CN107338370B - 一种k465镍基高温合金结构件的激光增材制造工艺 - Google Patents

一种k465镍基高温合金结构件的激光增材制造工艺 Download PDF

Info

Publication number
CN107338370B
CN107338370B CN201610286032.1A CN201610286032A CN107338370B CN 107338370 B CN107338370 B CN 107338370B CN 201610286032 A CN201610286032 A CN 201610286032A CN 107338370 B CN107338370 B CN 107338370B
Authority
CN
China
Prior art keywords
structural member
alloy
material manufacturing
high temperature
base superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610286032.1A
Other languages
English (en)
Other versions
CN107338370A (zh
Inventor
赵吉宾
赵宇辉
王志国
李论
施凡
姚超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN201610286032.1A priority Critical patent/CN107338370B/zh
Publication of CN107338370A publication Critical patent/CN107338370A/zh
Application granted granted Critical
Publication of CN107338370B publication Critical patent/CN107338370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种K465镍基高温合金结构件的激光增材制造工艺,属于高温合金激光增材制造技术领域。该工艺成形工艺参数为:激光功率1300~1600W,扫描速度3~6mm/s,送粉速率1‑2g/min,扫描方式为直线扫描或交错扫描,搭接率40%~50%。成形过程中,采用叠层结构来控制裂纹形成和扩展,所述叠层结构是指一层K465高温合金与两层Stellite 6高温合金交替排布形成结构件。该工艺实现了K465合金结构件的无裂纹成形制造。

