunrise determination” based on the magnitude of the direct current.
  • the mode switching includes “sunset mode switching” which is a mode switching from the power generation mode to the static power compensation mode and “sunrise mode switching” which is a mode switching from the static power compensation mode to the power generation mode. At least one of them may be included.
  • the control circuit may perform the sunset mode switching based on the result of the sunset determination.
  • the control circuit may perform the sunrise mode switching based on the result of the sunrise determination.
  • the power generation status of the solar cell panel can be accurately determined based on the magnitude of the direct current from the solar cell panel, so that the mode can be switched appropriately.
  • FIG. 1 is a block diagram schematically showing a power conversion device according to an embodiment.
  • the power conversion device 10 includes a power conversion circuit 12, a DC capacitor 14, a filter circuit 16, a DC voltage detector 18, a DC current detector 20, and a plurality of AC voltage detectors. It includes 22a to 22c, a plurality of AC current detectors 24a to 24c, a plurality of DC switches 26a and 26b, a plurality of AC switches 28a to 28c, a rectifying element 30, and a control circuit 34.
  • the power conversion device 10 is connected to the solar cell panel 2 as a DC power source and the AC power system 4.
  • the power conversion device 10 is connected to the power system 4 via, for example, a transformer 6.
  • the solar cell panel 2 supplies DC power to the power conversion device 10.
  • the power conversion device 10 converts the DC power input from the solar cell panel 2 into AC power, and supplies the converted AC power to the power system 4.
  • the power conversion device 10 supplies active power and some reactive power to the power system 4.
  • the power conversion device 10 causes, for example, the solar cell panel 2 to function as a distributed power source. Further, the power conversion device 10 supplies the power system 4 with the reactive power to perform the static power compensation for suppressing the voltage fluctuation of the power system 4.
  • the power conversion device 10 operates to supply active power and some reactive power during a time period when the amount of power generated by the solar cell panel 2 is high, such as during the daytime. Then, the power conversion device 10 performs an operation of supplying ineffective power in a time zone when the amount of power generation of the solar cell panel 2 is low, for example, at night.
  • the power conversion device 10 includes a "power generation operation mode” in which the power system 4 is supplied with active power and some reactive power, and a “negative power compensation mode” in which the power system 4 is supplied with the reactive power. ..
  • the static power compensation mode is also referred to as an SVC (Static Var Compensator) operation mode.
  • the solar cell panel 2 is shown as a DC power source.
  • the AC power of the power system 4 is a three-phase AC power.
  • the power conversion device 10 converts DC power into three-phase AC power and supplies it to the power system 4.
  • the AC power of the power system 4 is not limited to the three-phase AC power, but may be a single-phase AC power or the like.
  • the AC voltage of the power system 4 may be, for example, 100 V (effective value).
  • the frequency of the AC power of the power system 4 may be, for example, 50 Hz or 60 Hz.
  • the power conversion circuit 12 has a pair of DC terminals d1 and d2 connected to the solar panel 2 and a plurality of AC terminals a1 to a3 connected to the power system 4.
  • the DC terminal d1 is a DC terminal on the high voltage side
  • the DC terminal d2 is a DC terminal on the low voltage side.
  • the DC terminal d1 may be on the low voltage side and the DC terminal d2 may be on the high voltage side.
  • the power conversion circuit 12 has three AC terminals a1 to a3 corresponding to each phase of three-phase AC power.
  • the number of AC terminals may be two.
  • the number of AC terminals may be appropriately set according to the type of AC power and the like.
  • the power conversion circuit 12 converts the DC power of the solar panel 2 into AC power corresponding to the power system 4, and supplies the AC power to the power system 4.
  • the power conversion circuit 12 includes, for example, a plurality of switching elements 12a and a plurality of rectifying elements 12b connected in antiparallel to each of the switching elements 12a.
  • the power conversion circuit 12 converts DC power into AC power by turning on / off each switching element 12a.
  • the power conversion circuit 12 is a so-called three-phase voltage type inverter.
  • the power conversion circuit 12 has, for example, six switching elements 12a connected by a three-phase bridge, and converts DC power into three-phase AC power by turning on / off each switching element 12a.
  • a self-extinguishing semiconductor element such as a GTO (Gate Turn-Off thyristor) or an IGBT (Insulated Gate Bipolar Transistor) is used.
  • the DC capacitor 14 is connected between the pair of DC terminals d1 and d2.
  • the DC capacitor 14 smoothes the DC voltage of the solar cell panel 2, for example.
  • the DC capacitor 14 is a smoothing capacitor.
  • the filter circuit 16 is provided between the AC terminals a1 to a3 and the power system 4.
  • the filter circuit 16 is connected to the AC terminals a1 to a3.
  • the filter circuit 16 includes, for example, an inductor 16a and a capacitor 16b.
  • the inductor 16a and the capacitor 16b are provided, for example, for each phase of AC power.
  • the filter circuit 16 suppresses the harmonic component of the AC power output from the power conversion circuit 12, and makes the output waveform closer to a sine wave.
  • the DC voltage detector 18 detects the DC voltage value V dc of the DC capacitor 14. In other words, the DC voltage detector 18 detects the voltage value of the DC voltage of the solar cell panel 2. Further, the DC voltage detector 18 is connected to the control circuit 34, and the detected DC voltage value Vdc is input to the control circuit 34.
  • the DC current detector 20 is provided between the solar cell panel 2 and the power conversion circuit 12.
  • the DC current detector 20 detects a DC current value I dc indicating the magnitude of the DC current input to the power conversion circuit 12.
  • the DC current detector 20 is connected to the control circuit 34 and inputs the detected current value to the control circuit 34.
  • the AC voltage detectors 22a to 22c are connected to the AC terminals a1 to a3 via the filter circuit 16. Each AC voltage detector 22a to 22c detects the voltage value of the AC power output from the power conversion circuit 12. In other words, each AC voltage detector 22a to 22c detects the voltage value of the AC voltage of the power system 4. Each AC voltage detector 22a to 22c detects, for example, the voltage value (phase voltage) of each phase of the three-phase AC power.
  • the AC voltage detectors 22a to 22c are connected to the control circuit 34, and the detected voltage value is input to the control circuit 34.
  • Each AC current detector 24a to 24c is provided between the filter circuit 16 and the power system 4. Each AC current detector 24a to 24c detects the current value of the AC power output from the power conversion circuit 12. In other words, each AC current detector 24a to 24c detects the current value of the AC current of the power system 4. Each AC current detector 24a to 24c detects the current value (phase current) of each phase of the three-phase AC power. Each AC current detector 24a to 24c is connected to the control circuit 34, and the detected current value is input to the control circuit 34.
  • the DC switches 26a and 26b are provided between the solar cell panel 2 and the power conversion circuit 12.
  • the DC switches 26a and 26b may be of a manual type, for example.
  • the DC switches 26a and 26b are normally in the turned-on state, and are automatically released by the action of the control circuit 34 or the like when some abnormality occurs.
  • Each AC switch 28a to 28c is provided between the power system 4 and the power conversion circuit 12.
  • the voltage value detected by the AC voltage detectors 22a to 22b and the terminal voltage on the power converter side of the transformer 6 are considered to be equal within a predetermined range by the voltage detector on the transformer side (not shown).
  • the AC switches 28a to 28c are automatically turned on by the action of the control circuit 34, for example.
  • the DC switches 26a and 26b and the AC switches 28a to 28c are opened at the time of maintenance, for example, and the power conversion circuit 12 is separated from the solar cell panel 2 and the power system 4 by this opening. By turning on the DC switches 26a and 26b and the AC switches 28a to 28c, the power conversion circuit 12 is connected to the solar cell panel 2 and the power system 4.
  • the rectifying element 30 is provided between the DC capacitor 14 and the solar cell panel 2.
  • the rectifying element 30 is, for example, a backflow prevention diode.
  • the anode of the rectifying element 30 is connected to the output terminal 2a on the high voltage side of the solar cell panel 2 via the DC switch 26a.
  • the cathode of the rectifying element 30 is connected to the DC terminal d1 on the high voltage side of the power conversion circuit 12.
  • the rectifying element 30 suppresses the backflow of electric power from the power conversion circuit 12 and the DC capacitor 14 to the solar cell panel 2.
  • the rectifying element 30 may be provided between the output terminal 2b on the low voltage side of the solar cell panel 2 and the DC terminal d2 on the low voltage side of the power conversion circuit 12.
  • the control circuit 34 controls the operation of the power conversion circuit 12.
  • the control circuit 34 controls the conversion of electric power by the power conversion circuit 12.
  • the control circuit 34 is connected to, for example, the gate signal terminal of each switching element 12a.
  • the control circuit 34 controls the conversion of electric power by the power conversion circuit 12 by controlling the on / off of each switching element 12a.
  • the control circuit 34 has an operation of the "power generation operation mode” and an operation of the "SVC operation mode”.
  • the control circuit 34 controls the on / off of each switching element 12a of the power conversion circuit 12 so as to convert the AC power synchronized with the AC power of the power system 4, for example, in the power generation operation mode.
  • the control circuit 34 detects the voltage, frequency, phase, and the like of the AC power of the power system 4 based on the detection results of the AC voltage detectors 22a to 22c and the AC current detectors 24a to 24c, for example. ,
  • the voltage, frequency, phase, etc. of the AC power converted by the power conversion circuit 12 are matched with the AC power of the power system 4. As a result, the AC power converted by the power conversion circuit 12 is output to the power system 4 as active power.
  • the control circuit 34 controls, for example, an MPPT (Maximum Power Point Tracking) method in which DC power is made to follow the maximum power point of the solar cell panel 2.
  • the control circuit 34 is based on, for example, the DC voltage value Vdc of the DC capacitor 14 detected by the DC voltage detector 18 and the DC current value of the DC current detected by the DC current detector 20. Extract the maximum power point (optimal operating point) of 2.
  • the control circuit 34 controls the operation of the power conversion circuit 12 according to the extracted maximum power point.
  • the control circuit 34 determines the static power output by the power conversion circuit 12 to the power system 4 in the case of the static power compensation mode (that is, the SVC operation mode).
  • the determination of the reactive power is performed based on, for example, the detection results of the AC voltage detectors 22a to 22c and the AC current detectors 24a to 24c.
  • the control circuit 34 controls the on / off of each switching element 12a of the power conversion circuit 12 according to the determined reactive power. By this on / off control, the AC power converted by the power conversion circuit 12 is output to the power system 4 as reactive power.
  • the reactive power of the power system 4 can be controlled, and the stability of the power system 4 can be improved, for example.
  • the DC voltage of the DC capacitor 14 is converted into an AC voltage by the power conversion circuit 12. Further, in the SVC operation mode, the DC capacitor 14 is charged from the power system 4 side by turning on / off each switching element 12a of the power conversion circuit 12.
  • the control circuit 34 controls the on / off of each switching element 12a of the power conversion circuit 12 so that the voltage value of the DC capacitor 14 becomes substantially constant at a predetermined value.
  • the active power is controlled in the direction of being supplied from the power system 4 to the DC capacitor 14, but the active power is not controlled in the direction of being supplied from the DC capacitor 14 to the power system 4.
  • the control circuit 34 may control the active power.
  • the control circuit 34 may control the operation of the power conversion circuit 12 so that the DC voltage value V dc of the DC capacitor 14 becomes substantially constant at a predetermined voltage V SVC in the SVC operation mode.
  • Predetermined voltage V SVC is, for example, may be set between the upper limit voltage V Max_mpp and the lower limit voltage V Min_mpp of MPPT control.
  • the control circuit 34 compensates for the voltage drop of the DC capacitor 14 due to the occurrence of loss due to the operation of the power conversion circuit 12, and powers some active power from the power system 4 in order to maintain a predetermined voltage VSVC. It may be incorporated into the conversion circuit 12.
  • the rectifying element 30 that suppresses the backflow of electric power to the solar cell panel 2 may be a thyristor instead of the backflow prevention diode.
  • the gate terminal of the thyristor is connected to the control circuit 34.
  • the control circuit 34 can suppress the backflow of electric power to the solar cell panel 2 by controlling the on / off of the thyristor.
  • the rectifying element 30 may be any element capable of supplying DC power from the solar panel 2 to the power conversion circuit 12 and suppressing backflow of electric power to the solar panel 2.
  • FIG. 2 is a flowchart schematically showing the operation of the power conversion device 10 according to the embodiment.
  • the routine of FIG. 2 is executed by the control circuit 34.
  • the routine of FIG. 2 may be executed in the first operation after the installation of the power conversion device 10, or may be executed in a situation where the power conversion device 10 is temporarily stopped and then restarted for reasons such as maintenance.
  • FIG. 2 illustrates an operation sequence for an actual machine having a DC voltage capacity of 1500 V as an example.
  • the specific numerical values exemplified in each of the following steps may be applied when the power conversion device 10 has a capacity of at least 1500 V.
  • the AC circuit breakers 28a to 28c are turned off (open), and the DC circuit breakers 26a and 26b are turned on (turned on).
  • the DC circuit breakers 26a and 26b are turned on (turned on) at the latest before step S102 arrives.
  • step S100 the process proceeds in a state where the power conversion circuit 12 of the power conversion device 10 is stopped.
  • step S102 The start determination determines whether or not to start the operation of the power conversion circuit 12 based on the magnitude of the DC voltage value Vdc.
  • the start judgment measures the length of time that the DC voltage value V dc exceeds the predetermined start judgment voltage value V stat, and whether or not the measured time length reaches the predetermined start judgment time T stat. To judge.
  • the activation determination voltage value V stat is 1000V as an example
  • the activation determination time T stat is two seconds as an example. Therefore, when the time for which "V dc >1000V" is established continues for 2 seconds, the determination result in step S102 is affirmative (YES). During the period when the determination result in step S102 is negative (NO), the power conversion circuit 12 is stopped.
  • step S104 If the determination result is affirmative in step S102, then each AC circuit breaker 28a to 28c is turned on (turned on) (step S104).
  • step S106 the control circuit 34 drives the power conversion circuit 12, so that the operation in the power generation operation mode is achieved.
  • step S10 the series of processes from steps S100 to S106 described above is also referred to as an activation routine.
  • step S108 The sunset determination determines whether or not the sunset has arrived based on the magnitude of the direct current value Idc. Specifically, in the process of step S108, the length of time during which the DC current value I dc is less than the predetermined sunset determination current value Iss is measured, and the measured time length is the predetermined sunset determination. Determine if the time T ss has been reached. Specifically, in the embodiment, the sunset determination current value Iss is 1% of the input rated current of the power converter 10 as an example, and the sunset determination time T ss is 10 minutes as an example.
  • step S108 determines whether the time for which " Idc ⁇ 1% of the input rated current" is established continues for 10 minutes.
  • the determination result in step S108 is affirmative (YES).
  • the power conversion circuit 12 is continuously driven in the power generation operation mode.
  • step S108 If the determination result is affirmative (YES) in step S108, then the control circuit 34 drives the power conversion circuit 12 in the SVC operation mode in order to perform the nighttime SVC operation (step S110). Steps S108 and S110 have achieved "sunset mode switching", which is switching from the power generation operation mode to the SVC operation mode.
  • step S112 The sunrise determination determines whether or not the sunrise has arrived based on the magnitude of the direct current value Idc. Specifically, in the process of step S112, the length of time during which the DC current value I dc exceeds the predetermined sunrise determination current value Isr is measured, and the measured time length is determined in advance. It is determined whether or not the time T sr has been reached. Specifically, in the embodiment, the sunrise determination current value Isr is 3% of the input rated current of the power converter 10 as an example, and the sunrise determination time T sr is 2 seconds as an example.
  • step S112 determines whether the time for which " Idc > 3% of the input rated current" is established continues for 2 seconds. Therefore, when the time for which " Idc > 3% of the input rated current" is established continues for 2 seconds, the determination result in step S112 is affirmative (YES). During the period when the determination result in step S112 is negative (NO), the power conversion circuit 12 is continuously driven in the SVC operation mode.
  • step S112 If the determination result is affirmative (YES) in step S112, then the control circuit 34 drives the power conversion circuit 12 in the power generation operation mode (step S106). Steps S112 and S108 have achieved "sunrise mode switching", which is switching from the SVC operation mode to the power generation operation mode.
  • the power conversion device 10 can repeatedly switch modes as time elapses, such as "sunset-> night-> sunrise-> daytime-> sunset ". If the power conversion device 10 is stopped due to an accident, failure, or maintenance, the routine shown in FIG. 2 is re-executed at the subsequent restart.
  • control circuit 34 performs mode switching between the power generation mode and the static power compensation mode (SVC mode) based on the magnitude of the DC current value Idc.
  • the output direct current of the solar cell panel 2 maintains a certain magnitude even if the solar cell panel 2 is covered with clouds. Even if the solar cell panel 2 is covered with clouds, the solar cell panel 2 can output a direct current of, for example, about 10 to 20% of the rating.
  • the magnitude of the output direct current of the solar cell panel 2 becomes small at sunset and becomes zero at night. From these circumstances, the magnitude of the direct current value Idc has an advantage that it is easy to distinguish between sunrise and sunset.
  • the power generation status of the solar cell panel 2 can be accurately determined based on the magnitude of the output direct current from the solar cell panel 2, it corresponds to the transition of sunset / night / sunrise. Mode switching can be performed appropriately.
  • the control circuit 34, the DC current value I dc in step S108 is based on the length of time that is below the sunset determination current value I ss, implementing the mode switching. At this time, the positive current is the current flowing from the solar cell panel 2 to the power conversion circuit 12, and the backflow current is a negative current.
  • a reverse current flows when a direct current ground fault occurs in the daytime.
  • the DC ground fault occurs, for example, between the solar cell panel 2 and the DC switches 26a and 26b.
  • the DC current detector 20 may detect the magnitude of the reverse current as a negative value.
  • the mode switching determination value is set as a positive value that is small to some extent, the determination logic of the control circuit 34 determines that the magnitude of the reverse current is less than the mode switching determination value. Since the negative value is less than zero, when the absolute value of the magnitude of the reverse current is large to some extent, it is determined that the magnitude of the reverse current is less than the mode switching determination value. This can lead to misjudgment of sunset.
  • control circuit 34 when the time the magnitude of the direct current value I dc is less than the sunset determination current value I ss in step S108 has reached the sunset determination time T ss is Mode switching is performed.
  • the sunset determination time T ss of step S108 is set to 10 minutes.
  • the sunset determination time T ss may be transformed into a predetermined time of 2 minutes or more. Practically, highly accurate sunset determination can be performed by securing a sufficient sunset determination time T ss for several minutes (that is, 2 minutes or more).
  • the sunset determination time T ss may be set within the range of 2 minutes to 10 minutes. This is because if the sunset determination time T ss is too long, it takes a long time to obtain the determination result.
  • the sunset determination time T ss may be set variably.
  • the sunset determination time T ss in step S108 may be set shorter than 10 minutes, for example, may be set to any time of 60 seconds to 2 minutes, and may be set to any time of 2 minutes to less than 10 minutes. It may be set to time. As described above, even if the solar cell panel 2 is covered with clouds, the direct current value I dc is large to some extent. On the other hand, at sunset, the output direct current of the solar cell panel 2 drops significantly to almost zero. Therefore, when the sunset determination is performed based on the DC current value I dc , it is not always necessary to set the long sunset determination time T ss.
  • control circuit 34 includes an activation process (step S100).
  • the start-up process starts the power conversion circuit 12 when the voltage value of the DC capacitor 14 exceeds a predetermined start-up determination value in a state where the power conversion circuit 12 is stopped.
  • the startup process is executed at the first startup or restart.
  • the restart is performed after an abnormal stop or maintenance stop.
  • the determination based on the DC voltage instead of the DC current is performed.
  • the reason is that the activation process has different circumstances when compared with the sunset determination and the sunrise determination. That is, one of the reasons is that if the DC switches 26a and 26b are turned on during the daytime, the DC capacitor 14 is charged and the DC current does not flow. Therefore, the DC capacitor is not detected based on the DC current value Idc. This is because the determination based on the DC voltage of 14 is effective.
  • Another reason is that the risk of malfunction is low even in the case of DC voltage determination. The low risk of malfunction is that even if the DC switches 26a and 26b are turned on at night, the voltage of the solar cell panel 2 is low at night, so the DC voltage of the DC capacitor 14 determines the start-up judgment value. This is because it does not exceed.
  • step S102 is replaced with a current determination
  • the DC current value Idc flowing into the DC capacitor 14 may be detected in response to the closing of the DC circuit breakers 26a and 26b. If it is detected that the DC current value I dc exceeds the predetermined start-up determination current I status , it may be determined that it is after sunrise.
  • FIG. 3 is a flowchart schematically showing the operation of a comparative example (related technique) shown for explaining the effect of the power conversion device according to the embodiment.
  • processing proceeds in the order of steps S100, S102, S104, and S106, as in the routine of FIG.
  • step S308 the sunset determination based on the DC voltage value Vdc is performed (step S308). Specifically, when the time for which "V dc ⁇ 900V" is established continues for 60 seconds, it is determined that it is sunset. If the sunset determination result is affirmative (YES), the AC circuit breakers 28a to 28c are turned off (step S310). After that, the process returns to step S100 and the power conversion device 10 is stopped. That is, in the comparative example of FIG. 3, nighttime SVC operation is not performed.
  • step S102 the activation determination (step S102) is performed again.
  • step S102 also functions as a sunrise determination.
  • the process proceeds in steps S102 ⁇ S104 ⁇ S106, and the power generation operation is started.
  • the embodiment has an advantage that the determination accuracy is high because the sunset determination (step S108) is based on the direct current value Idc and a sufficient sunset determination time T ss is set.
  • FIG. 4 is a flowchart schematically showing the operation of the power conversion device according to the modified example of the embodiment.
  • the control circuit 34 may perform mode switching based on the result of comparing the absolute value
  • the direct current detector 20 detects the value of the reverse current as a negative value.
  • the DC current absolute value
  • the sunset can be detected accurately.
  • either one of the above steps S108 and step S112 are not the direct current value I ds, the voltage detection based on a comparison between the DC voltage value V dc and various determination value It may be transformed.
  • the various determination values may be either a predetermined sunset determination voltage value V ss or a predetermined sunrise determination voltage value V sr .
  • the sunset determination time Tss may be lengthened to improve the determination accuracy.
  • the sunset determination time T ss may be, for example, 2 minutes or more, or any time defined within the range of 2 minutes to 10 minutes.
  • An “other power conversion device” may be provided in which both steps S108 and S112 are replaced with voltage detection based on the DC voltage value Vdc.
  • the sunset determination time Tss may be lengthened.
  • the sunset determination time T ss may be, for example, an arbitrary time of 2 minutes or more, or may be an arbitrary time determined from the range of, for example, 2 minutes to 10 minutes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置は、太陽電池パネルに接続される直流端子と交流電力系統に接続される交流端子とを備え、前記太陽電池パネルで発電した直流電力を交流電力に変換し、前記交流電力を前記交流電力系統に供給する電力変換回路と、前記太陽電池パネルと前記電力変換装置との間を流れる直流電流を検知する電流検知手段と、前記太陽電池パネルで発電した前記直流電力から生成した有効電力を前記交流電力系統に出力するように前記電力変換回路を制御する発電モードと、無効電力を前記交流電力系統へ出力させるように前記電力変換回路を制御する無効電力補償モードと、を備え、前記電流検知手段で検出した前記直流電流の大きさに基づいて前記発電モードと前記無効電力補償モードとの間のモード切替を実施する制御回路と、を備える。

Description

電力変換装置
 本出願は、電力変換装置に関するものである。
 従来、例えば日本特許第6462969号に記載されているように、直流電源からの直流電圧に基づいて電力変換回路の動作を切り替える電力変換装置が知られている。当該特許公報における段落0043によれば、直流電圧が下限電圧未満になった場合に日没と判定され、その後にSVC運転モードが開始される。これにより、夜間の無効電力補償が実施されている。
日本特許第6462969号公報
 太陽電池パネルの出力直流電圧は、日中に太陽電池パネルに雲がかかると大幅に低下する。上記従来の技術では、そのような電圧低下が起きると、日没であると誤って判定される可能性がある。日没判定精度が低いと、通常発電モードを維持すべきであるにも関わらず運転モードが無効電力補償モードへと切り替わる可能性があるという問題がある。
 また、日の出を判定する際にも類似する問題がある。日の出の時刻を過ぎても太陽電池パネルに雲があたり出力直流電圧が不十分である場合、未だ夜間であると誤って判定される可能性がある。日の出の判定精度が低い場合にも、モード切り替えが適切に行われない問題がある。
 本出願は、上述のような課題を解決するためになされたもので、太陽電池パネルの発電状況に応じたモード切替を適切に実施するように改良された電力変換装置を提供することを目的とする。
 本出願にかかる電力変換装置は、
 太陽電池パネルに接続される直流端子と交流電力系統に接続される交流端子とを備え、前記太陽電池パネルで発電した直流電力を交流電力に変換し、前記交流電力を前記交流電力系統に供給する電力変換回路と、
 前記太陽電池パネルと前記電力変換回路との間を流れる直流電流を検知する電流検知手段と、
 前記太陽電池パネルが発電した前記直流電力の有効電力を前記交流電力系統に出力するように前記電力変換回路を制御する発電モードと、無効電力を前記交流電力系統へ出力させるように前記電力変換回路を制御する無効電力補償モードと、を備え、前記電流検知手段で検出した前記直流電流の大きさに基づいて前記発電モードと前記無効電力補償モードとの間のモード切替を実施する制御回路と、
 を備える。
 前記制御回路は、前記直流電流の大きさに基づいて、「日没判定」と「日出判定」とのうち少なくとも一方の判定を実施してもよい。前記モード切替は、前記発電モードから前記無効電力補償モードへのモード切替である「日没モード切替」と、前記無効電力補償モードから前記発電モードへのモード切替である「日出モード切替」とのうち少なくとも一方を含んでもよい。前記制御回路は、前記日没判定の結果に基づいて前記日没モード切替を実施してもよい。前記制御回路は、前記日出判定の結果に基づいて前記日出モード切替を実施してもよい。
 本出願によれば、太陽電池パネルからの直流電流の大きさに基づいて太陽電池パネルの発電状況を精度良く判定できるので、モード切替を適切に実施することができる。
実施の形態に係る電力変換装置を模式的に表すブロック図である。 実施の形態に係る電力変換装置の動作を模式的に表すフローチャートである。 実施の形態に係る電力変換装置の効果を説明するために示す比較例(関連技術)の動作を模式的に表すフローチャートである。 実施の形態の変形例に係る電力変換装置の動作を模式的に表すフローチャートである。
実施の形態の装置およびシステムの構成.
 図1は、実施の形態に係る電力変換装置を模式的に表すブロック図である。図1に表したように、電力変換装置10は、電力変換回路12と、直流コンデンサ14と、フィルタ回路16と、直流電圧検出器18と、直流電流検出器20と、複数の交流電圧検出器22a~22cと、複数の交流電流検出器24a~24cと、複数の直流開閉器26a、26bと、複数の交流開閉器28a~28cと、整流素子30と、制御回路34と、を備える。
 電力変換装置10は、直流電源としての太陽電池パネル2と交流の電力系統4とに接続される。電力変換装置10は、例えば、変圧器6を介して電力系統4に接続される。太陽電池パネル2は、直流電力を電力変換装置10に供給する。電力変換装置10は、太陽電池パネル2から入力された直流電力を交流電力に変換し、変換後の交流電力を電力系統4に供給する。
 電力変換装置10は、電力系統4に有効電力、及び多少の無効電力を供給する。電力変換装置10は、例えば、太陽電池パネル2を分散型電源として機能させる。また、電力変換装置10は、電力系統4に無効電力を供給することにより、電力系統4の電圧変動を抑制する無効電力補償を行う。電力変換装置10は、例えば、日中などの太陽電池パネル2の発電量の高い時間帯において、有効電力、及び多少の無効電力を供給する動作を行う。そして、電力変換装置10は、例えば、夜間などの太陽電池パネル2の発電量の低い時間帯において、無効電力を供給する動作を行う。
 このように、電力変換装置10は、電力系統4に有効電力、及び多少の無効電力を供給する「発電運転モード」と、電力系統4に無効電力を供給する「無効電力補償モード」とを備える。無効電力補償モードをSVC(Static Var Compensator)運転モードとも称する。
 この例では、太陽電池パネル2を直流電源として示している。この例において、電力系統4の交流電力は、三相交流電力である。電力変換装置10は、直流電力を三相交流電力に変換し、電力系統4に供給する。電力系統4の交流電力は、三相交流電力に限ることなく、単相交流電力などでもよい。電力系統4の交流電圧は、例えば、100V(実効値)であってもよい。電力系統4の交流電力の周波数は、例えば、50Hzまたは60Hzであってもよい。
 電力変換回路12は、太陽電池パネル2に接続される一対の直流端子d1、d2と、電力系統4に接続される複数の交流端子a1~a3と、を有する。直流端子d1は、高圧側の直流端子であり、直流端子d2は、低圧側の直流端子である。これとは反対に、直流端子d1を低圧側、直流端子d2を高圧側としてもよい。
 この例において、電力変換回路12は、三相交流電力の各相に対応した3つの交流端子a1~a3を有する。例えば、電力系統4の交流電力が単相交流電力である場合には、交流端子の数は、2つでもよい。交流端子の数は、交流電力の形式などに応じて適宜設定すればよい。
 電力変換回路12は、太陽電池パネル2の直流電力を電力系統4に対応した交流電力に変換し、交流電力を電力系統4に供給する。電力変換回路12は、例えば、複数のスイッチング素子12aと、各スイッチング素子12aのそれぞれに逆並列に接続された複数の整流素子12bと、を有する。電力変換回路12は、各スイッチング素子12aのオン・オフにより、直流電力を交流電力に変換する。電力変換回路12は、いわゆる三相電圧型インバータである。
