CN113245551B - 一种300m钢飞机起落架激光增材修复方法 - Google Patents

一种300m钢飞机起落架激光增材修复方法 Download PDF

Info

Publication number
CN113245551B
CN113245551B CN202110647227.5A CN202110647227A CN113245551B CN 113245551 B CN113245551 B CN 113245551B CN 202110647227 A CN202110647227 A CN 202110647227A CN 113245551 B CN113245551 B CN 113245551B
Authority
CN
China
Prior art keywords
repair
scanning
power
laser
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110647227.5A
Other languages
English (en)
Other versions
CN113245551A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yuding Additive Manufacturing Research Institute Co ltd
Original Assignee
Beijing Yuding Zengcai Manufacture Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yuding Zengcai Manufacture Research Institute Co ltd filed Critical Beijing Yuding Zengcai Manufacture Research Institute Co ltd
Priority to CN202110647227.5A priority Critical patent/CN113245551B/zh
Publication of CN113245551A publication Critical patent/CN113245551A/zh
Application granted granted Critical
Publication of CN113245551B publication Critical patent/CN113245551B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种300M钢飞机起落架激光增材修复方法,包括,1)坡口加工;2)激光增材修复;3)局部去应力退火处理;4)后处理。本发明采用特殊的坡口设计,采用特定的激光扫描方式,可最大程度降低残余应力。本发明创新性的研究出局部热处理装备,可对修复区域进行局部热处理,进一步去除残余应力,同时保证对起落架其他部分的热输入小。并采用自行改良设计的二次硬化不锈钢粉末为修复材料,获得优异的修复组织性能。此外,本发明的激光加工装备和热处理装备体积小,重量轻,可在飞机服役机场对其起落架直接进行修复,实现快速响应。

