WO2021114739A1 - 新型蜗舌结构、风机蜗壳及风机 - Google Patents

新型蜗舌结构、风机蜗壳及风机 Download PDF

Info

Publication number
WO2021114739A1
WO2021114739A1 PCT/CN2020/112433 CN2020112433W WO2021114739A1 WO 2021114739 A1 WO2021114739 A1 WO 2021114739A1 CN 2020112433 W CN2020112433 W CN 2020112433W WO 2021114739 A1 WO2021114739 A1 WO 2021114739A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave unit
volute
line
wave
reference line
Prior art date
Application number
PCT/CN2020/112433
Other languages
English (en)
French (fr)
Inventor
曾成
夏凯
杜辉
邓晶
邵元浩
马屈杨
张铭钊
赵时俊
陈博强
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021114739A1 publication Critical patent/WO2021114739A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • This application relates to the technical field of centrifugal fans, in particular to a novel volute tongue structure, a fan volute with the volute tongue structure, and a fan.
  • Centrifugal fans especially multi-blade centrifugal fans, are widely used in the field of home appliance air-conditioning due to their large pressure coefficient and low noise.
  • the wind noise requirements of air conditioners especially indoor units, are becoming more and more stringent.
  • centrifugal fans are usually the focus of industry professionals. The noise reduction target for research.
  • Ordinary straight stretched volute tongue designed in a straight line along the return air axis of the volute, is more likely to cause high-speed airflow to beat the volute tongue synchronously, that is, the pressure phase at the volute tongue is superimposed, the dynamic and static coupling effect is enhanced, and the pressure pulsation there , which in turn excites a strong rotating noise.
  • the ordinary straight stretched volute tongue is a simple two-dimensional planar design, which is relatively poorly matched to the actual flow, that is, this design may cause the volute tongue to affect the area The turbulent pulsation intensified.
  • Ordinary inclined volute tongue can improve the rotation noise to a certain extent, but its suppression of turbulent pulsation is relatively weak.
  • the purpose of this application is to provide a novel volute tongue structure, a fan volute and a fan, which solves the technical problem of the current volute tongue structure existing in the current technology, which makes the centrifugal fan generate relatively large noise during operation.
  • the many technical effects that can be produced by the optional technical solutions among the many technical solutions provided by this application are described in detail below.
  • the present application provides a novel volute tongue structure, including a wave unit, wherein the line on the wave unit that runs parallel to the return axis of the volute is a non-straight line; the number of the wave unit is one; or, the wave The number of units is at least two and is distributed along the direction parallel to the return axis of the volute.
  • the normal cross section of the wave unit along the air flow discharge direction is in an arc structure, a V-shaped structure, or an inverted V-shaped structure.
  • novel volute tongue structure is a symmetrical structure with a center line perpendicular to the return axis of the volute as a symmetrical structure; or, the novel volute tongue structure is a non-symmetric structure with a center line perpendicular to the return axis of the volute. Symmetrical structure.
  • the reference line is the highest line at the top or the lowest line at the bottom perpendicular to the direction of the return axis of the volute, and the wave unit has a symmetric structure with the reference line as the symmetric line; or, The wave unit has an asymmetric structure with a reference line.
  • each of the wave units has the same length in a direction parallel to the return axis of the volute;
  • the reference line is the highest line at the top or the lowest line at the bottom perpendicular to the return axis of the volute, and the wave unit has a symmetrical structure with the reference line as the symmetric line; or, the wave The unit has an asymmetric structure with reference to the line.
  • the wave unit has an asymmetric structure with a reference line; the range of the distance C from the reference line of the wave unit to one side of the wave unit is 0.2B ⁇ C ⁇ 0.8B, where B is the place The length value of the wave unit along the direction parallel to the return axis of the volute.
  • the number of the wave units is two, and the two wave units have a symmetrical structure with a reference line as the symmetry line, and the reference line on the wave unit and the plane formed by one side of the wave unit are in line with each other.
  • the range of the angle ⁇ between horizontal planes is 2° ⁇ 30°.
  • the number of the wave units is two, at least one of the wave units has an asymmetric structure with a reference line, and the reference line of the wave unit is between the plane and the horizontal plane formed by one side of the wave unit.
  • the range of the included angle ⁇ is 2° ⁇ 40°.
  • all the wave units have a symmetrical structure with a reference line as the symmetry line, and the reference line on the wave unit and the plane formed by one side of the wave unit
  • the range of the included angle ⁇ with the horizontal plane is 10° ⁇ 60°.
  • the number of the wave units is at least three
  • at least one of the wave units has an asymmetric structure with a reference line