Description

一种K465镍基高温合金结构件的激光增材制造工艺
技术领域
本发明涉及高温合金结构件激光增材制造技术领域,具体涉及一种K465镍基高温合金结构件的激光增材制造工艺。
背景技术
高温合金在航空航天、燃气轮机等领域有着广泛的应用,K465合金是一种析出相强化、固溶强化的铸造镍基高温合金,该合金具有较高的热强性、耐高温氧化性,适用于制造航空发动机涡轮叶片。由于合金中合金元素种类多、含量高,导致合金的成形性能较差,目前该类合金构件主要通过铸造工艺实现成形。而对于结构非常复杂的结构件,铸造由于无法脱模而无法实现结构整体一次性成形,存在较大的制备难题。
激光增材制造技术作为一种新型的高柔性技术,在制备复杂结构方面有着其独特的优势,目前增材制造技术,在钛合金、不锈钢、高温合金等材料领域已经实现了较大程度的应用,但相比于传统工艺,目前成形工艺应用合金种类少仍然是增材制造技术实现工业化应用的制约之处。而将增材制造技术引入常规难成形结构、难成形材料制备领域对于提升航空结构件制备技术具有重要的意义。
发明内容
为了克服现有技术中K465镍基高温合金大型复杂结构件难以制备的问题,本发明的目的在于提供一种K465镍基高温合金结构件的激光增材制造工艺,该工艺实现了K465合金结构件的无裂纹成形制造。
为实现上述目的,本发明所采用的技术方案如下:
一种K465镍基高温合金结构件的激光增材制造工艺,该工艺是以K465镍基高温合金为原材料,采用激光增材制造技术成形K465镍基高温合金结构件。
所述K465镍基高温合金化学成分为(wt.%):C 0.13-0.2%,Cr 8.0-9.5%,Co 9-10.5%,W 9.5-11%,Mo 1.2-2.4%,Al 5.1-6%,Ti 2-2.9%,Nb 0.8-1.2%,B≤0.035%,Fe≤0.1%,Ni余量。
本发明成形K465镍基高温合金结构件的具体过程及机理如下:
(一)最优成形工艺参数设计:
对K465合金进行裂纹开裂机理分析:首先进行合金组织组成相分析,K465镍基高温合金组织由基体相γ相、强化相γ’相、γ+γ’共晶相和MC碳化物相构成。由于该合金中的碳化物相和共晶相存在,导致其在成形过程中容易萌生热裂纹;另外合金的塑性差,容易导致裂纹扩展。增材制造过程中,随着熔池的不断移动,成形过程温度场剧烈变化。在熔池移动过程中,不断经历着熔化和凝固过程。合金组织中的共晶相熔点低于合金熔点,在热影响区,温度达到共晶相熔点,就会造成该位置处共晶相熔化,而在应力作用下出现热裂纹(液化裂纹)。在随后的循环加热与冷却过程中,由于应力场的存在,引起裂纹进一步扩展,如此往复进行,最终导致成形零件分布着大量裂纹,如图1所示。
在同类镍基高温合金工艺库参数范围内,设计合理的工艺参数组合进行增材制造工艺实验,通过成形样件的裂纹率和成形效率,来确定最优化的工艺参数组合。其中裂纹率的判定依据薄壁腔试样的贯穿裂纹数量以及块状试样成形截面单位面积裂纹总长度来确定裂纹形成率,而成形效率依据单层熔覆宽度和熔覆高度来衡量。最终确定出K465镍基高温合金最优成形参数范围:激光功率1300W~1600W,扫描速度3~6mm/s,送粉速率1-2g/min,扫描方式为直线扫描或交错扫描,搭接率40%~50%(成形效率高、裂纹倾斜性小)。
(二)叠层结构设计:
本发明成形过程中,采用叠层结构来控制裂纹形成和扩展,所述叠层结构是指一层K465高温合金与两层Stellite 6高温合金交替排布形成结构件,即:先成形一层K465高温合金,再成形两层Stellite 6高温合金,再成形一层K465高温合金,如此往复交替进行,最终形成具有复合合金组织的结构件。
本发明依据合金特征以及增材制造成形过程中温度场的变化特征,确定的优化参数组合无法彻底解决该类合金增材制造过程开裂问题。因此,在之前获得的最优化参数基础上,采用基板预热措施,同时在激光增材制造过程通过控制单熔覆层材料的组分(即叠层结构)来实现裂纹的控制,通过控制K465合金和Stellite 6合金成形层数比,实现宏观无裂纹的试样制备。采用该叠层结构来控制裂纹思路是,采用一种低裂纹敏感性与成形本体合金具有较好的冶金结合性、相关物理特性差异性小的合金作为中间夹层,来控制裂纹的形成和扩展,使得裂纹控制在单熔覆层内,甚至消除裂纹。在试样制备完成后,采用X射线探伤分析薄壁结构裂纹,渗透探伤分析表面裂纹,采用线切割将零件切分成几个部分,通过渗透探伤分析截面裂纹来表征内部裂纹情况。对试样进行研磨抛光,分析合金组织形貌及微观裂纹存在情况。
(三)基板预热处理和超声去应力处理:
本发明成形过程中,基板进行预热处理,预热温度为400~500℃,预热时间为1-2h;成形过程中,采用毫克能设备对构件进行超声去应力处理。
采用基板预热处理,在保证成形件表面不被氧化条件、预热效率高条件下,在合金发生组织变化温度以下,设置合理的预热温度进行基板预热处理,均匀K465增材制造过程温度场。并采用超声去应力设备,在成形过程中,对结构容易开裂位置处,进行超声去应力处理,避免这些结构位置处,由于应力场过大而形成裂纹。
本发明的优点及有益效果如下:
1、本发明采用激光增材制造技术实现K465镍基高温合金复杂结构件一次性整体成形,由于K465镍基高温合金中的碳化物相和共晶相存在,导致合金在成形过程中容易形成热裂纹;另外材料的塑形差,易导致裂纹扩展。本发明提出了相应的裂纹控制措施,保证成形过程稳定进行。
2、本发明成形过程中,采用叠层结构设计来控制裂纹形成和扩展,这种工艺方法可以在满足K465镍基高温合金结构强度的同时,提高成形结构的整体韧性,实现宏观无裂纹的试样制备。合金凝固组织受成形特征影响,以强制生长的树枝晶方式近视平行于生长方向的枝晶构成,两种合金在形成了较为良好的冶金结合。在工艺控制合理的情况下,抑制构件组织中微观裂纹的出现。
附图说明
图1为零件表面裂纹分布情况。
图2为叠层结构增材制造原理图;图中:1-K465合金,2-Stellite 6合金。
图3为无裂纹试样。
图4为K465/Stellite 6夹层结构组织照片。
具体实施方式
下面结合附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明为K465镍基高温合金结构件的激光增材制造工艺,该工艺是以K465镍基高温合金为原材料,采用激光增材制造技术成形K465镍基高温合金结构件。K465镍基高温合金是一种典型的高硬脆材料,由于材料的工艺特性使其在激光增材制造过程中易导致裂纹萌生和扩展。本发明针对K465镍基高温合金的激光增材制造工艺难题,通过采用工艺参数组合优化、夹层梯度结构设计及温度场优化三种工艺措施,实现了大型结构件无裂纹激光增材制造。
(1)工艺参数确定
结合单道试样贯穿裂纹数量如下表所示,以及块状样品裂纹分布情况,确定出合金最优化的参数范围,激光功率范围1300W~1600W,扫描速度范围3-6mm/s、搭接率40%~50%,成形试样综合指标较好(成形效率高、裂纹倾斜性小),下表1为薄壁结构裂纹分布情况随工艺参数变化表。
表1裂纹分布情况随工艺参数变化统计表
(2)叠层结构
在1600W、扫描速度6mm/s、搭接率40%~50%参数组合下,采用1层K465合金+2层Stellite6合金一次交替堆积成形了叠层结构。
(3)以下各实施例及对比例构件成形过程中,基板进行预热处理,预热温度为400~500℃,预热时间为1-2h;成形过程中,通过毫克能超声波去应力装置进行应力场控制。
实施例1-3
(1)工艺参数:各实施例工艺参数如表2所示:
表2工艺参数表
工艺参数 实施例1 实施例2 实施例3 对比例1
激光功率 1600W 1600W 1800W 1000W
扫描速度 6mm/s 6mm/s 6mm/s 6mm/s
送粉速率 1.0g/min 1.5g/min 2g/min 1.5g/min
扫描方式 直线扫描 直线扫描 交错扫描 直线扫描
搭接率 40% 45% 50% 45%
(2)叠层结构:采用1层K465合金与2层Stellite6合金交替堆积,如图2所示,先成形一层K465高温合金,再成形两层Stellite 6高温合金,再成形一层K465高温合金,如此往复交替进行,最终一次成形具有复合合金组织的的零件。如图3所示,试样截面无裂纹分布,经过X射线及表面探伤分析,未发现裂纹。
对合金微观组织分析表明,合金凝固组织受成形特征影响,以强制生长的树枝晶方式近视平行于生长方向的枝晶构成,如图4所示。两种合金形成了较为良好的冶金结合。在工艺控制合理的情况下,组织分析并未出现微观裂纹。
(3)成形过程中,基板预热温度450℃,预热时间为1h。
对比例1
(1)工艺参数:对比例1工艺参数如表2所示。
(2)叠层结构:采用1层K465合金与2层Stellite6合金交替堆积,一次成形了叠层结构的结构件。试样截面有微裂纹分布。
(3)基板预热温度450℃,预热时间为1h。
对比例2
(1)工艺参数:对比例2工艺参数与实施例1相同。
(2)单层K465增材结构堆积成形。
(3)基板预热温度450℃,预热时间为1h。
通过对比上述实施例与对比例可以看出,本发明增材制造工艺在优化的工艺参数基础上,相比于单K465增材结构成形采用叠层结构可以显著的降低裂纹形成,但是由于实际零件成形的复杂性,以及K465合金的弱变形性,对于大型零件,由于应力场大,局部强度超过抗拉强度而出现裂纹。其中一部分裂纹可以通过采用机械去除+重新增材制造来实现裂纹控制。本发明提出的合金成形工艺,适合于小尺寸、合金结构变化小、成形过程应力场变化小的K465合金零件无裂纹制造。

Claims (2)

1.一种K465镍基高温合金结构件的激光增材制造工艺,其特征在于:该工艺是以K465镍基高温合金为原材料,采用激光增材制造技术成形K465镍基高温合金结构件,其中:按重量百分含量计,所述K465镍基高温合金化学成分为:C 0.13-0.2%,Cr 8.0-9.5%,Co 9-10.5%,W 9.5-11%,Mo 1.2-2.4%,Al 5.1-6%,Ti 2-2.9%,Nb 0.8-1.2%,B≤0.035%,Fe≤0.1%,Ni余量;成形工艺参数为:激光功率1300W~1600W,扫描速度3~6mm/s,送粉速率1-2g/min,扫描方式为直线扫描或交错扫描,搭接率40%~50%;
成形过程中,采用叠层结构来控制裂纹形成和扩展,所述叠层结构是指一层K465高温合金与两层Stellite6高温合金交替排布形成结构件;
所述叠层结构是先成形一层K465高温合金,再成形两层Stellite6高温合金,再成形一层K465高温合金,如此往复交替进行,最终形成具有复合合金组织的结构件;
基板进行预热处理,预热温度为400~500℃,预热时间为1-2h;
2.根据权利要求1所述的K465镍基高温合金结构件的激光增材制造工艺,其特征在于:成形过程中,采用毫克能设备对构件进行超声去应力处理。
CN201610286032.1A 2016-04-29 2016-04-29 一种k465镍基高温合金结构件的激光增材制造工艺 Active CN107338370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610286032.1A CN107338370B (zh) 2016-04-29 2016-04-29 一种k465镍基高温合金结构件的激光增材制造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610286032.1A CN107338370B (zh) 2016-04-29 2016-04-29 一种k465镍基高温合金结构件的激光增材制造工艺

Publications (2)

Publication Number Publication Date
CN107338370A CN107338370A (zh) 2017-11-10
CN107338370B true CN107338370B (zh) 2019-06-11