Description

一种300M钢飞机起落架激光增材修复方法
技术领域
本发明涉及航空航天装备制造的技术领域,尤其是涉及一种300M钢飞机起落架激光增材修复方法。
背景技术
起落架是飞机下部用于起飞降落或地面滑行时支撑飞机并用于地面移动的附件装置。300M 钢是一种低合金超高强度钢,因其成本低、生产工艺简单、强度高、塑性、抗疲劳性能和抗冲击性能较好等优点而成为应用最为广泛的飞机起落架主承力构件材料。在起飞和降落过程中,地面要对飞机产生很大的冲击力和颠簸振动,起落架受到大的冲击载荷作用,易产生裂纹。在海洋环境以及腐蚀性环境中服役时,应力腐蚀的作用会加快裂纹的产生和扩展。裂纹将大大削弱起落架抗冲击载荷能力,严重影响飞行安全。因此,有必要对飞机起落架进行修复。
激光增材制造技术是一种先进的近净成形技术,通过高功率的激光束熔化合金粉末或丝材并快速凝固逐层堆积,实现复杂金属结构件的直接近净成形制造。激光增材制造技术最大的特点是制造过程无需专用的模具,将传统的“减材”加工方法转变为“增材”加工,既增加了制造工艺的生产效率和柔性,又极大地节省了工装和生产成本。其高度柔性的制造特点可广泛应用于金属构件的修复。起落架结构复杂,修复难度大,修复精度要求高,利用传统的焊接修复技术难以达到理想的修复效果。激光增材修复技术受结构限制小,精度高,效率高,十分适合飞机起落架的修复。
发明内容
本发明利用激光增材制造技术,采用特殊的工艺对300M钢起落架进行修复,具体修复方案如下,
一种300M钢飞机起落架激光增材修复方法,其特征在于:包括如下步骤,
1)坡口加工,所述坡口为斜向加工坡口,以使得坡口的中心轴线尽量与裂纹扩展方向一致;
2)激光增材修复,采用环形光斑、光内同轴送粉的方式由外向内、由下向上进行逐层扫描修复,所述扫描修复时送粉管伸入坡口内进行送粉;
3)去应力退火处理,采用电阻丝对修复区域进行加热,利用热电偶对温度进行调控,退火完成后利用绝热材料覆盖在修复区域进行保温,同时在起落架其他区域上覆盖降温材料进行降温;
4)后处理,利用超声波无损探伤仪对修复区域进行探伤,若探伤结果显示无裂纹、孔洞缺陷后即可按照构件实际服役要求对修复后构件表面进行机加工处理以满足实际需求;若探伤结果显示仍存在缺陷则需重新进行上述1)-3)并优化激光增材修复工艺参数以获得无缺陷修复构件。
进一步优选的,所述坡口的中心轴线与起落架表面的法线之间的夹角不超过30°,所述坡口角度为45°,所述坡口区域表面粗糙度为Ra 0.8。
进一步优选的,由外向内扫描时,逐渐减小激光功率。
进一步优选的,由外向内扫描时,第二圈扫描的功率应降低到第一圈功率的60%~70%,后每一圈激光功率逐渐降低5%~10%,直到功率降到第一圈功率的50%~55%时不再降低功率,保持现有功率进行扫描。
进一步优选的,由下向上扫描时,从第二层开始,每一层进行第一圈扫描时,由于之前的扫描已经将基体加热到一个稳定的温度,因此激光功率将调整为上一层稳定后的功率的125%~135%,后续的扫描时保持上一层稳定时的功率。
进一步优选的,所述扫描修复,最小光斑直径为1~2.5mm,搭接率为40~50%,扫描速度为300~400mm/min,第一层第一圈激光功率为1500~3500W,送粉量为300g/h~750g/h。
进一步优选的,所述去应力退火处理,退火温度保持在430℃~465℃之间,退火时间2.5-3.5小时,利用石棉覆盖在修复区域进行保温,同时在起落架其他区域上覆盖上湿毛毯进行降温,使修复区域缓慢降温至200℃左右撤去湿毛毯。
进一步优选的,所述所述扫描修复所用的粉末化学成分,以质量百分含量计为,C0.15~0.20,Si 0.02~0.03,Cr 3.3~3.7,Ni 10.0~11.0,Co 7.0~7.5,Mo 1.0~1.2,V 0.05~0.07,Nb 1.1~1.2,Cu 1.5~2.3,余量为不可避免的杂质和Fe。
进一步优选的,所述修复区域的组织为板条状马氏体+细小的弥散碳化物。
与现有技术相比,本发明的有益效果是:
首先,采用了特殊的坡口加工方式,使得坡口的中心轴线尽量与裂纹的扩展方向一致,从而尽量使得坡口区域即修复区域较小,热影响区小,从而有利于修复效果。同时控制坡口形貌和粗糙度,以保证修复区域与基体的良好结合。
