WO2022142379A1 - 风扇的机头组件及风扇 - Google Patents

风扇的机头组件及风扇 Download PDF

Info

Publication number
WO2022142379A1
WO2022142379A1 PCT/CN2021/113321 CN2021113321W WO2022142379A1 WO 2022142379 A1 WO2022142379 A1 WO 2022142379A1 CN 2021113321 W CN2021113321 W CN 2021113321W WO 2022142379 A1 WO2022142379 A1 WO 2022142379A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
fan blade
grille
head assembly
blade
Prior art date
Application number
PCT/CN2021/113321
Other languages
English (en)
French (fr)
Inventor
饶长健
柳洲
申志强
冯爽
梁浩
张驰
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022142379A1 publication Critical patent/WO2022142379A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the present disclosure relates to the technical field of household appliances, in particular to a head assembly of a fan and a fan.
  • the noise generated by the fan during the operation is affected by many factors. According to its structure and operating characteristics, the fan noise is generally divided into aerodynamic noise, mechanical noise and electromagnetic noise. With the advancement of motor technology, the mechanical noise and electromagnetic noise generated by the motor The noise has been well controlled, and the aerodynamic noise has become the main factor of the operating noise of the fan blades.
  • Aerodynamic noise is generally divided into discrete noise and broadband noise.
  • discrete noise is generally related to the rotation of the fan blade.
  • the fan blade is driven by the motor to generate high-speed rotating airflow, and the airflow periodically hits the fan, air duct, fan blade and air duct.
  • the grille is closed, a multi-band rotating discrete noise is generated.
  • the rotating noise is difficult to weaken due to the influence of the wind blades, but because the rotating noise is formed by a combination of multiple frequency bands, the sound is stable and the sound quality is normal.
  • the broadband noise is generally caused by the shedding of the blade trailing edge vortex, the blade tip clearance vortex, and the high-speed vortex inside the air duct during the operation of the fan blade. It will make the broadband noise superimposed on the discrete noise in a certain frequency band, which will increase the peak noise of the whole machine. When it is reflected in the overall sound quality of the air duct, discrete noise with higher loudness will be heard.
  • the rotational noise of the airflow accounts for most of the total sound pressure.
  • the sound quality is normal and there is no noise.
  • the noise of the fan blades is not only considered, but the sound quality of the whole machine. Considering the combination, therefore, controlling the eddy current noise on the blade surface will effectively improve the sound quality of the noise and reduce the noise of the whole machine.
  • the circulating fans in the market generally reduce the eddy current noise of the fan blades by increasing the size of the air inlet, designing the concave rear net, installing the motor on the rear net, and lengthening the distance between the fan blades and the rear net.
  • the longitudinal size of the whole circulating fan increases, which makes the overall structure too bloated.
  • the technical problem to be solved by the present disclosure is to overcome the defect of the relatively large size of the fan capable of reducing broadband noise in the related art, so as to provide a head assembly and a fan of the fan that can reduce broadband noise and reduce the size of the whole machine.
  • the present disclosure provides a head assembly of a fan, comprising a grille net and a fan blade, wherein a plurality of blades are arranged on the fan blade, and the grille net includes a plurality of radially distributed grille bars;
  • the grid includes a rear grid and a front grid, the fan blades are arranged between the rear grid and the front grid, at least each grid bar of the rear grid is bent in the same direction, and the bending direction is the same as that of the fan blades. The direction of rotation of the blades is opposite.
  • each grille bar of the front net is bent in the same direction, and the bending direction is opposite to the rotation direction of the blade of the fan blade.
  • the air inlet side of the blade is the leading edge of the fan blade, and the staggered angle between the leading edge of the fan blade and the grille bar is ⁇ ; the leading edge of the fan blade is from the end away from the center of the fan blade In the process of extending to the center of the fan blade, ⁇ gradually increases, and the increase of the staggered angle ⁇ between the adjacent two grid bars and the front edge of the fan blade is ⁇ , then ⁇ satisfies, 3° ⁇ ⁇ 8°.
  • the staggered angle between the end of the leading edge of the fan blade away from the center of the fan blade and the grille bar is ⁇ 1, and ⁇ 1 satisfies 80° ⁇ 1 ⁇ 100°.
  • ⁇ 1 90°.
  • the air outlet side of the fan blade is the trailing edge of the fan blade, and the staggered angle between the trailing edge of the fan blade and the grille bar is ⁇ ; the trailing edge of the fan blade is away from the center of the fan blade.
  • gradually decreases, and the reduction of the staggered angle ⁇ between two adjacent grille bars and the trailing edge of the fan blade is ⁇ , then ⁇ satisfies, 3° ⁇ 8°.
  • the staggered angle between the end of the leading edge of the fan blade away from the center of the fan blade and the grille bar is ⁇ 1, then ⁇ 1 satisfies 80° ⁇ 1 ⁇ 100°.
  • ⁇ 1 90°.
  • the thickness of the grid bars in the bending direction is d0, then d0 satisfies, 1mm ⁇ d0 ⁇ 4mm.
  • d0 2.2mm.
  • the distance between two adjacent ends of the grille bars away from the center of the fan blade is L1, then L1 satisfies, 6mm ⁇ L1 ⁇ 8.5mm.
  • L1 7.7 mm.
  • the distance between two adjacent ends of the grille bars near the center of the fan blade is L2, then L2 satisfies, 2mm ⁇ L2 ⁇ 7mm.
  • L2 5mm.
  • the head assembly of a fan provided by the present disclosure further includes an air duct structure, the air duct structure has an air inlet end, an air outlet end, and a wind connecting the air inlet end and the air outlet end
  • the rear net is connected to the air inlet end
  • the front net is connected to the air outlet end.
