WO2021114449A1 - 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法 - Google Patents

一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法 Download PDF

Info

Publication number
WO2021114449A1
WO2021114449A1 PCT/CN2020/070669 CN2020070669W WO2021114449A1 WO 2021114449 A1 WO2021114449 A1 WO 2021114449A1 CN 2020070669 W CN2020070669 W CN 2020070669W WO 2021114449 A1 WO2021114449 A1 WO 2021114449A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
metal
optionally
melting
metal powder
Prior art date
Application number
PCT/CN2020/070669
Other languages
English (en)
French (fr)
Inventor
赵府
项晓东
王湘麟
冯光
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to US16/957,966 priority Critical patent/US20230092989A1/en
Publication of WO2021114449A1 publication Critical patent/WO2021114449A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/58Means for feeding of material, e.g. heads for changing the material composition, e.g. by mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1053Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the application relates to the field of metal fiber preparation and processing, and relates to a multi-powder-based metal fiber high-throughput preparation device and a method for preparing metal fibers using the same.
  • the structural material is based on the mechanical properties and is used to manufacture the material used for the force-bearing component.
  • Metal structural materials such as high-performance alloys and steel materials are widely used in the preparation of high-end equipment and components related to the national economy and the people's livelihood, such as aero engines, gas turbines for power generation, steam turbines, high-speed railways, and automobiles due to their excellent mechanical properties.
  • aero engines gas turbines for power generation
  • steam turbines high-speed railways
  • automobiles due to their excellent mechanical properties.
  • the traditional research and development methods of metal structural materials with bulk materials as the main sample form often only prepare and characterize bulk samples for one alloy composition ratio in one experiment.
  • combinatorial chemistry The combinatorial chemistry method that emerged in the mid-1980s has penetrated into many fields of chemistry such as medicine, organics, materials, and analysis. With the improvement of the automation level, combinatorial chemistry with high throughput as a prominent feature has become one of the most active fields in the current chemistry field.
  • the application of combinatorial chemistry methods to the field of materials science is called combinatorial materials science.
  • combinatorial materials science methods mainly focus on the preparation of functional materials in the form of thin films, such as chips, but they are not suitable for high-throughput screening of the mechanical properties of metal structural materials.
  • CN107855531A discloses a method for preparing metal matrix composites by hot pressing and sintering powder metallurgy with high throughput. Through the process innovation of soft partition cells and hard partition layers, the synchronization of the same furnace is realized. Prepare many or even hundreds of metal matrix composite samples at one time. However, this method still produces bulk material samples, and still has the disadvantages of high cost, low continuity, and the bulk material composition cannot be continuously changed.
  • CN107502765A discloses a high-throughput micro-manufacturing method for multi-component materials.
  • the microwave energy field heating can realize high-flux sintering and melting preparation or heat treatment of materials under different temperature gradient fields or the same temperature gradient field at one time.
  • the method prepares bulk material samples of smaller size, but is limited by the number of sample slots in the array crucible used in the method, and still has the shortcomings of low continuity and the bulk material composition is not easy to change gradients.
  • This application proposes a multi-powder-based high-throughput metal fiber preparation device, which includes an independently set induction powder melting device and a laser powder melting device.
  • the method for preparing metal fibers using the high-throughput preparation device includes powder feeding and mixing. The four steps of powdering, melting and forming can produce metal fiber materials that can not only reduce costs, but also achieve continuous gradient changes in composition, so as to achieve high-throughput preparation.
  • the high-throughput preparation device includes a metal powder delivery system, a metal powder mixing system, a metal powder melting system, and a metal powder delivery system, which are sequentially connected.
  • the metal powder melting system includes an independently arranged induction powder melting device and a laser powder melting device.
  • the multi-powder-based metal fiber high-throughput preparation device can better combine a variety of metal powders with different composition ranges through separate induction powder melting devices and laser powder melting devices.
  • the material is fully melted, so as to complete the melting of metal powders of different compositions or materials in a wider temperature range, so that the prepared metal fiber can achieve the characteristics of continuous gradient change in composition.
  • the metal powder delivery system includes a plurality of single-channel powder delivery devices, which can be selected from 2-20, such as 2, 5, 7, 10, 15, 18 Or 20, etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the single-channel powder conveying device provided in the present application realizes the one-way conveying of metal powder from the metal powder conveying system to the metal powder mixing system by setting a check valve.
  • a mass flow controller is used to feedback control the powder feeding amount of the metal powder conveying system.
  • the accuracy of the mass flow controller is ⁇ 0.1 g/min.
  • the mass flow controller provided in this application, because its accuracy can reach ⁇ 0.1 g/min, can ensure the realization of a high-precision preset ratio, thereby providing a basic guarantee for the preparation of metal fibers with continuous gradient changes in composition.
  • the metal powder delivery system includes a pneumatic turntable powder feeder.
  • the pneumatic turntable powder feeder includes a powder cylinder, a powder feed plate, a pneumatic motor and a powder outlet.
  • the pneumatic turntable powder feeder used a pneumatic motor to drive the powder feeding disk, and uses argon gas as the protective gas. Under the dual action of the rotation of the powder feeding disk and the air flow of the protective gas, the metal powder is evenly dispersed and transported smoothly.
  • the metal powder mixing system includes a powder mixing device and a powder storage device connected in sequence.
  • the powder inlet of the powder mixing device is connected to the powder outlet of the metal powder conveying system.
  • a powder feeding tube is used to connect the powder inlet of the powder mixing device and the powder outlet of the metal powder conveying system.
  • the mass flow controller is arranged on the powder feeding pipe.
  • the powder mixing device includes a powder inlet and a rotary vane stirrer.
  • the powder storage device includes a powder storage device and a static mixer.
  • the powder reservoir is funnel-shaped.
  • the static mixer is a stirring blade with rotating blades.
  • the static mixer is welded to the inner wall of the powder reservoir through two metal rods, and the central axes of the static mixer and the powder reservoir coincide.
  • the rotary vane agitator and static mixer provided in this application can balance the air pressure of the multiple powder feeding pipes to ensure stable powder feeding, and also enable the metal powders of different compositions to be pneumatically mixed under the action of airflow, ensuring that Full mixing of metal powder.
  • a powder conveying pipe is used to connect the metal powder mixing system and the metal powder melting system.
  • the induction powder melting device and the laser powder melting device adopt a powder melting switching device for switching.
