WO2021114887A1 - 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统 - Google Patents

双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统 Download PDF

Info

Publication number
WO2021114887A1
WO2021114887A1 PCT/CN2020/122692 CN2020122692W WO2021114887A1 WO 2021114887 A1 WO2021114887 A1 WO 2021114887A1 CN 2020122692 W CN2020122692 W CN 2020122692W WO 2021114887 A1 WO2021114887 A1 WO 2021114887A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
electrode plate
flow
channel
flow channel
Prior art date
Application number
PCT/CN2020/122692
Other languages
English (en)
French (fr)
Inventor
张国胜
张知劲
Original Assignee
张国胜
张知劲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张国胜, 张知劲 filed Critical 张国胜
Priority to US17/438,946 priority Critical patent/US20220158217A1/en
Publication of WO2021114887A1 publication Critical patent/WO2021114887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fuel cells, and particularly relates to a method for integrally displacing bipolar plates used in fuel cell stacks, and a fuel cell stack and power generation system including bipolar plates produced by the method.
  • Fuel cell is an electrochemical reaction device that can convert chemical energy into electrical energy. It has the advantages of high energy conversion efficiency, zero emission, and no mechanical noise. It is favored in military and civilian fields.
  • Proton exchange membrane fuel cells (PEMFC) use solid polymer membranes as electrolytes, which have the advantages of simple structure and low operating temperature. As a mobile power source, they have many advantages.
  • the bipolar plate In order to increase the total power generation of the fuel cell, multiple single cells are usually connected in series to form a fuel cell stack.
  • the bipolar plate In the fuel cell stack, the bipolar plate is a very important component, which plays a variety of functions such as supporting the membrane electrode assembly, distributing the reaction gas, transmitting current, conducting heat, and discharging the reaction product water. Under the existing technical conditions, the manufacturing cost of the bipolar plate accounts for 40-50% of the total manufacturing cost of the entire fuel cell stack.
  • Proton exchange membrane fuel cell stacks used as mobile power sources tend to use metal bipolar plates to enhance seismic resistance.
  • the cathode and anode plates that make up the metal bipolar plates are made of thin metal plates by pressure processing, so they are all corrugated, which brings great limitations to the design of the coolant flow path. How to import and export the coolant without increasing the thickness of the bipolar plate, reducing the depth of the reactant flow channel, and without adding accessories.
  • Each coolant flow channel between the cathode plate and the anode plate is a metal bipolar plate structure A difficulty in the design.
  • the dislocation zone is similar in structure to the synchronous undulating zone. It refers to a specific area on the bipolar plate in which the coolant flow channels of the cathode and anode plates are interlaced, and the two are on the plane formed by the bipolar plate. The center lines of the projections inside are parallel and do not overlap, forming a continuous coolant flow channel with a wavy cross section.
  • the research on the formation method of the dislocation zone and the synchronous undulation zone is not perfect, especially how to form the synchronous undulation zone on the bipolar plate used in the air-cooled stack and the long and narrow bipolar plate.
  • the purpose of the present invention is to provide a method for overall dislocation assembly of a bipolar plate, by which a large area synchronous undulating area or multiple synchronous undulating areas can be formed on the bipolar plate without changing the flow channel spacing.
  • the synchronous undulating area can be used as a channel through each coolant flow path between the cathode plate and the anode plate.
  • the thickness of the bipolar plate and the reaction can not be reduced. The depth of the flow path and the premise that no additional accessories are added, the coolant is introduced and led out of each coolant flow path between the cathode plate and the anode plate.
  • Another object of the present invention is to provide a fuel cell stack including the bipolar plate manufactured by the above method and a power generation system including the fuel cell stack.
  • the bipolar plate is rotated 180° around an axis parallel to the thickness direction of the bipolar plate or rotated 180° around an axis parallel to the direction of misalignment to avoid Wrinkles of the membrane electrode appear in the corresponding part of the synchronous undulating area.
  • a method for overall dislocation assembly of bipolar plates includes the following steps:
  • Step 1 Make the first plate and the second plate that meet the following conditions:
  • the first electrode plate has a first surface and a second surface, the first surface has a first flow channel and a first reference surface, the second surface has a second flow channel and a second reference surface, the first flow channel is The groove formed in the thickness direction of the first electrode plate with respect to the first reference plane, the second flow channel is a groove formed in the thickness direction of the first electrode plate with respect to the second reference plane;
  • the back of the bottom of the flow channel is a part of the second reference plane, and the back of the bottom of the second flow channel is a part of the first reference plane;
  • the thickness direction of the first electrode plate is two opposites perpendicular to the first reference plane The direction;
  • the second electrode plate has a third surface and a fourth surface, the third surface has a third flow channel and a third reference surface, the fourth surface has a fourth flow channel and a fourth reference surface, the third flow A channel is a groove formed in the thickness direction of the second electrode plate relative to the third reference surface, and the fourth flow channel is a groove formed in the thickness direction of the second electrode plate relative to the fourth reference surface;
  • the back of the bottom of the third flow channel is a part of the fourth reference plane, and the back of the bottom of the fourth flow channel is a part of the third reference plane;
  • the thickness direction of the second electrode plate is perpendicular to the third reference plane Two opposite directions;
  • Step 2 Combine the first electrode plate and the second electrode plate in the following manner:
  • the second surface of the first electrode plate and the fourth surface of the second electrode plate are bonded together so that a part of the second reference surface is in contact with a part of the fourth reference surface, and the center of mass of the first electrode plate is in contact with the The center of mass of the second plate is not aligned.
  • the reference plane is a virtual projection plane perpendicular to the thickness direction of the bipolar plate;
  • the thickness direction of the bipolar plate is the same as that of the bipolar plate The thickness direction of the first polar plate is the same; it is also defined that the misalignment direction is parallel to the line connecting the projection of the centroid of the first polar plate in the reference plane and the projection of the centroid of the second polar plate in the reference plane.
  • the misalignment of the center of mass of the first plate and the center of mass of the second plate causes at least one synchronous undulating area on the bipolar plate;
  • the synchronous undulating area is the bipolar plate An area on the plate whose smallest dimension in the misalignment direction is greater than 2.5 times w;
  • the synchronous undulating area contains the first flow channel, the first reference plane, the second flow channel, the second reference plane, and the third flow Channel, the third reference surface, the fourth flow channel, a part of the fourth reference surface and the second reference surface of this part and the fourth reference surface of this part are not in contact;
  • the first flow channel in the synchronous undulating area is in the direction of misalignment
  • the formed angle is located in the interval [60°, 120°]
  • the angle formed by the third flow channel in the synchronous undulating area and the misalignment direction is located in the interval [60°, 120°].
  • the method further includes a step three: fixedly connecting the first electrode plate and the second electrode plate.
  • a method for overall dislocation assembly of bipolar plates includes the following steps:
  • Step 1 Make the first plate and the second plate that meet the following conditions:
  • the first electrode plate has a first surface and a second surface, the first surface has a first flow channel and a first reference surface, the second surface has a second flow channel and a second reference surface, the first flow channel is The groove formed in the thickness direction of the first electrode plate with respect to the first reference plane, the second flow channel is a groove formed in the thickness direction of the first electrode plate with respect to the second reference plane;
  • the back of the bottom of the flow channel is a part of the second reference plane, and the back of the bottom of the second flow channel is a part of the first reference plane;
  • the thickness direction of the first electrode plate is two opposites perpendicular to the first reference plane
  • the direction of the flow field on the first plate is the center of the flow field on the first surface, and the first flow channels on the first surface are symmetrically arranged with the center of the flow field on the first surface as the symmetry point;
  • the second electrode plate has a third surface and a fourth surface, the third surface has a third flow channel and a third reference surface, the fourth surface has a fourth flow channel and a fourth reference surface, the third flow A channel is a groove formed in the thickness direction of the second electrode plate relative to the third reference surface, and the fourth flow channel is a groove formed in the thickness direction of the second electrode plate relative to the fourth reference surface;
  • the back of the bottom of the third flow channel is a part of the fourth reference plane, and the back of the bottom of the fourth flow channel is a part of the third reference plane;
  • the thickness direction of the second electrode plate is perpendicular to the third reference plane Two opposite directions; there is a third surface flow field center on the second pole plate, and the third flow channels on the third surface are symmetrically arranged with the third surface flow field center as the symmetry point;
  • Step 2 Combine the first plate and the second plate in the following way:
  • the second surface of the first electrode plate and the fourth surface of the second electrode plate are bonded together, so that a part of the second reference surface is in contact with a part of the fourth reference surface, and the flow field center of the first surface is in contact with the The flow field center of the third surface is not aligned.
  • there is a distance ⁇ between the projection of the flow field center of the first surface in the reference plane and the projection of the flow field center of the third surface in the reference plane, and ⁇ satisfies: ⁇ /2 ⁇ ⁇ 2 ⁇ , where ⁇ represents the width of the first flow channel at the depth of half of its total depth;
  • the reference plane is a virtual projection plane perpendicular to the thickness direction of the bipolar plate;
  • the thickness direction of the bipolar plate It is consistent with the thickness direction of the first plate on the bipolar plate; it is also defined that the misalignment direction is parallel to the line connecting the projection of the flow field center of the first surface in the reference plane and the projection of the flow field center of the third surface in the reference plane.
  • the misalignment between the center of the flow field on the first surface and the center of the flow field on the third surface causes at least one synchronous undulating area on the bipolar plate;
  • the synchronous undulating area is the bipolar plate An area on the board, the smallest dimension of which in the misalignment direction is greater than 2.5 times of ⁇ ;
  • the synchronous undulating area contains the first flow channel, the first reference plane, the second flow channel, the second reference plane, and the third flow Channel, the third reference surface, the fourth flow channel, a part of the fourth reference surface and the second reference surface of this part and the fourth reference surface of this part are not in contact;
  • the first flow channel in the synchronous undulating area is in the direction of misalignment
  • the formed angle is located in the interval [60°, 120°]
  • the angle formed by the third flow channel in the synchronous undulating area and the misalignment direction is located in the interval [60°, 120°].
  • the method further includes a step three: fixedly connecting the first electrode plate and the second electrode plate.
  • the projection of the center of the flow field on the first surface and the center of mass of the first electrode plate in the reference plane overlap;
  • the projections of the center of the flow field on the third surface and the center of mass of the second plate in the reference plane do not overlap, and the distance between the two is equal to the ⁇ ; in the second step Wherein, the projection of the center of mass of the first electrode plate in the reference plane overlaps with the projection of the center of mass of the second electrode plate in the reference plane.
  • the projections of the center of the flow field on the first surface and the center of mass of the first electrode plate in the reference plane do not overlap, and the distance between the two It is equal to 1/2 of the ⁇ ;
  • the projections of the center of the flow field on the third surface and the center of mass of the second plate in the reference plane do not overlap, and the distance between the two is 1/2 of the ⁇ ; in the second step, the projection of the center of mass of the first plate in the reference plane overlaps with the projection of the center of mass of the second plate in the reference plane.
  • the first electrode plate and the second electrode plate produced in the step 1 have the same geometric shape, the first surface of the first electrode plate and the third surface of the second electrode plate are the same, and the first electrode plate The second surface of the second electrode plate is the same as the fourth surface of the second electrode plate; the first electrode plate and the second electrode plate are provided with a fuel inlet channel, a fuel outlet channel, an oxidant inlet channel, and an oxidant outlet channel; After the electrode plate and the second electrode plate are fixedly connected, the method further includes the following steps: cutting the edge of the oxidant inlet channel and the edge of the oxidant outlet channel, or filling the cover plate in the fuel inlet channel and the fuel outlet channel, so as to make the oxidant inlet channel
  • the cross-sectional area of is larger than the cross-sectional area of the fuel inlet channel and the cross-sectional area of the fuel outlet channel, so that the cross-sectional area of the oxidant outlet channel is larger than the cross-sectional area of the fuel inlet channel and the cross-sectional
  • first pole plate and the second pole plate produced in the step 1 are provided with positioning devices for dislocation assembly, and the positioning device is symmetrical with the center line of the bipolar plate parallel to the dislocation direction as the symmetry axis; In the second step, the positioning device is used to determine the relative position between the first electrode plate and the second electrode plate.
  • the first electrode plate and the second electrode plate produced in the step 1 do not have a coolant inlet channel and a coolant outlet channel;
  • the first flow channel on the first electrode plate is a plurality of parallel straight-through flows
  • the transverse flow passage formed by cutting the ribs between the first parallel flow passages, and the back of the transverse flow passage formed by cutting the ribs between the first parallel flow passages is formed by blocking the second flow passage
  • the second reference plane used to play a supporting role; the second pole plate has the same shape as the first pole plate.
  • the first electrode plate and the second electrode plate produced in the step 1 do not have a coolant inlet channel and a coolant outlet channel;
  • the first flow channel on the first electrode plate is a plurality of parallel straight-through flows
  • the transverse flow passage formed by cutting the ribs between the first parallel flow passages, and the back of the transverse flow passage formed by cutting the ribs between the first parallel flow passages is formed by blocking the second flow passage
  • the second pole plate is a serpentine flow field plate.
  • first electrode plate and the second electrode plate manufactured in the step 1 are provided with a coolant inlet channel and a coolant outlet channel;
  • the first electrode plate is a Z-shaped flow field plate, and the first flow channel Both the second flow channel and the second flow channel are Z-shaped flow channels;
  • the second electrode plate and the first electrode plate have the same geometric shape.
  • first electrode plate and the second electrode plate manufactured in the step 1 are provided with a coolant inlet channel and a coolant outlet channel;
  • the first electrode plate is a Z-shaped flow field plate, and the first flow channel And the second flow channel are both Z-shaped flow channels;
  • the second pole plate is a serpentine flow field plate, the third flow channel and the fourth flow channel are serpentine flow channels, and the end of the serpentine flow channel The part is bent at 90° and is located on the side of the second electrode plate.