  • the head assembly of the fan provided by the present disclosure further includes a motor for driving the fan blade to rotate, and the motor is arranged in the air duct.
  • the head assembly of the fan provided by the present disclosure further includes:
  • a motor bracket which is arranged in the air duct and is installed with the motor
  • a plurality of guide vane ribs are radially arranged in the air duct and connect the motor support and the cavity wall of the air duct.
  • each of the guide vane ribs is bent in the same direction, and the bending direction is opposite to the rotation direction of the blade of the fan blade.
  • the projection of the guide vane rib on the grid bar coincides with the grid bar.
  • the guide vane ribs have three or four and are evenly distributed along the circumference of the air duct structure.
  • the rear net is provided with an annular air guide surface
  • the cavity wall of the air duct close to one end of the rear net is provided with a drainage surface
  • the air guide surface and the drainage surface smoothly transition .
  • the maximum inner diameter of the wind guide surface is D2
  • the minimum inner diameter of the flow guiding surface is D1
  • the relationship between D2 and D1 satisfies 1.05*D1 ⁇ D2 ⁇ 1.5*D1.
  • D2 1.2*D1.
  • the present disclosure also provides a fan, including the above-mentioned fan head assembly.
  • the fan is a circulation fan.
  • the head assembly of the fan provided by the present disclosure includes two grille nets, and a fan blade disposed between the two grille nets, the fan blades are provided with a plurality of blades, and the grille
  • the net includes a plurality of grid bars distributed radially; the two grid nets are respectively the rear net and the front net, at least each grid bar of the rear net is bent in the same direction, and the bending direction is the same as that of the fan blades.
  • the direction of rotation of the blades is opposite.
  • each grille bar of the front net is bent in the same direction, and the bending direction is opposite to the rotation direction of the blades of the fan blades. In this way, the broadband noise during the operation of the fan blades can be further reduced, thereby further reducing the overall noise of the fan.
  • the air inlet side of the blade is the leading edge of the fan blade, and the staggered angle between the leading edge of the fan blade and the grille strip is ⁇ ;
  • gradually increases, and the increase of the staggered angle ⁇ between the adjacent two grid bars and the leading edge of the fan blade is ⁇ , then ⁇ Satisfy, 3° ⁇ 8°.
  • the broadband noise during the operation of the fan blades can be further reduced, thereby further reducing the overall noise of the fan; at the same time, it has the effect of increasing the air volume and increasing the energy efficiency.
  • the staggered angle between the end of the leading edge of the fan blade away from the center of the fan blade and the grille bar is ⁇ 1, then ⁇ 1 satisfies 80° ⁇ 1 ⁇ 100°. This allows for better noise reduction.
  • the air outlet side of the fan blade is the trailing edge of the fan blade, and the staggered angle between the trailing edge of the fan blade and the grille strip is ⁇ ; the trailing edge of the fan blade In the process of extending from the end away from the center of the fan blade to the center of the fan blade, ⁇ gradually decreases, and the reduction of the staggered angle ⁇ between the two adjacent grille bars and the trailing edge of the fan blade is ⁇ , Then ⁇ satisfies, 3° ⁇ 8°. In this way, the broadband noise during the operation of the fan blades can be further reduced, thereby further reducing the overall noise of the fan; at the same time, it has the effect of increasing the air volume and increasing the energy efficiency.
  • the staggered angle between the end of the leading edge of the fan blade away from the center of the fan blade and the grille bar is ⁇ 1, then ⁇ 1 satisfies 80° ⁇ 1 ⁇ 100°. This allows for better noise reduction.
  • the head assembly of the fan provided by the present disclosure further comprises a motor for driving the fan blade to rotate, the motor being arranged in the air duct.
  • each of the guide vane ribs is bent in the same direction, and the bending direction is opposite to the rotation direction of the blades of the fan blade. This reduces the power consumption of the motor, making the fan more energy efficient.
  • the head assembly of a fan provided by the present disclosure, wherein the guide vane ribs have three or four and are evenly distributed along the circumferential direction of the air duct structure. In this way, the support of the motor installed on the motor bracket can be satisfied, and the wind blocking caused by the excessive number of guide vane ribs can be avoided, which affects the air outlet effect.
  • the rear net is provided with an annular wind guide surface
  • the cavity wall of the air duct close to one end of the rear net is provided with a flow guide surface
  • the wind guide surface is
  • the drainage surface has a smooth transition; the maximum inner diameter of the air guiding surface is D2, and the minimum inner diameter of the drainage surface is D1, so the relationship between D2 and D1 satisfies 1.05*D1 ⁇ D2 ⁇ 1.5*D1. In this way, the air inlet pressure can be reduced, thereby increasing the air intake volume of the fan, and at the same time, the eddy current broadband noise can be reduced.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a fan provided in a first embodiment of the present disclosure
  • FIG. 2 is a perspective exploded schematic view of the head assembly of the fan shown in FIG. 1;
  • Fig. 3 is the left side schematic diagram of the fan shown in Fig. 1;
  • Fig. 4 is the schematic diagram of the right side of the fan shown in Fig. 1;
  • FIG. 5 is a schematic diagram of a head assembly of the fan shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the head assembly of the fan shown in FIG. 3;
  • FIG. 7 is a schematic cross-sectional view of the head assembly of the fan shown in FIG. 2 in an assembled state
  • FIG. 8 is a perspective view of the air duct structure in the head assembly of the fan shown in FIG. 2 in a state where a motor is installed;
  • FIG. 9 is a schematic three-dimensional cross-sectional view of the air duct structure shown in FIG. 8 in a state where a rear net is installed;
  • this embodiment provides a head assembly of a fan, including two grille nets, and a fan blade 1 arranged between the two grille nets, and the fan blade 1 is provided with a plurality of There are several blades, and the grille mesh includes a plurality of radially distributed grille bars 2; the two grille meshes are the rear mesh 31 and the front mesh 32 respectively, and at least each grille strip 2 of the rear mesh 31 is bent in the same direction, and The direction of the bending is opposite to the direction of rotation of the blades of the fan blade 1 .
  • the distance between the rear mesh 31 and the fan blade 1 can be shortened without increasing At the same time, the broadband noise during the operation of the fan blade 1 is reduced, thereby reducing the aerodynamic noise and reducing the overall noise of the fan.
  • Each grille bar 2 of the front net 32 is bent in the same direction, and the bending direction is opposite to the rotation direction of the blades of the fan blade 1 . In this way, the broadband noise during the operation of the fan blade 1 can be further reduced, thereby further reducing the overall noise of the fan.
  • the individual grille bars 2 of the front net 32 can also be in the shape of straight rods.
  • the air inlet side of the blade is the leading edge 11 of the fan blade, and the staggered angle between the leading edge 11 of the fan blade and the grille bar 2 is ⁇ ;
  • the tangent point is used as the first tangent, and the intersection of the front edge 11 of the fan blade and the grille strip 2 is used as the second tangent to the grid strip 2.
  • the angle between the first tangent and the second tangent is the front of the fan.
  • gradually increases, and the staggered angle ⁇ between the two adjacent grille bars 2 and the front edge 11 of the fan blade
  • the amplification is ⁇ , preferably ⁇ satisfies, 3° ⁇ 8°.
  • the broadband noise during the operation of the fan blade 1 can be further reduced, thereby further reducing the overall noise of the fan; at the same time, it has the effect of increasing the air volume and increasing the energy efficiency.
  • the air outlet side of the fan blade 1 is the trailing edge 12 of the fan blade, and the staggered angle between the trailing edge 12 of the fan blade and the grille bar 2 is ⁇ ;
  • the intersection point is the tangent point to make the first tangent line
  • the second tangent line to the grille bar 2 takes the intersection of the trailing edge 12 of the fan blade and the grille bar 2 as the tangent point to make the second tangent line
  • the angle between the first tangent line and the second tangent line is the wind
  • the staggered angle ⁇ between the two adjacent grille bars 2 and the trailing edge 12 of the fan blade is less than ⁇ .
  • the reduction amplitude is ⁇ , and preferably ⁇ satisfies, 3° ⁇ 8°.
  • the broadband noise during the operation of the fan blade 1 can be further reduced, thereby further reducing the overall noise of the fan; at the same time, it has the effect of increasing the air volume and increasing the energy efficiency.
  • the distance between the ends of two adjacent grille bars 2 away from the center of the fan blade 1 is L1, and preferably L1 satisfies, 6mm ⁇ L1 ⁇ 8.5mm.
  • L1 7.7mm.
  • the distance between the ends of two adjacent grille bars 2 close to the center of the fan blade 1 is L2, and preferably L2 satisfies, 2mm ⁇ L2 ⁇ 7mm.
  • L1 5mm.
  • the head assembly of the fan provided in this embodiment further includes an air duct structure 4.
  • the air duct structure 4 has an air inlet end, an air outlet end, and an air duct 41 connecting the air inlet end and the air outlet end.
  • the rear net 31 is connected to the air inlet end.
  • the front net 32 is connected with the air outlet.
  • a motor 5 for driving the fan blade 1 to rotate is also included, and the motor 5 is arranged in the air duct 41 .
  • the motor 5 By arranging the motor 5 in the air duct 41 , the distance between the rear net 31 and the fan blade 1 can be shortened, and the size of the whole fan can be reduced compared to arranging the motor 5 outside the air duct 41 .
  • the motor 5 may also be disposed outside the air duct 41 and between the air duct structure 4 and the rear net 31 .
  • the head assembly of the fan provided in this embodiment further includes a motor bracket 6 and a plurality of guide vane ribs 7 .
  • the motor bracket 6 is arranged in the air duct 41 and is installed with the motor 5 .
  • a plurality of guide vane ribs 7 are radially arranged in the air duct 41 and connect the motor bracket 6 and the cavity wall of the air duct 41 .
  • the guide vane rib 7 may be a straight rod or a curved rod. In this embodiment, each guide vane rib 7 is bent in the same direction, and the bending direction is opposite to the rotation direction of the blade of the fan blade 1 . In some embodiments, the projection of the guide vane rib 7 in this embodiment on the grid bar 2 coincides with the grid bar 2 . As an alternative embodiment, the projection of the guide vane rib 7 on the grid bar 2 may also not coincide with the grid bar 2 .
  • Guide vane ribs are straight rods 21.12 0.0619 Guide vane ribs are curved rods 21.21 0.0582
  • the specific number of guide vane ribs 7 is not limited. In the present embodiment, there are four guide vane ribs 7, which are evenly distributed along the circumferential direction of the air duct structure 4 . In this way, the support of the motor 5 installed on the motor bracket 6 can be satisfied, and the wind blocking caused by the excessive number of guide vane ribs 7 can be avoided, which affects the air outlet effect.
  • the guide vane ribs 7 can also have three or five.
  • the rear net 31 is provided with an annular air guide surface 8 , and the cavity wall of the air duct 41 close to one end of the rear net 31 is provided with a drainage surface 9 , and the wind guide surface 8 and the drainage surface 9 smoothly transition.
  • the maximum inner diameter of the wind guide surface 8 is D2, and the minimum inner diameter of the drainage surface 9 is D1, so the relationship between D2 and D1 is preferably satisfied, 1.05*D1 ⁇ D2 ⁇ 1.5*D1.
  • D2 1.2*D1.
  • the grille has no wind guide surface 19.02 0.064
  • the grille has a wind guide surface 20.94 0.063
  • This embodiment also provides a fan.
  • the fan in this embodiment is a circulating fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种风扇,包括格栅网及风叶(1),所述风叶(1)上设有多个叶片,所述格栅网包括多个呈辐射状分布的格栅条(2);所述格栅网包括后网(31)和前网(32),所述风叶(1)设于所述后网(31)和所述前网(32)之间,至少所述后网(31)的各个格栅条(2)朝向同一方向弯曲,且弯曲的方向与风叶(1)的叶片的旋向相反。通过将后网(31)的格栅条(2)设成朝向同一方向弯曲的弯曲状,且弯曲方向与风叶(1)的叶片的旋向相反,可以在无需拉长后网与风叶之间的距离的同时,降低风叶运转过程中的宽频噪音,进而降低气动噪音,降低风扇整体的噪音。

Description

风扇的机头组件及风扇
本公开要求于2020年12月31日提交中国专利局、申请号为202011634894.1、发明名称为“风扇的机头组件及风扇”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及家用电器技术领域,具体涉及一种风扇的机头组件及风扇。
背景技术
风扇在运转过程中产生的噪音是多因素影响的,根据其结构及运行特点,风扇噪音一般分为气动噪音、机械噪音以及电磁噪音,其中随着电机技术的进步,电机产生的机械噪音以及电磁噪音都得到了较好的控制,气动噪音则成为风叶运转噪音的主要因素。
气动噪音一般分为离散噪音及宽频噪音,其中离散噪音一般同风叶的旋转有很大关系,风叶受电机带动产生高速旋转气流,气流在周期性撞击风机、风道、风叶及风道网罩时会产生多频段的旋转离散噪音。该旋转噪音受风叶影响较难削弱,但由于该旋转噪音是多频段组合形成的,声音稳定,音质正常。
宽频噪音一般是由风叶运转过程的叶尾缘涡脱落、叶顶间隙涡,风道内部高速涡流造成,由于该噪音由叶面高速涡流同风道内部壁 面、前后网格栅之间的相互作用,会使该宽频噪声叠加在某一频段的离散噪音上,使得整机的峰值噪音增大,表现在风道总音质时,会听到响度较高的离散噪音。
一般来说,高速运转过程中,气流的旋转噪声占总声压的大部分,该声音音质正常,无杂音,但由于整机设计过程中,并非单一考虑风叶的噪音,而是整机音质组合考虑,因此,控制叶面的涡流噪音会有效的改善噪音音质,降低整机噪音。
目前市场内的循环扇一般通过增大进风尺寸,设计外凹型后网,电机安装于后网之上,拉长风叶距后网的距离来降低风叶的涡流噪音,但是,这样会使循环扇整机纵向的尺寸增大,使得整体结构过于臃肿。
发明内容
因此,本公开要解决的技术问题在于克服相关技术中能够降低宽频噪音的风扇尺寸较大的缺陷,从而提供一种能够降低宽频噪音的同时减小整机尺寸的风扇的机头组件及风扇。
本公开提供一种风扇的机头组件,包括格栅网及风叶,所述风叶上设有多个叶片,所述格栅网包括多个呈辐射状分布的格栅条;所述格栅网包括后网和前网,所述风叶设于所述后网和所述前网之间,至少所述后网的各个格栅条朝向同一方向弯曲,且弯曲的方向与风叶的叶片的旋向相反。
在一些实施方式中,所述前网的各个格栅条朝向同一方向弯曲,且弯曲的方向与风叶的叶片的旋向相反。
在一些实施方式中,所述叶片的进风侧为风叶前缘,所述风叶前 缘与所述格栅条之间的交错角为α;风叶前缘自远离风叶中心的一端向风叶中心延伸的过程中,α逐渐增大,且相邻两个所述格栅条与所述风叶前缘之间的交错角α的增幅为γ,则γ满足,3°≤γ≤8°。
在一些实施方式中,所述风叶前缘远离风叶中心的一端与所述格栅条之间的交错角为α1,则α1满足80°≤α1≤100°。
在一些实施方式中,α1=90°。
在一些实施方式中,所述风叶的出风侧为风叶尾缘,所述风叶尾缘与所述格栅条之间的交错角为β;风叶尾缘自远离风叶中心的一端向风叶中心延伸的过程中,β逐渐减小,且相邻两个所述格栅条与所述风叶尾缘之间的交错角β的减幅为δ,则δ满足,3°≤δ≤8°。
在一些实施方式中,所述风叶前缘远离风叶中心的一端与所述格栅条之间的交错角为β1,则β1满足80°≤β1≤100°。
在一些实施方式中,β1=90°。
在一些实施方式中,所述格栅条在弯曲方向上的厚度为d0,则d0满足,1mm≤d0≤4mm。
在一些实施方式中,d0=2.2mm。
在一些实施方式中,相邻两个所述格栅条的远离风叶中心的一端之间的距离为L1,则L1满足,6mm≤L1≤8.5mm。
在一些实施方式中,L1=7.7mm。
在一些实施方式中,相邻两个所述格栅条的靠近风叶中心的一端之间的距离为L2,则L2满足,2mm≤L2≤7mm。
在一些实施方式中,L2=5mm。
在一些实施方式中,本公开提供的风扇的机头组件,还包括风道结构,所述风道结构具有进风端、出风端,及连通所述进风端和所述出风端的风道,所述后网与所述进风端连接,所述前网与所述出风端 连接。
在一些实施方式中,本公开提供的风扇的机头组件,还包括驱动所述风叶转动的电机,所述电机设于所述风道中。
在一些实施方式中,本公开提供的风扇的机头组件,还包括:
电机支架,设于所述风道中,并安装有所述电机;
多个导叶筋条,呈辐射状设于所述风道中,并连接所述电机支架和所述风道的腔壁。
在一些实施方式中,各个所述导叶筋条朝向同一方向弯曲,且弯曲的方向与风叶的叶片的旋向相反。
在一些实施方式中,所述导叶筋条在所述格栅条上投影与所述格栅条重合。
在一些实施方式中,所述导叶筋条具有三个或四个,并延所述风道结构的周向均匀分布。
在一些实施方式中,所述后网上设有呈环形的导风面,所述风道靠近所述后网一端的腔壁上设有引流面,所述导风面与所述引流面光滑过渡。
在一些实施方式中,所述导风面的最大内径为D2,所述引流面的最小内径为D1,则D2与D1之间满足,1.05*D1≤D2≤1.5*D1。
在一些实施方式中,D2=1.2*D1。
本公开还提供一种风扇,包括上述的风扇的机头组件。
在一些实施方式中,所述风扇为循环扇。
本公开技术方案,具有如下效果:
1.本公开提供的风扇的机头组件,包括两个格栅网,及设于两个所述格栅网之间的风叶,所述风叶上设有多个叶片,所述格栅网 包括多个呈辐射状分布的格栅条;两个所述格栅网分别为后网和前网,至少所述后网的各个格栅条朝向同一方向弯曲,且弯曲的方向与风叶的叶片的旋向相反。通过将后网的格栅条设成朝向同一方向弯曲的弯曲状,且弯曲方向与风叶的叶片的旋向相反,可以在无需拉长后网与风叶之间的距离的同时,降低风叶运转过程中的宽频噪音,进而降低气动噪音,降低风扇整体的噪音。
2.本公开提供的风扇的机头组件,所述前网的各个格栅条朝向同一方向弯曲,且弯曲的方向与风叶的叶片的旋向相反。这样可以进一步降低风叶运转过程中的宽频噪音,进而进一步降低风扇整体的噪音。
3.本公开提供的风扇的机头组件,所述叶片的进风侧为风叶前缘,所述风叶前缘与所述格栅条之间的交错角为α;风叶前缘自远离风叶中心的一端向风叶中心延伸的过程中,α逐渐增大,且相邻两个所述格栅条与所述风叶前缘之间的交错角α的增幅为γ,则γ满足,3°≤γ≤8°。这样可以进一步风叶运转过程中的宽频噪音,进而进一步降低风扇整体的噪音;同时具有提高风量,增大能效的效果。
4.本公开提供的风扇的机头组件,所述风叶前缘远离风叶中心的一端与所述格栅条之间的交错角为α1,则α1满足80°≤α1≤100°。这样可以具有更好的降噪效果。
5.本公开提供的风扇的机头组件,所述风叶的出风侧为风叶尾缘,所述风叶尾缘与所述格栅条之间的交错角为β;风叶尾缘自远 离风叶中心的一端向风叶中心延伸的过程中,β逐渐减小,且相邻两个所述格栅条与所述风叶尾缘之间的交错角β的减幅为δ,则δ满足,3°≤δ≤8°。这样可以进一步风叶运转过程中的宽频噪音,进而进一步降低风扇整体的噪音;同时具有提高风量,增大能效的效果。
6.本公开提供的风扇的机头组件,所述风叶前缘远离风叶中心的一端与所述格栅条之间的交错角为β1,则β1满足80°≤β1≤100°。这样可以具有更好的降噪效果。
7.本公开提供的风扇的机头组件,还包括驱动所述风叶转动的电机,所述电机设于所述风道中。通过将电机设于风道中,比起将电机设于风道外,可以缩短后网与风叶之间的距离,减小风扇整机的尺寸。
8.本公开提供的风扇的机头组件,各个所述导叶筋条朝向同一方向弯曲,且弯曲的方向与风叶的叶片的旋向相反。这样可以降低电机的功耗,从而使风扇更加节能。
9.本公开提供的风扇的机头组件,所述导叶筋条在所述格栅条上投影与所述格栅条重合。这样可以进一步降低电机的功耗,从而使风扇更加节能。
10.本公开提供的风扇的机头组件,所述导叶筋条具有三个或四个,并延所述风道结构的周向均匀分布。这样既可以满足对安装于电机支架上的电机的支撑,又可以避免由于导叶筋条数量过多造成堵风,影响出风效果。
11.本公开提供的风扇的机头组件,所述后网上设有呈环形的导风面,所述风道靠近所述后网一端的腔壁上设有引流面,所述导风面与所述引流面光滑过渡;所述导风面的最大内径为D2,所述引流面的最小内径为D1,则D2与D1之间满足,1.05*D1≤D2≤1.5*D1。这样可以降低进风压力,从而提高风扇的进风量,同时可以使涡流宽频噪音下降。
附图说明
为了更清楚地说明本公开具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的第一种实施方式中提供的风扇的纵剖示意图;
图2为图1所示的风扇的机头组件的立体分解示意图;
图3为图1所示的风扇的左视示意图;
图4为图1所示的风扇的右视示意图;
图5为图4所示的风扇的机头组件的示意图;
图6为图3所示的风扇的机头组件的示意图;
图7为图2所示的风扇的机头组件在装配状态下的剖视示意图;
图8为图2所示的风扇的机头组件中的风道结构在装有电机状态下的立体示意图;
图9为图8所示的风道结构在安装有后网状态下的立体剖视示意图;
附图标记说明:
1-风叶,11-风叶前缘,12-风叶尾缘,2-格栅条,31-后网,32-前网,4-风道结构,41-风道,5-电机,6-电机支架,7-导叶筋条,8-导风面,9-引流面。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如图1-图9所示,本实施例提供一种风扇的机头组件,包括两个格栅网,及设于两个格栅网之间的风叶1,风叶1上设有多个叶片,格栅网包括多个呈辐射状分布的格栅条2;两个格栅网分别为后网31和前网32,至少后网31的各个格栅条2朝向同一方向弯曲,且弯曲的方向与风叶1的叶片的旋向相反。