第二,采用环形光斑的扫描修复方式,可以实现光内同轴送粉的方式,粉末几乎无发散现象,光和粉的耦合稳定性比光外多路同轴送粉要好的多,同时大大减少粉末的浪费,并提高表面质量,提高成形精度;配合细长的送粉管伸入细小的坡口内进行送粉,辅之长焦激光光束的细小光斑,可实现超高精度修复。
第三,采用由外向内、由下向上的逐层扫描修复方式,能够最大程度上降低修复过程中热循环产生的应力,防止修复区域开裂,减少修复完成后的残余应力。特别是,在扫描过程中,由外向内扫描时逐渐减小激光功率,在基体温度比较稳定后,保持激光功率不变,而由下向上扫描时,锚定上层的扫描功率而设置功率参数。
第四,控制扫描修复时工艺参数,使各项参数合理配合,从而保证修复的效率和修复的精度。
第五,通过专用的修复粉末和独特的退火工艺控制,在优选退火温度处理后,通过修复区域保温,其他区域缓慢降温的方式来控制修复区域的组织和性能。
附图说明
图1为本发明实施例的起落架激光增材修复示意图。
图2为本发明实施例的激光增材修复扫描方式的示意图。
图3为本发明实施例的局部热处理状态示意图。
图4为本发明实施例修复区域显微组织的金相照片。
具体实施方式
以下将结合本发明实施例中的附图对本发明实施例中的技术方案进行描述。
本实施例中待修复的基体为300M钢起落架,具体的激光增材修复工艺流程具体包括如下步骤:
1. 坡口加工
激光增材修复前需要在损伤区域加工坡口,现有修复工艺中一般坡口是以其中心轴线垂直于起落架结构进行加工(即坡口的中心轴线与起落架表面的法线重合一致),但实际损伤区域情况中,裂纹扩展方向未必是与起落架的表面垂直,此时如果仍然采用传统的垂直坡口加工,会导致坡口区域过大,修复区域大大增大,热影响区域也增大,不利于修复。因此本发明中坡口加工根据裂纹的扩展方向选择可斜向加工坡口,而非垂直加工坡口,如此可使得坡口中心轴线的方向尽量与裂纹扩展方向保持一致从而尽量减小坡口的尺寸而减小修复区域,并进而减小热影响区,当然,坡口的斜向加工也不能无限制的进行,一般而言,坡口中心对称轴线和起落架表面的法线方向的夹角不超过30°。
同时,坡口倾斜角度为选择45°,这样,在尽量减小待修复区域的同时,保证坡口边缘界面结合强度。坡口底部加工为圆角,防止应力集中产生新的裂纹。坡口区域表面粗糙度需达到Ra0.8,以保证修复区域与基体进行良好结合。
坡口加工完成后,先使用化学除污剂去除表面油污和杂质,然后使用热水清洗和流水冲洗,最后使用无水乙醇清洗,清洗完成后将无水乙醇吹干。
2. 激光增材修复
图1为起落架激光增材修复示意图,图1中,①为起落架主承力结构,②为坡口,③为激光加工头,④为机械臂,⑤为垫板,⑥为夹具,⑦为保护气气罩。起落架主承力结构通过夹具牢固的夹持在垫板上,以能够对斜向坡口进行修复。激光加工头由机械臂带动,可三维灵活移动修复。激光通过特殊的光路经过聚焦透镜形成环形光斑,光斑直径最小可达1mm。本发明采用环形光斑从而实现光内同轴送粉的方式,粉末几乎无发散现象,光和粉的耦合稳定性比光外多路同轴送粉要好的多,同时大大减少粉末的浪费,并提高表面质量,提高成形精度。并且本发明采用细长的送粉管,送粉管可深入细小的坡口内进行送粉,本发明采用长焦激光光束,配合细小的光斑,可实现超高精度修复。
在实际的激光增材修复扫描过程中,如图2所示,在坡口中从下向上逐层沉积,每一层由外向内沿环形路径进行扫描。采用这种扫描方式进行激光增材修复,能够最大程度上降低修复过程中热循环产生的应力,防止修复区域开裂,减少修复完成后的残余应力。因为激光扫描时基体会被加热,因此由外向内扫描时应逐渐减小激光功率 ,在基体温度比较稳定后,保持激光功率不变。由于未进行激光扫描时基体温度较低,同时坡口处激光斜向入射,激光吸收率较低,因此第一圈扫描时需采用较大的激光功率。第二圈扫描时,功率应降低到第一圈功率的60%~70%。后每一圈激光功率逐渐降低5%~10%,直到基体温度稳定为止,一般而言,功率降到第一圈功率的50%~55%时基体温度基本达到稳定状态,随后可以保持现有功率进行扫描。从下向上逐层扫描时,应适当提高激光功率,锚定前一层的功率进行设定,也即从第二层开始,每一层进行第一圈扫描时,由于之前的扫描已经将基体加热到一个稳定的温度,因此激光功率将调整为上一层稳定后的功率的125%~135%,后续的扫描时保持上一层稳定时的功率。