  • the reference line of the wave unit and the plane formed by one side of the wave unit are in line with each other.
  • the range of the included angle between horizontal planes is 2° ⁇ 60°.
  • At least two of the wave units have different lengths in a direction parallel to the return axis of the volute; there is a reference line on the wave unit, and the reference line is the top of the direction perpendicular to the return axis of the volute.
  • the wave unit takes the reference line as the symmetric line to have a symmetric structure; or, the wave unit takes the reference line as the asymmetric structure.
  • the wave unit has an asymmetric structure with a reference line, and the distance C between the reference line of the wave unit and one side of the wave unit ranges from 0.2B ⁇ C ⁇ 0.8B, where B is the place The length value of the wave unit along the direction parallel to the return axis of the volute.
  • the number of the wave units is two, and the range of the angle ⁇ between the reference line of the wave unit and the plane formed by one side of the wave unit and the horizontal plane is 2° ⁇ 40° .
  • the number of the wave units is at least three, and the range of the angle ⁇ between the symmetry line on the wave unit and the plane formed by one side of the wave unit and the horizontal plane is 2° ⁇ 60°.
  • a fan volute includes the novel volute tongue structure.
  • a fan includes the novel volute tongue structure.
  • This application provides a novel volute tongue structure, which is composed of wave units.
  • the line on the wave unit that runs parallel to the return axis of the volute is non-straight, so that a more efficient phase difference is generated than the existing volute tongue.
  • Figure 1 is a schematic structural diagram of a fan volute provided by an embodiment of the present application (the normal cross section of the wave unit along the air flow discharge direction is arc-shaped);
  • Figure 2 is a schematic front view of a fan volute provided by an embodiment of the present application.
  • Fig. 3 is a schematic left view of the fan volute provided by an embodiment of the present application (the normal cross section of the wave unit along the air flow discharge direction is arc-shaped);
  • Figure 4 is a left-side schematic view of the fan volute provided by an embodiment of the present application (the normal cross section of the wave unit along the airflow discharge direction is inverted V-shaped, and the lengths of the two wave units in the direction parallel to the return axis of the volute are the same );
  • Figure 5 is a left-side schematic view of the fan volute provided by an embodiment of the present application (the normal cross section of the wave unit along the airflow discharge direction is inverted V-shaped, and the length of the two wave units in the direction parallel to the return axis of the volute is different. the same);
  • Fig. 6 is a schematic left view of the fan volute provided by an embodiment of the present application (the normal cross section of the wave unit along the airflow discharge direction is inverted V-shaped and the wave unit has a symmetrical structure with a center line perpendicular to the direction of the return axis of the volute) ;
  • Fig. 7 is a schematic left view of the fan volute provided by an embodiment of the present application (the normal cross-section of the wave unit along the air flow discharge direction is V-shaped);
  • Figure 8 is a schematic left view of the fan volute provided by an embodiment of the present application (the normal cross section of the wave unit along the airflow discharge direction is inverted V-shaped and the number of wave units is four);
  • FIG. 9 is a schematic diagram of the size relationship on the fan volute provided by the embodiment of the present application (the normal cross section of the wave unit along the air flow discharge direction is arc-shaped);
  • FIG. 10 is another schematic diagram of the size relationship on the fan volute provided by the embodiment of the present application (the normal cross section of the wave unit along the air flow discharge direction is arc-shaped);
  • Fig. 11 is a comparison diagram of experimental data between the fan volute provided by the embodiment of the present application and the conventional inclined volute in the prior art.
  • the present application provides a novel volute tongue structure, including a wave unit 1.
  • the line that runs parallel to the return axis of the volute on the wave unit 1 is non-straight, that is, it is not a straight line.
  • the line that runs parallel to the return axis of the volute can be a broken line or a curve; the number of wave units 1 is one; or, the number of wave units 1 is at least two and is distributed along the direction parallel to the return axis of the volute.
  • the new volute tongue structure can be composed of wave unit 1.
  • the wave unit 1 is non-plate shape.
  • the line that runs parallel to the return axis of the volute on the new volute tongue structure is non-straight, which can produce a more efficient phase difference than the existing volute tongue. , So that when the centrifugal fan is running at high speed, it can effectively reduce the operating noise of the centrifugal fan.