  • the widths of the edges of the first, second, third, and fourth flow channels on the first electrode plate and the second electrode plate produced in step one are greater than the width of the bottom;
  • the cross-sections of the first flow channel, the second flow channel, the third flow channel, and the fourth flow channel are isosceles trapezoids;
  • an upper support platform is arranged on the first electrode plate, and the upper support platform blocks a part of the second flow channel and
  • the upper support platform is in the synchronous undulation area and is in contact with a part of the fourth reference surface in the synchronous undulation area;
  • the second electrode plate is provided with a lower support platform,
  • the lower support platform is a part of the fourth reference surface formed by blocking a part of the fourth flow channel; in the second step, the lower support platform is in the synchronous undulation zone and is in contact with a part of the second reference surface in the synchronous undulation zone .
  • a fuel cell stack includes the bipolar plate produced by the method.
  • the fuel cell stack includes at least three bipolar plates produced by the method
  • the first flow channel of the first plate of each bipolar plate is the fuel flow channel
  • the third flow channel of the second plate of each bipolar plate is the oxidant flow channel
  • the membrane electrodes, the first plate and the second plate belonging to the two bipolar plates the projection of the center of mass of the first plate in the reference plane and the center of mass of the second plate in the The projections in the reference plane overlap or the distance between the two is less than the d; among the two spaced bipolar plates, the projections of the centroids of the two first polar plates in the reference plane overlap or both The distance between the two second polar plates is less than the d, the projections of the centroids of the two second polar plates overlap in the reference plane, or the distance between the two is less than the d; two spaced bipolar plates mean that there are two Two bipolar plates between a membrane electrode and a bipolar plate; when the bipolar plates are assembled into a fuel cell stack, one of the two bipolar plates sandwiching the same membrane electrode is relative to the other In
  • the fuel cell stack includes at least three bipolar plates produced by the method
  • the first flow channel of the first plate of each bipolar plate is the fuel flow channel
  • the third flow channel of the second plate of each bipolar plate is the oxidant flow channel
  • the membrane electrode, the first electrode plate and the second electrode plate that belong to the two bipolar plates the projection of the center of the first surface flow field of the first electrode plate in the reference plane and the second electrode plate
  • the projection of the center of the third surface flow field in the reference plane overlaps or the distance between the two is less than the ⁇ ; among the two spaced bipolar plates, the first surface flow of the two first plates
  • the projection of the field center in the reference plane overlaps or the distance between the two is less than the ⁇
  • the projections of the third surface flow field center of the two second polar plates in the reference plane overlap or the distance between the two Is less than the ⁇ ;
  • two spaced bipolar plates refer to two bipolar plates with two membrane electrodes and a bipolar plate between them; when the bipolar plates are assembled into a fuel cell stack, One of the two bipolar plates clamping the
  • first electrode plate and the second electrode plate in the bipolar plate have the same geometric shape, and the first electrode plate and the second electrode plate are provided with a fuel inlet channel, a fuel outlet channel, and an oxidant inlet. Channel and oxidant outlet channel;
  • the fuel cell stack includes a fuel inlet channel filling rod or a fuel inlet channel filling plate, and the fuel inlet channel filling rod or fuel inlet channel filling plate is arranged in the fuel inlet channel to reduce the cross-sectional area of the fuel inlet channel;
  • the fuel cell stack also includes a fuel outlet channel filling rod or a fuel outlet channel filling plate, and the fuel outlet channel filling rod or fuel outlet channel filling plate is arranged in the fuel outlet channel to reduce the cross-sectional area of the fuel outlet channel.
  • a fuel cell power generation system includes the fuel cell stack.
  • the beneficial effect of the present invention is that the overall dislocation assembly method disclosed by the present invention can be used to form a large-area synchronous undulating area or multiple synchronous undulating areas on the bipolar plate without changing the flow channel spacing, and by changing the flow channel Compared with the method of forming the dislocation zone or synchronous undulation zone by spacing, it has the effect of simplifying the flow field and simplifying the structure of the bipolar plate; by means of the synchronous undulation zone, the thickness of the bipolar plate and the depth of the reactant flow path can not be reduced.
  • the coolant is introduced and led out of the various coolant flow channels between the cathode plate and the anode plate, and the coolant can flow through the entire reaction zone, which is beneficial to improve the power density and temperature control of the fuel cell stack ability.
  • FIG. 1 is a schematic diagram of the structure of the bipolar plate in Embodiment 1 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 1A is a schematic diagram of the structure of the first electrode plate in Embodiment 1 of the overall displacement assembly method of the bipolar plate of the present invention.
  • FIG. 1B is a schematic structural diagram of the second electrode plate in the embodiment 1 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 2A is a schematic diagram of the structure of the first electrode plate in the embodiment 2 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 2B is a schematic diagram of the structure of the second plate in Embodiment 2 of the overall dislocation assembly method of the bipolar plate of the present invention
  • FIG. 3 is a schematic diagram of the structure of the bipolar plate in Embodiment 3 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 3A is a schematic diagram of the structure of the first electrode plate in Embodiment 3 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • 3B is a schematic structural diagram of the second electrode plate in Embodiment 3 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the first electrode plate in the embodiment 4 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 5 is a schematic structural diagram of a second electrode plate in Embodiment 4 of the overall dislocation assembly method of the bipolar plate of the present invention.
  • FIG. 6A is a cross-sectional view at A1-A1 in FIG. 1, showing that the center of mass of the first electrode plate and the second electrode plate are misaligned.
  • Fig. 6B is a cross-sectional view at A1-A1 in Fig. 1, showing that the flow field centers of the first electrode plate and the second electrode plate are misaligned.
  • Fig. 7 is a cross-sectional view at B1-B1 in Fig. 1.
  • Fig. 8A is a cross-sectional view at A2-A2 in Fig. 3, showing that the centroids of the first electrode plate and the second electrode plate are misaligned.
  • Fig. 8B is a cross-sectional view at A2-A2 in Fig. 3, showing that the flow field centers of the first electrode plate and the second electrode plate are misaligned.
  • Fig. 9 is a cross-sectional view at B2-B2 in Fig. 3.
  • Fig. 10 is a schematic diagram of the wrinkles of the membrane electrode appearing in the corresponding parts of Fig. 6A and Fig. 6B in the fuel cell stack.
  • Figure 11 is the fuel cell stack assembly diagram corresponding to Figure 6A.
  • the center of mass of the first plate and the second plate overlap with the center of the flow field.
  • the edges of the first plate and the second plate are different. Aligned, and each channel is not aligned.
  • Fig. 12 is the fuel cell stack assembly diagram corresponding to Fig. 6B.
  • the flow field center and the center of mass of the first plate and the second plate deviate (that is, the projections of the two in the reference plane do not overlap), and they are assembled together
  • the edges of the first electrode plate and the second electrode plate are aligned, the respective channels are also aligned.
  • Fig. 13 is a schematic diagram of the wrinkles of membrane electrodes appearing in the fuel cell stack at the corresponding parts of Fig. 8A and Fig. 8B.
  • Figure 14 is the fuel cell stack assembly diagram corresponding to Figure 8A. At this time, the center of mass and the flow field center of the first plate and the second plate overlap, and the edges of the first plate and the second plate are different when assembled together. Aligned, and each channel is not aligned.
  • Figure 15 is the fuel cell stack assembly diagram corresponding to Figure 8B.
  • the flow field center and the center of mass of the first electrode plate and the second electrode plate deviate (that is, the projections of the two in the reference plane do not overlap), and they are assembled together When the edges of the first electrode plate and the second electrode plate are aligned, the respective channels are also aligned.
  • the present invention provides embodiments 1-4 of the bipolar plate.
  • the bipolar plate of each embodiment includes a first plate 1 and a second plate 2.
  • the first electrode plate 1 has a first surface 11 and a second surface 12.
  • the first surface 11 has a first flow channel 111 and a first reference surface 112
  • the second surface 12 has a second flow channel 121 and a second surface.
  • the reference plane 122, the first flow channel 111 is a groove formed in the thickness direction of the first electrode plate relative to the first reference plane 112, and the second flow channel 121 is in the first electrode plate relative to the second reference plane 122
  • the thickness direction of the first electrode plate is two opposite directions perpendicular to the first reference plane 112; the back of the bottom of the first flow channel 111 is the second reference plane 122, and the second flow channel 111
  • the back of the bottom of the channel 121 is the first reference surface 112;
  • the second electrode plate 2 has a third surface 21 and a fourth surface 22, the third surface 21 has a third flow channel 211 and a third reference surface 212, the The fourth surface 22 has a fourth flow passage 221 and a fourth reference surface 222.
  • the third flow passage 211 is a groove formed in the thickness direction of the second electrode plate relative to the third reference surface 212.
  • the fourth flow The channel 221 is a groove formed in the thickness direction of the second electrode plate relative to the fourth reference plane 222, and the thickness direction of the second electrode plate is two opposite directions perpendicular to the third reference plane 212; the third flow The back of the bottom of the channel 211 is the fourth reference surface 222, and the back of the bottom of the fourth flow channel 221 is the third reference surface 212; the second surface 12 of the first electrode plate 1 and the fourth reference surface of the second electrode plate 2
  • the surfaces 22 are glued together to form a bipolar plate.
  • the present invention provides an overall dislocation assembly method of bipolar plates, which is method one, and includes the following steps:
  • Step 1 To make the first electrode plate 1 and the second electrode plate 2 of the bipolar plate in the above embodiments 1-4, the preferred method is to use a metal or alloy sheet with a thickness of about 0.1 mm as the raw material, and cut After being formed into a predetermined shape, it is placed in a mold for stamping and forming.
  • the concave-convex structure in the mold corresponds to the concave-convex structure of the first pole plate and the second pole plate; both the first pole plate 1 and the second pole plate 2 are corrugated;
  • the back of the bottom of the channel 111 is a part of the second reference plane 122, the back of the bottom of the second flow channel 121 is a part of the first reference plane 112, and the back of the bottom of the third flow channel 211 is a part of the fourth reference plane 222 ,
  • the back surface of the bottom of the fourth flow channel 221 is a part of the third reference plane 212.
  • the widths of the edges of the first flow channel 111, the second flow channel 121, the third flow channel 211, and the fourth flow channel 221 are greater than the width of the bottom; as the simplest and most feasible solution, the first flow channel 111 and the second flow channel 121
  • the third flow channel 211 and the fourth flow channel 221 have the same cross-section and are both isosceles trapezoids.
  • the first reference surface 112 and the second reference surface 122 are parallel to each other, and the third reference surface 212 and the fourth reference surface are parallel to each other.
  • the surfaces 222 are planes parallel to each other.
  • Step 2 Combine the first plate 1 and the second plate 2 to form a bipolar plate in the following manner:
  • the second surface 12 of the first electrode plate 1 and the fourth surface 22 of the second electrode plate 2 are bonded together to make a part of the second reference surface Contact with a part of the fourth reference surface, and make the center of mass of the first electrode plate 1 and the center of mass of the second electrode plate 2 misaligned, and the projection of the center of mass of the first electrode plate 1 on the reference plane and the second electrode plate
  • d a distance between the projections of the center of mass of 2 in the reference plane, and d>w/2, where w represents the width of the first flow channel at half of its total depth
  • the reference plane is the same as the bipolar plate
  • a virtual projection plane perpendicular to the thickness direction of the bipolar plate, the thickness direction of the bipolar plate is consistent with the thickness direction of the first plate on the bipolar plate; also defines the misalignment direction and the center of mass of the first plate in the reference plane
  • the center of mass of the first plate is a fixed point on the first plate (that is, the center of gravity of the first plate)
  • the center of mass of the second plate is a fixed point on the second plate (that is, the center of the second plate). Center of gravity), so it is not necessary to determine the specific positions of the center of mass of the first plate and the center of mass of the second plate during the specific dislocation assembly operation, only need to follow the positioning device on the first plate and the second plate.
  • the dislocation assembly of the two pole plates is sufficient.
  • the positioning device as two slits with a distance of d, or two circular holes with a distance of d from the center of the circle and partially overlapped. With the help of the positioning device, the center of mass of the two pole plates can be misaligned by a distance of d without measuring the specific position of the center of mass.
  • the misalignment of the center of mass of the first electrode plate 1 and the center of mass of the second electrode plate 2 causes a synchronous undulating area on the bipolar plate, and the synchronous undulating area is a double An area on the pole plate whose smallest dimension in the misalignment direction is greater than 2.5 times w;
  • the synchronous undulating area includes a first flow channel 111, a first reference surface 112, a second flow channel 121, and a second reference surface 122, a part of the third flow channel 211, the third reference surface 212, the fourth flow channel 221, and the fourth reference surface 222, and the second reference surface 122 of this part and the fourth reference surface 222 of this part are not in contact;
  • the angle formed by the first flow channel 111 in the synchronous undulating area and the misalignment direction is located in the interval [60°, 120°], and the included angle formed by the third flow channel 211 in the synchronous undulating area and the misalignment direction is located at [
  • the first plate corresponds to the The position of the synchronous undulating area is provided with a number of upper support platforms U, the upper support platform U is a part of the second reference plane formed by blocking a part of the second flow channel, and correspondingly, the first flow channel on the back is intersected; A number of lower support platforms D are arranged on the second plate corresponding to the synchronous undulating area.
  • the lower support platforms D are part of the fourth reference plane formed by blocking a part of the fourth flow channel.
  • the three channels are connected; in the assembled bipolar plate, the upper support U is in contact with a part of the fourth reference surface in the synchronous undulating area, and the lower support D is in contact with a part of the second reference surface in the synchronous undulating area .
  • the method further includes the step three: fixing the first electrode plate 1 and the second electrode plate 2 together, and the connection method includes welding, bonding, and the like.
  • the present invention also provides an overall dislocation assembly method of the bipolar plate, which is method two and includes the following steps:
  • Step 1 To make the first electrode plate 1 and the second electrode plate 2 of the bipolar plate in the above embodiments 1-4, the preferred method is to use a metal or alloy sheet with a thickness of about 0.1 mm as the raw material, and cut After being formed into a predetermined shape, it is placed in a mold for stamping and forming.