同时,为保证修复的效率和修复的精度,激光光斑直径需根据坡口深度进行合理选择,光斑直径一般为1~2.5mm,坡口深度较小时,采用小的光斑直径保证修复精度,坡口深度较大时,采用大的光斑直径保证修复效率,光斑直径超过2.5mm时无法保证修复的精度。搭接率一般选择40%~50%,扫描速度一般选择300~400mm/min。激光功率和送粉量需根据光斑直径进行调控,第一层第一圈激光功率一般为1500W到3500W,送粉量一般为300g/h到750g/h,光斑直径越大,激光功率和送粉量越大。
具体的,本实施例中,坡口深度6mm,采用1mm直径的光斑,扫描速度300mm/min,送粉量400g/h,搭接率50%。第一圈激光功率选择1800W,第二圈功率为1200W,之后每圈功率降低100W,功率为900W后保持该功率进行扫描。从第二层开始,第一圈功率选择1200W,之后每圈保持900W。
本发明中未采用300M钢成分(表1为300M钢基体的化学成分)的合金粉末作为修复粉末,因为其碳含量较高,凝固过程中易开裂,使用旋转电极雾化法无法制备出合格的球形粉末。本发明所采用的修复粉末为新型的高强二次硬化不锈钢YDS010(表2为本发明YDS010化学成分),其可制备出粒径均匀、表面状态良好的球形粉末,同时适合修复300M钢基体使用。具体而言,合金粉末中,Cr、Ni元素使钢具有良好的耐蚀性。引入Nb、V元素形成细小的碳化物相进一步提高钢的强度和抗冲击性能。Cu元素能进一步提高耐蚀性,同时有沉淀强化的作用。Co元素一方面在回火时推迟马氏体位错亚结构的回复,促进位错线上形成细小、弥散的合金碳化物,另一方面还起到固溶强化作用。此外,Mo、V和Nb等经过中高温回火在马氏体板条的位错线上析出稳定的M2C类合金碳化物,这些碳化物细小、弥散,使钢的强度大大提高,经过修复后的热处理,一定程度上可以促进二次硬化,提高钢的强度,从而弥补合金粉末C含量较低可能导致的强硬度不足等问题。
表1 300M钢基体化学成分(质量分数%)
C Si Cr Mn Ni Mo V Fe
0.40-045 1.6-1.7 0.8-0.85 07-0.85 1.7-1.85 0.25-0.35 0.05-0.06 Bal.
表2 修复用钢YDS010粉末化学成分(质量分数%)
C Si Cr Ni Co Mo V Nb Cu Fe
0.15-0.2 0.02-0.03 3.3-3.7 10-11 7-7.5 1-1.2 0.05-0.07 1.1-1.2 1.5-2.3 Bal.
3. 局部去应力退火处理
在激光修复完成后,修复区域仍然存在较大的残余应力,必须进行去应力退火处理。若对起落架整体进行热处理,将影响起落架其他区域的组织,影响起落架的性能。因此,本发明采用局部热处理装备,可实现对修复区域的局部退火处理,同时尽量减小对其他区域的热影响。同时,退火处理能一定程度上促进二次硬化,提高修复区域的强度。图3为局部热处理示意图,利用电阻丝对修复区域进行加热,利用热电偶对温度进行调控,利用石棉覆盖在修复区域上进行保温,同时在起落架其他区域上覆盖上湿毛毯进行降温,防止其他区域过热而引起组织改变。退火温度应保持在430°C到465°C之间,时间3小时,温度低于430°C无法达到理想的去应力效果,温度高于465°C时可能使组织变得粗大,影响性能。同时485°C时会产生回火脆性,严重影响构件性能,需避免。由于热电偶存在一定滞后性,热电偶控制温度在440°C到455°C之间,温度低于440°C增加电阻丝加热功率,温度高于455°C时降低电阻丝加热功率。去应力退火完成后继续保持石棉覆盖,使修复区域缓慢降温,并在温度200°左右撤去降温湿毛毯。图4为去应力退火后修复区显微组织,为板条状马氏体+细小的弥散碳化物。碳化物直径在60nm到150nm之间,均匀弥散的分布在板条马氏体之间,对位错运动具有强烈的阻碍作用,能够大幅提高钢的强度。
4. 后处理
最后,利用超声波无损探伤仪对修复区域进行探伤,若探伤结果显示无裂纹、孔洞等缺陷后即可按照构件实际服役要求对修复后构件表面进行机加工处理以满足实际需求,若探伤结果显示存在缺陷则需重新进行上述激光增材修复步骤并优化工艺参数以获得无缺陷修复构件。
综上,本发明研制出新型激光加工头,形成环形激光光斑,实现光内送粉,大大提高了熔池的稳定性和粉末的利用率。通过调控光斑直径、送粉量、激光功率和扫描速度等工艺参数,可形成微小熔池,进行高精度的激光修复作业。本发明采用特殊的坡口设计,采用特定的激光扫描方式,可最大程度降低残余应力。本发明创新性的研究出局部热处理装备,可对修复区域进行局部热处理,进一步去除残余应力,同时保证对起落架其他部分的热输入小。并采用自行改良设计的二次硬化不锈钢粉末为修复材料,获得优异的修复组织性能。此外,本发明的激光加工装备和热处理装备体积小,重量轻,可在飞机服役机场对其起落架直接进行修复,实现快速响应。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种300M钢飞机起落架激光增材修复方法,其特征在于:包括如下步骤,
1)坡口加工,所述坡口为斜向加工坡口,以使得坡口的中心轴线尽量与裂纹扩展方向一致;所述坡口的中心轴线与起落架表面的法线之间的夹角不超过30°,所述坡口角度为45°,所述坡口区域表面粗糙度为Ra 0.8;
2)激光增材修复,采用环形光斑、光内同轴送粉的方式由外向内、由下向上进行逐层扫描修复,所述扫描修复时送粉管伸入坡口内进行送粉;
3)局部去应力退火处理,采用电阻丝对修复区域进行加热,利用热电偶对温度进行调控,退火完成后利用绝热材料覆盖在修复区域进行保温,同时在起落架其他区域上覆盖降温材料进行降温;
4)后处理,利用超声波无损探伤仪对修复区域进行探伤,若探伤结果显示无裂纹、孔洞缺陷后即可按照构件实际服役要求对修复后构件表面进行机加工处理以满足实际需求;若探伤结果显示仍存在缺陷则需重新进行上述1)-3)并优化激光增材修复工艺参数以获得无缺陷修复构件。
2.根据权利要求1所述的方法,其特征在于,由外向内扫描时,逐渐减小激光功率。
3.根据权利要求2所述的方法,其特征在于,由外向内扫描时,第二圈扫描的功率应降低到第一圈功率的60%~70%,后每一圈激光功率逐渐降低5%~10%,直到功率降到第一圈功率的50%~55%时不再降低功率,保持现有功率进行扫描。
4.根据权利要求2所述的方法,其特征在于,由下向上扫描时,从第二层开始,每一层进行第一圈扫描时,激光功率将调整为上一层稳定后的功率的125%~135%,后续的扫描时保持上一层稳定时的功率。
5.根据权利要求2所述的方法,其特征在于,所述扫描修复,最小光斑直径为1~2.5mm,搭接率为40~50%,扫描速度为300~400mm/min,第一层第一圈的激光功率为1500~3500W,送粉量为300g/h~750g/h。
6.根据权利要求1所述的方法,其特征在于,所述局部去应力退火处理,退火温度保持在430℃~465℃之间,退火时间2.5-3.5小时,利用石棉覆盖在修复区域进行保温,同时在起落架其他区域上覆盖上湿毛毯进行降温,使修复区域缓慢降温至200℃左右撤去湿毛毯。
7.根据权利要求1所述的方法,其特征在于,所述扫描修复所用的粉末化学成分,以质量百分含量计为,C 0.15~0.20,Si 0.02~0.03,Cr 3.3~3.7,Ni 10.0~11.0,Co 7.0~7.5,Mo1.0~1.2,V 0.05~0.07,Nb 1.1~1.2,Cu 1.5~2.3,余量为不可避免的杂质和Fe。
8.根据权利要求1所述的方法,其特征在于,所述修复区域的组织为板条状马氏体+细小的弥散碳化物。
CN202110647227.5A 2021-06-10 2021-06-10 一种300m钢飞机起落架激光增材修复方法 Active CN113245551B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110647227.5A CN113245551B (zh) 2021-06-10 2021-06-10 一种300m钢飞机起落架激光增材修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110647227.5A CN113245551B (zh) 2021-06-10 2021-06-10 一种300m钢飞机起落架激光增材修复方法