 電力変換回路12は、例えば、三相ブリッジ接続された6つのスイッチング素子12aを有し、各スイッチング素子12aのオン・オフにより、直流電力を三相交流電力に変換する。各スイッチング素子12aには、例えば、GTO(Gate Turn-Off thyristor)やIGBT(Insulated Gate Bipolar Transistor)などの自己消弧型の半導体素子が用いられる。
 直流コンデンサ14は、一対の直流端子d1、d2の間に接続される。直流コンデンサ14は、例えば、太陽電池パネル2の直流電圧を平滑化する。直流コンデンサ14は、換言すれば、平滑コンデンサである。
 フィルタ回路16は、各交流端子a1~a3と電力系統4との間に設けられる。フィルタ回路16は、各交流端子a1~a3に接続されている。フィルタ回路16は、例えば、インダクタ16aと、コンデンサ16bと、を有する。インダクタ16a及びコンデンサ16bは、例えば、交流電力の相毎に設けられる。フィルタ回路16は、電力変換回路12から出力された交流電力の高調波成分を抑制し、出力波形をより正弦波に近付ける。
 直流電圧検出器18は、直流コンデンサ14の直流電圧値Vdcを検出する。換言すれば、直流電圧検出器18は、太陽電池パネル2の直流電圧の電圧値を検出する。また、直流電圧検出器18は、制御回路34に接続され、検出した直流電圧値Vdcを制御回路34に入力する。
 直流電流検出器20は、太陽電池パネル2と電力変換回路12との間に設けられる。直流電流検出器20は、電力変換回路12に入力される直流電流の大きさを表す直流電流値Idcを検出する。直流電流検出器20は、制御回路34に接続され、検出した電流値を制御回路34に入力する。
 各交流電圧検出器22a~22cは、フィルタ回路16を介して各交流端子a1~a3のそれぞれに接続されている。各交流電圧検出器22a~22cは、電力変換回路12から出力された交流電力の電圧値を検出する。換言すれば、各交流電圧検出器22a~22cは、電力系統4の交流電圧の電圧値を検出する。各交流電圧検出器22a~22cは、例えば、三相交流電力の各相の電圧値(相電圧)を検出する。各交流電圧検出器22a~22cは、制御回路34に接続されており、検出した電圧値を制御回路34に入力する。
 各交流電流検出器24a~24cは、フィルタ回路16と電力系統4との間に設けられる。各交流電流検出器24a~24cは、電力変換回路12から出力された交流電力の電流値を検出する。換言すれば、各交流電流検出器24a~24cは、電力系統4の交流電流の電流値を検出する。各交流電流検出器24a~24cは、三相交流電力の各相の電流値(相電流)を検出する。各交流電流検出器24a~24cは、制御回路34に接続されており、検出した電流値を制御回路34に入力する。
 各直流開閉器26a、26bは、太陽電池パネル2と電力変換回路12との間に設けられる。各直流開閉器26a、26bは、例えば手動式であってもよい。各直流開閉器26a、26bは、通常は投入状態であり何らかの異常が生じたとき制御回路34の働き等により自動的に解放される。
 各交流開閉器28a~28cは、電力系統4と電力変換回路12との間に設けられる。交流電圧検出器22a~22bで検出された電圧値と、変圧器側電圧検出器(図示せず)により変圧器6の電力変換装置側の端子電圧が所定の範囲内で等しいとみなされた場合に、各交流開閉器28a~28cは、例えば、制御回路34の働きにより自動的に投入される。
 各直流開閉器26a、26bおよび各交流開閉器28a~28cは例えばメンテナンスの際などに開放され、この開放により電力変換回路12が太陽電池パネル2及び電力系統4から切り離される。各直流開閉器26a、26bおよび各交流開閉器28a~28cを投入することにより、電力変換回路12が太陽電池パネル2及び電力系統4に接続される。
 整流素子30は、直流コンデンサ14と太陽電池パネル2との間に設けられる。整流素子30は一例として逆流防止ダイオードである。整流素子30のアノードは、直流開閉器26aを介して太陽電池パネル2の高圧側の出力端子2aに接続されている。整流素子30のカソードは、電力変換回路12の高圧側の直流端子d1に接続されている。これにより、整流素子30は、電力変換回路12及び直流コンデンサ14から太陽電池パネル2への電力の逆流を抑制する。整流素子30は、太陽電池パネル2の低圧側の出力端子2bと電力変換回路12の低圧側の直流端子d2との間に設けてもよい。
 制御回路34は、電力変換回路12の動作を制御する。制御回路34は、電力変換回路12による電力の変換を制御する。制御回路34は、例えば、各スイッチング素子12aのゲート信号端子に接続されている。制御回路34は、各スイッチング素子12aのオン・オフを制御することにより、電力変換回路12による電力の変換を制御する。
 制御回路34は、「発電運転モード」の動作と、「SVC運転モード」の動作と、を有する。
(発電運転モード)
 制御回路34は、発電運転モードにおいて、例えば、電力系統4の交流電力に同期した交流電力に変換するように、電力変換回路12の各スイッチング素子12aのオン・オフを制御する。制御回路34は、例えば、各交流電圧検出器22a~22c及び各交流電流検出器24a~24cのそれぞれの検出結果を基に、電力系統4の交流電力の電圧、周波数、及び位相などを検出し、電力変換回路12によって変換される交流電力の電圧、周波数及び位相などを、電力系統4の交流電力に合わせる。これにより、電力変換回路12によって変換された交流電力が、有効電力として電力系統4に出力される。
 また、制御回路34は、発電運転モードの場合、例えば、直流電力を太陽電池パネル2の最大電力点に追従させるMPPT(Maximum Power Point Tracking)方式の制御を行う。制御回路34は、例えば、直流電圧検出器18によって検出された直流コンデンサ14の直流電圧値Vdcと、直流電流検出器20によって検出された直流電流の電流値と、に基づいて、太陽電池パネル2の最大電力点(最適動作点)を抽出する。制御回路34は、この抽出した最大電力点に応じて電力変換回路12の動作を制御する。
(無効電力補償モードすなわちSVC運転モード)
 制御回路34は、無効電力補償モード(つまりSVC運転モード)の場合、電力変換回路12が電力系統4に出力する無効電力を決定する。無効電力の決定は、例えば、各交流電圧検出器22a~22c及び各交流電流検出器24a~24cのそれぞれの検出結果に基づいて行われる。制御回路34は、決定した無効電力に応じて電力変換回路12の各スイッチング素子12aのオン・オフを制御する。このオン・オフ制御により、電力変換回路12によって変換された交流電力が、無効電力として電力系統4に出力される。これにより、例えば電力系統4の無効電力を制御することができ、例えば電力系統4の安定度を高めることができる。
 SVC運転モードにおいては、直流コンデンサ14の直流電圧が、電力変換回路12によって交流電圧に変換される。また、SVC運転モードにおいては、電力変換回路12の各スイッチング素子12aのオン・オフにより、電力系統4側から直流コンデンサ14が充電される。制御回路34は、SVC運転モードの場合、直流コンデンサ14の電圧値が所定の値で実質的に一定になるように、電力変換回路12の各スイッチング素子12aのオン・オフを制御する。SVC運転モードでは直流コンデンサ電圧を維持するため有効電力を電力系統4から直流コンデンサ14に供給する方向には制御するが、有効電力を直流コンデンサ14から電力系統4に供給する方向には制御しないように、制御回路34が有効電力を制御してもよい。
 実施の形態にかかるSVC運転モードは、有効電力を電力変換回路12から電力系統4に供給しない。制御回路34は、SVC運転モードにおいては、直流コンデンサ14の直流電圧値Vdcが、所定電圧VSVCで実質的に一定になるように、電力変換回路12の動作を制御してもよい。所定電圧VSVCは、例えば、MPPT制御の上限電圧Vmax_mppと下限電圧Vmin_mppとの間に設定されてもよい。また、SVC運転モードでは制御回路34は電力変換回路12の動作に伴う損失の発生による直流コンデンサ14の電圧低下を補い、所定の電圧VSVCを維持するため多少の有効電力を電力系統4から電力変換回路12に取り入れてもよい。
 変形例として、太陽電池パネル2への電力の逆流を抑制する整流素子30は、逆流防止ダイオードの代わりにサイリスタであってもよい。この変形例では、サイリスタのゲート端子は、制御回路34に接続されている。制御回路34は、サイリスタのオン・オフを制御することで、太陽電池パネル2への電力の逆流を抑制することができる。整流素子30は、太陽電池パネル2から電力変換回路12に直流電力を供給可能で、太陽電池パネル2への電力の逆流を抑制可能な任意の素子でよい。
実施の形態の具体的処理.
 図2は、実施の形態に係る電力変換装置10の動作を模式的に表すフローチャートである。図2のルーチンは、制御回路34によって実行される。図2のルーチンは、電力変換装置10の設置後初回運転で実行されてもよく、メンテナンス等の理由で電力変換装置10が一旦停止された後に再起動をする場面で実行されてもよい。
 なお、図2は一例として直流電圧容量が1500Vの実機についての運転シーケンスを例示する。下記の各ステップで例示する具体的数値は、電力変換装置10が少なくとも容量1500Vを持つ場合に適用されてもよい。
 図2のルーチンのスタート時点では、各交流遮断器28a~28cがオフ(開放)とされており、各直流遮断器26a、26bはオン(投入)とされている。各直流遮断器26a、26bは、遅くともステップS102が到来するよりも前にオン(投入)とされる。
 図2のルーチンでは、まず、電力変換装置10の電力変換回路12が停止されている状態で処理が進む(ステップS100)。
 次に、「起動判定」が実施される(ステップS102)。起動判定は、直流電圧値Vdcの大きさに基づいて、電力変換回路12の運転を開始するかどうかを決定するものである。起動判定は、直流電圧値Vdcが予め定めた起動判定電圧値Vstatを上回っている時間の長さを計測し、計測した時間長が予め定めた起動判定時間Tstatに達したか否かを判定する。実施の形態では、具体的には、起動判定電圧値Vstatは一例として1000Vであり、起動判定時間Tstatは一例として2秒である。よって、「Vdc>1000V」が成立している時間が2秒間継続した場合には、ステップS102の判定結果は肯定(YES)となる。ステップS102の判定結果が否定(NO)である期間は、電力変換回路12は停止状態とされる。
 ステップS102で判定結果が肯定となったら、次に、各交流遮断器28a~28cがオン(投入)とされる(ステップS104)。
 次に、発電運転が開始される(ステップS106)。このステップでは、制御回路34が電力変換回路12を駆動することで発電運転モードの運転が達成される。
 実施の形態では、上記のステップS100~S106までの一連の処理を、起動ルーチン(ステップS10)とも称する。
 次に、「日没判定」が行われる(ステップS108)。日没判定は、直流電流値Idcの大きさに基づいて、日没が到来したか否かを判定する。具体的には、ステップS108の処理は、直流電流値Idcが予め定めた日没判定電流値Issを下回っている時間の長さを計測し、計測した時間長が予め定めた日没判定時間Tssに達したか否かを判定する。実施の形態では、具体的には、日没判定電流値Issは一例として電力変換装置10の入力定格電流の1%であり、日没判定時間Tssは一例として10分である。よって、「Idc<入力定格電流の1%」が成立している時間が10分間継続した場合には、ステップS108の判定結果は肯定(YES)となる。ステップS108の判定結果が否定(NO)である期間は、電力変換回路12は発電運転モードで引き続き駆動される。
 ステップS108で判定結果が肯定(YES)となったら、次に、制御回路34は、夜間SVC運転を行うために、SVC運転モードで電力変換回路12を駆動する(ステップS110)。ステップS108およびS110は、発電運転モードからSVC運転モードへの切り替えである「日没モード切替」を達成している。
 次に、「日出判定」が行われる(ステップS112)。日出判定は、直流電流値Idcの大きさに基づいて日の出が到来したか否かを判定する。具体的には、ステップS112の処理は、直流電流値Idcが予め定めた日出判定電流値Isrを上回っている時間の長さを計測し、計測した時間長が予め定めた日出判定時間Tsrに達したか否かを判定する。実施の形態では、具体的には、日出判定電流値Isrは一例として電力変換装置10の入力定格電流の3%であり、日出判定時間Tsrは一例として2秒である。よって、「Idc>入力定格電流の3%」が成立している時間が2秒間継続した場合には、ステップS112の判定結果は肯定(YES)となる。ステップS112の判定結果が否定(NO)である期間は、電力変換回路12はSVC運転モードで引き続き駆動される。
 なお、上述した実施の形態の数値例では、一例として日出判定電流値Isrのほうが日没判定電流値Issよりも大きくされており、一例として日没判定時間Tssのほうが日出判定時間Tsrよりも長くされている。ただしこの大小関係は逆とされてもよい。
 ステップS112で判定結果が肯定(YES)となったら、次に、制御回路34は、発電運転モードで電力変換回路12を駆動する(ステップS106)。ステップS112およびS108は、SVC運転モードから発電運転モードへの切り替えである「日出モード切替」を達成している。
 その後、「日没→夜間→日の出→日中→日没・・・」のように時間が経過することに伴って、電力変換装置10はモード切替を繰り返し実施することができる。もし仮に、事故発生、故障発生あるいはメンテナンス発生に伴って電力変換装置10が停止されると、その後の再起動時に図2のルーチンが再実行される。
 以上説明したように、実施の形態にかかる制御回路34は、直流電流値Idcの大きさに基づいて、発電モードと無効電力補償モード(SVCモード)との間のモード切替を実施する。
 日の出から日中であれば、太陽電池パネル2に雲がかかっても、太陽電池パネル2の出力直流電流はある程度の大きさを保持する。太陽電池パネル2に雲がかかったとしても、太陽電池パネル2は例えば定格の10~20%程度の直流電流を出力することができる。一方、太陽電池パネル2の出力直流電流の大きさは、日没が到来すると微小となり、夜間にはゼロとなる。これらの事情から、直流電流値Idcの大きさは、日の出と日没とを区別しやすいという利点を持っている。この点、実施の形態によれば、太陽電池パネル2からの出力直流電流の大きさに基づいて太陽電池パネル2の発電状況を精度良く判定できるので、日没/夜間/日の出の移り変わりに応じたモード切替を適切に実施することができる。
 また、実施の形態において、制御回路34は、ステップS108で直流電流値Idcが日没判定電流値Issを下回っている時間の長さに基づいて、モード切替を実施する。このとき、プラス電流は太陽電池パネル2から電力変換回路12へ流れ込む電流であり、逆流電流はマイナス電流とされる。
 整流素子30が設けられていないと、昼間に直流地絡が発生したときに逆電流が流れる。直流地絡は、例えば太陽電池パネル2と各直流開閉器26a、26bとの間で発生する。電流の向きを区別するために、直流電流検出器20は逆電流の大きさをマイナス値として検知することがある。モード切替判定値をある程度小さな正の値として定めた場合において、制御回路34の判定ロジックは逆電流の大きさがモード切替判定値を下回ったと判定する。マイナス値はゼロ未満の値なので、逆電流の大きさの絶対値がある程度大きいときには、逆電流の大きさがモード切替判定値を下回ったと判定されてしまう。これは日没の誤判定につながるおそれがある。この点、直流電流値Idcに基づく日没判定ロジックに整流素子30を組み合わせることで、太陽電池パネル2への電力の逆流電流を抑制できるのみならず、直流地絡発生時の日没誤検出をも確実に防止できる利点がある。
 特に、実施の形態において、制御回路34は、ステップS108で直流電流値Idcの大きさが日没判定電流値Issを下回っている時間が日没判定時間Tssに達した場合には、モード切替が実施される。
 実施の形態では、一例としてステップS108の日没判定時間Tssを10分に設定している。しかしながら、日没判定時間Tssは、2分以上の予め定めた時間に変形されてもよい。実用上は、数分(つまり2分以上)の十分な日没判定時間Tssを確保することで高精度な日没判定を実施できる。なお、2分~10分の範囲内で日没判定時間Tssを設定してもよい。日没判定時間Tssが長過ぎると判定結果を得るまでの時間が長くなるからである。日没判定時間Tssは可変設定されてもよい。
 なお、ステップS108の日没判定時間Tssは、10分よりも短く設定されてもよく、例えば60秒~2分の任意の時間に設定されてもよく、2分~10分未満の任意の時間に設定されてもよい。前述したように、太陽電池パネル2に雲がかかったとしても、直流電流値Idcはある程度の大きさとなる。その一方で、日没時には、太陽電池パネル2の出力直流電流は大きく低下し、ほぼゼロとなる。このため直流電流値Idcに基づいて日没判定を行う場合には、必ずしも長時間の日没判定時間Tssを設定しなくともよい。
 また、実施の形態において、制御回路34は、起動処理(ステップS100)を備える。起動処理は、電力変換回路12が停止している状態において、直流コンデンサ14の電圧値が予め定めた起動判定値を上回っているときには電力変換回路12を起動するものである。
 電力変換装置10を設置した後において、初回起動時または再起動時に起動処理が実行される。再起動は、異常停止後またはメンテナンス停止後に行われる。
 実施の形態にかかる起動処理(ステップS102)では、直流電流ではなく直流電圧に基づく判定が実施される。その理由は、日没判定および日出判定と比較すると、起動処理は異なる事情を持つからである。すなわち、理由の一つは、日中に直流開閉器26a、26bを投入した状態であれば直流コンデンサ14が充電されて直流電流が流れなくなるので、直流電流値Idcに基づく検知ではなく直流コンデンサ14の直流電圧に基づく判定が有効だからである。また、他の理由として、直流電圧判定であっても誤動作リスクが低いからである。誤動作リスクが低いのは、仮に夜間に各直流開閉器26a、26bを投入した状態であっても、夜間には太陽電池パネル2の電圧が低いので、直流コンデンサ14の直流電圧が起動判定値を上回らないからである。
 なお、もし仮にステップS102を電流判定に置換する場合には、直流遮断器26a、26bの投入に応答して直流コンデンサ14に流れ込む直流電流値Idcを検出してもよい。この直流電流値Idcが予め定めた起動判定電流Istatを上回ったことが検出されれば、日の出以後であると判定されてもよい。
(比較例:関連技術)
 図3は、実施の形態に係る電力変換装置の効果を説明するために示す比較例(関連技術)の動作を模式的に表すフローチャートである。図3のルーチンでは、図2のルーチンと同様に、ステップS100、S102、S104,S106の順で処理が進む。
 図3のルーチンでは、ステップS106の後に、直流電圧値Vdcに基づく日没判定が実施される(ステップS308)。具体的には、「Vdc<900V」が成立している時間が60秒継続した場合には、日没であると判定される。日没判定結果が肯定(YES)である場合、各交流遮断器28a~28cがオフとされる(ステップS310)。その後、処理はステップS100へと戻り電力変換装置10が停止される。つまり図3の比較例では夜間SVC運転が行われない。
 その後、再び起動判定(ステップS102)が行われる。図3の比較例では、ステップS102が日出判定としても機能する。日の出が到来すると、処理はステップS102→S104→S106と進み、発電運転が開始される。
 ステップS308のような直流電圧値Vdcに基づく日没判定を行う場合には、60秒程度の日没判定時間は短すぎるという問題がある。日没判定時間が短すぎると、誤判定が起きる可能性が高まる。この点、実施の形態は、直流電流値Idcに基づく日没判定(ステップS108)でありしかも十分な日没判定時間Tssが設定されているので、判定精度が高いという利点がある。
(実施の形態の具体的処理の変形例)
 図4は、実施の形態の変形例に係る電力変換装置の動作を模式的に表すフローチャートである。実施の形態の変形例として、制御回路34は、直流電流値Idcの絶対値|Idc|を予め定めた判定値と比較した結果に基づいて、モード切替を実施してもよい。つまり、図2のステップS108、S112が、直流電流絶対値|Idc|についての比較判定を行うステップS208、S212にそれぞれ変形されてもよい。
 整流素子が設けられていないか、或いは整流素子の整流機能に何らかの機能低下が生じている場合には、昼間に直流地絡が発生したときに逆電流が流れる可能性がある。直流電流検出器20は、逆電流の値をマイナス値として検知する。この点、図4の変形例では、直流電流絶対値|Idc|を用いることで直流地絡発生時などの大きな逆電流を除外できるので、日没を精度良く検知することができる。
 なお、実施の形態の他の変形例として、上記ステップS108およびステップS112のうちいずれか一方が、直流電流値Idsではなく、直流電圧値Vdcと各種判定値との比較に基づく電圧検知に変形されてもよい。各種判定値は、予め定めた日没判定電圧値Vssまたは予め定めた日出判定電圧値Vsrとのいずれかであってもよい。この場合、整流素子30が設けられていることで逆流電流が抑制されることから、日没判定時間Tssを長くして判定精度を高めてもよい。日没判定時間Tssは、例えば2分以上でもよく、2分~10分の範囲内から定めた任意の時間でもよい。
 なお、上記ステップS108およびステップS112の両方が直流電圧値Vdcに基づく電圧検知に置換された「他の電力変換装置」が提供されてもよい。この場合、整流素子30が設けられていることで逆流電流が抑制されることから、日没判定時間Tssを長くしてもよい。日没判定時間Tssは、例えば2分以上の任意の時間でもよく、例えば2分~10分の範囲内から定めた任意の時間でもよい。
2 太陽電池パネル、2a 出力端子、2b 出力端子、4 電力系統、6 変圧器、10 電力変換装置、12 電力変換回路、12a スイッチング素子、12b、30 整流素子、14 直流コンデンサ、16 フィルタ回路、16a インダクタ、16b コンデンサ、18 直流電圧検出器、20 直流電流検出器、22a~22c 交流電圧検出器、24a~24c 交流電流検出器、26a、26b 直流開閉器(直流遮断器)、28a~28c 交流開閉器(交流遮断器)、34 制御回路、Idc 直流電流値、Vdc 直流電圧値

Claims (6)

  1.  太陽電池パネルに接続される直流端子と交流電力系統に接続される交流端子とを備え、前記太陽電池パネルで発電した直流電力を交流電力に変換し、前記交流電力を前記交流電力系統に供給する電力変換回路と、
     前記太陽電池パネルと前記電力変換回路との間を流れる直流電流を検知する電流検知手段と、
     前記太陽電池パネルが発電した前記直流電力の有効電力を前記交流電力系統に出力するように前記電力変換回路を制御する発電モードと、無効電力を前記交流電力系統へ出力させるように前記電力変換回路を制御する無効電力補償モードと、を備え、前記電流検知手段で検出した前記直流電流の大きさに基づいて前記発電モードと前記無効電力補償モードとの間のモード切替を実施する制御回路と、
     を備える電力変換装置。
  2.  前記モード切替は、前記発電モードから前記無効電力補償モードへの切り替えである日没モード切替を含み、
     前記制御回路は、前記直流電流の大きさが予め定めた日没判定電流値を下回っている時間の長さに基づいて、前記日没モード切替を実施する請求項1に記載の電力変換装置。
  3.  前記太陽電池パネルと前記電力変換装置との間に設けられ、前記太陽電池パネルの側への電力の逆流を抑制する整流素子をさらに備え、
     前記電流検知手段は、前記太陽電池パネルから前記電力変換回路へ流れ込む電流をプラス電流として検知し、
     前記制御回路は、前記直流電流の値が前記日没判定電流値を下回っている前記時間の長さが予め定めた日没判定時間に達した場合に前記日没モード切替を実施し、
     前記日没判定時間は、2分以上の予め定めた時間である請求項2に記載の電力変換装置。
  4.  前記制御回路は、前記直流電流の大きさの絶対値を予め定めた判定値と比較した結果に基づいて前記モード切替を実施する請求項1に記載の電力変換装置。
  5.  前記モード切替は、前記無効電力補償モードから前記発電モードへの切り替えである日出モード切替を含み、
     前記制御回路は、前記直流電流の値が予め定めた日出判定電流値を上回っている時間の長さに基づいて、前記日出モード切替を実施する請求項1に記載の電力変換装置。
  6.  前記電力変換回路の前記直流端子に入力される直流電圧が印加される直流コンデンサをさらに備え、
     前記制御回路は、前記電力変換回路が停止している状態において、前記直流コンデンサの電圧値が予め定めた起動判定値を上回っている時間の長さに基づいて前記電力変換回路の駆動を開始する請求項1に記載の電力変換装置。
PCT/JP2019/048741 2019-12-12 2019-12-12 電力変換装置 WO2021117192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980101281.0A CN114556259B (zh) 2019-12-12 2019-12-12 电力转换装置
JP2021563539A JP7160214B2 (ja) 2019-12-12 2019-12-12 電力変換装置
US17/754,539 US11973351B2 (en) 2019-12-12 2019-12-12 Power converter