  • the induction powder melting device provided in this application uses a high-frequency induction coil, the frequency of the alternating current is higher than 20KHz, and has the advantages of uniform heating, small temperature difference, and high temperature control accuracy.
  • the laser powder melting device provided in the present application has the advantages of high energy concentration, a small range of the formed molten pool and heat-affected zone, and the melting environment does not need vacuum, and can improve the efficiency of powder melting.
  • the molten powder switching device is a valve with a manual lever.
  • the powder melting switching device provided in the present application can quickly switch between the induction melting device and the laser powder melting device connected in parallel through a valve with a manual lever, which expands the application range of the high-throughput preparation device.
  • the induction powder melting device includes a powder storage cavity and an induction coil melting cavity.
  • the laser powder melting device includes a laser melting cavity and a laser.
  • an induction preheating coil is provided on the powder conveying pipe connected to the laser powder melting device.
  • the induction preheating coil provided in the present application can preheat evenly mixed metal powder, thereby maximizing the use of the laser, improving the heating efficiency of the laser, and ensuring that the metal powder can be fully melted into liquid metal.
  • the laser beam emitted by the laser is a continuously adjustable laser beam.
  • the included angle between the laser beam emitted by the laser and the central axis of the inlet of the powder delivery tube is 50-80 degrees, for example, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees or 80 degrees. Degrees, etc., but are not limited to the listed values, other unlisted values within the numerical range are also applicable, and 75 degrees can be selected.
  • the angle between the laser beam and the center axis of the powder delivery tube inlet is set to 50-80 degrees, which can not only enable the metal powder to flow smoothly under the synergistic effect of its own gravity and the powder feeding air pressure, but also ensure that the metal powder has a Sufficient time is preheated by the induction preheating coil, thereby avoiding the problem of insufficient preheating of the metal powder, and also solving the problem that the preheating time of the metal powder is too long and consolidating on the powder pipe instead.
  • the metal fiber forming system includes a vacuum protection cavity, a servo motor, a mandrel, a rotating forming disk, and a cooling system.
  • the rotary forming disc includes a rotary wire drawing disc and/or a rotary extrusion double disc.
  • the metal fiber forming system provided in this application includes a cantilever structure.
  • the mounting shaft of the rotating forming disc is equipped with a rotating sealing structure, and is connected with a cooling control system, so that the molten metal is cooled and cooled on the rotating forming disc driven by a servo motor. It is drawn into continuous filamentary or long strip metal fibers with gradient changes in composition, and the cooling rate of molten liquid metal can be controlled, so as to achieve high-throughput preparation under different cooling process conditions.
  • the second objective of this application is to provide a method for preparing metal fibers using the high-throughput preparation device described in one of the objectives, which includes the following steps:
  • the induction powder melting device or the laser powder melting device is used to melt the uniformly mixed metal powder, and the molten metal obtained by the melting is transported to the metal fiber forming system;
  • the molten metal is prepared into metal fibers with gradient changes in composition.
  • the particle size of the metal powder in step (1) ranges from 50-200 ⁇ m, such as 50 ⁇ m, 70 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 180 ⁇ m or 200 ⁇ m, but not limited to the listed values. , Other unlisted values within this value range also apply.
  • the powder delivery efficiency of the metal powder delivery system in step (1) is 2-10g/min, for example, 2g/min, 5g/min, 7g/min, 9g/min or 10g/min, but not only Limited to the listed values, other unlisted values within this range of values also apply.
  • the mixing method in step (2) includes pneumatic and/or stirring.
  • the metal fiber in step (4) is a continuous long material with a cross section.
  • the metal fiber in step (4) is a wire or strip with a circular or rectangular cross-section.
  • the cross-sectional size of the metal fiber in step (4) is 2-5mm 2 , such as 2mm 2 , 2.5mm 2 , 3mm 2 , 3.5mm 2 , 4mm 2 , 4.5mm 2 or 5mm 2 , but not only Limited to the listed values, other unlisted values within this range of values also apply.
  • using the induction powder melting device to melt the uniformly mixed metal powder in step (3) includes: first transporting the uniformly mixed metal powder to the powder storage cavity, and then enters the induction The coil melting cavity is heated and melted.
  • using the laser powder melting device to melt the uniformly mixed metal powder in step (3) includes: first transporting the uniformly mixed metal powder to the powder pipe provided with an induction preheating coil The medium is preheated, and then enters the laser melting cavity to be heated and melted.
  • the preparation method includes the following steps:
  • the metal powder is evenly mixed by pneumatic and/or stirring in the metal powder mixing system, enters the funnel-shaped powder storage and is compacted by gravity, and then is transported to the metal powder melting system;
  • using the induction powder melting device to melt the uniformly mixed metal powder includes: first transporting the uniformly mixed metal powder to the powder storage cavity, and then enters the induction coil to melt The cavity is heated and melted;
  • Or using the laser powder melting device to melt the uniformly mixed metal powder includes: first transporting the uniformly mixed metal powder to the powder pipe provided with an induction preheating coil to be preheated, and then enter the laser melting cavity to be heated melt;
  • the molten metal is prepared by the rotating forming disk into continuous long metal fibers with a cross-sectional size of 2-5 mm 2.
  • the high-throughput preparation device described in this application is not only simple in structure and convenient to operate, but also capable of processing various metal types such as nickel-based, iron-based, magnesium-based, aluminum-based, and so on, expanding the scope of application;
  • the high-throughput preparation device described in this application can be used to produce continuous long metal fibers with cross-sections, which have the characteristics of uniform distribution of radial components and continuous changes in axial components;
  • the high-throughput preparation device described in this application can be used to prepare ribbon-shaped metal fibers with rectangular cross-sections, which can not only be directly used for tensile tests, but also can be directly used for composition, organization and other mechanical property tests, achieving rapid and convenient High-throughput characterization.
  • Figure 1 is a schematic diagram of a multi-powder-based metal fiber high-throughput preparation device provided by the present application
  • Figure 2 is a graph of the preset ratio of metal fibers corresponding to application example 1;
  • Figure 3 is a graph of the preset ratio of metal fibers corresponding to application example 2;
  • 11-powder cartridge 12-pneumatic motor; 13-powder feeding tray; 14-powder outlet; 15-powder feeding pipe; 16-mass flow controller; 21-powder inlet; 22-rotary blade agitator; 23- Powder storage; 24-static mixer; 25-motor; 26-mixer; 31-melting powder switching device; 32- powder storage cavity; 33- induction coil melting cavity; 34- induction preheating coil; 35- laser Melting cavity; 36-powder conveying tube; 37-laser; 41-rotating wire drawing disc; 42-rotating extrusion double disc; 43-vacuum protection cavity.