Publications (2)

Publication Number Publication Date
CN113245551A CN113245551A (zh) 2021-08-13
CN113245551B true CN113245551B (zh) 2021-10-01

Family

ID=77187410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110647227.5A Active CN113245551B (zh) 2021-06-10 2021-06-10 一种300m钢飞机起落架激光增材修复方法

Country Status (1)

Country Link
CN (1) CN113245551B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664218A (zh) * 2021-08-31 2021-11-19 北京煜鼎增材制造研究院有限公司 超大型金属结构的复合制造方法
CN113649700A (zh) * 2021-09-08 2021-11-16 中国人民解放军陆军装甲兵学院 一种镁合金增材修复再制造的方法
CN114082961A (zh) * 2021-10-09 2022-02-25 华南理工大学 一种通过增材制造修复钢结构表面裂纹的方法
CN114505493B (zh) * 2022-01-29 2023-08-01 中车工业研究院有限公司 一种气氛保护条件下的小光斑激光增材修复7系铝合金的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397663A (zh) * 2008-11-11 2009-04-01 岳阳大陆激光技术有限公司 一种带钢卷取机空心轴缺陷处理修复再造的新工艺方法
KR20130026468A (ko) * 2013-02-19 2013-03-13 한닢테크(주) 레이저를 이용한 슬래브용 연속주조용 주형의 보수방법 및 그 재생품
CN107723702A (zh) * 2017-10-11 2018-02-23 东北大学 一种激光熔覆工艺
CN107723701A (zh) * 2017-09-04 2018-02-23 中国航发北京航空材料研究院 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN108565248A (zh) * 2018-04-25 2018-09-21 大族激光科技产业集团股份有限公司 激光加工系统及方法
CN109536955A (zh) * 2019-01-23 2019-03-29 南京工业大学 采用激光同轴同步送粉法熔覆模具修复工艺
CN110453213A (zh) * 2019-08-06 2019-11-15 国营芜湖机械厂 一种飞机300m钢起落架活塞杆唇口裂纹激光熔覆修复方法
CN110449581A (zh) * 2019-08-23 2019-11-15 中国航发北京航空材料研究院 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
CN110819982A (zh) * 2019-11-13 2020-02-21 中国航发动力股份有限公司 一种叶片叶冠和封严齿磨损及裂纹的修复方法
CN111349931A (zh) * 2020-03-30 2020-06-30 成都飞机工业(集团)有限责任公司 一种基于原位应力释放模型的修复路径优化方法
CN111451500A (zh) * 2020-04-02 2020-07-28 航发优材(镇江)增材制造有限公司 一种钛合金阀杆激光增材修复方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397663A (zh) * 2008-11-11 2009-04-01 岳阳大陆激光技术有限公司 一种带钢卷取机空心轴缺陷处理修复再造的新工艺方法
KR20130026468A (ko) * 2013-02-19 2013-03-13 한닢테크(주) 레이저를 이용한 슬래브용 연속주조용 주형의 보수방법 및 그 재생품
CN107723701A (zh) * 2017-09-04 2018-02-23 中国航发北京航空材料研究院 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN107723702A (zh) * 2017-10-11 2018-02-23 东北大学 一种激光熔覆工艺
CN108565248A (zh) * 2018-04-25 2018-09-21 大族激光科技产业集团股份有限公司 激光加工系统及方法
CN109536955A (zh) * 2019-01-23 2019-03-29 南京工业大学 采用激光同轴同步送粉法熔覆模具修复工艺
CN110453213A (zh) * 2019-08-06 2019-11-15 国营芜湖机械厂 一种飞机300m钢起落架活塞杆唇口裂纹激光熔覆修复方法
CN110449581A (zh) * 2019-08-23 2019-11-15 中国航发北京航空材料研究院 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
CN110819982A (zh) * 2019-11-13 2020-02-21 中国航发动力股份有限公司 一种叶片叶冠和封严齿磨损及裂纹的修复方法
CN111349931A (zh) * 2020-03-30 2020-06-30 成都飞机工业(集团)有限责任公司 一种基于原位应力释放模型的修复路径优化方法
CN111451500A (zh) * 2020-04-02 2020-07-28 航发优材(镇江)增材制造有限公司 一种钛合金阀杆激光增材修复方法

Also Published As

Publication number Publication date
CN113245551A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN113245551B (zh) 一种300m钢飞机起落架激光增材修复方法
US7780059B2 (en) Method of forming a component on a substrate
CN101519778B (zh) 一种穿孔顶头表面强化的激光熔覆方法
CN107267976B (zh) 一种获得耐磨耐蚀钛合金工件的激光组合加工工艺
CN107723699B (zh) 一种修复耐热合金的方法
CN110273155A (zh) 一种激光熔覆再造工艺
US20030121574A1 (en) Process for producing wear-resistant surface layers
CN107723701A (zh) 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN107010849B (zh) 钼组玻璃与可伐合金的激光焊接工艺方法
CN106435563A (zh) 一种轴瓦钢背喷涂巴氏合金涂层的方法
CN113319272B (zh) 型钢输送辊耐磨层用金属陶瓷粉末材料及耐磨层的制作方法
CN112719598B (zh) 一种Al-Si涂层热成型钢双摆动激光焊接方法
TWI754127B (zh) 工具材料的再生方法及工具材料
CN109702382B (zh) 一种适合高温条件长时间服役的焊接材料及其焊接方法
Jeyaprakash et al. Laser surface modification of materials
CN110747458A (zh) 热轧定宽压力机曲轴的修复方法
CN112323061A (zh) 一种高效率制备高性能涂覆层的方法及装置
CN110592592A (zh) 一种基于脉冲电子束技术的激光熔覆高温防护涂层表面抛光净化方法
CN103014249A (zh) 一种大幅度提高RuT300表面硬度的激光熔凝淬火工艺
CN1032147C (zh) 提高零件耐水蚀耐气蚀的激光熔覆方法
CN110158010B (zh) 一种基于热喷涂和感应熔覆技术的轴类零件制备方法
CN113249717A (zh) 一种镍基合金激光熔覆粉末的激光熔覆方法
CN111996525A (zh) 一种提高高碳钢构件表面质量与性能的激光表面强化方法
CN114515837B (zh) 一种单晶涡轮叶片叶尖的激光选区熔化修复方法
CN112548104B (zh) 一种降低模具钢激光增材修复过程中热裂敏感性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 1205, 1f, building 12, neijian Middle Road, Xisanqi building materials City, Haidian District, Beijing 100096

Patentee after: Beijing Yuding Additive Manufacturing Research Institute Co.,Ltd.

Address before: 100096 1205, building S1, Jinyu zhizaochang, No.27, Chengzhong Road, Xisanqi building materials, Haidian District, Beijing

Patentee before: BEIJING YUDING ZENGCAI MANUFACTURE RESEARCH INSTITUTE Co.,Ltd.

CP03 Change of name, title or address