  • the concave-convex structure in the mold corresponds to the concave-convex structure of the first pole plate and the second pole plate; both the first pole plate 1 and the second pole plate 2 are corrugated;
  • the back of the bottom of the channel 111 is a part of the second reference plane 122, the back of the bottom of the second flow channel 121 is a part of the first reference plane 112, and the back of the bottom of the third flow channel 211 is a part of the fourth reference plane 222 ,
  • the back of the bottom of the fourth flow channel 221 is a part of the third reference plane 212; the widths of the edges of the first flow channel 111, the second flow channel 121, the third flow channel 211, and the fourth flow channel 221 are greater than the width of the bottom ;
  • the cross section of the first runner 111, the second runner 121, the third runner 211, and the fourth runner 221 are the same and are all isosceles trapezoids, the first reference plane 112 and
  • first surface flow field center on the first electrode plate 1 there is a first surface flow field center on the first electrode plate 1, and the first flow channels 111 on the first surface 11 are symmetrically arranged with the first surface flow field center as the symmetric point, so that the fluid flows through the first flow channel 111
  • the formed flow field on the first surface has the same effect as reverse flow and forward flow;
  • the second pole plate 2 has the center of the third surface flow field, and
  • the third flow channel 211 on the third surface 21 has the same effect.
  • the center of the third surface flow field is arranged symmetrically, so that the reverse flow of the fluid in the third surface flow field formed by the third flow channel 211 has the same effect as the forward flow.
  • Step 2 Combine the first plate 1 and the second plate 2 to form a bipolar plate in the following way:
  • the second surface 12 of the first electrode plate 1 and the fourth surface 22 of the second electrode plate 2 are bonded together to make a part of the second reference surface Contact with a part of the fourth reference surface, and make the center of the flow field of the first surface and the center of the flow field of the third surface not align, the projection of the center of the flow field of the first surface in the reference plane and the center of the flow field of the third surface are at There is a distance ⁇ between the projections in the reference plane, and ⁇ satisfies: ⁇ /2 ⁇ 2 ⁇ , where ⁇ represents the width of the first flow channel 121 at the depth of half of its total depth; the reference plane is the same as the double A virtual projection plane perpendicular to the thickness direction of the polar plate.
  • the thickness direction of the bipolar plate is consistent with the thickness direction of the first polar plate on the bipolar plate; the misalignment direction and the center of the first surface flow field are also defined in the reference plane
  • the line of the projection inside and the projection of the center of the third surface flow field in the reference plane is parallel. Since the center of the flow field on the first surface is a fixed point on the first plate, and the center of the flow field on the third surface is a fixed point on the second plate, it is not necessary to determine the first For the specific positions of the center of the surface flow field and the center of the third surface flow field, it is only necessary to perform the dislocation assembly of the two electrode plates according to the positioning devices on the first electrode plate and the second electrode plate.
  • the positioning device as two slits with a distance of ⁇ , or two circular holes with a distance of ⁇ from the center of the circle and partially overlapped. With the help of this positioning device, it is possible to realize the dislocation of the first surface flow field center and the third surface flow field center on the two pole plates at a distance of ⁇ without measuring the first surface flow field center and the third surface flow field. The specific location of the center.
  • step two of the second method the misalignment of the center of the flow field on the first surface and the center of the flow field on the third surface causes a synchronous undulating area on the bipolar plate, and the synchronous undulating area is a bipolar plate.
  • the synchronous undulating area includes a first flow channel 111, a first reference surface 112, a second flow channel 121, a second reference surface 122, Part of the third flow channel 211, the third reference surface 212, the fourth flow channel 221, and the fourth reference surface 222, and the second reference surface 122 of this part and the fourth reference surface 222 of this part are not in contact;
  • the synchronous undulation The included angle formed by the first flow channel 111 and the misalignment direction in the zone is located in the interval [60°, 120°], and the included angle formed by the third flow channel 211 and the misalignment direction in the synchronous undulation zone is located at [60°, 120° °] interval; as the simplest and most feasible solution, the misalignment direction is kept perpendicular to the first and third runners in the synchronous undulating zone.
  • ⁇ * ⁇ /2+ ⁇ ′/2+ ⁇
  • the width of the first runner at half the depth of its total depth
  • ⁇ ′ denotes the width of the second runner at its depth half of the total depth Width
  • the thickness of the first pole plate
  • the first plate corresponds to the The position of the synchronous undulating area is provided with a number of upper support platforms U, the upper support platform U is a part of the second reference plane formed by blocking a part of the second flow channel, and correspondingly, the first flow channel on the back is intersected; A number of lower support platforms D are arranged on the second plate corresponding to the synchronous undulating area.
  • the lower support platforms D are part of the fourth reference plane formed by blocking a part of the fourth flow channel.
  • the three channels are connected; in the assembled bipolar plate, the upper support U is in contact with a part of the fourth reference surface in the synchronous undulating area, and the lower support D is in contact with a part of the second reference surface in the synchronous undulating area .
  • the method further includes the step three: fixing the first electrode plate 1 and the second electrode plate 2 together, and the connection method includes welding, bonding, and the like.
  • the purpose of assembling the first plate and the second plate in a dislocation is to form a synchronous undulating area, so the value of the displacement ⁇ should be as small as possible on the premise that the synchronous undulating area can be formed, to avoid the sealing groove on the first plate It is completely staggered from the sealing groove on the second electrode plate, which affects the sealing of the stack. Therefore, when the first electrode plate and the second electrode plate are assembled in a misaligned manner, the center of mass of the first electrode plate and the center of mass of the second electrode plate should be the same. It may be close. The best choice is that the centroids of the first plate and the second plate are aligned and overlapped. Therefore, in the second method, the following two cases are preferred:
  • the projections of the center of the first surface flow field and the center of mass of the first electrode plate in the reference plane overlap; the production in the first step On the second plate 2, the projections of the center of the flow field on the third surface and the center of mass of the second plate in the reference plane do not overlap, and the distance between the two is equal to the ⁇ ; in the step In the second embodiment, the projection of the center of mass of the first electrode plate 1 in the reference plane overlaps with the projection of the center of mass of the second electrode plate 2 in the reference plane.
  • the projections of the center of the first surface flow field and the center of mass of the first electrode plate in the reference plane do not overlap, and the distance between the two Equal to 1/2 of the ⁇ ;
  • the projections of the center of the flow field on the third surface and the center of mass of the second plate in the reference plane do not overlap, and the distance between the two Is 1/2 of the ⁇ ; in the second step, the projection of the center of mass of the first plate 1 in the reference plane and the center of mass of the second plate 2 in the reference plane The projections overlap.
  • the first electrode plate 1 and the second electrode plate 2 produced in the step one preferably have the same geometric shape, and the first surface 11 of the first electrode plate 1 and the second electrode plate 2 have the same geometric shape.
  • the third surface 21 of the electrode plate 2 is the same, and the second surface 12 of the first electrode plate 1 is the same as the fourth surface 22 of the second electrode plate 2; the first electrode plate 1 and the second electrode plate 2 are provided with The fuel inlet channel 3, the fuel outlet channel 4, the oxidizer inlet channel 5, and the oxidizer outlet channel 6; in the case of the same shape of the first electrode plate and the second electrode plate, the assembly of the bipolar plate is actually to combine the two first electrodes
  • the second surfaces of the plates are stuck together, so the cross-sectional area of the oxidant inlet channel must be the same as the cross-sectional area of the fuel inlet channel or the same as the cross-sectional area of the fuel outlet channel.
  • the cross-sectional area of the oxidant inlet channel is usually required to be larger than the cross-sectional area of the fuel inlet channel and the cross-sectional area of the fuel outlet channel. Sometimes the same is true for the oxidant outlet channel. Claim.
  • the following step is further included: cutting the edge of the oxidant inlet channel 5 and the edge of the oxidant outlet channel 6, or in the fuel inlet channel 3 and
  • the fuel outlet channel 4 is filled with a cover plate, so that the cross-sectional area of the oxidant inlet channel 5 is larger than the cross-sectional area of the fuel inlet channel 3 and the cross-sectional area of the fuel outlet channel 4, so that the cross-sectional area of the oxidant outlet channel 6 is larger than that of the fuel inlet channel 3.
  • Area and the cross-sectional area of the fuel outlet channel 4. The dotted lines in the oxidant inlet channel 5 and the oxidant outlet channel 6 in Fig. 1 and Fig.
  • the cover plate placed in the fuel inlet channel 3 can be a ring-shaped plastic plate, the outer shape of which is similar to the inner edge of the fuel inlet channel, and the inner hole
  • the area of the oxidizer is smaller than the cross-sectional area of the oxidant inlet channel, and it can be placed in the recess formed by the welded belt along the inner edge of the fuel inlet channel; the outer shape of the cover plate placed in the fuel outlet channel is similar to the inner edge of the fuel outlet channel.
  • the area of the inner hole is smaller than the cross-sectional area of the fuel outlet channel, and it can be placed in the recess formed by the welding band along the inner edge of the fuel outlet channel.
  • the first electrode plate 1 and the second electrode plate 2 produced in the step one are provided with positioning devices for dislocation assembly, and the positioning devices are parallel to the direction of dislocation.
  • the center line of the bipolar plate is symmetrical with the axis of symmetry.
  • the misalignment direction is parallel to the line connecting the projections of the centroids of the two polar plates in the reference plane.
  • the misalignment direction is parallel to the first surface
  • the line of the projection of the center of the flow field and the center of the third surface in the reference plane is parallel; in the second step, the positioning device is used to determine the relative position between the first electrode plate 1 and the second electrode plate 2 .
  • the positioning device is designed to The center line of the bipolar plate parallel to the misalignment direction is symmetrical with the axis of symmetry, which ensures that the positioning device on the polar plate does not change after the polar plate is turned over.
  • the first flow channels 111 on the first electrode plate 1 are multiple parallel
  • the back of the transverse flow channel 1111 formed by cutting the ribs between the first flow channels 111 that are parallel to each other is a barrier.
  • the second reference surface 122 formed by breaking the second flow channel 121 and used for playing a supporting role is the upper support platform U; the second electrode plate 2 has the same shape as the first electrode plate 1.
  • the first flow channels 111 on the first electrode plate 1 are multiple parallel
  • the back of the transverse flow channel 1111 formed by cutting the ribs between the first flow channels 111 that are parallel to each other is a barrier.
  • the second reference plane 122 formed by cutting off the second flow channel 121 and used for playing a supporting role is the upper support platform U; the second electrode plate 2 is a serpentine flow field plate.
  • the first pole plate 1 and the second pole plate 2 manufactured in the first step are provided with a coolant inlet channel 7 and a coolant outlet channel 8; the coolant inlet channel 7 and the coolant inlet channel 7 on the first pole plate 1 and The coolant outlet channel 8 is symmetrical about the center of mass of the first pole plate, and the coolant inlet channel 7 and the coolant outlet channel 8 on the second pole plate 2 are symmetrical about the center of mass of the second pole plate;
  • the first electrode plate 1 is a Z-shaped flow field plate, the first flow channel 111 and the second flow channel 121 are both Z-shaped flow channels; the second electrode plate 2 and the first electrode plate 1 have the same geometric shape .
  • the first electrode plate 1 and the second electrode plate 2 produced in the first step are provided with a coolant inlet channel 7 and a coolant outlet channel 8; the coolant inlet channel 7 and the coolant inlet channel on the first electrode plate 1 and The coolant outlet channel 8 is symmetrical about the center of mass of the first pole plate, and the coolant inlet channel 7 and the coolant outlet channel 8 on the second pole plate 2 are symmetrical about the center of mass of the second pole plate.
  • the first electrode plate 1 is a Z-shaped flow field plate, the first flow channel 111 and the second flow channel 121 are both Z-shaped flow channels; the second electrode plate 2 is a serpentine flow field plate, the The third flow passage 211 and the fourth flow passage 221 are serpentine flow passages, and the end of the serpentine flow passage is bent at 90° and is located on the side of the second electrode plate 2.
  • the first pole plate 1 and the second pole plate 2 manufactured in the first step are provided with a coolant inlet channel 7 and a coolant outlet channel 8; the coolant inlet channel 7 and the coolant inlet channel 7 on the first pole plate 1 and The coolant outlet channel 8 is symmetrical about the center of the first surface flow field, and the coolant inlet channel 7 and the coolant outlet channel 8 on the second pole plate 2 are symmetrical about the center of the third surface flow field.
  • Point symmetry; the first pole plate 1 is a Z-shaped flow field plate, the first flow channel 111 and the second flow channel 121 are both Z-shaped flow channels; the second pole plate 2 and the first pole plate 1 have The same geometric shape.
  • the first electrode plate 1 and the second electrode plate 2 produced in the first step are provided with a coolant inlet channel 7 and a coolant outlet channel 8; the coolant inlet channel 7 and the coolant inlet channel on the first electrode plate 1 and The coolant outlet channel 8 is symmetrical about the center of the first surface flow field, and the coolant inlet channel 7 and the coolant outlet channel 8 on the second pole plate 2 are symmetrical about the center of the third surface flow field.
  • the first pole plate 1 is a Z-shaped flow field plate, the first flow channel 111 and the second flow channel 121 are both Z-shaped flow channels;
  • the second pole plate 2 is a serpentine flow field plate,
  • the third flow passage 211 and the fourth flow passage 221 are serpentine flow passages, and the end of the serpentine flow passage is bent at 90° and is located on the side of the second electrode plate 2.
  • the present invention also provides a fuel cell stack, which includes a bipolar plate manufactured according to the above-mentioned method one or two.
  • At least three bipolar plates made according to Method 1 are included;
  • the first flow channel 111 of the first plate 1 of each bipolar plate is the fuel flow channel
  • the third flow channel 211 of the second plate 2 of each bipolar plate is the oxidant flow channel
  • the projection of the center of mass of the first electrode plate 1 in the reference plane and the second electrode plate The projection of the center of mass of the diode 2 in the reference plane overlaps or the distance between the two is smaller than the d; among the two spaced-apart bipolar plates, the center of mass of the two first plates 1 is in the The projections in the reference plane overlap or the distance between the two are less than the d, the projections of the centroids of the two second polar plates 2 in the reference plane overlap or the distance between the two is less than the d;
  • Spaced bipolar plates refer to two bipolar plates with two membrane electrodes 9 and a bipolar plate interposed therebetween.
  • the top image in Figure 10 It is a schematic diagram of the membrane electrode wrinkles when the bipolar plate described in Example 1 and Example 2 is installed in a fuel cell stack.
  • the top picture in Figure 13 is the bipolar plate described in Example 3 and Example 4. Schematic diagram of the membrane electrode wrinkling when the plate is installed in a fuel cell stack. The wrinkles of the membrane electrode will cause the reactant flow path to be blocked and the circuit to make poor contact.
  • the bipolar plate can be rotated 180° around an axis parallel to the thickness direction of the bipolar plate, that is, Interchange the fuel inlet channel and the fuel outlet channel of the bipolar plate, the oxidizer inlet channel and the oxidizer outlet channel, the coolant inlet channel and the coolant outlet channel, to solve this problem; of course, this requires a prerequisite , That is, both the first plate and the second plate have symmetry.
  • the bipolar plate provided by the present invention can meet this prerequisite, and thus can solve the wrinkle problem of the membrane electrode.
  • Another way to avoid wrinkles of the membrane electrode is to rotate one of the two bipolar plates that clamp the same membrane electrode around an axis parallel to the misalignment direction by 180°, that is, to clamp the two bipolar plates of the same membrane electrode.
  • One of the plates is flipped over to make the first plate and the second plate interchangeable, as shown in the picture on the right in the middle of Fig. 10 and Fig. 13; of course, this requires a prerequisite, that is, the first The pole plate and the second pole plate must have the same shape, and the bipolar plate provided by the present invention can also meet this prerequisite.
  • At least three bipolar plates made according to method two are included;
  • the first flow channel 111 of the first plate 1 of each bipolar plate is the fuel flow channel
  • the third flow channel 211 of the second plate 2 of each bipolar plate is the oxidant flow channel
  • the center of the first surface flow field of the first electrode plate 1 is in the reference plane
  • the projection and the projection of the third surface flow field center of the second plate 2 in the reference plane overlap or the distance between the two is smaller than the ⁇ ;
  • two The projections of the first surface flow field center of the first electrode plate 1 in the reference plane overlap or the distance between the two is less than the ⁇
  • the third surface flow field center of the two second electrode plates 2 is at the The projections in the reference plane overlap or the distance between the two is smaller than the ⁇ ;
  • two spaced bipolar plates refer to two bipolar plates with two membrane electrodes 9 and one bipolar plate interposed therebetween.
  • installing the bipolar plate produced by the second method in the fuel cell stack in this way can prevent the membrane electrode from wrinkling.
  • the first electrode plate 1 and the second electrode plate 2 in the bipolar plate have the same geometric shape, and the first electrode plate 1 and the second electrode plate 2 are arranged There are a fuel inlet channel 3, a fuel outlet channel 4, an oxidant inlet channel 5 and an oxidant outlet channel 6;
  • the fuel cell stack includes a fuel inlet channel filling rod or a fuel inlet channel filling plate, and the fuel inlet channel filling rod or fuel inlet channel filling plate is arranged in the fuel inlet channel 3 to reduce the cross-sectional area of the fuel inlet channel 3 ;
  • the fuel cell stack also includes a fuel outlet channel filling rod or a fuel outlet channel filling plate.
  • the fuel outlet channel filling rod or fuel outlet channel filling plate is arranged in the fuel outlet channel 4 to reduce the cross-sectional area of the fuel outlet channel 4 small.
  • the cross-sectional area of the oxidant inlet channel must be the same as the cross-sectional area of the fuel inlet channel or the same as the cross-sectional area of the fuel outlet channel.
  • the cross-sectional area of the oxidant inlet channel is sometimes required to be larger than the cross-sectional area of the fuel inlet channel and the fuel outlet channel. Placing filler rods or filler plates in the fuel inlet channel and fuel outlet channel is a simple way to solve this problem. Easy way. Compared with the method of cutting the inner edge of the oxidant inlet channel and placing a cover plate in the fuel inlet channel, the cost will be lower.
  • the present invention also provides a fuel cell power generation system, which includes the fuel cell stack described above.
  • the bipolar plate produced by the overall dislocation assembly method disclosed in the present invention It can be solved by rotating the bipolar plate 180° around the axis parallel to the thickness direction of the bipolar plate or rotating 180° around the center line parallel to the misalignment direction; in contrast, by changing one of the two polar plates
  • the bipolar plate made by the method of forming the dislocation area by the distance between the flow channels on the plate also has the problem of wrinkling of the membrane electrode when installed in the stack, but this problem cannot be solved; this is the original An advantage of invention, but this solution will also bring some derivative problems.
  • the method of rotating the bipolar plate 180° around an axis parallel to the thickness direction of the bipolar plate will result in the fuel inlet channel and fuel on the bipolar plate.
  • the outlet channels are interchanged, the oxidant inlet channel and the oxidant outlet channel are interchanged, the coolant inlet channel and the coolant outlet channel are interchanged, so the fuel inlet channel and the fuel outlet channel on the bipolar plate should have the same shape and cross-sectional area, and the oxidizer
  • the inlet channel and the oxidant outlet channel should have the same shape and cross-sectional area, and the coolant inlet channel and the coolant outlet channel should have the same shape and cross-sectional area; in fact, the cross-sectional area of the two channels that will be interchanged even if they are different Similarly, during the assembly process of the stack, the one with the larger cross-sectional area will be partially blocked and remain the same as the one with the smaller cross-sectional area; however, in some special cases
  • a plate can be installed in the fuel inlet channel or in the fuel outlet channel when the stack is assembled.
  • a plate or bar can be set in the oxidant inlet channel or in the oxidant outlet channel when the stack is assembled.
  • Rod-shaped filler if the coolant inlet channel and the coolant outlet channel in the stack are required to have different cross-sectional areas, a plate or rod shape can be provided in the coolant inlet channel or in the coolant outlet channel when the stack is assembled Stuffing.
  • each channel on the plate should be symmetrically arranged with the centerline of the bipolar plate parallel to the misalignment direction as the axis of symmetry, and the shape of the channel on the centerline should be symmetrical with the centerline as the axis of symmetry, and centered on the centerline.