  • the normal cross section of the wave unit 1 along the airflow discharge direction is in an arc-shaped structure, a V-shaped structure or an inverted V-shaped structure, and the volute tongue structure and the blade diameter
  • the direction gap D is a constant value, as shown in Figure 2.
  • the shape of the wave unit 1 can make the new volute tongue structure "wave-shaped", which not only can effectively reduce the noise of fan operation, but also improve the flow field characteristics and turbulent pulsation characteristics of the affected area of the volute tongue to a certain extent, and weaken some vortices
  • the shedding intensity has been improved to a certain extent from the radiation source of the sound source, which in turn reduces the sound pressure level in the entire noise spectrum to a certain extent.
  • the novel volute tongue structure can be a symmetrical structure with a center line perpendicular to the return axis of the volute as a symmetrical structure; or, the novel volute tongue structure can also be perpendicular to the return air of the volute.
  • the center line in the axial direction is an asymmetric structure.
  • the reference line is the highest line at the top or the lowest line at the bottom that is perpendicular to the direction of the return axis of the volute.
  • the symmetry line has a symmetric structure; or, referring to Figure 6, the wave unit 1 has an asymmetric structure with reference to the line.
  • the number of wave units 1 is at least two, that is, the number of wave units 1 can be two, or three, four..., Poland
  • the number of unit 1 can be selected reasonably according to the actual situation.
  • the novel volute tongue structure can be composed of wave units 1, and two adjacent wave units 1 are connected.
  • the number of wave units 1 is two, and the length of each wave unit 1 in the direction parallel to the return axis of the volute is the same; there is a reference line on the wave unit 1, refer to The line is perpendicular to the top highest line or bottom lowest line in the direction of the return axis of the volute.
  • At least one wave unit 1 has an asymmetric structure with a reference line. The reference line of each wave unit 1 and the plane formed by one side of the wave unit 1 The range of the included angle ⁇ with the horizontal plane is 2° ⁇ 40°.
  • the range of the distance C from the reference line of the wave unit 1 to one side of the wave unit 1 is 0.2B ⁇ C ⁇ 0.8B, where B is the edge of the wave unit 1.
  • each wave unit 1 has a symmetrical structure with the reference line as the symmetry line.
  • the reference line on each wave unit 1 is the same as the wave unit 1
  • the range of the angle ⁇ between the plane formed on one side and the horizontal plane is 10° ⁇ 60°.
  • the length of each wave unit 1 in the direction parallel to the return axis of the volute is the same; there is a reference line on the wave unit 1 , The reference line is perpendicular to the top highest line or the bottom lowest line in the direction of the return axis of the volute, at least one wave unit 1 has an asymmetric structure with the reference line, and the reference line of each wave unit 1 is formed on one side of the wave unit 1
  • the range of the angle ⁇ between the plane and the horizontal plane is 2° ⁇ 60°.
  • the range of the distance C from the reference line of the wave unit 1 to one side of the wave unit 1 is 0.2B ⁇ C ⁇ 0.8B, where B is the edge of the wave unit 1.
  • the number of wave units 1 is two, and the length values of the two wave units 1 in the direction parallel to the return axis of the volute are not the same; there is a reference line on the wave unit 1,
  • the reference line is perpendicular to the top highest line or the bottom lowest line in the direction of the return axis of the volute.
  • the wave unit 1 takes the reference line as the symmetrical line and has a symmetric structure; or the wave unit 1 takes the reference line as an asymmetric structure.
  • the range of the angle ⁇ between the reference line of each wave unit 1 and the horizontal plane formed by one side of the wave unit 1 is 2° ⁇ 40°.
  • the range of the distance C from the reference line of the wave unit 1 to one side of the wave unit 1 is 0.2B ⁇ C ⁇ 0.8B, where B is the edge of the wave unit 1.
  • the length values of at least two wave units 1 in the direction parallel to the return axis of the volute are not the same; there are waves on the wave unit 1.
  • the reference line, the reference line is perpendicular to the top highest line or the bottom lowest line in the direction of the return axis of the volute, and the wave unit 1 takes the reference line as the symmetric line to have a symmetric structure; or the wave unit 1 takes the reference line to have an asymmetric structure.
  • the range of the included angle between the reference line of each wave unit 1 and the horizontal plane formed by one side of the wave unit 1 is 2° ⁇ 60°.
  • the range of the distance C from the reference line of the wave unit 1 to one side of the wave unit 1 is 0.2B ⁇ C ⁇ 0.8B, where B is the edge of the wave unit 1.
  • a fan volute includes the novel volute tongue structure provided by the present application.
  • a fan includes the novel volute tongue structure provided by the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种新型蜗舌结构、风机蜗壳及风机,涉及离心风机技术领域,解决了现有蜗舌的结构使得离心风机在运行时产生的噪音相对较大的技术问题。该装置包括波浪单元(1),其中,波浪单元(1)上沿平行蜗壳回风轴走向的线为非直线;波浪单元(1)的个数为一个;或者,波浪单元(1)的个数至少为两个且沿平行蜗壳回风轴的方向分布,其降低离心风机产生的噪音。