通过将后网31的格栅条2设成朝向同一方向弯曲的弯曲状,且弯曲方向与风叶1的叶片的旋向相反,可以在无需拉长后网31与风 叶1之间的距离的同时,降低风叶1运转过程中的宽频噪音,进而降低气动噪音,降低风扇整体的噪音。
前网32的各个格栅条2朝向同一方向弯曲,且弯曲的方向与风叶1的叶片的旋向相反。这样可以进一步降低风叶1运转过程中的宽频噪音,进而进一步降低风扇整体的噪音。作为可变换的实施方式,前网32的各个格栅条2也可以呈直杆状。
叶片的进风侧为风叶前缘11,风叶前缘11与格栅条2之间的交错角为α;即风叶前缘11以风叶前缘11与格栅条2的交点为切点做第一切线,与格栅条2以风叶前缘11与格栅条2的交点为切点做第二切线,第一切线与第二切线的夹角即为风叶前缘11与格栅条2在该交点处的交错角α。风叶前缘11自远离风叶1中心的一端向风叶1中心延伸的过程中,α逐渐增大,且相邻两个格栅条2与风叶前缘11之间的交错角α的增幅为γ,优选γ满足,3°≤γ≤8°。这样可以进一步风叶1运转过程中的宽频噪音,进而进一步降低风扇整体的噪音;同时具有提高风量,增大能效的效果。例如,可以是γ=3°,也可以是γ=8°。在本实施例中,γ=5°。
风叶前缘11远离风叶1中心的一端与格栅条2之间的交错角为α1,优选α1满足80°≤α1≤100°。这样具有更好的降噪效果。例如,可以是α1=80°,也可以是α1=100°。在本实施例中,α1=90°。
风叶1的出风侧为风叶尾缘12,风叶尾缘12与格栅条2之间的交错角为β;即风叶尾缘12以风叶尾缘12与格栅条2的交点为切点做第一切线,与格栅条2以风叶尾缘12与格栅条2的交点为切点做第二切线,第一切线与第二切线的夹角即为风叶尾缘12与格栅条2在该交点处的交错角β。风叶尾缘12自远离风叶1中心的一端向风叶1中心延伸的过程中,β逐渐减小,且相邻两个格栅条2与风叶尾 缘12之间的交错角β的减幅为δ,优选δ满足,3°≤δ≤8°。这样可以进一步风叶1运转过程中的宽频噪音,进而进一步降低风扇整体的噪音;同时具有提高风量,增大能效的效果。例如,可以是δ=3°,也可以是δ=8°。在本实施例中,δ=5°。
风叶前缘11远离风叶1中心的一端与格栅条2之间的交错角为β1,优选β1满足80°≤β1≤100°。这样具有更好的降噪效果。例如,可以是β1=80°,也可以是β1=100°。在本实施例中,β1=90°。
实测两组不同弯度的格栅在同一电机5同一风叶1下,直格栅风扇的功率在27.5W,峰值噪音在32.42dB,本实施例弯格栅风扇的功率在20.7W,峰值噪音在26.57dB,具体测试结果如下表:
Figure PCTCN2021113321-appb-000001
由上表可以得知,本实施例提供的风扇,在后网31的格栅条2和前网32的格栅条2均呈同一方向弯曲,且弯曲方向与风叶1的旋向相反时,且在α1=90°,γ=5°,β1=90°,δ=5°的条件下,其峰值噪音明显小于直格栅风扇的噪音,功率也明显小于直格栅风扇的功率,能效高于直格栅风扇的能效,即,本实施例相比于直格栅风扇,既能够实现降噪,又可以降低电机5功率,提高整机能效。
实测表明,进出风格栅的弯度同风叶1的关系对整机的出风性能有较大的影响,为保证整机出风性能,格栅条2在弯曲方向上的厚度为d0,则优选d0满足,1mm≤d0≤4mm。例如,可以是,d0=1mm,也可以是,d0=4mm。在本实施例中,d0=2.2mm。
相邻两个格栅条2的远离风叶1中心的一端之间的距离为L1,则优选L1满足,6mm≤L1≤8.5mm。例如,可以是,L1=6mm,也可以 是,L1=8.5mm。在本实施例中,L1=7.7mm。
相邻两个格栅条2的靠近风叶1中心的一端之间的距离为L2,则优选L2满足,2mm≤L2≤7mm。例如,可以是,L2=2mm,也可以是,L2=7mm。在本实施例中,L1=5mm。
本实施例提供的风扇的机头组件,还包括风道结构4,风道结构4具有进风端、出风端,及连通进风端和出风端的风道41,后网31与进风端连接,前网32与出风端连接。
在一些实施方式中,还包括驱动风叶1转动的电机5,电机5设于风道41中。通过将电机5设于风道41中,比起将电机5设于风道41外,可以缩短后网31与风叶1之间的距离,减小风扇整机的尺寸。在其他实施方式中,电机5也可以设于风道41外,并位于风道结构4与后网31之间。
本实施例提供的风扇的机头组件,还包括电机支架6和多个导叶筋条7。
电机支架6设于风道41中,并安装有电机5。
多个导叶筋条7呈辐射状设于风道41中,并连接电机支架6和风道41的腔壁。
导叶筋条7可以是直杆状,也可以是弯曲杆状。在本实施例中,各个导叶筋条7朝向同一方向弯曲,且弯曲的方向与风叶1的叶片的旋向相反。在一些实施方式中,本实施例中的导叶筋条7在格栅条2上投影与格栅条2重合。作为可变换的实施方式,导叶筋条7在格栅条2上的投影也可以与格栅条2不重合。
对直杆状导叶筋条7和弯曲杆状导叶筋条7的风量和扭矩的仿真结果如下表:
  风量 扭矩
  m3/min  
导叶筋条为直杆状 21.12 0.0619
导叶筋条为弯曲杆状 21.21 0.0582
由上表可以得知,本实施例的呈弯曲杆状的导叶筋条7,且导叶筋条7在格栅条2上投影与格栅条2重合,比起直杆状的导叶筋条7,风扇的仿真风量基本不变,但其电机5输入功率(参考表中的扭矩)下降6%,整机功耗降低,能效增加,整机效率增加。
对导叶筋条7的具体数量不做限制,在本实施例中,导叶筋条7具有四个,并延风道结构4的周向均匀分布。这样既可以满足对安装于电机支架6上的电机5的支撑,又可以避免由于导叶筋条7数量过多造成堵风,影响出风效果。作为可变换的实施方式,导叶筋条7也可以具有三个或五个。
后网31上设有呈环形的导风面8,风道41靠近后网31一端的腔壁上设有引流面9,导风面8与引流面9光滑过渡。
导风面8的最大内径为D2,引流面9的最小内径为D1,则优选D2与D1之间满足,1.05*D1≤D2≤1.5*D1。这样可以降低进风压力,从而提高风扇的进风量,同时可以使涡流宽频噪音下降。例如,可以是,D2=1.05*D1,也可以是D2=1.5*D1。在本实施例中,D2=1.2*D1。
对有导风面8和无导风面8的风量和扭矩的仿真结果如下表:
  风量(m3/min) 扭矩
网罩无导风面 19.02 0.064
网罩有导风面 20.94 0.063
可以看到,在网罩有导风面时,其风量提升了10%,电机输入功率(参考表中的扭矩)基本不变,进风面压力有所改善,最大的涡流宽频噪音下降。
本实施例还提供一种风扇,具体地,本实施例中的风扇为循环扇。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (18)

  1. 一种风扇的机头组件,包括格栅网及风叶(1),所述风叶(1)上设有多个叶片,所述格栅网包括多个呈辐射状分布的格栅条(2);所述格栅网包括后网(31)和前网(32),所述风叶(1)设于所述后网(31)和所述前网(32)之间,至少所述后网(31)的各个格栅条(2)朝向同一方向弯曲,且弯曲的方向与风叶(1)的叶片的旋向相反。
  2. 根据权利要求1所述的风扇的机头组件,其中,所述前网(32)的各个格栅条(2)朝向同一方向弯曲,且弯曲的方向与风叶(1)的叶片的旋向相反。
  3. 根据权利要求1或2所述的风扇的机头组件,其中,所述叶片的进风侧为风叶前缘(11),所述风叶前缘(11)与所述格栅条(2)之间的交错角为α;风叶前缘(11)自远离风叶(1)中心的一端向风叶(1)中心延伸的过程中,α逐渐增大,且相邻两个所述格栅条(2)与所述风叶前缘(11)之间的交错角α的增幅为γ,则γ满足,3°≤γ≤8°。
  4. 根据权利要求3所述的风扇的机头组件,其中,所述风叶前缘(11)远离风叶(1)中心的一端与所述格栅条(2)之间的交错角为α1,则α1满足80°≤α1≤100°。
  5. 根据权利要求1或2所述的风扇的机头组件,其中,所述风叶(1)的出风侧为风叶尾缘(12),所述风叶尾缘(12)与所述格栅条(2)之间的交错角为β;风叶尾缘(12)自远离风叶(1)中心的一端向风叶(1)中心延伸的过程中,β逐渐减小,且相邻两个所述格栅条(2)与所述风叶尾缘(12)之间的交错角β的减幅为δ,则δ满足,3°≤δ≤8°。
  6. 根据权利要求5所述的风扇的机头组件,其中,所述风叶前缘(11)远离风叶(1)中心的一端与所述格栅条(2)之间的交错角为β1,则β1满足80°≤β1≤100°。
  7. 根据权利要求1或2所述的风扇的机头组件,其中,所述格栅条(2)在弯曲方向上的厚度为d0,则d0满足,1mm≤d0≤4mm。
  8. 根据权利要求1或2所述的风扇的机头组件,其中,相邻两个所述格栅条(2)的远离风叶(1)中心的一端之间的距离为L1,则L1满足,6mm≤L1≤8.5mm。
  9. 根据权利要求1或2所述的风扇的机头组件,其中,相邻两个所述格栅条(2)的靠近风叶(1)中心的一端之间的距离为L2,则L2满足,2mm≤L2≤7mm。
  10. 根据权利要求1或2所述的风扇的机头组件,其中,还包括风道结构(4),所述风道结构(4)具有进风端、出风端,及连通所述进风端和所述出风端的风道(41),所述后网(31)与所述进风端连接,所述前网(32)与所述出风端连接。
  11. 根据权利要求10所述的风扇的机头组件,其中,还包括驱动所述风叶(1)转动的电机(5),所述电机(5)设于所述风道(41)中。
  12. 根据权利要求11所述的风扇的机头组件,其中,还包括:
    电机支架(6),设于所述风道(41)中,并安装有所述电机(5);
    多个导叶筋条(7),呈辐射状设于所述风道(41)中,并连接所述电机支架(6)和所述风道(41)的腔壁。
  13. 根据权利要求12所述的风扇的机头组件,其中,各个所述导叶筋条(7)朝向同一方向弯曲,且弯曲的方向与风叶(1)的叶片的旋向相反。
  14. 根据权利要求12所述的风扇的机头组件,其中,所述导叶筋条(7)在所述格栅条(2)上投影与所述格栅条(2)重合。
  15. 根据权利要求10所述的风扇的机头组件,其中,所述后网(31)上设有呈环形的导风面(8),所述风道(41)靠近所述后网(31)一端的腔壁上设有引流面(9),所述导风面(8)与所述引流面(9)光滑过渡。
  16. 根据权利要求15所述的风扇的机头组件,其中,所述导风面(8)的最大内径为D2,所述引流面(9)的最小内径为D1,则D2与D1之间满足,1.05*D1≤D2≤1.5*D1。
  17. 一种风扇,包括权利要求1-16中任一项所述的风扇的机头组件。
  18. 根据权利要求17所述的风扇,其中,所述风扇为循环扇。
PCT/CN2021/113321 2020-12-31 2021-08-18 风扇的机头组件及风扇 WO2022142379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011634894.1A CN112628218A (zh) 2020-12-31 2020-12-31 风扇的机头组件及风扇
CN202011634894.1 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142379A1 true WO2022142379A1 (zh) 2022-07-07

Family

ID=75290385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113321 WO2022142379A1 (zh) 2020-12-31 2021-08-18 风扇的机头组件及风扇

Country Status (2)

Country Link
CN (1) CN112628218A (zh)
WO (1) WO2022142379A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112628218A (zh) * 2020-12-31 2021-04-09 珠海格力电器股份有限公司 风扇的机头组件及风扇
CN114198831A (zh) * 2021-12-13 2022-03-18 珠海格力电器股份有限公司 风扇头及冷风扇
CN114285207A (zh) * 2021-12-31 2022-04-05 珠海格力电器股份有限公司 一种电机保护结构和出风装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270313B1 (en) * 1998-07-04 2001-08-07 Delta Electronics, Inc. Fan and airflow for cooling electronic device with reduced turbulence and noise and higher efficiency
CN106837832A (zh) * 2017-01-22 2017-06-13 佛山市顺德区新双岭机电科技有限公司 一种新型的便携式电风扇
CN108194394A (zh) * 2018-02-07 2018-06-22 广东美的环境电器制造有限公司 风扇的前网罩和具有其的风扇
CN210440283U (zh) * 2019-06-19 2020-05-01 厦门泰谷远东汽车配件有限公司 一种风扇头网罩结构
CN112628218A (zh) * 2020-12-31 2021-04-09 珠海格力电器股份有限公司 风扇的机头组件及风扇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270313B1 (en) * 1998-07-04 2001-08-07 Delta Electronics, Inc. Fan and airflow for cooling electronic device with reduced turbulence and noise and higher efficiency
CN106837832A (zh) * 2017-01-22 2017-06-13 佛山市顺德区新双岭机电科技有限公司 一种新型的便携式电风扇
CN108194394A (zh) * 2018-02-07 2018-06-22 广东美的环境电器制造有限公司 风扇的前网罩和具有其的风扇
CN210440283U (zh) * 2019-06-19 2020-05-01 厦门泰谷远东汽车配件有限公司 一种风扇头网罩结构
CN112628218A (zh) * 2020-12-31 2021-04-09 珠海格力电器股份有限公司 风扇的机头组件及风扇

Also Published As

Publication number Publication date
CN112628218A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022142379A1 (zh) 风扇的机头组件及风扇
US11506211B2 (en) Counter-rotating fan
JP6493682B2 (ja) 遠心ファン
US20100189557A1 (en) Impeller and fan
WO2020134806A1 (zh) 一种集成灶风机的叶片以及集成灶风机
JP4867950B2 (ja) 送風機
JP2009203897A (ja) 多翼送風機
CN201679745U (zh) 低噪声空调冷却轴流风机
CN113175443B (zh) 高效低噪无蜗壳后向离心风机三元流叶轮
JP3801162B2 (ja) プロペラファン
CN207554416U (zh) 一种分流叶片的离心叶轮
CN109469643A (zh) 轴流风轮、轴流风机、空调室内机和空调室外机
CN211423009U (zh) 一种可调频降噪的离心通风机及其蜗壳
JPH11141494A (ja) 多翼送風機の羽根車構造
WO2021114739A1 (zh) 新型蜗舌结构、风机蜗壳及风机
CN105756981A (zh) 一种用于无壳离心风机的降噪风机墙
CN203584898U (zh) 一种低噪高效的中央空调室外机冷却轴流风机
CN103629156B (zh) 一种低噪高效的中央空调室外机冷却轴流风机
KR20110083043A (ko) 횡류팬 및 이를 구비한 공기 조화기
CN214221633U (zh) 风扇的机头组件及风扇
CN216478016U (zh) 一种后向离心叶轮
US6425739B1 (en) In-line centrifugal fan
CN213270371U (zh) 风机和衣物处理机
CN208252391U (zh) 单筒双级轴流通风机
CN107061357A (zh) 叶片、离心风机叶轮、离心风机和吸油烟机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913127

Country of ref document: EP

Kind code of ref document: A1