PCT/JP2019/048741 WO2021117192A1 (ja) 2019-12-12 2019-12-12 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048741 WO2021117192A1 (ja) 2019-12-12 2019-12-12 電力変換装置

Publications (1)

Publication Number Publication Date
WO2021117192A1 true WO2021117192A1 (ja) 2021-06-17

Family

ID=76330057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048741 WO2021117192A1 (ja) 2019-12-12 2019-12-12 電力変換装置

Country Status (4)

Country Link
US (1) US11973351B2 (ja)
JP (1) JP7160214B2 (ja)
CN (1) CN114556259B (ja)
WO (1) WO2021117192A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376632A1 (en) * 2020-10-08 2022-11-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193685A (ja) * 2010-03-16 2011-09-29 Tokyo Electric Power Co Inc:The パワーコンディショナ
JP2012075299A (ja) * 2010-09-30 2012-04-12 Hitachi Engineering & Services Co Ltd 蓄電装置を備えた自然エネルギー利用発電所
WO2018069960A1 (ja) * 2016-10-11 2018-04-19 東芝三菱電機産業システム株式会社 電力変換装置及びその運転方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640708B2 (ja) * 1986-05-23 1994-05-25 株式会社日立製作所 太陽光発電システム
JP3770305B2 (ja) 2000-03-29 2006-04-26 セイコーエプソン株式会社 面発光型半導体レーザおよびその製造方法
EP2490312B1 (en) * 2009-10-14 2015-06-24 Acciona Energia, S.A. Solar generation method and system
JP5422466B2 (ja) 2010-04-01 2014-02-19 日立オートモティブシステムズ株式会社 電力変換装置
WO2012169013A1 (ja) * 2011-06-07 2012-12-13 東芝三菱電機産業システム株式会社 太陽光発電システムの運転制御装置
CN102904273B (zh) * 2011-07-29 2015-05-20 通用电气公司 能量转换系统的最大功率点追踪控制和相关方法
JP5843624B2 (ja) 2012-01-17 2016-01-13 三菱電機株式会社 系統連系用電力変換システム
JP6210649B2 (ja) * 2013-10-15 2017-10-11 東芝三菱電機産業システム株式会社 電力変換装置及びその制御方法
DE112014006215B4 (de) * 2014-01-20 2020-10-29 Mitsubishi Electric Corporation Energie-Umwandlungsvorrichtung
US9985553B2 (en) * 2015-01-13 2018-05-29 Toshiba Mitsubishi—Electric Industrial Systems Corporation Control device of inverter
JP6707309B2 (ja) 2016-10-24 2020-06-10 東芝三菱電機産業システム株式会社 電力供給システム
JP6764338B2 (ja) * 2016-12-27 2020-09-30 川崎重工業株式会社 電源システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193685A (ja) * 2010-03-16 2011-09-29 Tokyo Electric Power Co Inc:The パワーコンディショナ
JP2012075299A (ja) * 2010-09-30 2012-04-12 Hitachi Engineering & Services Co Ltd 蓄電装置を備えた自然エネルギー利用発電所
WO2018069960A1 (ja) * 2016-10-11 2018-04-19 東芝三菱電機産業システム株式会社 電力変換装置及びその運転方法

Also Published As

Publication number Publication date
JP7160214B2 (ja) 2022-10-25
CN114556259B (zh) 2023-04-28
CN114556259A (zh) 2022-05-27
US11973351B2 (en) 2024-04-30
JPWO2021117192A1 (ja) 2021-06-17
US20230318305A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US10084341B2 (en) Uninterruptible power source
US6118676A (en) Dynamic voltage sag correction
US8559201B2 (en) Grid-connected inverter
US20170163088A1 (en) Uninterruptible power source
US20060164782A1 (en) Control system, method and product for uninterruptible power supply
US10418851B2 (en) Uninterruptible power supply device
WO2007084041A1 (en) A transmission system and a method for control thereof
US11239664B2 (en) Power conversion system
EP3185393B1 (en) Ups with integrated bypass switch
US10666160B2 (en) Power conversion device and method for operating same with reactive power compensation
WO2021117192A1 (ja) 電力変換装置
US10797515B2 (en) Method for controlling an uninterruptible power supply and system for an uninterruptible power supply
US11277007B2 (en) Power conversion device, power system and method of suppressing reactive power in power system
JP3748394B2 (ja) 無停電電源装置
KR20150005822A (ko) H-브리지 멀티 레벨 인버터의 순간정전 제어 장치 및 방법
WO2011013187A1 (ja) 自励式無効電力補償装置
US20220263430A1 (en) Power conversion device
WO2019198300A1 (ja) 電力変換システム
JP2013243934A (ja) 自励式無効電力補償装置
JP2023125090A (ja) 無停電電源システム
JP2022038061A (ja) 無停電電源システム
JP2023121463A (ja) 双方向型電源システム
JP2023041179A (ja) 無停電電源システム
WO2020121466A1 (ja) 電力供給システムおよび電力供給方法
CN112737361A (zh) 一种具有逆变故障保护功能的直流开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956020

Country of ref document: EP

Kind code of ref document: A1