Description

新型蜗舌结构、风机蜗壳及风机
相关申请
本申请要求2019年12月10日申请的,申请号为201911258748.0,名称为“新型蜗舌结构、风机蜗壳及风机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及离心风机技术领域,尤其是涉及一种新型蜗舌结构、具有该蜗舌结构的风机蜗壳以及一种风机。
背景技术
离心风机,尤其是多翼式离心风机,由于具备压力系数大,噪声低的特点,广泛应用于家电空调领域。随着产品技术不断迭代升级,无论是用户端还是开发端,对空调器尤其是室内机的风噪要求越来越严苛,而离心风机作为室内机组最大的噪声源,通常是业内专业人士重点攻关的降噪对象。
普通蜗壳蜗舌通常采用空间平直拉伸蜗舌或者简单倾斜蜗舌结构,该种结构通常难以兼顾气动噪声特性与风机供气要求。通常情况下,气流先通过叶片做功获取高速动能,流经叶片后由于尾迹区的存在,会产生高速、极不均匀的流场分布特征。蜗舌由于其特殊位置,一方面要承受高速气流的剧烈拍击,另一方面,蜗舌会周期性的堵塞风轮中高速流动,同时,蜗舌还要负责该处的气流分流。整体上,蜗舌由于其特殊的位置特性以及其复杂的功能属性,使其不可避免的成为了影响风机风噪水平的最为关键的重要因素之一。
普通平直拉伸蜗舌,在沿蜗壳回风轴上成一条直线设计,更容易导致高速气流同步拍击蜗舌,即蜗舌处压力相位叠加,动静耦合效应加强,强化该处压力脉动,进而激发出强烈的旋转噪声。同时,由于沿风轮轴向上的流量分配并不均匀,而普通平直拉伸蜗舌属于简单的二元平面设计,与实际流动匹配度相对较差,即该种设计可能会导致蜗舌影响区域的湍流脉动加剧。普通倾斜蜗舌,可以在一定程度上改善旋转噪声,但其对湍流脉动的抑制特性相对较弱。
发明内容
本申请的目的在于提供一种新型蜗舌结构、风机蜗壳及风机,解决了目前技术中存在 的目前蜗舌的结构,使得离心风机在运行时产生的噪音相对较大的技术问题。本申请提供的诸多技术方案中的可选技术方案所能产生的诸多技术效果详见下文阐述。
为实现上述目的,本申请提供了以下技术方案:
本申请提供一种新型蜗舌结构,包括波浪单元,其中,所述波浪单元上沿平行蜗壳回风轴走向的线为非直线;所述波浪单元的个数为一个;或者,所述波浪单元的个数至少为两个且沿平行蜗壳回风轴的方向分布。
进一步地,所述波浪单元沿气流排出方向的法向截面呈弧形结构或V形结构或倒V形结构。
进一步地,所述新型蜗舌结构以垂直于蜗壳回风轴方向的中心线为对称线呈对称结构;或者,所述新型蜗舌结构以垂直于蜗壳回风轴方向的中心线呈非对称结构。
进一步地,所述波浪单元上存在参考线,所述参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,所述波浪单元以参考线为对称线呈对称结构;或者,所述波浪单元以参考线呈非对称结构。
进一步地,每个所述波浪单元沿平行于蜗壳回风轴方向上的长度值相同;
所述波浪单元上存在参考线,所述参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,所述波浪单元以参考线为对称线呈对称结构;或者,所述波浪单元以参考线呈非对称结构。
进一步地,所述波浪单元以参考线呈非对称结构;所述波浪单元的参考线距离该所述波浪单元一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该所述波浪单元沿平行于蜗壳回风轴方向上的长度值。
进一步地,所述波浪单元的个数为两个,两个所述波浪单元以参考线为对称线呈对称结构,所述波浪单元上的参考线与该所述波浪单元一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤30°。
进一步地,所述波浪单元的个数为两个,至少有一个所述波浪单元以参考线呈非对称结构,所述波浪单元的参考线与该所述波浪单元一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤40°。
进一步地,所述波浪单元的个数至少为三个时,所有所述波浪单元以参考线为对称线呈对称结构,所述波浪单元上的参考线与该所述波浪单元一侧形成的平面与水平面之间的夹角α的范围为10°≤α≤60°。
进一步地,所述波浪单元的个数至少为三个时,至少有一个所述波浪单元以参考线呈非对称结构,所述波浪单元的参考线与该所述波浪单元一侧形成的平面与水平面之间的夹角的范围为2°≤α≤60°。
进一步地,至少两个所述波浪单元沿平行于蜗壳回风轴方向上的长度值不相同;所述波浪单元上存在参考线,所述参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,所述波浪单元以参考线为对称线呈对称结构;或者,所述波浪单元以参考线呈非对称结构。
进一步地,所述波浪单元以参考线呈非对称结构,所述波浪单元的参考线距离该所述波浪单元一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该所述波浪单元沿平行于蜗壳回风轴方向上的长度值。
进一步地,所述波浪单元的个数为两个,所述波浪单元的参考线与该所述波浪单元一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤40°。
进一步地,所述波浪单元的个数至少为三个,所述波浪单元上的对称线与该所述波浪单元一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤60°。
一种风机蜗壳,包括所述的新型蜗舌结构。
一种风机,包括所述的新型蜗舌结构。
本申请提供一种新型蜗舌结构,由波浪单元组成,波浪单元上沿平行蜗壳回风轴走向的线为非直线,使得比现有蜗舌产生更高效的相位差,当离心风机在高速运转时,可以有效降低离心风机运行噪声,解决了目前技术中存在的目前蜗舌的结构,使得离心风机在运行时产生的噪音相对较大的技术问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的风机蜗壳的结构示意图(波浪单元沿气流排出方向的法向截面呈弧形);
图2是本申请实施例提供的风机蜗壳的主视示意图;
图3是本申请实施例提供的风机蜗壳的左视示意图(波浪单元沿气流排出方向的法向 截面呈弧形);
图4是本申请实施例提供的风机蜗壳的左视示意图(波浪单元沿气流排出方向的法向截面呈倒V形且两个波浪单元沿平行于蜗壳回风轴方向上的长度值相同);
图5是本申请实施例提供的风机蜗壳的左视示意图(波浪单元沿气流排出方向的法向截面呈倒V形且两个波浪单元沿平行于蜗壳回风轴方向上的长度值不相同);
图6是本申请实施例提供的风机蜗壳的左视示意图(波浪单元沿气流排出方向的法向截面呈倒V形且波浪单元以垂直于蜗壳回风轴方向的中心线呈对称结构);
图7是本申请实施例提供的风机蜗壳的左视示意图(波浪单元沿气流排出方向的法向截面呈V形);
图8是本申请实施例提供的风机蜗壳的左视示意图(波浪单元沿气流排出方向的法向截面呈倒V形且波浪单元的个数为四个);
图9是本申请实施例提供的风机蜗壳上尺寸关系的示意图(波浪单元沿气流排出方向的法向截面呈弧形);
图10是本申请实施例提供的风机蜗壳上尺寸关系的另一示意图(波浪单元沿气流排出方向的法向截面呈弧形);
图11是本申请实施例提供的风机蜗壳与现有技术普通倾斜蜗壳的实验数据结果对比图。
图中1-波浪单元。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将对本申请的技术方案进行详细的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本申请所保护的范围。
参见图1-图11,本申请提供了一种新型蜗舌结构,包括波浪单元1,波浪单元1上沿平行蜗壳回风轴走向的线为非直线,即不是直线,波浪单元1上沿平行蜗壳回风轴走向的线可以为折线或曲线;波浪单元1的个数为一个;或者,波浪单元1的个数至少为两个且沿平行蜗壳回风轴的方向分布。新型蜗舌结构可以由波浪单元1组成,波浪单元1为非平板状,新型蜗舌结构上沿平行蜗壳回风轴走向的线为非直线,能比现有蜗舌产生更高效的相位差,使得离心风机在高速运转时,可以有效降低离心风机运行噪声。
作为本申请实施例可选地实施方式,参见图1-图10,波浪单元1沿气流排出方向的法 向截面呈弧形结构或V形结构或倒V形结构,蜗舌结构与风叶径向间隙D为一常值,如图2所示。波浪单元1的形状可以使得新型蜗舌结构呈“波浪形”,不仅可以有效降低风机运行的噪音,在一定程度上还改善了蜗舌影响区域的流场特征以及湍流脉动特性,削弱了部分涡脱落强度,从声源辐射源头上产生了一定程度的改良,进而使得整个噪声频谱范围内的声压级得到一定程度下降。
作为本申请实施例可选地实施方式,新型蜗舌结构可以以垂直于蜗壳回风轴方向的中心线为对称线呈对称结构;或者,新型蜗舌结构也可以以垂直于蜗壳回风轴方向的中心线呈非对称结构。
作为本申请实施例可选地实施方式,波浪单元1上存在参考线,参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,参见图4,波浪单元1以参考线为对称线呈对称结构;或者,参见图6,波浪单元1以参考线呈非对称结构。
作为本申请实施例可选地实施方式,波浪单元1的个数至少为两个,即波浪单元1的个数可以为两个,也可以是三个、四个......,波兰单元1的个数可以根据实际情况进行合理的选择。新型蜗舌结构可以由波浪单元1组成,相邻的两个波浪单元1相连接。
作为本申请实施例可选地实施方式,参见图9和图10,波浪单元1的个数为两个,每个波浪单元1沿平行于蜗壳回风轴方向上的长度值相同,即B1=B2(Bn为第n个波浪单元1沿平行于蜗壳回风轴方向上的长度值),波浪单元1上存在参考线,参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,两个波浪单元1以参考线为对称线呈对称结构,b1-b1线为对应波浪单元1的对称线,b2-b2线为对应(第2个)波浪单元的对称线,即C2=C1=0.5B1;波浪单元1上的对称线(b1-b1或b2-b2)与该波浪单元1一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤30°,即2°≤α1≤30°,2°≤α2≤30°。
为进一步说明其降噪效果,以某一空调风管室内机为例,该机组采用双吸离心风机(其中,B2=B1=0.5A,C2=C1=0.5B1),双风机并联布置,对其相同风量下的实测噪声进行对比如图11所示,图11的横坐标是“风量”,纵坐标是“A计权噪声声压级”。从图中可以明显看出,具有本申请提供的新型蜗舌结构的离心风机,相对于具有现有普通倾斜蜗舌的离心风机,可以有效改善离心风机运转时产生的空气动力噪声及其声学品质。
作为本申请实施例可选地实施方式,波浪单元1的个数为两个,每个波浪单元1沿平行于蜗壳回风轴方向上的长度值相同;波浪单元1上存在参考线,参考线垂直于蜗壳回风轴方向的顶部最高线或底部最低线,至少有一个波浪单元1以参考线呈非对称结构,每个波浪单元1的参考线与该波浪单元1一侧形成的平面与水平面之间的夹角α的范围为 2°≤α≤40°。对于以参考线呈非对称结构的波浪单元1,该波浪单元1的参考线距离该波浪单元1一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该波浪单元1沿平行于蜗壳回风轴方向上的长度值。
作为本申请实施例可选地实施方式,波浪单元1的个数至少为三个时,每个波浪单元1沿平行于蜗壳回风轴方向上的长度值相同,波浪单元1上存在参考线,参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,每个波浪单元1以参考线为对称线呈对称结构,每个波浪单元1上的参考线与该波浪单元1一侧形成的平面与水平面之间的夹角α的范围为10°≤α≤60°。
作为本申请实施例可选地实施方式,波浪单元1的个数至少为三个时,每个波浪单元1沿平行于蜗壳回风轴方向上的长度值相同;波浪单元1上存在参考线,参考线垂直于蜗壳回风轴方向的顶部最高线或底部最低线,至少有一个波浪单元1以参考线呈非对称结构,每个波浪单元1的参考线与该波浪单元1一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤60°。对于以参考线呈非对称结构的波浪单元1,该波浪单元1的参考线距离该波浪单元1一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该波浪单元1沿平行于蜗壳回风轴方向上的长度值。
作为本申请实施例可选地实施方式,波浪单元1的个数为两个,两个波浪单元1沿平行于蜗壳回风轴方向上的长度值不相同;波浪单元1上存在参考线,参考线垂直于蜗壳回风轴方向的顶部最高线或底部最低线,波浪单元1以参考线为对称线呈对称结构;或者,波浪单元1以参考线呈非对称结构。每个波浪单元1的参考线与该波浪单元1一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤40°。对于以参考线呈非对称结构的波浪单元1,该波浪单元1的参考线距离该波浪单元1一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该波浪单元1沿平行于蜗壳回风轴方向上的长度值。
作为本申请实施例可选地实施方式,波浪单元1的个数至少为三个时,至少两个波浪单元1沿平行于蜗壳回风轴方向上的长度值不相同;波浪单元1上存在参考线,参考线垂直于蜗壳回风轴方向的顶部最高线或底部最低线,波浪单元1以参考线为对称线呈对称结构;或者,波浪单元1以参考线呈非对称结构。每个波浪单元1的参考线与该波浪单元1一侧形成的平面与水平面之间的夹角的范围为2°≤α≤60°。对于以参考线呈非对称结构的波浪单元1,该波浪单元1的参考线距离该波浪单元1一侧的距离C的范围为 0.2B≤C≤0.8B,其中,B为该波浪单元1沿平行于蜗壳回风轴方向上的长度值。
一种风机蜗壳,包括本申请提供的新型蜗舌结构。
一种风机,包括本申请提供的新型蜗舌结构。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种新型蜗舌结构,其特征在于,包括波浪单元(1),其中,
    所述波浪单元(1)上沿平行蜗壳回风轴走向的线为非直线;
    所述波浪单元(1)的个数为一个;或者,所述波浪单元(1)的个数至少为两个且沿平行蜗壳回风轴的方向分布。
  2. 根据权利要求1所述的新型蜗舌结构,其特征在于,所述波浪单元(1)
    沿气流排出方向的法向截面呈弧形结构或V形结构或倒V形结构。
  3. 根据权利要求1所述的新型蜗舌结构,其特征在于,所述新型蜗舌结构以垂直于蜗壳回风轴方向的中心线为对称线呈对称结构;或者,所述新型蜗舌结构以垂直于蜗壳回风轴方向的中心线呈非对称结构。
  4. 根据权利要求1所述的新型蜗舌结构,其特征在于,所述波浪单元(1)上存在参考线,所述参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,所述波浪单元(1)以参考线为对称线呈对称结构;或者,所述波浪单元(1)以参考线呈非对称结构。
  5. 根据权利要求1-4中任一项所述的新型蜗舌结构,其特征在于,每个所述波浪单元(1)沿平行于蜗壳回风轴方向上的长度值相同;
    所述波浪单元(1)上存在参考线,所述参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,所述波浪单元(1)以参考线为对称线呈对称结构;或者,所述波浪单元(1)以参考线呈非对称结构。
  6. 根据权利要求5所述的新型蜗舌结构,其特征在于,所述波浪单元(1)以参考线呈非对称结构;所述波浪单元(1)的参考线距离该所述波浪单元(1)一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该所述波浪单元(1)沿平行于蜗壳回风轴方向上的长度值。
  7. 根据权利要求5所述的新型蜗舌结构,其特征在于,所述波浪单元(1)的个数为两个,两个所述波浪单元(1)以参考线为对称线呈对称结构,所述波浪单元(1)上的参考线与该所述波浪单元(1)一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤30°。
  8. 根据权利要求5或6所述的新型蜗舌结构,其特征在于,所述波浪单元(1)的个数为两个,至少有一个所述波浪单元(1)以参考线呈非对称结构,所述波浪单元(1)的参考线与该所述波浪单元(1)一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤40°。
  9. 根据权利要求5所述的新型蜗舌结构,其特征在于,所述波浪单元(1)的个数至少为三个时,所有所述波浪单元(1)以参考线为对称线呈对称结构,所述波浪单元(1)上的参考线与该所述波浪单元(1)一侧形成的平面与水平面之间的夹角α的范围为10°≤α≤60°。
  10. 根据权利要求5或6所述的新型蜗舌结构,其特征在于,所述波浪单元(1)的个数至少为三个时,至少有一个所述波浪单元(1)以参考线呈非对称结构,所述波浪单元(1)的参考线与该所述波浪单元(1)一侧形成的平面与水平面之间的夹角的范围为2°≤α≤60°。
  11. 根据权利要求1-4中任一项所述的新型蜗舌结构,其特征在于,至少两个所述波浪单元(1)沿平行于蜗壳回风轴方向上的长度值不相同;
    所述波浪单元(1)上存在参考线,所述参考线为垂直于蜗壳回风轴方向的顶部最高线或底部最低线,所述波浪单元(1)以参考线为对称线呈对称结构;或者,所述波浪单元(1)以参考线呈非对称结构。
  12. 根据权利要求11所述的新型蜗舌结构,其特征在于,所述波浪单元(1)以参考线呈非对称结构,所述波浪单元(1)的参考线距离该所述波浪单元(1)一侧的距离C的范围为0.2B≤C≤0.8B,其中,B为该所述波浪单元(1)沿平行于蜗壳回风轴方向上的长度值。
  13. 根据权利要求11或12所述的新型蜗舌结构,所述波浪单元(1)的个数为两个,所述波浪单元(1)的参考线与该所述波浪单元(1)一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤40°。
  14. 根据权利要求11或12所述的新型蜗舌结构,所述波浪单元(1)的个数至少为三个,所述波浪单元(1)上的对称线与该所述波浪单元(1)一侧形成的平面与水平面之间的夹角α的范围为2°≤α≤60°。
  15. 一种风机蜗壳,其特征在于,包括权利要求1-14任一所述的新型蜗舌结构。
  16. 一种风机,其特征在于,包括权利要求1-14任一所述的新型蜗舌结构。
PCT/CN2020/112433 2019-12-10 2020-08-31 新型蜗舌结构、风机蜗壳及风机 WO2021114739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911258748.0 2019-12-10
CN201911258748.0A CN110864010A (zh) 2019-12-10 2019-12-10 新型蜗舌结构、风机蜗壳及风机

Publications (1)

Publication Number Publication Date
WO2021114739A1 true WO2021114739A1 (zh) 2021-06-17

Family

ID=69657930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112433 WO2021114739A1 (zh) 2019-12-10 2020-08-31 新型蜗舌结构、风机蜗壳及风机

Country Status (2)

Country Link
CN (1) CN110864010A (zh)
WO (1) WO2021114739A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864010A (zh) * 2019-12-10 2020-03-06 珠海格力电器股份有限公司 新型蜗舌结构、风机蜗壳及风机
CN114251282B (zh) * 2020-09-25 2022-12-06 佛山市顺德区美的洗涤电器制造有限公司 离心风机及其壳体结构、出风控制方法、装置及吸油烟机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092282A1 (en) * 2008-10-13 2010-04-15 Furui Precise Component (Kunshan) Co., Ltd. Centrifugal fan
CN203323207U (zh) * 2013-05-29 2013-12-04 中山华帝燃具股份有限公司 一种吸油烟机的蜗壳
CN203770236U (zh) * 2013-12-30 2014-08-13 宁波方太厨具有限公司 一种具有双进风结构的吸油烟机离心风机
CN203978927U (zh) * 2014-08-22 2014-12-03 广东海信家电有限公司 一种双进风离心风机
CN205858724U (zh) * 2016-01-26 2017-01-04 西安交通大学 一种新型多翼离心风机
CN110864010A (zh) * 2019-12-10 2020-03-06 珠海格力电器股份有限公司 新型蜗舌结构、风机蜗壳及风机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539855B2 (ja) * 2005-06-30 2010-09-08 株式会社富士通ゼネラル 空気調和機
CN204357773U (zh) * 2014-12-01 2015-05-27 江苏新科电器有限公司 一种圆筒柜机的送风风机及其蜗舌
CN207145325U (zh) * 2017-05-11 2018-03-27 珠海格力电器股份有限公司 空调器、空调室内机及其贯流风机
CN107676304A (zh) * 2017-09-28 2018-02-09 邓稼琦 一种具有仿生非对称倾斜蜗舌结构的风机蜗壳
CN110067775A (zh) * 2018-01-24 2019-07-30 青岛海尔智慧厨房电器有限公司 一种蜗舌结构、风机蜗壳及一种油烟机
CN210292246U (zh) * 2019-04-22 2020-04-10 宁波奥克斯电气股份有限公司 一种蜗舌结构、底座及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092282A1 (en) * 2008-10-13 2010-04-15 Furui Precise Component (Kunshan) Co., Ltd. Centrifugal fan
CN203323207U (zh) * 2013-05-29 2013-12-04 中山华帝燃具股份有限公司 一种吸油烟机的蜗壳
CN203770236U (zh) * 2013-12-30 2014-08-13 宁波方太厨具有限公司 一种具有双进风结构的吸油烟机离心风机
CN203978927U (zh) * 2014-08-22 2014-12-03 广东海信家电有限公司 一种双进风离心风机
CN205858724U (zh) * 2016-01-26 2017-01-04 西安交通大学 一种新型多翼离心风机
CN110864010A (zh) * 2019-12-10 2020-03-06 珠海格力电器股份有限公司 新型蜗舌结构、风机蜗壳及风机

Also Published As

Publication number Publication date
CN110864010A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
JP3188397B2 (ja) 送風装置
WO2019136939A1 (zh) 轴流扇叶、轴流风机扇叶组件、轴流风机风道组件
WO2021114739A1 (zh) 新型蜗舌结构、风机蜗壳及风机
AU729385B2 (en) Flow stabilizer for transverse fan
WO2022142379A1 (zh) 风扇的机头组件及风扇
CN104033422B (zh) 一种带分流叶片的小型轴流风扇
TW200404126A (en) Air-conditioner
JPH09100795A (ja) 空気調和機
CN203584898U (zh) 一种低噪高效的中央空调室外机冷却轴流风机
JP2001227498A (ja) プロペラファン
JP2015052279A (ja) 空気調和機の室内機及びこれを用いた空気調和機
WO2020125128A1 (zh) 轴流风叶、换气装置以及空调器
CN103629156B (zh) 一种低噪高效的中央空调室外机冷却轴流风机
WO2021114527A1 (zh) 一种后向离心叶轮及应用其的风机
CN213953930U (zh) 一种降噪轴流风机
CN103216469A (zh) 一种离心风机声子晶体结构中低频整流降噪装置
CN204126958U (zh) 带分流叶片的小型轴流风扇
WO2024130503A1 (zh) 一种非对称叶轮及多翼离心风机
TWI844293B (zh) 風扇及葉輪
JP2002357194A (ja) 貫流ファン
CN214887915U (zh) 一种可维持静压的降噪离心风轮及吸油烟机
CN109139570A (zh) 进风格栅及风扇
CN214887914U (zh) 一种叶片开孔的降噪离心风轮及吸油烟机
CN214887909U (zh) 一种基于叶片开孔的降噪离心风轮及吸油烟机
Bianchi et al. Experimental Characterisation of the Far‐Field Noise in Axial Fans Fitted with Shaped Tip End‐Plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898506

Country of ref document: EP

Kind code of ref document: A1