  • Figure 1 shows a schematic diagram of the multi-powder-based metal fiber high-throughput preparation device provided by the present application.
  • the pneumatic motor 12 is connected to the powder feeding tray 13, and the powder cylinder 11 is standing above the powder feeding tray 13 through the powder feeding tray.
  • the rotation of 13 can send the metal powder in the powder cylinder 11 to the powder outlet 14.
  • the powder outlet 14 and the powder inlet 21 are connected by the powder feeding pipe 15, and the mass flow controller 16 is installed on the powder feeding pipe 15.
  • the powder inlet 21 is located at the upper part of the powder mixer 26, the rotary blade agitator 22 is located inside the powder mixer 26 and is connected to the motor 25, the powder mixer 26 and the powder storage 23 are connected up and down, and the powder storage 23 is inside
  • a static mixer 24 is provided; the powder conveying pipe 36 is connected to the powder mixer 26, and is provided with a powder melting switching device 31, which can deliver the evenly mixed metal powder to the powder storage cavity 32 or the laser melting cavity 35, and the powder storage cavity 32 and
  • the induction coil melting cavity 33 is connected up and down, and a rotating drawing disk 41 is arranged below the induction coil melting cavity 33.
  • the powder pipe 36 is wound with the induction preheating coil 34 at the part connected with the laser melting cavity 35, and the laser melting cavity 35 is inside.
  • a laser 37 is provided with a rotating extrusion double disc 42 below; the vacuum protection cavity 43 protects the metal powder melting system 3 and the metal fiber forming system 4 in a vacuum environment to prevent the metal from being oxidized during the melting and forming process.
  • This embodiment provides a multi-powder-based metal fiber high-throughput preparation device.
  • the pneumatic motor 12 is connected to the powder feeding tray 13, and the powder cylinder 11 is standing above the powder feeding tray 13.
  • the rotation of the powder tray 13 can send the metal powder in the powder cylinder 11 to the powder outlet 14.
  • the powder outlet 14 and the powder inlet 21 are connected by the powder feeding tube 15, and the mass flow control is set on the powder feeding tube 15. ⁇ 16;
  • the powder inlet 21 is located at the upper part of the powder mixer 26, the rotary blade agitator 22 is located inside the powder mixer 26 and is connected to the motor 25, the powder mixer 26 and the powder storage 23 are connected up and down, and the powder storage 23 is provided with a static mixer 24;
  • the powder conveying pipe 36 is connected to the powder mixer 26, and is provided with a powder switching device 31, which can transport the evenly mixed metal powder to the powder storage cavity 32 or the laser melting cavity 35, the powder storage cavity 32 is connected to the induction coil melting cavity 33 up and down, and a rotating wire drawing disk 41 is arranged below the induction coil melting cavity 33.
  • the powder pipe 36 is wound with an induction preheating coil 34 at the part connected to the laser melting cavity 35, and the laser melting cavity 35
  • a laser 37 is provided inside and a rotating extrusion double disk 42 is provided below;
  • the vacuum protection cavity 43 protects the metal powder melting system 3 and the metal fiber forming system 4 in a vacuum environment to prevent the metal from being oxidized during the melting and forming process.
  • pneumatic rotary powder feeders composed of powder cylinder 11, pneumatic motor 12, powder feeding tray 13, and powder discharge 14, and 10 powder feeding tubes 15 and 10 with mass flow controller 16 are connected correspondingly.
  • the root powder feeding pipe 15 is then respectively connected with 10 powder inlets 21;
  • the angle between the laser beam emitted by the laser 37 and the center axis of the inlet of the powder tube 36 wound with the induction preheating coil 34 is 75 degrees.
  • This embodiment provides a multi-powder-based metal fiber high-throughput preparation device. As shown in Fig. 1, the difference between the device and the embodiment 1 is:
  • the angle between the laser beam emitted by the laser 37 and the center axis of the inlet of the powder tube 36 wound with the induction preheating coil 34 is 60 degrees.
  • This application example provides a method for preparing metal fibers, using the multi-powder-based metal fiber high-throughput preparation device described in Example 1, including the following steps:
  • the metal powder conveying system 1 iron powder with a particle size of 150 ⁇ m and nickel powder with a particle size of 150 ⁇ m are added to different powder cylinders 11, and the powder feeding plate 13 is driven by the pneumatic motor 12 to rotate to
  • the powder delivery efficiency of 8g/min sends the metal powder in the powder cartridge 11 to the powder outlet 14, and then the metal powder at the powder outlet 14 is sent to the delivery with a mass flow controller 16 through the flow of protective gas argon.
  • the corresponding metal powder is delivered to the metal powder mixing system 2 according to the preset ratio shown in Fig. 2;
  • the two-way metal powder enters from the powder inlet 21 of the powder mixer 26, and is mixed by the rotary blade agitator 22 driven by the motor 25, and then enters the static mixer 24
  • the powder storage device 23 for further mixing, and finally the uniformly mixed metal powder is transported to the metal powder melting system 3;
  • valve 31 with a manual lever is quickly switched to the laser powder melting device, and the uniformly mixed metal powder is first transported to the powder conveying pipe 36 provided with the induction preheating coil 34 for preheating. Heat to 700°C, then enter the laser melting chamber 35 to be heated and melted at 1700°C;
  • the molten liquid metal is rotated and extruded by the double disc 42 to prepare a rectangular strip-shaped iron-nickel gradient metal fiber with a cross-sectional size of 2 mm 2.
  • This application example provides a method for preparing metal fibers, using the multi-powder-based metal fiber high-throughput preparation device described in Example 2, including the following steps:
  • magnesium powder with a particle size of 100 ⁇ m, aluminum powder with a particle size of 100 ⁇ m, and iron powder with a particle size of 100 ⁇ m are added to different powder cylinders 11, and the powder feeding tray 13 is pneumatically operated.
  • the metal powder in the powder cartridge 11 is sent to the powder outlet 14 with a powder feeding efficiency of 2g/min, and the metal powder at the powder outlet 14 is sent to the belt by the flow of protective gas argon.
  • the powder feeding pipe 15 with the mass flow controller 16 the corresponding metal powder is delivered to the metal powder mixing system 2 according to the preset ratio shown in FIG. 3;
  • the three-way metal powder enters the powder inlet 21 of the powder mixer 26, and is mixed by the rotary blade agitator 22 driven by the motor 25, and then enters the static mixer 24
  • the powder storage device 23 for further mixing, and finally the uniformly mixed metal powder is transported to the metal powder melting system 3;
  • valve 31 with a manual lever is quickly switched to the induction powder melting device, and the uniformly mixed metal powder is first delivered to the powder storage cavity 32, and then enters the induction coil melting cavity 33 at 1200 Melted by heating at °C;
  • the molten liquid metal is prepared by the rotating drawing disk 42 into a circular wire-like magnesium-aluminum-iron gradient metal fiber with a cross-sectional size of 3 mm 2.
  • the high-throughput preparation device described in this application not only has the characteristics of simple structure, convenient operation, wide melting temperature, and wide application range, but also can achieve a continuous gradient of composition. High-throughput preparation of varying metal fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种基于多粉体的金属纤维高通量制备装置及利用其高通量制备金属纤维的方法。所述高通量制备装置包括依次连接的金属粉末输送系统(1)、金属粉末混合系统(2)、金属粉末熔化系统(3)和金属纤维成型系统(4),其中,所述金属粉末熔化系统(3)包括独立设置的感应熔粉装置和激光熔粉装置。利用所述高通量制备装置制备金属纤维的方法包括输粉、混粉、熔化和成型四个步骤。

Description

一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法 技术领域
本申请涉及金属纤维制备加工领域,涉及一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法。
背景技术
结构材料是以力学性能为基础,用来制造受力构件所用的材料。而金属结构材料如高性能合金、钢铁材料等,由于具备优异的力学性能,被广泛用于航空发动机、发电用燃气轮机、汽轮机、高铁及汽车等关乎国计民生的高端装备和部件的制备。随着科学技术的日新月异,对于性能更优良的金属结构材料的研发工作日益迫切。然而,传统的、以块体材料为主要样品形式的金属结构材料的研发方法,往往是在一次实验中只能针对一种合金成分配比进行块材样品的制备和表征。在块材样品的制备阶段难以在短时间内获取大量可对比的材料样品,在块材样品的表征阶段又难以实现力学性能实验数据的大量采集和分析,因此导致金属结构材料的研发过程耗时费力、效率低下、发展缓慢、成本较高。
20世纪80年代中期兴起的组合化学方法,已渗透到药物、有机、材料、分析等化学的诸多领域。随着自动化水平的提高,以高通量为显著特点的组合化学已成为目前化学领域最活跃的领域之一。将组合化学方法应用到材料学领域,称为组合材料学。目前,组合材料学方法主要以制备薄膜形式的功能材料为主,例如芯片,但不适用于金属结构材料力学性能的高通量筛选。
针对金属结构材料在研发过程中耗时费力、效率低下、发展缓慢、成本较高等问题,开发一种高通量制备装置并利用其制备金属结构材料的方法显得尤为重要。为此,研究者进行了有关研究,如CN107855531A公开了一种热压烧 结粉末冶金高通量制备金属基复合材料的方法,通过软隔断单元格和硬隔断层的工艺创新,实现了同炉同步一次性制备多种甚至上百种金属基复合材料试样。但是该方法仍然是生产块体材料试样,仍存在成本较高、连续性低、块体材料成分不能连续变化的缺点。CN107502765A公开了一种多成分材料的高通量微制造方法,利用微波能场加热可以一次性在不同温度梯度场下或相同温度梯度场下实现材料的高通量烧结熔融制备或热处理,虽然该方法制备得到的是较小尺寸的块体材料试样,但是受限于方法使用的阵列坩埚中样品槽的个数,仍存在连续性低、块体材料成分不易梯度变化的缺点。
以上公开的现有技术虽然开发了制备金属结构材料的方法,但是受限于块体材料试样,均未真正解决成本较高、连续性低、块体材料成分不易梯度变化的高通量问题。因此,如何开发一种既能降低成本,又能实现成分连续梯度变化的金属纤维,以此实现高通量制备,是目前亟待解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提出一种基于多粉体的金属纤维高通量制备装置,包括独立设置的感应熔粉装置和激光熔粉装置,利用所述高通量制备装置制备金属纤维的方法包括输粉、混粉、熔化和成型四个步骤,可以制得既能降低成本,又能实现成分连续梯度变化的金属纤维材料,以此实现高通量制备。
为达此目的,本申请采用以下技术方案:
本申请的目的之一在于提供一种基于多粉体的金属纤维高通量制备装置,所述高通量制备装置包括依次连接的金属粉末输送系统、金属粉末混合系统、 金属粉末熔化系统和金属纤维成型系统;
其中,所述金属粉末熔化系统包括独立设置的感应熔粉装置和激光熔粉装置。
本申请中所提供的基于多粉体的金属纤维高通量制备装置,其通过分别设置的感应熔粉装置和激光熔粉装置,可以更好地将各种不同成分范围内的多种金属粉末材料充分熔化,从而实现在一个更宽温度范围内完成对不同成分或材料的金属粉末的熔化,使制得的金属纤维可以实现成分连续梯度变化的特点。
作为本申请可选的技术方案,所述金属粉末输送系统包括多个单通道粉末输送装置,可选为2-20个,例如2个、5个、7个、10个、15个、18个或20个等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中所提供的单通道粉末输送装置通过设置止逆阀,实现金属粉末从金属粉末输送系统到金属粉末混合系统的单向输送。
可选地,采用质量流量控制器对所述金属粉末输送系统的送粉量进行反馈控制。
可选地,所述质量流量控制器的精度为±0.1g/min。
本申请中所提供的质量流量控制器,因其精度可以达到±0.1g/min,可以保证高精度预设比例的实现,进而为制备成分连续梯度变化的金属纤维提供基本保障。
可选地,所述金属粉末输送系统包括气动转盘送粉器。
可选地,所述气动转盘送粉器包括粉筒、送粉盘、气动电机和出粉口。
本申请中所提供的气动转盘送粉器使用气动电机带动送粉盘,采用氩气作为保护气,在送粉盘的转动和保护气的气流双重作用下,使得金属粉末分散均 匀且流畅输送。
作为本申请可选的技术方案,所述金属粉末混合系统包括依次连接的混粉装置和储粉装置。
可选地,所述混粉装置的进粉口和所述金属粉末输送系统的出粉口相连接。
可选地,采用送粉管连接所述混粉装置的进粉口和所述金属粉末输送系统的出粉口。
可选地,所述质量流量控制器设置在所述送粉管上。
可选地,所述混粉装置包括进粉口和旋叶搅拌器。
可选地,所述储粉装置包括储粉器和静态混合器。
可选地,所述储粉器为漏斗状。
可选地,所述静态混合器为带有旋叶的搅拌桨。
可选地,所述静态混合器通过两根金属杆焊接在所述储粉器的内壁上,且所述静态混合器和储粉器的中心轴线重合。
本申请中所提供的旋叶搅拌器和静态混合器通过协同作用,能够平衡多路送粉管的气压保证送粉稳定,还能使得不同成分的金属粉末在气流作用下实现气动混合,保证了金属粉末的充分混合。
作为本申请可选的技术方案,采用输粉管连接所述金属粉末混合系统和所述金属粉末熔化系统。
可选地,所述感应熔粉装置和所述激光熔粉装置采用熔粉切换装置进行切换。
本申请中所提供的感应熔粉装置采用高频感应线圈,交流电的频率高于20KHz,具有加热均匀、温差小、温控精度高的优点。
本申请中所提供的激光熔粉装置具有能量高度集中,形成的熔池和热影响区范围小,熔融环境不需真空等优势,可以提高熔粉效率。
可选地,所述熔粉切换装置为带有手动杆的阀门。
本申请中所提供的熔粉切换装置可以将并联的感应熔化装置和激光熔粉装置,通过带有手动杆的阀门进行快速切换,扩大了高通量制备装置的适用范围。
可选地,所述感应熔粉装置包括储粉腔和感应线圈熔化腔。
可选地,所述激光熔粉装置包括激光熔化腔和激光器。
可选地,与所述激光熔粉装置连接的输粉管上设置感应预热线圈。
本申请中所提供的感应预热线圈可以对混合均匀的金属粉末进行预热,从而最大化地利用激光,提高激光的加热效率,保证金属粉末能够充分熔化成液态金属。
可选地,所述激光器发射的激光束为连续可调激光束。
可选地,所述激光器发射的激光束和所述输粉管进口处中心轴线的夹角为50-80度,例如50度、55度、60度、65度、70度、75度或80度等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为75度。
本申请中将激光束和输粉管进口处中心轴线的夹角设置为50-80度,既可以使得金属粉末能够在自身重力和送粉气压的协同作用下顺畅流动,又能够保证金属粉末有充分的时间被感应预热线圈进行预热处理,从而避免了金属粉末预热不充分的问题,又解决了金属粉末预热时间过长反而在输粉管上固结成块的问题。
作为本申请可选的技术方案,所述金属纤维成型系统包括真空保护腔、伺服电机、芯轴、旋转成型盘和冷却系统。
可选地,所述旋转成型盘包括旋转拉丝盘和/或旋转挤压双盘。
本申请中所提供的金属纤维成型系统包括一种悬臂结构,旋转成型盘的安装轴加有旋转密封结构,且接有冷却控制系统,使得熔融金属在伺服电机带动下的旋转成型盘上冷却并被拉制成成分梯度变化的连续丝状或长条状金属纤维,并且可以控制熔融的液态金属的冷却速度,从而实现不同冷却工艺条件下的高通量制备。
本申请的目的之二在于提供一种利用目的之一所述高通量制备装置制备金属纤维的方法,包括如下步骤:
(1)将不同成分的金属粉末通过所述金属粉末输送系统,按照预设比例被输送至所述金属粉末混合系统;
(2)所述金属粉末在所述金属粉末混合系统中混合均匀后被输送至所述金属粉末熔化系统;
(3)在所述金属粉末熔化系统中,采用所述感应熔粉装置或所述激光熔粉装置来熔化混合均匀的金属粉末,熔化得到的熔融态金属被输送至所述金属纤维成型系统;
(4)通过所述金属纤维成型系统,所述熔融态金属被制备成成分梯度变化的金属纤维。
作为本申请可选的技术方案,步骤(1)所述金属粉末的粒径范围为50-200μm,例如50μm、70μm、100μm、120μm、150μm、180μm或200μm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述金属粉末输送系统的送粉效率为2-10g/min,例如2g/min、5g/min、7g/min、9g/min或10g/min等,但并不仅限于所列举的数值, 该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述混合方式包括气动和/或搅拌。
可选地,步骤(4)所述金属纤维为具有截面的连续长材。
可选地,步骤(4)所述金属纤维为截面为圆形或矩形的丝材或带材。
可选地,步骤(4)所述金属纤维的截面尺寸为2-5mm 2,例如2mm 2、2.5mm 2、3mm 2、3.5mm 2、4mm 2、4.5mm 2或5mm 2等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(3)中采用所述感应熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述储粉腔,再进入所述感应线圈熔化腔受热熔化。
作为本申请可选的技术方案,步骤(3)中采用所述激光熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述设置感应预热线圈的输粉管中被预热,然后进入所述激光熔化腔受热熔化。
作为本申请可选的技术方案,所述制备方法包括如下步骤:
(1)将粒径范围在50-200μm的不同金属粉末通过所述金属粉末输送系统,以2-10g/min的送粉效率按照预设比例被输送至所述金属粉末混合系统,其中送粉精度为±0.1g/min;
(2)所述金属粉末在所述金属粉末混合系统中通过气动和/或搅拌混合均匀,进入漏斗状的储粉器并经过自重力压实,然后被输送至所述金属粉末熔化系统;
(3)在所述金属粉末熔化系统中,采用所述感应熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述储粉腔,再进入所述感 应线圈熔化腔受热熔化;
或采用所述激光熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述设置感应预热线圈的输粉管中被预热,然后进入所述激光熔化腔受热熔化;
(4)通过所述金属纤维成型系统,所述熔融态金属被所述旋转成型盘制备成截面尺寸为2-5mm 2的连续长材状金属纤维。
与相关技术相比,本申请至少具有以下有益效果:
(1)本申请所述高通量制备装置不仅结构简单、操作方便,还可以处理镍基、铁基、镁基、铝基等多种金属类别,扩大了适用范围;
(2)采用本申请所述高通量制备装置制备金属纤维,既能降低成本,又能实现成分连续梯度变化,可以实现高通量制备;
(3)采用本申请所述高通量制备装置可以制得具有截面的连续长材金属纤维,具有径向成分分布均匀、轴向成分连续变化的特点;
(4)采用本申请所述高通量制备装置可以制得矩形截面的带状金属纤维,不仅可以直接进行拉伸试验,还可以直接用于成分、组织和其他力学性能试验,实现快速、便捷的高通量表征。
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1是本申请提供的基于多粉体的金属纤维高通量制备装置的示意图;
图2是应用例1对应的金属纤维预设比例曲线图;
图3是应用例2对应的金属纤维预设比例曲线图;
图中:1-金属粉末输送系统;2-金属粉末混合系统;3-金属粉末熔化系统; 4-金属纤维成型系统;
11-粉筒;12-气动电机;13-送粉盘;14-出粉口;15-送粉管;16-质量流量控制器;21-进粉口;22-旋叶搅拌器;23-储粉器;24-静态混合器;25-电机;26-混粉器;31-熔粉切换装置;32-储粉腔;33-感应线圈熔化腔;34-感应预热线圈;35-激光熔化腔;36-输粉管;37-激光器;41-旋转拉丝盘;42-旋转挤压双盘;43-真空保护腔。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
图1示出了本申请提供的基于多粉体的金属纤维高通量制备装置的示意图,气动电机12和送粉盘13连接,粉筒11立于送粉盘13的上方,通过送粉盘13的转动,可以将粉筒11中的金属粉末送至出粉口14,出粉口14和进粉口21通过送粉管15相连接,并在送粉管15上设置质量流量控制器16;进粉口21位于混粉器26的上部,旋叶搅拌器22位于混粉器26的内部并与电机25相连接,混粉器26和储粉器23上下连接,且储粉器23内部设置有静态混合器24;输粉管36连接混粉器26,并设置有熔粉切换装置31,可以将混合均匀的金属粉末输送至储粉腔32或激光熔化腔35,储粉腔32与感应线圈熔化腔33上下连接,并在感应线圈熔化腔33下方设置有旋转拉丝盘41,输粉管36在与激光熔化腔35相连接的部分缠绕感应预热线圈34,激光熔化腔35在内部设置有激光器37且在下方设置有旋转挤压双盘42;真空保护腔43将金属粉末熔化系统3和金属纤维成型系统4保护在真空环境中,防止熔化和成型过程中金属被氧化。
实施例1
本实施例提供了一种基于多粉体的金属纤维高通量制备装置,如图1所示,气动电机12和送粉盘13连接,粉筒11立于送粉盘13的上方,通过送粉盘13的转动,可以将粉筒11中的金属粉末送至出粉口14,出粉口14和进粉口21通过送粉管15相连接,并在送粉管15上设置质量流量控制器16;进粉口21位于混粉器26的上部,旋叶搅拌器22位于混粉器26的内部并与电机25相连接,混粉器26和储粉器23上下连接,且储粉器23内部设置有静态混合器24;输粉管36连接混粉器26,并设置有熔粉切换装置31,可以将混合均匀的金属粉末输送至储粉腔32或激光熔化腔35,储粉腔32与感应线圈熔化腔33上下连接,并在感应线圈熔化腔33下方设置有旋转拉丝盘41,输粉管36在与激光熔化腔35相连接的部分缠绕感应预热线圈34,激光熔化腔35在内部设置有激光器37且在下方设置有旋转挤压双盘42;真空保护腔43将金属粉末熔化系统3和金属纤维成型系统4保护在真空环境中,防止熔化和成型过程中金属被氧化。
其中,由粉筒11、气动电机12、送粉盘13、出粉14组成的气动转盘送粉器设置了10个,相应连接有10根带有质量流量控制器16的送粉管15,10根送粉管15再分别与10个进粉口21相连接;
激光器37发射的激光束和缠绕着感应预热线圈34的输粉管36进口处中心轴线的夹角为75度。
实施例2
本实施例提供了一种基于多粉体的金属纤维高通量制备装置,如图1所示,所述装置相比实施例1的区别在于:
激光器37发射的的激光束和缠绕着感应预热线圈34的输粉管36进口处中 心轴线的夹角为60度。
应用例1
本应用例提供了一种制备金属纤维的方法,利用了实施例1所述的基于多粉体的金属纤维高通量制备装置,包括如下步骤:
(1)在金属粉末输送系统1中,将粒径为150μm的铁粉和粒径为150μm的镍粉加入到不同的粉筒11中,送粉盘13在气动电机12的带动下转动,以8g/min的送粉效率将粉筒11中的金属粉末送至出粉口14,进一步通过保护气氩气的气流将出粉口14处的金属粉末送至带有质量流量控制器16的送粉管15中,然后按照图2所示预设比例,将对应金属粉末输送至金属粉末混合系统2;
(2)在金属粉末混合系统2中,将两路金属粉末从混粉器26的进粉口21进入,通过电机25带动下的旋叶搅拌器22实现混合,然后进入带有静态混合器24的储粉器23实现进一步混合,最后将混合均匀的金属粉末输送至金属粉末熔化系统3;
(3)在金属粉末熔化系统3中,通过带有手动杆的阀门31快速切换至激光熔粉装置,将混合均匀的金属粉末先输送至设置感应预热线圈34的输粉管36中被预热至700℃,然后进入激光熔化腔35在1700℃下受热熔化;
(4)在金属纤维成型系统4中,熔融的液态金属被旋转挤压双盘42制备成截面尺寸为2mm 2的矩形带材状铁-镍梯度金属纤维。
应用例2
本应用例提供了一种制备金属纤维的方法,利用了实施例2所述的基于多粉体的金属纤维高通量制备装置,包括如下步骤:
(1)在金属粉末输送系统1中,将粒径为100μm的镁粉、粒径为100μm 的铝粉和粒径为100μm的铁粉加入到不同的粉筒11中,送粉盘13在气动电机12的带动下转动,以2g/min的送粉效率将粉筒11中的金属粉末送至出粉口14,进一步通过保护气氩气的气流将出粉口14处的金属粉末送至带有质量流量控制器16的送粉管15中,然后按照图3所示预设比例,将对应金属粉末输送至金属粉末混合系统2;
(2)在金属粉末混合系统2中,将三路金属粉末从混粉器26的进粉口21进入,通过电机25带动下的旋叶搅拌器22实现混合,然后进入带有静态混合器24的储粉器23实现进一步混合,最后将混合均匀的金属粉末输送至金属粉末熔化系统3;
(3)在金属粉末熔化系统3中,通过带有手动杆的阀门31快速切换至感应熔粉装置,将混合均匀的金属粉末先输送至储粉腔32,再进入感应线圈熔化腔33在1200℃下受热熔化;
(4)在金属纤维成型系统4中,熔融的液态金属被旋转拉丝盘42制备成截面尺寸为3mm 2的圆形丝材状镁-铝-铁梯度金属纤维。
由上述实施例1-2和应用例1-2可以看出,本申请所述高通量制备装置不仅具有结构简单、操作方便、熔化温度宽、适用范围广的特点,还可以实现成分连续梯度变化的金属纤维的高通量制备。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。
以上详细描述了本申请的可选实施方式,但是,本申请并不限于上述实施方式中的具体细节。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。

Claims (10)

  1. 一种基于多粉体的金属纤维高通量制备装置,其中,所述高通量制备装置包括依次连接的金属粉末输送系统、金属粉末混合系统、金属粉末熔化系统和金属纤维成型系统;
    其中,所述金属粉末熔化系统包括独立设置的感应熔粉装置和激光熔粉装置。
  2. 根据权利要求1所述的高通量制备装置,其中,所述金属粉末输送系统包括多个单通道粉末输送装置,可选为2-20个;
    可选地,采用质量流量控制器对所述金属粉末输送系统的送粉量进行反馈控制;
    可选地,所述质量流量控制器的精度为±0.1g/min;
    可选地,所述金属粉末输送系统包括气动转盘送粉器;
    可选地,所述气动转盘送粉器包括粉筒、送粉盘、气动电机和出粉口。
  3. 根据权利要求1或2所述的高通量制备装置,其中,所述金属粉末混合系统包括依次连接的混粉装置和储粉装置;
    可选地,所述混粉装置的进粉口和所述金属粉末输送系统的出粉口相连接;
    可选地,采用送粉管连接所述混粉装置的进粉口和所述金属粉末输送系统的出粉口;
    可选地,所述质量流量控制器设置在所述送粉管上;
    可选地,所述混粉装置包括混粉器、进粉口和旋叶搅拌器;
    可选地,所述储粉装置包括储粉器和静态混合器;
    可选地,所述储粉器为漏斗状;
    可选地,所述静态混合器为带有旋叶的搅拌桨。
  4. 根据权利要求1至3任一项所述的高通量制备装置,其中,采用输粉管连接所述金属粉末混合系统和所述金属粉末熔化系统;
    可选地,所述感应熔粉装置和所述激光熔粉装置采用熔粉切换装置进行切换;
    可选地,所述熔粉切换装置为带有手动杆的阀门;
    可选地,所述感应熔粉装置包括储粉腔和感应线圈熔化腔;
    可选地,所述激光熔粉装置包括激光熔化腔和激光器;
    可选地,与所述激光熔粉装置连接的输粉管上设置感应预热线圈;
    可选地,所述激光器发射的激光束为连续可调激光束;
    可选地,所述激光器发射的激光束和所述输粉管进口处中心轴线的夹角为50-80度,可选为75度。
  5. 根据权利要求1至4任一项所述的高通量制备装置,其中,所述金属纤维成型系统包括真空保护腔、伺服电机、芯轴、旋转成型盘和冷却系统;
    可选地,所述旋转成型盘包括旋转拉丝盘和/或旋转挤压双盘。
  6. 一种利用权利要求1至5任一项所述高通量制备装置制备金属纤维的方法,其中,包括如下步骤:
    (1)将不同成分的金属粉末通过所述金属粉末输送系统,按照预设比例被输送至所述金属粉末混合系统;
    (2)所述金属粉末在所述金属粉末混合系统中混合均匀后被输送至所述金属粉末熔化系统;
    (3)在所述金属粉末熔化系统中,采用所述感应熔粉装置或所述激光熔粉装置来熔化混合均匀的金属粉末,熔化得到的熔融态金属被输送至所述金属纤 维成型系统;
    (4)通过所述金属纤维成型系统,所述熔融态金属被制备成成分梯度变化的金属纤维。
  7. 根据权利要求6所述的制备方法,其中,步骤(1)所述金属粉末的粒径范围为50-200μm;
    可选地,步骤(1)所述金属粉末输送系统的送粉效率为2-10g/min;
    可选地,步骤(2)所述混合方式包括气动和/或搅拌;
    可选地,步骤(4)所述金属纤维为具有截面的连续长材;
    可选地,步骤(4)所述金属纤维为截面为圆形或矩形的丝材或带材;
    可选地,步骤(4)所述金属纤维的截面尺寸为2-5mm 2
  8. 根据权利要求6或7所述的制备方法,其中,步骤(3)中采用所述感应熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述储粉腔,再进入所述感应线圈熔化腔受热熔化。
  9. 根据权利要求6至8任一项所述的制备方法,其中,步骤(3)中采用所述激光熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述设置感应预热线圈的输粉管中被预热,然后进入所述激光熔化腔受热熔化。
  10. 根据权利要求6至9任一项所述的制备方法,其中,包括如下步骤:
    (1)将粒径范围在50-200μm的不同金属粉末通过所述金属粉末输送系统,以2-10g/min的送粉效率按照预设比例被输送至所述金属粉末混合系统,其中送粉精度为±0.1g/min;
    (2)所述金属粉末在所述金属粉末混合系统中通过气动和/或搅拌混合均 匀,进入漏斗状的储粉器并经过自重力压实,然后被输送至所述金属粉末熔化系统;
    (3)在所述金属粉末熔化系统中,采用所述感应熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述储粉腔,再进入所述感应线圈熔化腔受热熔化;
    或采用所述激光熔粉装置来熔化混合均匀的金属粉末包括:将混合均匀的金属粉末先输送至所述设置感应预热线圈的输粉管中被预热,然后进入所述激光熔化腔受热熔化;
    (4)通过所述金属纤维成型系统,所述熔融态金属被所述旋转成型盘制备成截面尺寸为2-5mm 2的连续长材状金属纤维。
PCT/CN2020/070669 2019-12-10 2020-01-07 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法 WO2021114449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/957,966 US20230092989A1 (en) 2019-12-10 2020-01-07 High-throughput preparation device for metal fiber based on multi powder and metal fiber preparation method using the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911261567.3 2019-12-10
CN201911261567.3A CN110722161B (zh) 2019-12-10 2019-12-10 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法

Publications (1)

Publication Number Publication Date
WO2021114449A1 true WO2021114449A1 (zh) 2021-06-17

Family

ID=69225961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070669 WO2021114449A1 (zh) 2019-12-10 2020-01-07 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法

Country Status (3)

Country Link
US (1) US20230092989A1 (zh)
CN (1) CN110722161B (zh)
WO (1) WO2021114449A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408718A (zh) * 2020-03-26 2020-07-14 西安增材制造国家研究院有限公司 一种用于粉末床熔融的多材料供粉铺粉装置及其控制方法
CN113832457A (zh) * 2020-06-08 2021-12-24 刘继常 可实时变比变速同轴供粉的柜式激光直接沉积系统
CN112589089A (zh) * 2020-10-26 2021-04-02 四川大学 一种基于激光-同轴送粉耦合高通量制备球形粉末的装置及制备方法
CN112643050B (zh) * 2020-12-07 2023-02-17 西安航天发动机有限公司 一种颗粒增强金属基复合材料零件的激光增材制造方法
CN113500206A (zh) * 2021-05-24 2021-10-15 中国工程物理研究院材料研究所 一种陶瓷增强合金中纳米陶瓷相的高通量优选方法
CN113828241B (zh) * 2021-11-26 2022-02-22 北京煜鼎增材制造研究院有限公司 成分调控装置、方法及金属材料高通量制备系统
CN114309660A (zh) * 2021-12-06 2022-04-12 烟台大学 一种块体合金高通量制备装置及方法
CN115229217B (zh) * 2022-08-30 2023-06-30 钢研纳克检测技术股份有限公司 一种用于制备多组分小尺寸样品的高通量3d打印系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113275A (ja) * 2013-12-16 2015-06-22 大同特殊鋼株式会社 バサルト繊維製造装置
CN105954074A (zh) * 2016-04-26 2016-09-21 北京科技大学 一种高通量制备多组分梯度金属材料的装置
CN105970011A (zh) * 2016-05-05 2016-09-28 上海大学 多母料多能量源高通量金属材料的制备装置和制备方法
CN108214804A (zh) * 2017-12-02 2018-06-29 张英华 玻璃丝或玻璃纤维与植物纤维的混合物模压生产设备
CN108273999A (zh) * 2018-03-08 2018-07-13 上海材料研究所 一种基于3d打印技术的金属材料高通量制备方法
CN110339742A (zh) * 2019-07-10 2019-10-18 南方科技大学 高通量直写设备及直写方法、液相法制备系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584420A (ja) * 1991-09-26 1993-04-06 Daikin Ind Ltd 濃縮方法および装置
JPH07185287A (ja) * 1993-12-27 1995-07-25 Noritake Co Ltd 粉体含有高粘度流体の連続混合装置及び前記流体の製造方法
US6881363B2 (en) * 2001-12-07 2005-04-19 Symyx Technologies, Inc. High throughput preparation and analysis of materials
CN101837258A (zh) * 2009-03-18 2010-09-22 上海亦晨信息科技发展有限公司 搅拌推进式卧式预混装置及其方法
CN105903962B (zh) * 2016-06-14 2018-07-06 电子科技大学 块材合金制备系统、制备方法及其应用
CN108097956B (zh) * 2018-02-05 2024-02-23 温州大学激光与光电智能制造研究院 大型复杂梯度功能构件激光直接制造粉末配比动态送粉装置及加工设备
CN109226766B (zh) * 2018-08-07 2020-01-10 北京科技大学 一种高通量制备金属基复合材料的装置和方法
CN110039054B (zh) * 2019-05-16 2021-03-30 西安增材制造国家研究院有限公司 一种增材材料高通量成型装置及成型方法
CN211161924U (zh) * 2019-12-10 2020-08-04 南方科技大学 一种基于多粉体的金属纤维高通量制备装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113275A (ja) * 2013-12-16 2015-06-22 大同特殊鋼株式会社 バサルト繊維製造装置
CN105954074A (zh) * 2016-04-26 2016-09-21 北京科技大学 一种高通量制备多组分梯度金属材料的装置
CN105970011A (zh) * 2016-05-05 2016-09-28 上海大学 多母料多能量源高通量金属材料的制备装置和制备方法
CN108214804A (zh) * 2017-12-02 2018-06-29 张英华 玻璃丝或玻璃纤维与植物纤维的混合物模压生产设备
CN108273999A (zh) * 2018-03-08 2018-07-13 上海材料研究所 一种基于3d打印技术的金属材料高通量制备方法
CN110339742A (zh) * 2019-07-10 2019-10-18 南方科技大学 高通量直写设备及直写方法、液相法制备系统

Also Published As

Publication number Publication date
CN110722161A (zh) 2020-01-24
US20230092989A1 (en) 2023-03-23
CN110722161B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2021114449A1 (zh) 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法
CN211161924U (zh) 一种基于多粉体的金属纤维高通量制备装置
CN110449581B (zh) 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
CN105970011A (zh) 多母料多能量源高通量金属材料的制备装置和制备方法
CN109332695B (zh) 一种增强抗氧化性钼基合金的选区激光熔化制备方法
TWI386497B (zh) 旋轉式靶組件
CN108273999A (zh) 一种基于3d打印技术的金属材料高通量制备方法
WO2019024420A1 (zh) 一种合金粉末及其制备方法
CN105772718B (zh) 一种双合金整体叶片盘及其制备方法
CN107791616A (zh) 一种铜/石墨薄膜多层层合块状复合材料的制备方法
CN109943763A (zh) 一种高导热核燃料芯块的制备方法
CN113828241B (zh) 成分调控装置、方法及金属材料高通量制备系统
CN114703394A (zh) 一种高温材料及其制备方法与应用
Du et al. Effect of 316L stainless steel powder size distribution on selective laser melting process
JP6967372B2 (ja) 円筒型スパッタリングターゲット及びその製造方法
JP2000273506A (ja) 新規な銅合金粉末とその製造方法
CN110284111A (zh) 一种金属靶材的制备系统
CN115647104A (zh) 一种基于多路送丝/粉的金属纤维高通量制备装置与方法
CN111841383B (zh) 负极材料生产设备
CN113445042A (zh) 一种基于低活化钢基材的钨铬合金涂层及其制备方法
CN113333916A (zh) 一种旋转超声振动气体载流送粉器及电弧增材系统
CN221132261U (zh) 一种石墨烯纳米材料加工用陈化装置
CN113976923B (zh) 一种多材料同时打印的铺粉成型装置和铺粉成型方法
CN107914021A (zh) 一种高通量研究制备难熔金属材料样品的装置及方法
CN114307792B (zh) 带有迷宫形混合通道的声共振混合设备及炸药混合工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897771

Country of ref document: EP

Kind code of ref document: A1