Family

ID=60222103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610286032.1A Active CN107338370B (zh) 2016-04-29 2016-04-29 一种k465镍基高温合金结构件的激光增材制造工艺

Country Status (1)

Country Link
CN (1) CN107338370B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188392A (zh) * 2017-12-27 2018-06-22 西安航天发动机有限公司 一种k4202高温合金激光选区熔化成形方法
CN108555296B (zh) * 2018-05-07 2020-08-14 四川省有色冶金研究院有限公司 一种k465合金粉末的增材制造方法
IT201800010450A1 (it) * 2018-11-20 2020-05-20 Nuovo Pignone Tecnologie Srl Metodo per la produzione additiva di un articolo
CN111266578B (zh) * 2020-02-20 2022-03-25 上海交通大学 一种抑制难焊镍基合金增材制造裂纹的方法
CN113967736A (zh) * 2020-07-23 2022-01-25 中国科学院沈阳自动化研究所 一种2a50锻造铝合金的激光增材制造与修复工艺
CN112570732B (zh) * 2020-12-23 2021-11-23 湖南大学 一种降低激光增材制造镍基高温合金热裂敏感性的方法
CN113828800A (zh) * 2021-06-30 2021-12-24 南京中科煜宸激光技术有限公司 金属零件增材制造控制系统与方法
CN114101712B (zh) * 2021-11-26 2024-05-28 南京中科煜宸激光技术有限公司 一体式电弧3d打印增减材制造系统与增减材加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480463A (zh) * 2014-12-16 2015-04-01 山东建筑大学 一种激光增材制造非晶-纳米晶增强叠层复合材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480463A (zh) * 2014-12-16 2015-04-01 山东建筑大学 一种激光增材制造非晶-纳米晶增强叠层复合材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Inconel 625 镍基高温合金激光增材制造熔池温度影响因素研究";赵宇辉等;《应用激光》;20150430;第25卷(第2期);第137-144页 *
赵宇辉等."Inconel 625 镍基高温合金激光增材制造熔池温度影响因素研究".《应用激光》.2015,第25卷(第2期),第137-144页. *

Also Published As

Publication number Publication date
CN107338370A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
CN107338370B (zh) 一种k465镍基高温合金结构件的激光增材制造工艺
Yang et al. Mechanical performance of 316 L stainless steel by hybrid directed energy deposition and thermal milling process
CN110449581B (zh) 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
Zhao et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming
RU2566117C2 (ru) Способ изготовления трехмерного изделия
Wang et al. Review on powder-bed laser additive manufacturing of Inconel 718 parts
Xu et al. Tailoring Laves phase and mechanical properties of directed energy deposited Inconel 718 thin-wall via a gradient laser power method
Nie et al. Effect of laser power on microstructure and interfacial bonding strength of laser cladding 17-4PH stainless steel coatings
CN113201667B (zh) 一种镍基高温合金及其设计方法
KR20160101972A (ko) 파우더 기반 첨가 제조 공정에서 사용하기 위한 감마 프라임 석출 강화 니켈계 초합금
Periane et al. Influence of heat treatment on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM)
Gorunov et al. Study of the effect of heat treatment on the structure and properties of the specimens obtained by the method of direct metal deposition
Sitek et al. Influence of an aluminizing process on the microstructure and tensile strength of the nickel superalloy IN 718 produced by the Selective Laser Melting
Sun et al. Microstructural evolution during exposure in air and oxidation behavior of a nickel-based superalloy
CN106987755A (zh) 一种MCrAlY合金及其制备方法
CN105132844A (zh) 一种改善Nb-Si基多元合金高温抗氧化性的方法
CN113305285A (zh) 用于增材制造的镍基高温合金金属粉末
Wang et al. Effect of substrate temperature on microstructure and mechanical properties of TiAl alloy fabricated using the twin-wire plasma arc additive manufacturing system
Zhang et al. Sensitivity of liquation cracking to deposition parameters and residual stresses in laser deposited IN718 alloy
Wu et al. Tungsten-chromium coatings on reduced activation ferritic/martensitic steels prepared by laser melting deposition process
Luo et al. Interfacial characterization and mechanical properties of additively manufactured IN718/CoNiCrAlY laminate
Kong et al. Highly controllable additive manufacturing of heterostructured nickel-based composites
Johnson et al. Fatigue behavior and failure mechanisms of direct laser deposited Inconel 718
CN114934211B (zh) 镍基高温合金、镍基高温合金粉末和镍基高温合金构件
US20200406345A1 (en) Powder and Additive Production Method for a Workpiece Made of Said Powder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant