CN110449581B - 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法 - Google Patents

一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法 Download PDF

Info

Publication number
CN110449581B
CN110449581B CN201910787395.7A CN201910787395A CN110449581B CN 110449581 B CN110449581 B CN 110449581B CN 201910787395 A CN201910787395 A CN 201910787395A CN 110449581 B CN110449581 B CN 110449581B
Authority
CN
China
Prior art keywords
tial
laser melting
alnb
composite material
melting deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910787395.7A
Other languages
English (en)
Other versions
CN110449581A (zh
Inventor
张国会
秦仁耀
黄帅
熊华平
李能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201910787395.7A priority Critical patent/CN110449581B/zh
Publication of CN110449581A publication Critical patent/CN110449581A/zh
Application granted granted Critical
Publication of CN110449581B publication Critical patent/CN110449581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明属于激光增材制造技术领域,涉及一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法。本发明采用的激光熔化沉积方法进行TiAl+Ti2AlNb复合材料的成形,是通过调整Ti2AlNb的添加量,使其在复合材料组织中起到“钉扎”作用,调高材料整体塑性。同时选择成形圆形试样,扫描路径改为同心圆弧,避免了矩形试样的直线扫描路径的拉应力,并且在每层同心圆开口转换60°‑90°,即每层扫描起始点变焕位置,减少热应力集中,避免裂纹的形成。控制成形工艺中的热输入量,并调节成形过程中基板的预热温度,减缓成形金属的凝固速度与冷却速度,使得应力有更长的时间去释放。