  • the two symmetrical channels whose lines are the axis of symmetry should have the same shape and cross-sectional area, because the two symmetrical channels with the centerline as the axis of symmetry will be interchanged during the stack assembly process; in fact, they are symmetrical to each other. Even if the cross-sectional areas of the two channels are different, the larger cross-sectional area will be partially blocked during the stack assembly process and remain the same as the smaller cross-sectional area; however, in some special cases, these two channels are required. Two mutually symmetrical channels have different cross-sectional areas. The solution to this derived problem is to install a plate-shaped or rod-shaped filler in one of the channels when assembling the stack.
  • the overall dislocation assembly method of the fuel cell bipolar plate disclosed in the present invention can also be applied to the production of flow field plates or separator plates in other stacking devices.
  • the bipolar plates mentioned here are also It can be regarded as a flow field plate or a separator plate in other stacked devices.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统,整体错位组装方法包括:制作第一极板和第二极板;将该第一极板的第二面和该第二极板的第四面贴合在一起,并使该第一极板和该第二极板错位,错位方式包括第一极板和第二极板的质心错位和流场中心错位,利用该方法无需改变流道间距即可在双极板上形成大面积的同步起伏区或者同时形成多个同步起伏区。在该燃料电池电堆中通过将该双极板围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的轴线旋转180°而可以避免出现膜电极的皱褶,进而避免反应物流道被堵塞和电路的接触不良。

Description

双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统 技术领域
本发明属于燃料电池技术领域,特别涉及一种燃料电池电堆中所用的双极板的整体错位组装方法以及包含有用该方法制作的双极板的燃料电池电堆和发电系统。
背景技术
燃料电池是一种能够将化学能转化为电能的电化学反应装置,具有能量转换效率高、零排放、无机械噪声等优点,在军事和民用领域备受青睐。质子交换膜燃料电池(PEMFC)采用固体聚合物膜作为电解质,具有结构简单、工作温度低等优点,作为移动电源具有很多优势。
为了提高燃料电池的总的发电功率,通常将多个单电池串联在一起而组成燃料电池电堆。在燃料电池电堆中,双极板是一个很重要的部件,发挥支撑膜电极组件、分配反应气体、传输电流、传导热量和排出反应产物水等多种作用。在现有技术条件下,双极板的制造成本占整个燃料电池电堆总的制造成本的40~50%。
用作移动电源的质子交换膜燃料电池电堆倾向于采用金属制作的双极板以增强抗震能力。构成金属双极板的阴极板和阳极板是以金属薄板为原料通过压力加工的方法制作成型的,所以均为波纹形,这就给冷却剂的流路设计带来了很大的局限性。如何在不增加双极板的厚度、不减小反应物流道的深度、不增设附件的前提下将冷却剂导入和导出阴极板和阳极板之间的各个冷却剂流道是金属双极板结构设计中的一个难点。
我们在前期的研究工作中通过在双极板上设置错位区或同步起伏区解决了上述冷却剂的导入和导出问题,参见申请号为201810373488.0和201910851949.5的中国专利以及申请号为16/231950的美国专利所公开的内容。错位区和同步起伏区结构类似,是指双极板上的一个特定区域,在该区域内,该阴极板和阳极板的冷却剂流道相互交错,二者在双极板板面构成的平面内的投影的中心线平行且不重叠,形成连通的截面呈波浪状的冷却剂流道。目前,对于错位区和同步起伏区的形成方法的研究尚不够完善,特别是对于空冷型电堆所用的双极板和狭长形的双极板上如何形成同步起伏区尚未涉及。
发明内容
本发明的目的是提供一种双极板的整体错位组装方法,利用该方法无需改变流道间距即可在双极板上形成大面积的同步起伏区或者同时形成多个同步起伏区。在燃料电池电堆中该同步起伏区可以作为贯通阴极板和阳极板之间的各个冷却剂流道的通道,借助于该同步起伏区可以实现在不增加双极板的厚度、不减小反应物流道的深度、不增设附件的前提下将冷却剂导入和导出阴极板和阳极板之间的各个冷却剂流道。
本发明的另一目的是提供一种包含有用上述方法制作的双极板的燃料电池电堆以及包含有该燃料电池电堆的发电系统。在包含有用上述方法制作的双极板的燃料电池电堆中,通过将双极板围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的轴线旋转180°从而避免在同步起伏区所对应的部位出现膜电极的皱褶。
为实现上述目的,本发明采取以下技术方案:
一种双极板的整体错位组装方法,包括以下步骤:
步骤一,制作符合下列条件的第一极板和第二极板:
该第一极板具有第一面和第二面,该第一面上具有第一流道和第一基准面,该第二面上具有第二流道和第二基准面,该第一流道是相对于第一基准面在该第一极板的厚度方向上形成的沟槽,该第二流道是相对于第二基准面在该第一极板的厚度方向上形成的沟槽;该第一流道的底部的背面是第二基准面的一部分,该第二流道的底部的背面是第一基准面的一部分;该第一极板的厚度方向是与第一基准面垂直的两个相反的方向;
该第二极板具有第三面和第四面,该第三面上具有第三流道和第三基准面,该第四面上具有第四流道和第四基准面,该第三流道是相对于第三基准面在该第二极板的厚度方向上形成的沟槽,该第四流道是相对于第四基准面在该第二极板的厚度方向上形成的沟槽;该第三流道的底部的背面是第四基准面的一部分,该第四流道的底部的背面是第三基准面的一部分;该第二极板的厚度方向是与第三基准面垂直的两个相反的方向;
步骤二,将该第一极板和第二极板按照下述方式组合在一起:
将该第一极板的第二面和该第二极板的第四面贴合在一起,使一部分第二 基准面和一部分第四基准面接触,并使该第一极板的质心和该第二极板的质心不对正,该第一极板的质心在基准平面内的投影和第二极板的质心在基准平面内的投影之间存在距离d,且d>w/2,式中w表示第一流道在深度为其总深度的一半处的宽度;该基准平面是与该双极板的厚度方向垂直的一个虚拟的投影平面;该双极板的厚度方向与该双极板上的第一极板的厚度方向一致;还定义错位方向与第一极板的质心在基准平面内的投影和第二极板的质心在基准平面内的投影的连线平行。
进一步的,所述步骤二中,所述第一极板的质心和所述第二极板的质心的不对正使该双极板上存在至少一个同步起伏区;该同步起伏区是该双极板上的一个区域,其在错位方向上的最小尺寸大于w的2.5倍;在该同步起伏区内包含有第一流道、第一基准面、第二流道、第二基准面、第三流道、第三基准面、第四流道、第四基准面的一部分并且该部分的第二基准面和该部分的第四基准面不相接触;该同步起伏区内的第一流道与错位方向所构成的夹角位于[60°,120°]区间,该同步起伏区内的第三流道与错位方向所构成的夹角位于[60°,120°]区间。
进一步的,所述步骤二之后还包括步骤三:将所述第一极板和所述第二极板固定连接。
一种双极板的整体错位组装方法,包括以下步骤:
步骤一,制作符合下列条件的第一极板和第二极板:
该第一极板具有第一面和第二面,该第一面上具有第一流道和第一基准面,该第二面上具有第二流道和第二基准面,该第一流道是相对于第一基准面在该第一极板的厚度方向上形成的沟槽,该第二流道是相对于第二基准面在该第一极板的厚度方向上形成的沟槽;该第一流道的底部的背面是第二基准面的一部分,该第二流道的底部的背面是第一基准面的一部分;该第一极板的厚度方向是与第一基准面垂直的两个相反的方向;该第一极板上存在第一面流场中心,第一面上的第一流道以该第一面流场中心为对称点对称布置;
该第二极板具有第三面和第四面,该第三面上具有第三流道和第三基准面,该第四面上具有第四流道和第四基准面,该第三流道是相对于第三基准面在该第二极板的厚度方向上形成的沟槽,该第四流道是相对于第四基准面在该 第二极板的厚度方向上形成的沟槽;该第三流道的底部的背面是第四基准面的一部分,该第四流道的底部的背面是第三基准面的一部分;该第二极板的厚度方向是与第三基准面垂直的两个相反的方向;该第二极板上存在第三面流场中心,第三面上的第三流道以该第三面流场中心为对称点对称布置;
步骤二,将第一极板和第二极板按照下述方式组合在一起:
将该第一极板的第二面和该第二极板的第四面贴合在一起,使一部分第二基准面和一部分第四基准面接触,并使该第一面流场中心和该第三面流场中心不对正,该第一面流场中心在基准平面内的投影和该第三面流场中心在基准平面内的投影之间存在距离δ,且δ满足:ω/2<δ<2ω,式中ω表示第一流道在深度为其总深度的一半处的宽度;该基准平面是与该双极板的厚度方向垂直的一个虚拟的投影平面;该双极板的厚度方向与该双极板上的第一极板的厚度方向一致;还定义错位方向与第一面流场中心在基准平面内的投影和第三面流场中心在基准平面内的投影的连线平行。
进一步的,所述步骤二中,所述第一面流场中心和所述第三面流场中心的不对正使该双极板上存在至少一个同步起伏区;该同步起伏区是该双极板上的一个区域,其在错位方向上的最小尺寸大于ω的2.5倍;在该同步起伏区内包含有第一流道、第一基准面、第二流道、第二基准面、第三流道、第三基准面、第四流道、第四基准面的一部分并且该部分的第二基准面和该部分的第四基准面不相接触;该同步起伏区内的第一流道与错位方向所构成的夹角位于[60°,120°]区间,该同步起伏区内的第三流道与错位方向所构成的夹角位于[60°,120°]区间。
进一步的,所述步骤二之后还包括步骤三:将所述第一极板和所述第二极板固定连接。
进一步的,所述步骤一所制作的第一极板上,所述第一面流场中心和所述第一极板的质心在所述基准平面内的投影重叠;所述步骤一所制作的第二极板上,所述第三面流场中心和所述第二极板的质心在所述基准平面内的投影不重叠,两者之间的距离等于所述δ;在所述步骤二中,所述第一极板的质心在所述基准平面内的投影和所述第二极板的质心在所述基准平面内的投影重叠。
进一步的,所述步骤一所制作的第一极板上,所述第一面流场中心和所述 第一极板的质心在所述基准平面内的投影不重叠,两者之间的距离等于所述δ的1/2;在步骤一所制作的第二极板上,第三面流场中心和第二极板的质心在基准平面内的投影不重叠,两者之间的距离为所述δ的1/2;在所述步骤二中,所述第一极板的质心在所述基准平面内的投影和所述第二极板的质心在所述基准平面内的投影重叠。
进一步的,所述步骤一制作的第一极板和第二极板具有相同的几何形状,该第一极板的第一面和该第二极板的第三面相同,该第一极板的第二面和该第二极板的第四面相同;该第一极板和第二极板上设置有燃料入口通道、燃料出口通道、氧化剂入口通道、氧化剂出口通道;在将该第一极板和第二极板固定连接的步骤之后还包括如下步骤:切割氧化剂入口通道的边缘和氧化剂出口通道的边缘,或者在燃料入口通道内和燃料出口通道内填充盖板,从而使得氧化剂入口通道的截面积大于燃料入口通道的截面积和燃料出口通道的截面积,使得氧化剂出口通道的截面积大于燃料入口通道的截面积和燃料出口通道的截面积。
进一步的,所述步骤一所制作的第一极板和第二极板上设有用于错位组装的定位装置,该定位装置以与错位方向平行的双极板的中心线为对称轴对称;所述步骤二中,用该定位装置确定所述第一极板和第二极板之间的相对位置。
进一步的,所述步骤一所制作的第一极板和第二极板上没有冷却剂入口通道和冷却剂出口通道;所述第一极板上的第一流道为多条平行的直通式流道以及切断相互平行的第一流道之间的板筋而形成的横向流道,切断相互平行的第一流道之间的板筋而形成的横向流道的背面是阻断第二流道而形成的用于发挥支撑作用的第二基准面;所述第二极板与第一极板有相同的形状。
进一步的,所述步骤一所制作的第一极板和第二极板上没有冷却剂入口通道和冷却剂出口通道;所述第一极板上的第一流道为多条平行的直通式流道以及切断相互平行的第一流道之间的板筋而形成的横向流道,切断相互平行的第一流道之间的板筋而形成的横向流道的背面是阻断第二流道而形成的用于发挥支撑作用的第二基准面;所述第二极板为蛇形流场板。
进一步的,所述步骤一所制作的第一极板和第二极板上设置有冷却剂入口通道和冷却剂出口通道;所述第一极板为Z形流场板,所述第一流道和第二流 道均为Z形流道;所述第二极板和第一极板具有相同的几何形状。
进一步的,所述步骤一所制作的第一极板和第二极板上设置有冷却剂入口通道和冷却剂出口通道;所述第一极板为Z形流场板,所述第一流道和第二流道均为Z形流道;所述第二极板为蛇形流场板,所述第三流道和第四流道为蛇形流道,且该蛇形流道的端部发生90°弯曲而位于所述第二极板的侧面。
进一步的,所述步骤一制作的第一极板和第二极板上的第一流道、第二流道、第三流道、第四流道的沿部的宽度大于底部的宽度;该第一流道、第二流道、第三流道、第四流道的横截面为等腰梯形;该第一极板上设置有上支撑台,该上支撑台是阻断一部分第二流道而形成的一部分第二基准面;所述步骤二中,该上支撑台处于同步起伏区中,并与同步起伏区内的一部分第四基准面相接触;该第二极板上设置有下支撑台,该下支撑台是阻断一部分第四流道而形成的一部分第四基准面;所述步骤二中,该下支撑台处于同步起伏区中,并与同步起伏区内的一部分第二基准面相接触。
一种燃料电池电堆,包含有所述的方法制作的双极板。
在一个实施例中,所述的燃料电池电堆,至少包含有3个所述的方法制作的双极板;
在该燃料电池电堆中,各双极板的第一极板的第一流道为燃料流道,各双极板的第二极板的第三流道为氧化剂流道;在夹持同一个膜电极、分属于两个双极板的第一极板和第二极板当中,所述第一极板的质心在所述基准平面内的投影和所述第二极板的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d;在两个相间隔的双极板当中,两个第一极板的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d,两个第二极板的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d;两个相间隔的双极板是指有两个膜电极和一个双极板介于其间的两个双极板;在将双极板组装成燃料电池电堆时,夹持同一个膜电极的两个双极板中的一个相对于另一个而言围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的轴线旋转180°。
在一个实施例中,所述的燃料电池电堆,至少包含有3个所述的方法制作的双极板;
在该燃料电池电堆中,各双极板的第一极板的第一流道为燃料流道,各双极板的第二极板的第三流道为氧化剂流道;在夹持同一个膜电极、分属于两个双极板的第一极板和第二极板当中,所述第一极板的第一面流场中心在所述基准平面内的投影和所述第二极板的第三面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ;在两个相间隔的双极板当中,两个第一极板的第一面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ,两个第二极板的第三面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ;两个相间隔的双极板是指有两个膜电极和一个双极板介于其间的两个双极板;在将双极板组装成燃料电池电堆时,夹持同一个膜电极的两个双极板中的一个相对于另一个而言围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的轴线旋转180°。
进一步的,所述双极板中的第一极板和第二极板具有相同的几何形状,并且所述第一极板和第二极板上设置有燃料入口通道、燃料出口通道、氧化剂入口通道和氧化剂出口通道;
该燃料电池电堆中包含有燃料入口通道填充棒或燃料入口通道填充板,该燃料入口通道填充棒或燃料入口通道填充板设置在燃料入口通道中从而使燃料入口通道的截面积减小;
该燃料电池电堆中还包含有燃料出口通道填充棒或燃料出口通道填充板,该燃料出口通道填充棒或燃料出口通道填充板设置在燃料出口通道中从而使燃料出口通道的截面积减小。
一种燃料电池发电系统,包含有所述的燃料电池电堆。
本发明的有益效果是:利用本发明所揭示的整体错位组装方法无需改变流道间距即可在双极板上形成大面积的同步起伏区或者同时形成多个同步起伏区,与通过改变流道间距来形成错位区或同步起伏区的方法相比具有简化流场、简化双极板结构的效果;借助于该同步起伏区能够在不增加双极板的厚度、不减小反应物流道的深度、不增设附件的前提下将冷却剂导入和导出阴极板和阳极板之间的各个冷却剂流道并能够使冷却剂流遍整个反应区,有利于提高燃料电池电堆的功率密度和温控能力。
附图说明
图1是本发明双极板的整体错位组装方法实施例1中的双极板的结构示意图。
图1A是本发明双极板的整体错位组装方法实施例1中的第一极板的结构示意图。
图1B是本发明双极板的整体错位组装方法实施例1中的第二极板的结构示意图。
图2A是本发明双极板的整体错位组装方法实施例2中的第一极板的结构示意图。
图2B是本发明双极板的整体错位组装方法实施例2中的第二极板的结构示意图
图3是本发明双极板的整体错位组装方法实施例3中的双极板的结构示意图。
图3A是本发明双极板的整体错位组装方法实施例3中的第一极板的结构示意图。
图3B是本发明双极板的整体错位组装方法实施例3中的第二极板的结构示意图。
图4是本发明双极板的整体错位组装方法实施例4中的第一极板的结构示意图。
图5是本发明双极板的整体错位组装方法实施例4中的第二极板的结构示意图。
图6A是图1中的A1-A1处的截面图,表示第一极板和第二极板的质心错位。
图6B是图1中的A1-A1处的截面图,表示第一极板和第二极板的流场中心错位。
图7是图1中的B1-B1处的截面图。
图8A是图3中的A2-A2处的截面图,表示第一极板和第二极板的质心错位。
图8B是图3中的A2-A2处的截面图,表示第一极板和第二极板的流场中心错位。
图9是图3中的B2-B2处的截面图。
图10是在燃料电池电堆中图6A和图6B所对应的部位出现膜电极的皱褶示意图。
图11是图6A对应的燃料电池电堆组装图,此时第一极板和第二极板的质心和流场中心重叠,被组装在一起时第一极板和第二极板的边缘不对齐、各个通道也不对齐。
图12是图6B对应的燃料电池电堆组装图,此时第一极板和第二极板的流场中心和质心偏离(即两者在基准平面内的投影不重叠),被组装在一起时第一极板和第二极板的边缘对齐、各个通道也对齐。
图13是在燃料电池电堆中图8A和图8B所对应的部位出现膜电极的皱褶示意图。
图14是图8A对应的燃料电池电堆组装图,此时第一极板和第二极板的质心和流场中心重叠,被组装在一起时第一极板和第二极板的边缘不对齐、各个通道也不对齐。
图15是图8B对应的燃料电池电堆组装图,此时第一极板和第二极板的流场中心和质心偏离(即两者在基准平面内的投影不重叠),被组装在一起时第一极板和第二极板的边缘对齐、各个通道也对齐。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1-图5所示,本发明提供双极板的实施例1-4,各实施例的双极板包括第一极板1和第二极板2。该第一极板1具有第一面11和第二面12,该第一面11上具有第一流道111和第一基准面112,该第二面12上具有第二流道121和第二基准面122,该第一流道111是相对于第一基准面112在第一极板的厚度方向上形成的沟槽,该第二流道121是相对于第二基准面122在第一极板的厚度方向上形成的沟槽,该第一极板的厚度方向是与第一基准面112垂直的两个相反的方向;第一流道111的底部的背面是第二基准面122,第二流道121的底部的背面是第一基准面112;该第二极板2具有第三面21和第四面22, 该第三面21上具有第三流道211和第三基准面212,该第四面22上具有第四流道221和第四基准面222,该第三流道211是相对于第三基准面212在第二极板的厚度方向上形成的沟槽,该第四流道221是相对于第四基准面222在第二极板的厚度方向上形成的沟槽,该第二极板的厚度方向是与第三基准面212垂直的两个相反的方向;第三流道211的底部的背面是第四基准面222,第四流道221的底部的背面是第三基准面212;该第一极板1的第二面12和该第二极板2的第四面22贴合在一起,形成双极板。
本发明提供一种双极板的整体错位组装方法,其为方法一,包括以下步骤:
步骤一,制作上述实施例1-4中的双极板的第一极板1和第二极板2,优先选择的方法是:用厚度约为0.1毫米的金属或合金薄板为原材料,裁切成预定的形状后放入模具中冲压成型,模具中的凹凸结构与第一极板和第二极板的凹凸结构对应;第一极板1和第二极板2均呈波纹形;第一流道111的底部的背面是第二基准面122的一部分,第二流道121的底部的背面是第一基准面112的一部分,第三流道211的底部的背面是第四基准面222的一部分,第四流道221的底部的背面是第三基准面212的一部分。第一流道111、第二流道121、第三流道211、第四流道221的沿部的宽度大于底部的宽度;作为最简单易行的方案,第一流道111、第二流道121、第三流道211、第四流道221的横截面相同且均为等腰梯形,第一基准面112和第二基准面122平行是相互平行的平面,第三基准面212和第四基准面222是相互平行的平面。
步骤二,将该第一极板1和第二极板2按照下述方式组合在一起成为双极板:
如图6A、图7、图8A、图9所示,将该第一极板1的第二面12和该第二极板2的第四面22贴合在一起,使一部分第二基准面和一部分第四基准面接触,并使该第一极板1的质心和该第二极板2的质心不对正,且该第一极板1的质心在基准平面内的投影和第二极板2的质心在基准平面内的投影之间存在距离d,且d>w/2,式中w表示第一流道在深度为其总深度的一半处的宽度;该基准平面是与该双极板的厚度方向垂直的一个虚拟的投影平面,该双极板的厚度方向与该双极板上的第一极板的厚度方向一致;还定义错位方向与第一极板的质心在基准平面内的投影和第二极板的质心在基准平面内的投影的连线 平行。由于第一极板的质心是第一极板上的一个固定点(就是第一极板的重心),第二极板的质心是第二极板上的一个固定点(就是第二极板的重心),所以在具体进行错位组装操作时并不需要测定出第一极板的质心和第二极板的质心的具体位置,只需要按照第一极板和第二极板上的定位装置来进行两个极板的错位组装即可。此处我们将该定位装置设计为两条距离为d的狭缝,或者是两个圆心的距离为d并发生部分重叠的圆孔。借助于该定位装置就可以实现两个极板的质心发生距离为d的错位而不需要测量出质心的具体位置。
进一步的,所述方法一的步骤二中,所述第一极板1的质心和所述第二极板2的质心的不对正使双极板上存在同步起伏区,该同步起伏区是双极板上的一个区域,其在错位方向上的最小尺寸大于w的2.5倍;在该同步起伏区内包含有第一流道111、第一基准面112、第二流道121、第二基准面122、第三流道211、第三基准面212、第四流道221、第四基准面222的一部分并且该部分的第二基准面122和该部分的第四基准面222不相接触;该同步起伏区内的第一流道111与错位方向所构成的夹角位于[60°,120°]区间,该同步起伏区内的第三流道211与错位方向所构成的夹角位于[60°,120°]区间;作为最简单易行的方案,错位方向与同步起伏区内的第一流道和第三流道均保持垂直,此时,两个极板的错位量的最佳值为:d *=w/2+w′/2+t,式中的w表示第一流道在深度为其总深度的一半处的宽度,w′表示第二流道在深度为其总深度的一半处的宽度,t表示第一极板的板体的厚度;
另外,如图3、图3A、图3B、图4所示,为了防止在同步起伏区处,因上下双极板的挤压变形而阻挡冷却剂的流通,在第一极板上对应于该同步起伏区的位置设置有若干上支撑台U,该上支撑台U是阻断一部分第二流道而形成的一部分第二基准面,相对应的,使背面的第一流道相贯通;也可以在第二极板对应于该同步起伏区的位置设置若干下支撑台D,该下支撑台D是阻断一部分第四流道而形成的一部分第四基准面,相对应的,使背面的第三流道相贯通;在组装好的双极板中,该上支撑台U与同步起伏区内的一部分第四基准面相接触,该下支撑台D与同步起伏区内的一部分第二基准面相接触。
进一步的,所述方法一的步骤二之后还包括步骤三:将所述第一极板1和所述第二极板2固定连接,连接的方法包括焊接、粘接等。
本发明还提供一种双极板的整体错位组装方法,其为方法二,包括以下步骤:
步骤一,制作上述实施例1-4中的双极板的第一极板1和第二极板2,优先选择的方法是:用厚度约为0.1毫米的金属或合金薄板为原材料,裁切成预定的形状后放入模具中冲压成型,模具中的凹凸结构与第一极板和第二极板的凹凸结构对应;第一极板1和第二极板2均呈波纹形;第一流道111的底部的背面是第二基准面122的一部分,第二流道121的底部的背面是第一基准面112的一部分,第三流道211的底部的背面是第四基准面222的一部分,第四流道221的底部的背面是第三基准面212的一部分;第一流道111、第二流道121、第三流道211、第四流道221的沿部的宽度大于底部的宽度;作为最简单易行的方案,第一流道111、第二流道121、第三流道211、第四流道221的横截面相同且均为等腰梯形,第一基准面112和第二基准面122平行是相互平行的平面,第三基准面212和第四基准面222是相互平行的平面;
其中,该第一极板1上存在第一面流场中心,第一面11上的第一流道111以该第一面流场中心为对称点对称布置,从而使得流体在由第一流道111所构成的第一面流场中作反向流动与作正向流动具有同等效果;该第二极板2上存在第三面流场中心,第三面21上的第三流道211以该第三面流场中心为对称点对称布置,从而使得流体在由第三流道211所构成的第三面流场中作反向流动与作正向流动具有同等效果。
步骤二,将第一极板1和第二极板2按照下述方式组合在一起成为双极板:
如图6B、图7、图8B、图9所示,将该第一极板1的第二面12和该第二极板2的第四面22贴合在一起,使一部分第二基准面和一部分第四基准面接触,并使该第一面流场中心和该第三面流场中心不对正,该第一面流场中心在基准平面内的投影和该第三面流场中心在基准平面内的投影之间存在距离δ,且δ满足:ω/2<δ<2ω,式中ω表示第一流道121在深度为其总深度的一半处的宽度;该基准平面是与该双极板的厚度方向垂直的一个虚拟的投影平面,该双极板的厚度方向与该双极板上的第一极板的厚度方向一致;还定义错位方向与第一面流场中心在基准平面内的投影和第三面流场中心在基准平面内的投影的连线平行。由于第一面流场中心是第一极板上的一个固定点,第三面流场 中心是第二极板上的一个固定点,所以在具体进行错位组装操作时并不需要测定出第一面流场中心和第三面流场中心的具体位置,只需要按照第一极板和第二极板上的定位装置来进行两个极板的错位组装即可。此处我们将该定位装置设计为两条距离为δ的狭缝,或者是两个圆心的距离为δ并发生部分重叠的圆孔。借助于该定位装置就可以实现两个极板上的第一面流场中心和第三面流场中心发生距离为δ的错位而不需要测量出第一面流场中心和第三面流场中心的具体位置。
进一步的,所述方法二的步骤二中,所述第一面流场中心和所述第三面流场中心的不对正导致双极板上存在同步起伏区,该同步起伏区是双极板上的一个区域,其在错位方向上的最小尺寸大于ω的2.5倍;在该同步起伏区内包含有第一流道111、第一基准面112、第二流道121、第二基准面122、第三流道211、第三基准面212、第四流道221、第四基准面222的一部分并且该部分的第二基准面122和该部分的第四基准面222不相接触;该同步起伏区内的第一流道111与错位方向所构成的夹角位于[60°,120°]区间,该同步起伏区内的第三流道211与错位方向所构成的夹角位于[60°,120°]区间;作为最简单易行的方案,错位方向与在同步起伏区内的第一流道和第三流道均保持垂直,此时,两个极板的错位量的最佳值为:δ *=ω/2+ω′/2+τ,式中的ω表示第一流道在深度为其总深度的一半处的宽度,ω′表示第二流道在深度为其总深度的一半处的宽度,τ表示第一极板的板体的厚度;通常情况下,ω′与ω基本相等,τ小于ω,所以δ *<2ω;事实上,如果δ>2ω,则有可能出现第一极板上的密封槽和第二极板上的密封槽完全错开的情况,这对于电堆的密封是不利的。
另外,如图3、图3A、图3B、图4所示,为了防止在同步起伏区处,因上下双极板的挤压变形而阻挡冷却剂的流通,在第一极板上对应于该同步起伏区的位置设置有若干上支撑台U,该上支撑台U是阻断一部分第二流道而形成的一部分第二基准面,相对应的,使背面的第一流道相贯通;也可以在第二极板对应于该同步起伏区的位置设置若干下支撑台D,该下支撑台D是阻断一部分第四流道而形成的一部分第四基准面,相对应的,使背面的第三流道相贯通;在组装好的双极板中,该上支撑台U与同步起伏区内的一部分第四基准面相接触,该下支撑台D与同步起伏区内的一部分第二基准面相接触。
进一步的,所述方法一的步骤二之后还包括步骤三:将所述第一极板1和所述第二极板2固定连接,连接的方法包括焊接、粘接等。
将第一极板和第二极板错位组装的目的在于形成同步起伏区,所以在能够形成同步起伏区的前提下错位量δ的值应尽可能小,避免出现第一极板上的密封槽和第二极板上的密封槽完全错开而影响电堆密封的情况,所以在对第一极板和第二极板进行错位组装时第一极板的质心和第二极板的质心应尽可能接近,最佳选择是第一极板和第二极板的质心对正重叠,所以在方法二中,优先选择下列两种情况:
1、所述步骤一所制作的第一极板1上,所述第一面流场中心和所述第一极板的质心在所述基准平面内的投影重叠;所述步骤一所制作的第二极板2上,所述第三面流场中心和所述第二极板的质心在所述基准平面内的投影不重叠,两者之间的距离等于所述δ;在所述步骤二中,所述第一极板1的质心在所述基准平面内的投影和所述第二极板2的质心在所述基准平面内的投影重叠。
2、所述步骤一所制作的第一极板1上,所述第一面流场中心和所述第一极板的质心在所述基准平面内的投影不重叠,两者之间的距离等于所述δ的1/2;在步骤一所制作的第二极板2上,第三面流场中心和第二极板的质心在基准平面内的投影不重叠,两者之间的距离为所述δ的1/2;在所述步骤二中,所述第一极板1的质心在所述基准平面内的投影和所述第二极板2的质心在所述基准平面内的投影重叠。
在本发明的方法一和方法二中,所述步骤一制作的第一极板1和第二极板2优选具有相同的几何形状,该第一极板1的第一面11和该第二极板2的第三面21相同,该第一极板1的第二面12和该第二极板2的第四面22相同;该第一极板1和第二极板2上设置有燃料入口通道3、燃料出口通道4、氧化剂入口通道5、氧化剂出口通道6;在第一极板和第二极板形状相同的情况下,双极板的组装实际上就是将两个第一极板的第二面贴合在一起,所以氧化剂入口通道的截面积必然会和燃料入口通道的截面积相同或者与燃料出口通道的截面积相同。这就会带来一个问题,因为在燃料电池电堆中通常会要求氧化剂入口通道的截面积大于燃料入口通道的截面积和燃料出口通道的截面积,有时候对氧化剂出口通道也会有同样的要求。为此,在将该第一极板1和第二极板 2固定连接的步骤之后还包括如下步骤:切割氧化剂入口通道5的边缘和氧化剂出口通道6的边缘,或者在燃料入口通道3内和燃料出口通道4内填充盖板,从而使得氧化剂入口通道5的截面积大于燃料入口通道3的截面积和燃料出口通道4的截面积,使得氧化剂出口通道6的截面积大于燃料入口通道3的截面积和燃料出口通道4的截面积。在附图1和附图3中氧化剂入口通道5和氧化剂出口通道6内的虚线表示切割线,在附图1中氧化剂入口通道5和氧化剂出口通道6的内沿被局部切割,在附图3中氧化剂入口通道5和氧化剂出口通道6的内沿被全部切割;放置在燃料入口通道3内的盖板可以是一个环状的塑料板,其外部形状与燃料入口通道的内沿相似、内孔的面积小于氧化剂入口通道的截面积,放置在燃料入口通道内沿的焊接带所形成的凹窝中即可;放置在燃料出口通道中的盖板的外部形状与燃料出口通道的内沿相似、内孔的面积小于燃料出口通道的截面积,放置在燃料出口通道内沿的焊接带所形成的凹窝中即可。
在本发明的方法一和方法二中,优选的,所述步骤一所制作的第一极板1和第二极板2上设有用于错位组装的定位装置,该定位装置以与错位方向平行的双极板的中心线为对称轴对称,在方法一中,该错位方向与两个极板的质心在基准平面内的投影的连线平行,在方法二中,该错位方向与第一面流场中心和第三面流场中心在基准平面内的投影的连线平行;所述步骤二中,用该定位装置确定所述第一极板1和第二极板2之间的相对位置。在两个极板具有相同的形状的情况下,在将两个极板组装在一起时需要将其中一个极板翻转一下然后与另一个极板贴合在一起,所以该定位装置被设计成以与错位方向平行的双极板的中心线为对称轴对称,保证在极板被翻转之后其上的定位装置不发生变化。
在本发明的方法一和方法二中,对于没有冷却剂入口通道和冷却剂出口通道的情况,如图1-图2B所示,有下列两种情况:
1、所述步骤一所制作的第一极板1和第二极板2上没有冷却剂入口通道和冷却剂出口通道;所述第一极板1上的第一流道111为多条平行的直通式流道以及切断相互平行的第一流道111之间的板筋而形成的横向流道1111,切断相互平行的第一流道111之间的板筋而形成的横向流道1111的背面是阻断第 二流道121而形成的用于发挥支撑作用的第二基准面122,即上支撑台U;所述第二极板2与第一极板1有相同的形状。
2、所述步骤一所制作的第一极板1和第二极板2上没有冷却剂入口通道和冷却剂出口通道;所述第一极板1上的第一流道111为多条平行的直通式流道以及切断相互平行的第一流道111之间的板筋而形成的横向流道1111,切断相互平行的第一流道111之间的板筋而形成的横向流道1111的背面是阻断第二流道121而形成的用于发挥支撑作用的第二基准面122,即上支撑台U;所述第二极板2为蛇形流场板。
在本发明的方法一中,对于冷却剂入口通道和冷却剂出口通道的设置,如图3-图5所示,有下列两种情况:
1、所述步骤一所制作的第一极板1和第二极板2上设置有冷却剂入口通道7和冷却剂出口通道8;所述第一极板1上的冷却剂入口通道7和冷却剂出口通道8以第一极板的质心为对称点对称,所述第二极板2上的冷却剂入口通道7和冷却剂出口通道8以第二极板的质心为对称点对称;所述第一极板1为Z形流场板,所述第一流道111和第二流道121均为Z形流道;所述第二极板2和第一极板1具有相同的几何形状。
2、所述步骤一所制作的第一极板1和第二极板2上设置有冷却剂入口通道7和冷却剂出口通道8;所述第一极板1上的冷却剂入口通道7和冷却剂出口通道8以所述第一极板的质心为对称点对称,所述第二极板2上的冷却剂入口通道7和冷却剂出口通道8以第二极板的质心为对称点对称;所述第一极板1为Z形流场板,所述第一流道111和第二流道121均为Z形流道;所述第二极板2为蛇形流场板,所述第三流道211和第四流道221为蛇形流道,且该蛇形流道的端部发生90°弯曲而位于所述第二极板2的侧面。
在本发明的方法二中,对于冷却剂入口通道和冷却剂出口通道的设置,如图3-图5所示,有下列两种情况:
1、所述步骤一所制作的第一极板1和第二极板2上设置有冷却剂入口通道7和冷却剂出口通道8;所述第一极板1上的冷却剂入口通道7和冷却剂出口通道8以所述第一面流场中心为对称点对称,所述第二极板2上的冷却剂入口通道7和冷却剂出口通道8以所述第三面流场中心为对称点对称;所述第一 极板1为Z形流场板,所述第一流道111和第二流道121均为Z形流道;所述第二极板2和第一极板1具有相同的几何形状。
2、所述步骤一所制作的第一极板1和第二极板2上设置有冷却剂入口通道7和冷却剂出口通道8;所述第一极板1上的冷却剂入口通道7和冷却剂出口通道8以所述第一面流场中心为对称点对称,所述第二极板2上的冷却剂入口通道7和冷却剂出口通道8以所述第三面流场中心为对称点对称;所述第一极板1为Z形流场板,所述第一流道111和第二流道121均为Z形流道;所述第二极板2为蛇形流场板,所述第三流道211和第四流道221为蛇形流道,且该蛇形流道的端部发生90°弯曲而位于所述第二极板2的侧面。
如图10-图15所示,本发明还提供一种燃料电池电堆,包含有根据上述方法一或方法二制作的双极板。
在一个燃料电池电堆的实施例中,至少包含有3个根据方法一制作的双极板;
在该燃料电池电堆中,各双极板的第一极板1的第一流道111为燃料流道,各双极板的第二极板2的第三流道211为氧化剂流道;在夹持同一个膜电极9、分属于两个双极板的第一极板1和第二极板2当中,所述第一极板1的质心在所述基准平面内的投影和所述第二极板2的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d;在两个相间隔的双极板当中,两个第一极板1的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d,两个第二极板2的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d;两个相间隔的双极板是指有两个膜电极9和一个双极板介于其间的两个双极板。
将利用方法一所制作的双极板如此安装在燃料电池电堆中可以避免膜电极起皱褶。我们在前期的研究结果表明,具有错位区或同步起伏区的双极板,被安装在燃料电池电堆中时有可能出现膜电极起皱褶的情况,附图10中的最上面一幅图是实例1和实例2所描述的双极板被安装在燃料电池电堆中时膜电极起皱褶的示意图,附图13中的最上面一幅图是实例3和实例4所描述的双极板被安装在燃料电池电堆中时膜电极起皱褶的示意图。膜电极起皱褶会导致反应物流道被堵塞和电路的接触不良。为了避免这种情况的发生,最简单的方 法是将夹持同一个膜电极的两个双极板进行错位组装,错位量为d,见附图10和附图13中间左边一幅图所示。但是,对于大功率的燃料电池电堆而言,由于其中的双极板数量比较多,如果各个双极板均向同一个方向错位,必然会导致电堆的倾斜,这显然是不可行的,见附图10和附图13中的最下面一幅图所示。对于本发明所提供的双极板而言,如果第一极板和第二极板具有对称性,则可以通过将双极板围绕与双极板的厚度方向平行的轴线旋转180°,也就是将双极板的燃料入口通道和燃料出口通道互换、氧化剂入口通道和氧化剂出口通道互换、冷却剂入口通道和冷却剂出口通道互换,而解决这个问题;当然,这样做需要一个前提条件,就是第一极板和第二极板都具有对称性。本发明所提供的双极板可以满足这个前提条件,因而可以解决膜电极起皱褶的问题。避免膜电极起皱褶的另一个方法是将夹持同一个膜电极的两个双极板中的一个围绕与错位方向平行的轴线旋转180°,即将夹持同一个膜电极的两个双极板中的一个翻转一下,使其第一极板和第二极板互换,见附图10和附图13中间右边的一幅图所示;当然,这样做需要一个前提条件,就是第一极板和第二极板必须具有相同的形状,而本发明所提供的双极板也可以满足这个前提条件。
在一个燃料电池电堆的实施例中,至少包含有3个根据方法二制作的双极板;
在该燃料电池电堆中,各双极板的第一极板1的第一流道111为燃料流道,各双极板的第二极板2的第三流道211为氧化剂流道;在夹持同一个膜电极9、分属于两个双极板的第一极板1和第二极板2当中,所述第一极板1的第一面流场中心在所述基准平面内的投影和所述第二极板2的第三面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ;在两个相间隔的双极板当中,两个第一极板1的第一面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ,两个第二极板2的第三面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ;两个相间隔的双极板是指有两个膜电极9和一个双极板介于其间的两个双极板。
如前所述,将利用方法二所制作的双极板如此安装在燃料电池电堆中可以避免膜电极起皱褶。
在本发明的燃料电池电堆中,所述双极板中的第一极板1和第二极板2具 有相同的几何形状,并且所述第一极板1和第二极板2上设置有燃料入口通道3、燃料出口通道4、氧化剂入口通道5和氧化剂出口通道6;
该燃料电池电堆中包含有燃料入口通道填充棒或燃料入口通道填充板,该燃料入口通道填充棒或燃料入口通道填充板设置在燃料入口通道3中从而使燃料入口通道3的截面积减小;
该燃料电池电堆中还包含有燃料出口通道填充棒或燃料出口通道填充板,该燃料出口通道填充棒或燃料出口通道填充板设置在燃料出口通道4中从而使燃料出口通道4的截面积减小。
如前所述,在第一极板和第二极板形状相同的情况下,氧化剂入口通道的截面积必然会和燃料入口通道的截面积相同或者与燃料出口通道的截面积相同,而在燃料电池电堆中有时会要求氧化剂入口通道的截面积大于燃料入口通道的截面积和燃料出口通道的截面积,在燃料入口通道和燃料出口通道中放置填充棒或填充板是解决这个问题的一个简单易行的方法。与切割氧化剂入口通道的内沿和在燃料入口通道内放置盖板的方法相比,成本会更低一些。
本发明还提供一种燃料电池发电系统,包含有上述的燃料电池电堆。
这里需要强调的是,将具有错位区或同步起伏区的双极板安装在燃料电池堆中时会出现膜电极起皱褶的问题,采用本发明所揭示的整体错位组装方法制作的双极板,通过将双极板围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的中心线旋转180°就能够解决;相形之下,通过改变两个极板当中一个极板上的流道的间距而形成错位区的方法所制作的双极板,在被安装在电堆中时同样会出现膜电极起皱褶的问题,但是该问题是无法解决的;这是本发明的一个优势,但此种解决方法也会带来一些衍生的问题。
在组装燃料电池电堆时为了避免膜电极起皱褶而采取将双极板围绕与双极板的厚度方向平行的轴线旋转180°的方法,将会导致双极板上的燃料入口通道和燃料出口通道互换、氧化剂入口通道和氧化剂出口通道互换、冷却剂入口通道和冷却剂出口通道互换,所以双极板上的燃料入口通道和燃料出口通道应具有相同的形状和截面积、氧化剂入口通道和氧化剂出口通道应具有相同的形状和截面积、冷却剂入口通道和冷却剂出口通道应具有相同的形状和截面积;事实上,会被互换的两个通道的截面积即使是不相同,在电堆组装过程中截面 积较大的一个也会被部分遮挡而与截面积较小的一个保持相同;但是,在某些特殊情况下,要求会被互换的两个通道具有不同的截面积。对于这个衍生的问题,解决的办法是:如果要求电堆中的燃料入口通道和燃料出口通道具有不同的截面积,那么在组装电堆时可以在燃料入口通道内或在燃料出口通道内设置板状或棒状填充物;同样地,如果要求电堆中的氧化剂入口通道和氧化剂出口通道具有不同的截面积,那么在组装电堆时可以在氧化剂入口通道内或在氧化剂出口通道内设置板状或棒状填充物;如果要求电堆中的冷却剂入口通道和冷却剂出口通道具有不同的截面积,那么在组装电堆时可以在冷却剂入口通道内或在冷却剂出口通道内设置板状或棒状填充物。
在第一极板和第二极板形状相同的前提下,在组装电堆时为了避免膜电极起皱褶而采取将第一极板和第二极板互换的方法,那就要求双极板上的各个通道应该以与错位方向平行的双极板的中心线为对称轴对称布置,而位于该中心线上的通道其自身的形状应该以该中心线为对称轴对称,并且以该中心线为对称轴相互对称的两个通道应具有相同的形状和截面积,因为在电堆组装过程中以该中心线为对称轴相互对称的两个通道会被互换;事实上,相互对称的两个通道即使是截面积不相同,在电堆组装过程中截面积较大的一个也会被部分遮挡而与截面积较小的一个保持相同;但是,在某些特殊情况下,要求这两个相互对称的通道具有不同的截面积。对于这个衍生的问题,解决的办法是:在组装电堆时在其中一个通道内设置板状或棒状填充物。
最后需要补充说明的是,本发明所揭示的燃料电池双极板的整体错位组装方法,也可以应用于其它堆叠装置中的流场板或分离器板的制作,此处所说的双极板也可以视为其它堆叠装置中的流场板或分离器板。
上述实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。本发明还有许多方面可以在不违背总体思想的前提下进行改进,任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (20)

  1. 一种双极板的整体错位组装方法,其特征在于,包括以下步骤:
    步骤一,制作符合下列条件的第一极板和第二极板:
    该第一极板具有第一面和第二面,该第一面上具有第一流道和第一基准面,该第二面上具有第二流道和第二基准面,该第一流道是相对于第一基准面在该第一极板的厚度方向上形成的沟槽,该第二流道是相对于第二基准面在该第一极板的厚度方向上形成的沟槽;该第一流道的底部的背面是第二基准面的一部分,该第二流道的底部的背面是第一基准面的一部分;该第一极板的厚度方向是与第一基准面垂直的两个相反的方向;
    该第二极板具有第三面和第四面,该第三面上具有第三流道和第三基准面,该第四面上具有第四流道和第四基准面,该第三流道是相对于第三基准面在该第二极板的厚度方向上形成的沟槽,该第四流道是相对于第四基准面在该第二极板的厚度方向上形成的沟槽;该第三流道的底部的背面是第四基准面的一部分,该第四流道的底部的背面是第三基准面的一部分;该第二极板的厚度方向是与第三基准面垂直的两个相反的方向;
    步骤二,将该第一极板和第二极板按照下述方式组合在一起:
    将该第一极板的第二面和该第二极板的第四面贴合在一起,使一部分第二基准面和一部分第四基准面接触,并使该第一极板的质心和该第二极板的质心不对正,该第一极板的质心在基准平面内的投影和第二极板的质心在基准平面内的投影之间存在距离d,且d>w/2,式中w表示第一流道在深度为其总深度的一半处的宽度;该基准平面是与该双极板的厚度方向垂直的一个虚拟的投影平面;该双极板的厚度方向与该双极板上的第一极板的厚度方向一致;还定义错位方向与第一极板的质心在基准平面内的投影和第二极板的质心在基准平面内的投影的连线平行。
  2. 根据权利要求1所述的双极板的整体错位组装方法,其特征在于:所述步骤二中,所述第一极板的质心和所述第二极板的质心的不对正使该双极板上存在至少一个同步起伏区;该同步起伏区是该双极板上的一个区域,其在错位方向上的最小尺寸大于w的2.5倍;在该同步起伏区内包含有第一流道、第 一基准面、第二流道、第二基准面、第三流道、第三基准面、第四流道、第四基准面的一部分并且该部分的第二基准面和该部分的第四基准面不相接触;该同步起伏区内的第一流道与错位方向所构成的夹角位于[60°,120°]区间,该同步起伏区内的第三流道与错位方向所构成的夹角位于[60°,120°]区间。
  3. 根据权利要求1或2所述的双极板的整体错位组装方法,其特征在于:所述步骤二之后还包括步骤三:将所述第一极板和所述第二极板固定连接。
  4. 一种双极板的整体错位组装方法,其特征在于,包括以下步骤:
    步骤一,制作符合下列条件的第一极板和第二极板:
    该第一极板具有第一面和第二面,该第一面上具有第一流道和第一基准面,该第二面上具有第二流道和第二基准面,该第一流道是相对于第一基准面在该第一极板的厚度方向上形成的沟槽,该第二流道是相对于第二基准面在该第一极板的厚度方向上形成的沟槽;该第一流道的底部的背面是第二基准面的一部分,该第二流道的底部的背面是第一基准面的一部分;该第一极板的厚度方向是与第一基准面垂直的两个相反的方向;该第一极板上存在第一面流场中心,第一面上的第一流道以该第一面流场中心为对称点对称布置;
    该第二极板具有第三面和第四面,该第三面上具有第三流道和第三基准面,该第四面上具有第四流道和第四基准面,该第三流道是相对于第三基准面在该第二极板的厚度方向上形成的沟槽,该第四流道是相对于第四基准面在该第二极板的厚度方向上形成的沟槽;该第三流道的底部的背面是第四基准面的一部分,该第四流道的底部的背面是第三基准面的一部分;该第二极板的厚度方向是与第三基准面垂直的两个相反的方向;该第二极板上存在第三面流场中心,第三面上的第三流道以该第三面流场中心为对称点对称布置;
    步骤二,将第一极板和第二极板按照下述方式组合在一起:
    将该第一极板的第二面和该第二极板的第四面贴合在一起,使一部分第二基准面和一部分第四基准面接触,并使该第一面流场中心和该第三面流场中心不对正,该第一面流场中心在基准平面内的投影和该第三面流场中心在基准平面内的投影之间存在距离δ,且δ满足:ω/2<δ<2ω,式中ω表示第一流道在深度为其总深度的一半处的宽度;该基准平面是与该双极板的厚度方向垂直的一个虚拟的投影平面;该双极板的厚度方向与该双极板上的第一极板的厚度方 向一致;还定义错位方向与第一面流场中心在基准平面内的投影和第三面流场中心在基准平面内的投影的连线平行。
  5. 根据权利要求4所述的双极板的整体错位组装方法,其特征在于:所述步骤二中,所述第一面流场中心和所述第三面流场中心的不对正使该双极板上存在至少一个同步起伏区;该同步起伏区是该双极板上的一个区域,其在错位方向上的最小尺寸大于ω的2.5倍;在该同步起伏区内包含有第一流道、第一基准面、第二流道、第二基准面、第三流道、第三基准面、第四流道、第四基准面的一部分并且该部分的第二基准面和该部分的第四基准面不相接触;该同步起伏区内的第一流道与错位方向所构成的夹角位于[60°,120°]区间,该同步起伏区内的第三流道与错位方向所构成的夹角位于[60°,120°]区间。
  6. 根据权利要求4或5所述的双极板的整体错位组装方法,其特征在于:所述步骤二之后还包括步骤三:将所述第一极板和所述第二极板固定连接。
  7. 根据权利要求4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板上,所述第一面流场中心和所述第一极板的质心在所述基准平面内的投影重叠;所述步骤一所制作的第二极板上,所述第三面流场中心和所述第二极板的质心在所述基准平面内的投影不重叠,两者之间的距离等于所述δ;在所述步骤二中,所述第一极板的质心在所述基准平面内的投影和所述第二极板的质心在所述基准平面内的投影重叠。
  8. 根据权利要求4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板上,所述第一面流场中心和所述第一极板的质心在所述基准平面内的投影不重叠,两者之间的距离等于所述δ的1/2;在步骤一所制作的第二极板上,第三面流场中心和第二极板的质心在基准平面内的投影不重叠,两者之间的距离为所述δ的1/2;在所述步骤二中,所述第一极板的质心在所述基准平面内的投影和所述第二极板的质心在所述基准平面内的投影重叠。
  9. 根据权利要求3或6所述的双极板的整体错位组装方法,其特征在于,所述步骤一制作的第一极板和第二极板具有相同的几何形状,该第一极板的第一面和该第二极板的第三面相同,该第一极板的第二面和该第二极板的第四面相同;该第一极板和第二极板上设置有燃料入口通道、燃料出口通道、氧化剂 入口通道、氧化剂出口通道;在将该第一极板和第二极板固定连接的步骤之后还包括如下步骤:切割氧化剂入口通道的边缘和氧化剂出口通道的边缘,或者在燃料入口通道内和燃料出口通道内填充盖板,从而使得氧化剂入口通道的截面积大于燃料入口通道的截面积和燃料出口通道的截面积,使得氧化剂出口通道的截面积大于燃料入口通道的截面积和燃料出口通道的截面积。
  10. 根据权利要求1或4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板和第二极板上设有用于错位组装的定位装置,该定位装置以与错位方向平行的双极板的中心线为对称轴对称;所述步骤二中,用该定位装置确定所述第一极板和第二极板之间的相对位置。
  11. 根据权利要求1或4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板和第二极板上没有冷却剂入口通道和冷却剂出口通道;所述第一极板上的第一流道为多条平行的直通式流道以及切断相互平行的第一流道之间的板筋而形成的横向流道,切断相互平行的第一流道之间的板筋而形成的横向流道的背面是阻断第二流道而形成的用于发挥支撑作用的第二基准面;所述第二极板与第一极板有相同的形状。
  12. 根据权利要求1或4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板和第二极板上没有冷却剂入口通道和冷却剂出口通道;所述第一极板上的第一流道为多条平行的直通式流道以及切断相互平行的第一流道之间的板筋而形成的横向流道,切断相互平行的第一流道之间的板筋而形成的横向流道的背面是阻断第二流道而形成的用于发挥支撑作用的第二基准面;所述第二极板为蛇形流场板。
  13. 根据权利要求1或4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板和第二极板上设置有冷却剂入口通道和冷却剂出口通道;所述第一极板为Z形流场板,所述第一流道和第二流道均为Z形流道;所述第二极板和第一极板具有相同的几何形状。
  14. 根据权利要求1或4所述的双极板的整体错位组装方法,其特征在于,所述步骤一所制作的第一极板和第二极板上设置有冷却剂入口通道和冷却剂出口通道;所述第一极板为Z形流场板,所述第一流道和第二流道均为Z形流道;所述第二极板为蛇形流场板,所述第三流道和第四流道为蛇形流道,且该 蛇形流道的端部发生90°弯曲而位于所述第二极板的侧面。
  15. 根据权利要求2或5所述的双极板的整体错位组装方法,其特征在于,所述步骤一制作的第一极板和第二极板上的第一流道、第二流道、第三流道、第四流道的沿部的宽度大于底部的宽度;该第一流道、第二流道、第三流道、第四流道的横截面为等腰梯形;该第一极板上设置有上支撑台,该上支撑台是阻断一部分第二流道而形成的一部分第二基准面;所述步骤二中,该上支撑台处于同步起伏区中,并与同步起伏区内的一部分第四基准面相接触;该第二极板上设置有下支撑台,该下支撑台是阻断一部分第四流道而形成的一部分第四基准面;所述步骤二中,该下支撑台处于同步起伏区中,并与同步起伏区内的一部分第二基准面相接触。
  16. 一种燃料电池电堆,其特征在于,包含有根据权利要求1至15中任一项所述的方法制作的双极板。
  17. 根据权利要求16所述的燃料电池电堆,其特征在于,至少包含有3个根据权利要求1~3中任一项所述的方法制作的双极板;
    在该燃料电池电堆中,各双极板的第一极板的第一流道为燃料流道,各双极板的第二极板的第三流道为氧化剂流道;在夹持同一个膜电极、分属于两个双极板的第一极板和第二极板当中,所述第一极板的质心在所述基准平面内的投影和所述第二极板的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d;在两个相间隔的双极板当中,两个第一极板的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d,两个第二极板的质心在所述基准平面内的投影重叠或者两者之间的距离小于所述d;两个相间隔的双极板是指有两个膜电极和一个双极板介于其间的两个双极板;在将双极板组装成燃料电池电堆时,夹持同一个膜电极的两个双极板中的一个相对于另一个而言围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的轴线旋转180°。
  18. 根据权利要求16所述的燃料电池电堆,其特征在于,至少包含有3个根据权利要求4~8中任一项所述的方法制作的双极板;
    在该燃料电池电堆中,各双极板的第一极板的第一流道为燃料流道,各双极板的第二极板的第三流道为氧化剂流道;在夹持同一个膜电极、分属于两个 双极板的第一极板和第二极板当中,所述第一极板的第一面流场中心在所述基准平面内的投影和所述第二极板的第三面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ;在两个相间隔的双极板当中,两个第一极板的第一面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ,两个第二极板的第三面流场中心在所述基准平面内的投影重叠或者两者之间的距离小于所述δ;两个相间隔的双极板是指有两个膜电极和一个双极板介于其间的两个双极板;在将双极板组装成燃料电池电堆时,夹持同一个膜电极的两个双极板中的一个相对于另一个而言围绕与该双极板的厚度方向平行的轴线旋转180°或者围绕与错位方向平行的轴线旋转180°。
  19. 根据权利要求16所述的燃料电池电堆,其特征在于,所述双极板中的第一极板和第二极板具有相同的几何形状,并且所述第一极板和第二极板上设置有燃料入口通道、燃料出口通道、氧化剂入口通道和氧化剂出口通道;
    该燃料电池电堆中包含有燃料入口通道填充棒或燃料入口通道填充板,该燃料入口通道填充棒或燃料入口通道填充板设置在燃料入口通道中从而使燃料入口通道的截面积减小;
    该燃料电池电堆中还包含有燃料出口通道填充棒或燃料出口通道填充板,该燃料出口通道填充棒或燃料出口通道填充板设置在燃料出口通道中从而使燃料出口通道的截面积减小。
  20. 一种燃料电池发电系统,其特征在于,包含有根据权利要求16~19中任一项所述的燃料电池电堆。
PCT/CN2020/122692 2019-12-10 2020-10-22 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统 WO2021114887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/438,946 US20220158217A1 (en) 2019-12-10 2020-10-22 Method for assembling bipolar plate by integral misalignment, a fuel cell stack with the bipolar plate and a power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911255215.7A CN110931820A (zh) 2019-12-10 2019-12-10 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统
CN201911255215.7 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021114887A1 true WO2021114887A1 (zh) 2021-06-17

Family

ID=69858612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122692 WO2021114887A1 (zh) 2019-12-10 2020-10-22 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统

Country Status (3)

Country Link
US (1) US20220158217A1 (zh)
CN (2) CN110931820A (zh)
WO (1) WO2021114887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881957A (zh) * 2021-11-02 2022-01-04 合肥工业大学 一种二氧化碳电解制甲酸用电堆
CN114865037A (zh) * 2022-03-31 2022-08-05 潍柴动力股份有限公司 一种电堆堆芯、燃料电池、车辆及电堆堆芯的组装方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931820A (zh) * 2019-12-10 2020-03-27 张国胜 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统
CN113571729B (zh) * 2020-04-29 2023-07-25 未势能源科技有限公司 燃料电池用双极板和电堆结构
JP7452462B2 (ja) * 2021-02-18 2024-03-19 トヨタ自動車株式会社 燃料電池スタックの製造方法および製造装置
CN113258094B (zh) * 2021-05-17 2024-03-12 张国胜 具有非对称流场的双极板及燃料电池电堆和发电系统
CN114614062B (zh) * 2022-04-07 2024-04-16 珠海格力电器股份有限公司 燃料电池极板、双极板、燃料电池电堆和交通工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206336A1 (de) * 2014-04-02 2015-10-08 Volkswagen Ag Bipolarplatte, Brennstoffzelle und ein Kraftfahrzeug
CN106207235A (zh) * 2014-08-15 2016-12-07 通用汽车环球科技运作有限责任公司 具有改进的反应物分布的燃料电池
CN108511774A (zh) * 2018-01-09 2018-09-07 张国胜 带有冷却剂流道的双极板
CN110112434A (zh) * 2019-05-16 2019-08-09 张国胜 双极板及包含该双极板的燃料电池电堆和发电系统
CN110931820A (zh) * 2019-12-10 2020-03-27 张国胜 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216306B4 (de) * 2002-04-14 2008-06-12 Sgl Carbon Ag Verfahren zur Herstellung einer Kontaktplatte für eine elektrochemische Zelle sowie deren Verwendungen
CN102593492B (zh) * 2012-03-02 2015-04-01 中国科学院长春应用化学研究所 一种燃料电池
US10153499B2 (en) * 2015-09-22 2018-12-11 GM Global Technology Operations LLC Unsymmetric compact metal seal beads for fuel cell stack
CN207233866U (zh) * 2017-09-28 2018-04-13 陈莉 一种质子交换膜燃料电池双极板结构以及燃料电池电堆
CN207624812U (zh) * 2017-12-14 2018-07-17 苏州朔景动力新能源有限公司 燃料电池金属双极板及燃料电池
CN110212213A (zh) * 2019-07-08 2019-09-06 上海捷氢科技有限公司 一种质子交换膜燃料电池双极板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206336A1 (de) * 2014-04-02 2015-10-08 Volkswagen Ag Bipolarplatte, Brennstoffzelle und ein Kraftfahrzeug
CN106207235A (zh) * 2014-08-15 2016-12-07 通用汽车环球科技运作有限责任公司 具有改进的反应物分布的燃料电池
CN108511774A (zh) * 2018-01-09 2018-09-07 张国胜 带有冷却剂流道的双极板
CN110112434A (zh) * 2019-05-16 2019-08-09 张国胜 双极板及包含该双极板的燃料电池电堆和发电系统
CN110931820A (zh) * 2019-12-10 2020-03-27 张国胜 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统
CN111477903A (zh) * 2019-12-10 2020-07-31 张国胜 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881957A (zh) * 2021-11-02 2022-01-04 合肥工业大学 一种二氧化碳电解制甲酸用电堆
CN113881957B (zh) * 2021-11-02 2024-04-02 合肥工业大学 一种二氧化碳电解制甲酸用电堆的装堆装置
CN114865037A (zh) * 2022-03-31 2022-08-05 潍柴动力股份有限公司 一种电堆堆芯、燃料电池、车辆及电堆堆芯的组装方法
CN114865037B (zh) * 2022-03-31 2023-11-17 潍柴动力股份有限公司 一种电堆堆芯、燃料电池、车辆及电堆堆芯的组装方法

Also Published As

Publication number Publication date
CN110931820A (zh) 2020-03-27
CN111477903B (zh) 2021-04-23
US20220158217A1 (en) 2022-05-19
CN111477903A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021114887A1 (zh) 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统
JP5234446B2 (ja) 燃料電池スタック用金属セパレータの積層性向上構造
US20140051007A1 (en) Bipolar plates for use in electrochemical cells
JP4435270B2 (ja) 燃料電池
US10756357B2 (en) Bipolar plate with coolant flow channel
EP2991148B1 (en) Insulating structure, fuel cell and fuel cell stack
US9680168B2 (en) Fuel cell stack
JP2015520486A (ja) 電気化学システム
US11289716B2 (en) Bipolar plate, fuel cell stack with bipolar plate and power generation system with bipolar plate
CN111697246A (zh) 一种双极板结构和燃料电池
JP6229339B2 (ja) 燃料電池スタック
US10873093B2 (en) Fuel cell and fuel cell stack
CN111952621A (zh) 燃料电池电堆及燃料电池汽车
CN108134109B (zh) 一种燃料电池的双极板结构
WO2008024401A1 (en) Bipolar separators with improved fluid distribution
CN216528966U (zh) 双极板和燃料电池电堆
JP2006147258A (ja) セパレータ及び燃料電池スタック
CN115172840A (zh) 燃料电池公共端板及双电堆燃料电池
KR20200021866A (ko) 듀얼셀 타입 분리판
JP5780326B2 (ja) 燃料電池及びセパレータ
CN220341265U (zh) 单电池、燃料电池堆及车辆
JP2010287367A (ja) 燃料電池を構成する発電モジュール
KR20220055988A (ko) 연료전지용 분리판 조립체 및 이를 포함하는 연료전지 스택
WO2020006697A1 (zh) 具备流体引导流路的燃料电池及其制造方法
CN112635784A (zh) 一种嵌合式空冷燃料电池电堆极板和膜电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899640

Country of ref document: EP

Kind code of ref document: A1