Description

一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
技术领域
本发明属于激光增材制造技术领域,涉及一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法。
背景技术
激光熔化沉积是一种新型的增材制造技术,在新材料、新结构研制、复杂结构制造和承力构件修复等领域具有巨大的优势,因此在航空、航天和生物等领域应用广泛。TiAl基合金密度较低,约3.9g/cm3,其抗蠕变和抗高温氧化性远优于高温钛合金,与镍基高温合金相当,具有高比刚度、比强度和热导性。然而,基体γ-TiAl相因具有方向性强键合及基于有序结构的变形行为的低对称性也导致了此类合金的室温低塑性,添加Ti2AlNb可通过在γ-TiAl相中固溶,置换,降低γ-TiAl本征脆性,同时利用其自身的良好塑性,提高复合材料中的塑性相含量。
然而采用激光熔化沉积方法,成形过程冷却速度较快,应力不易释放,而引起裂纹缺陷(见图1)。激光熔化沉积成形试样中的裂纹缺陷,对后续的组织及性能分析有影响,无法测量其室高温力学性能,难以确定激光增材制造添加 Ti2AlNb对TiAl基合金的增塑机理。
因此为制备激光熔化沉积的TiAl+Ti2AlNb复合材料的无裂纹试样,以研究其塑性变化,测量其力学性能,有必要寻求或开发激光熔化沉积制备工艺及成形方法。
发明内容
本发明的目的是提供一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法。其通过激光熔化沉积,原材料的配比、扫描路径的控制和工艺参数调节,从而避免裂纹的产生,获得形貌与组织良好的成形材料。
本发明的技术方案是:一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,包括以下步骤:
(1)用于激光熔化沉积成形的原材料为TiAl和Ti2AlNb粉末,采用双通道同轴送粉,使TiAl粉末与Ti2AlNb粉末以7:3的体积比均匀混合进入熔池,送粉同时进行激光熔化沉积;
(2)激光熔化沉积的每层扫描路径为由外至内的同心圆弧,在每一层中,每个同心圆弧的开口方向一致,在相邻层沉积时,每层同心圆弧的开口方向顺时针转换60°-90°,如此循环重复扫描,即获得添加30vol%Ti2AlNb的TiAl 基合金复合材料。
所述每层同心圆弧的开口方向顺时针转换60°时,每6层为一个成形周期,当转换角度为90°时,每4层为一个成形周期。
所述TiAl和Ti2AlNb粉末,均为球形粉末,粉末粒径为53-106μm。
所述相邻同心圆弧之间径向搭接率为35%-50%。
所述每个同心圆弧在开口处周向搭接率为40%。
所述激光熔化沉积的激光功率为600~1000W、激光扫描速度为500~ 800mm/min。
所述送粉方式为同轴的高纯度氩气送粉、送粉速度为3~12g/min。
所述激光熔化沉积采用同轴双通道的高纯度氩气保护、内保护氩气流量为 15~35L/min、外保护氩气流量为10~40L/min。
所述激光熔化沉积基板预热温度600℃,打印过程中温度变化控制在± 50℃以内。
本发明具有的优点和有益效果:
本发明采用的激光熔化沉积方法进行TiAl+Ti2AlNb复合材料的成形,是通过调整Ti2AlNb的添加量,使其在复合材料组织中起到“钉扎”作用,调高材料整体塑性。同时选择成形圆形试样,扫描路径改为同心圆弧,避免了矩形试样的直线扫描路径的拉应力,并且在每层同心圆开口转换60°-90°,即每层扫描起始点变焕位置,减少热应力集中,避免裂纹的形成。控制成形工艺中的热输入量,并调节成形过程中基板的预热温度,减缓成形金属的凝固速度与冷却速度,使得应力有更长的时间去释放。
附图说明
图1是采用矩形扫描路径与常规工艺的TiAl+Ti2AlNb复合材料试样(存在明显的裂纹缺陷)荧光检测图。
图2是本发明方法获得的激光熔化沉积的TiAl+Ti2AlNb复合材料(无裂纹缺陷)的宏观形貌图与荧光检测图。
图3是本发明方法的激光扫描路径示意图。
具体实施方式:
以下将结合附图和实例对本发明技术方案作进一步详述:
(1)实验设备为Arnold 6KW三维激光加工制造系统,用于激光熔化沉积成形的原材料选用球形TiAl和Ti2AlNb粉末,粉末粒径为53-106μm,采用双通道同轴送粉,使TiAl粉末与Ti2AlNb粉末以7:3的体积比混合进入熔池,即调控两个送粉通道的送粉体积速度比为7:3。
(2)成形过程的扫描路径为由外至内的同心圆弧,同心圆弧之间的搭接间距留有0.7mm,同心圆弧之间径向搭接0.7mm(约为搭接率43%),每个同心圆弧在开口处的周向搭接弧长为0.7mm。在每一层中,每个同心圆弧的开口方向一致,在相邻层沉积时,每层同心圆弧的开口方向顺时针转换90°,扫描路径示意图如图3所示,即每4层为一个成形周期,第1,5,…,4n+1层同心圆弧开口方向为12点钟方向,第2,6,…,4n+2层同心圆弧开口方向为3点钟方向,第3,7,…,4n+3层同心圆弧开口方向为6点钟方向,第4,8,…,4n+4 层开口方向为9点钟方向,此重复循环扫描。若选择每层同心圆弧的开口方向顺时针旋转60°,即6层为一个成形周期,进行重复循环扫描。
(3)采用激光熔化沉积制备TiAl+Ti2AlNb复合材料的工艺参数为:激光功率为700W、激光扫描速度为600mm/min、成形线能量为1.17KJ/cm、送粉方式为双通道同轴的高纯度氩气送粉,相邻熔覆道间的搭接率约为43%、气体保护方式为同轴双通道的高纯度氩气保护、内保护氩气流量为15L/min、外保护氩气流量为15L/min,以尺寸为200mm×200mm×10mm的TiAl合金试板为成形基板,基板下部放置陶瓷加热带,加热温度为600℃,在成形过程中控制温度误差不超过50℃。
图2是采用本发明方法获得的激光熔化沉积成形试样宏观形貌及荧光检测图,从图中可以看出,通过本发明方法成形的TiAl+Ti2AlNb复合材料试样,在荧光检测下无裂纹、未熔合以及表面气孔缺陷,实现了对TiAl+Ti2AlNb复合材料激光熔化沉积过程中的裂纹控制,为试样的力学性能测试奠定了基础。

Claims (9)

1.一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,包括以下步骤:
(1)用于激光熔化沉积成形的原材料为TiAl和Ti2AlNb粉末,采用双通道同轴送粉,使TiAl粉末与Ti2AlNb粉末以7:3的体积比均匀混合进入熔池,送粉同时进行激光熔化沉积;
(2)激光熔化沉积的每层扫描路径为由外至内的同心圆弧,在每一层中,每个同心圆弧的开口方向一致,在相邻层沉积时,每层同心圆弧的开口方向顺时针转换60°-90°,如此循环重复扫描,即获得添加30vol%Ti2AlNb的TiAl基合金复合材料。
2.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,所述每层同心圆弧的开口方向顺时针转换60°时,每6层为一个成形周期,当转换角度为90°时,每4层为一个成形周期。
3.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,所述TiAl和Ti2AlNb粉末,均为球形粉末,粉末粒径为53-106μm。
4.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,相邻同心圆弧之间径向搭接率为35%-50%。
5.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,所述每个同心圆弧在开口处周向搭接率为40%。
6.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,所述激光熔化沉积的激光功率为600~1000W、激光扫描速度为500~800mm/min。
7.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,送粉方式为同轴的高纯度氩气送粉、送粉速度为3~12g/min。
8.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,所述激光熔化沉积采用同轴双通道的高纯度氩气保护、内保护氩气流量为15~35L/min、外保护氩气流量为10~40L/min。
9.如权利要求1所述的TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法,其特征在于,所述激光熔化沉积基板预热温度600℃,打印过程中温度变化控制在±50℃以内。
CN201910787395.7A 2019-08-23 2019-08-23 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法 Active CN110449581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910787395.7A CN110449581B (zh) 2019-08-23 2019-08-23 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910787395.7A CN110449581B (zh) 2019-08-23 2019-08-23 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法

Publications (2)

Publication Number Publication Date
CN110449581A CN110449581A (zh) 2019-11-15
CN110449581B true CN110449581B (zh) 2021-08-03

Family

ID=68488940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910787395.7A Active CN110449581B (zh) 2019-08-23 2019-08-23 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法

Country Status (1)

Country Link
CN (1) CN110449581B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976872B (zh) * 2019-12-31 2021-10-01 鑫精合激光科技发展(北京)有限公司 一种扫描方法及扫描装置
CN111283196B (zh) * 2020-03-05 2021-10-08 华中科技大学 铁基陶瓷复合材料薄壁回转体构件及其激光增材制造方法
CN111451500A (zh) * 2020-04-02 2020-07-28 航发优材(镇江)增材制造有限公司 一种钛合金阀杆激光增材修复方法
CN111843203A (zh) * 2020-06-22 2020-10-30 河海大学常州校区 一种带预热装置的γ-TiAl金属间化合物激光焊接装置及方法
CN111843204A (zh) * 2020-06-22 2020-10-30 河海大学常州校区 一种基于细化焊缝晶粒的Ti2AlNb基合金激光焊接方法
CN111945151A (zh) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 一种Ti-Al-N-Nb四元涂层的制备方法
CN112725712B (zh) * 2020-12-18 2021-09-14 北京钢研高纳科技股份有限公司 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品
CN112981156B (zh) * 2021-02-05 2022-05-27 中国航发北京航空材料研究院 Ti2AlNb颗粒增塑的TiAl基复合材料及制备方法
CN113245558B (zh) * 2021-06-10 2021-10-01 北京煜鼎增材制造研究院有限公司 一种高性能高温梯度材料构件的制造方法
CN113245551B (zh) * 2021-06-10 2021-10-01 北京煜鼎增材制造研究院有限公司 一种300m钢飞机起落架激光增材修复方法
CN113897608A (zh) * 2021-10-23 2022-01-07 河南省锅炉压力容器安全检测研究院 一种用于阀门密封面的激光表面强化加工设备
CN114000142A (zh) * 2021-10-27 2022-02-01 中国航发北京航空材料研究院 一种钛合金炮口制退器喷孔壁强化方法
CN114318056B (zh) * 2021-12-14 2022-08-02 哈尔滨工业大学(威海) 一种双丝粉芯丝材增材制造的Ti2AlNb合金及其制造方法
CN114226736A (zh) * 2021-12-21 2022-03-25 北京航空航天大学 一种抑制增材制造铝合金裂纹形成并促进晶粒细化的方法
CN115011828A (zh) * 2022-05-26 2022-09-06 西北有色金属研究院 一种激光熔覆沉积制备高强Ti185合金的方法
CN115138838A (zh) * 2022-06-23 2022-10-04 浙江大学 一种无裂纹的激光熔化成形Nb-TiAl合金及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776617A (en) * 1996-10-21 1998-07-07 The United States Of America Government As Represented By The Administrator Of The National Aeronautics And Space Administration Oxidation-resistant Ti-Al-Fe alloy diffusion barrier coatings
WO2001093785A2 (en) * 2000-06-05 2001-12-13 Laser Fare Orthopedic implant and method of making metal articles
CN100528102C (zh) * 2001-08-11 2009-08-19 斯坦莫尔全球移植有限公司 外科植入物
CN105772718A (zh) * 2014-12-18 2016-07-20 北京有色金属研究总院 一种双合金整体叶片盘及其制备方法
CN108326317A (zh) * 2018-03-28 2018-07-27 西北工业大学 TiAl合金与Ti2AlNb粉末制备环形件的方法
CN109047759A (zh) * 2018-08-15 2018-12-21 南京理工大学 一种提高层间强度和减少翘曲变形的激光扫描方法
CN109351972A (zh) * 2018-12-10 2019-02-19 有研工程技术研究院有限公司 一种可控成分连续送粉系统
CN109434104A (zh) * 2018-11-26 2019-03-08 西安增材制造国家研究院有限公司 一种用于金属激光选区熔化成形工艺的扫描方法
CN109466057A (zh) * 2018-10-05 2019-03-15 先临三维科技股份有限公司 消除打印拉丝的方法、fdm打印装置、存储介质和处理器
CN109865836A (zh) * 2019-04-04 2019-06-11 西安建筑科技大学 一种3D打印增强体/Ti2AlNb基复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776617A (en) * 1996-10-21 1998-07-07 The United States Of America Government As Represented By The Administrator Of The National Aeronautics And Space Administration Oxidation-resistant Ti-Al-Fe alloy diffusion barrier coatings
WO2001093785A2 (en) * 2000-06-05 2001-12-13 Laser Fare Orthopedic implant and method of making metal articles
CN100528102C (zh) * 2001-08-11 2009-08-19 斯坦莫尔全球移植有限公司 外科植入物
CN105772718A (zh) * 2014-12-18 2016-07-20 北京有色金属研究总院 一种双合金整体叶片盘及其制备方法
CN108326317A (zh) * 2018-03-28 2018-07-27 西北工业大学 TiAl合金与Ti2AlNb粉末制备环形件的方法
CN109047759A (zh) * 2018-08-15 2018-12-21 南京理工大学 一种提高层间强度和减少翘曲变形的激光扫描方法
CN109466057A (zh) * 2018-10-05 2019-03-15 先临三维科技股份有限公司 消除打印拉丝的方法、fdm打印装置、存储介质和处理器
CN109434104A (zh) * 2018-11-26 2019-03-08 西安增材制造国家研究院有限公司 一种用于金属激光选区熔化成形工艺的扫描方法
CN109351972A (zh) * 2018-12-10 2019-02-19 有研工程技术研究院有限公司 一种可控成分连续送粉系统
CN109865836A (zh) * 2019-04-04 2019-06-11 西安建筑科技大学 一种3D打印增强体/Ti2AlNb基复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
激光熔化沉积TA15+Ti_2AlNb合金的组织与力学性能;刘彦涛等;《航空材料学报》;20170630;第37卷(第03期);61-67 *
激光立体成形Ti60-Ti_2AlNb梯度材料的组织与相演变;杨模聪等;《金属学报》;20090630;第45卷(第06期);729-736 *
金属粉末激光成形扫描方式;尚晓峰等;《机械工程学报》;20050731;第41卷(第07期);99-102 *

Also Published As

Publication number Publication date
CN110449581A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN110449581B (zh) 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
Wu et al. Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition
CN107338370B (zh) 一种k465镍基高温合金结构件的激光增材制造工艺
Huang et al. Process optimization of melt growth alumina/aluminum titanate composites directed energy deposition: Effects of scanning speed
CN112981156B (zh) Ti2AlNb颗粒增塑的TiAl基复合材料及制备方法
Li et al. Manufacturing of ceramic cores: From hot injection to 3D printing
CN112548100B (zh) 一种仿生定向有序叠层复合材料的制备方法
CN110405209A (zh) 原位降低选区激光熔化制备钛基复合材料残余应力的方法
CN105772718B (zh) 一种双合金整体叶片盘及其制备方法
Su et al. Directional solidification and microstructural development of Al2O3/GdAlO3 eutectic ceramic in situ composite under rapid growth conditions
Tlotleng Microstructural properties of heat-treated LENS in situ additively manufactured titanium aluminide
Wang et al. Negative thermal expansion Y2Mo3O12 particles reinforced AgCuTi composite filler for brazing Cf/SiC and GH3536
Su et al. Rapid solidification behaviour of Al2O3/Y3Al5O12 (YAG) binary eutectic ceramic in situ composites
Okuni et al. Joining of AlN and graphite disks using interlayer tapes by spark plasma sintering
CN114703394A (zh) 一种高温材料及其制备方法与应用
CN112441834B (zh) 选择性激光熔化制备Al2O3-GdAlO3-ZrO2三元共晶陶瓷的方法
Kong et al. A novel approach to prepare high density SiC ceramics by powder extrusion printing (PEP) combined with one-step sintering method
CN113210627A (zh) 一种碳化物增强TiAl基纳米复合材料的制备方法
Wang et al. Ceramic fibers reinforced functionally graded thermal barrier coatings
Guan et al. Selective laser melting of yttria-stabilized zirconia
CN112958784A (zh) 一种颗粒增强钛基复合材料中增强相均匀分布及生长方向主动控制方法
KR102008721B1 (ko) 고 내산화성 및 내식성이 우수한 Cr-Al 이원계 합금 분말 제조 방법, Cr-Al 이원계 합금 분말, Cr-Al 이원계 합금 PVD 타겟 제조 방법 및 Cr-Al 이원계 합금 PVD 타겟
Chen et al. Effects of heat treatment on mechanical properties of ODS nickel-based superalloy sheets prepared by EB-PVD
CN108044122A (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
Luo et al. Interfacial characterization and mechanical properties of additively manufactured IN718/CoNiCrAlY laminate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant