CN108188392A - 一种k4202高温合金激光选区熔化成形方法 - Google Patents

一种k4202高温合金激光选区熔化成形方法 Download PDF

Info

Publication number
CN108188392A
CN108188392A CN201711445346.2A CN201711445346A CN108188392A CN 108188392 A CN108188392 A CN 108188392A CN 201711445346 A CN201711445346 A CN 201711445346A CN 108188392 A CN108188392 A CN 108188392A
Authority
CN
China
Prior art keywords
temperature
selective laser
less
obtains
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711445346.2A
Other languages
English (en)
Inventor
马双民
杨欢庆
王琳
彭东剑
雷玥
白静
宋梦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aerospace Engine Co Ltd
Original Assignee
Xian Aerospace Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aerospace Engine Co Ltd filed Critical Xian Aerospace Engine Co Ltd
Priority to CN201711445346.2A priority Critical patent/CN108188392A/zh
Publication of CN108188392A publication Critical patent/CN108188392A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开一种K4202高温合金激光选区熔化成形方法。所述K4202高温合金激光选区熔化工艺参数为:激光功率280W~320W,扫描速度为800‑1200mm/s,光斑直径0.12mm~0.14mm,铺粉层厚0.03mm‑0.06mm。成形构件在真空热处理炉中进行固溶处理,1080℃~1120℃保温4h~6h,回充氩气冷却至室温。经上述工艺处理后,K4202高温合金构件的室温抗拉强度不低于980MPa,屈服强度不低于550MPa,延伸率不低于16%;700℃抗拉强度不低于830MPa,屈服强度不低于490MPa,延伸率不低于10%,可满足航天产品对K4202高温合金构件强度及塑性的要求。

Description

一种K4202高温合金激光选区熔化成形方法
技术领域
[0001]本发明涉及一种K4202高温合金激光选区熔化成形方法,属于金属成形技术领域。
背景技术
[0002]镍基高温合金具有优良的抗氧化、耐腐蚀和耐高温性能,广泛应用于航空、航天、 船舶、核能和化工等领域,是制造航空航天动力装置热端部件的重要材料。K4202高温合金 作为工作温度范围在_253°C〜8〇0°C的Ni-Cr基沉淀硬化型变形高温合金,已被应用于7〇〇 °C以下长时使用的新型大推力火箭发动机涡轮转子、整流栅、涡轮球壳和燃气管路等部件。 该合金具有优良的抗氧化、耐腐蚀和耐高温性能,广泛应用于航空、航天领域,是制造航天 动力装置热端部件的重要材料。
[0003] K4202高温合金目前采用熔模精密铸造方法成形,铸件内部质量控制难度大,尤其 当是壁厚较小时,容易出现成分偏析、缩孔、缩松、裂纹、浇不足等缺陷,成品率较低,成本较 闻,生产周期较长。
发明内容
[0004]本发明所要解决的技术问题是:克服传统铸造工艺铸件质量不易控制、研制周期 长等不足,提出一种K42〇2高温合金材料激光选区熔化成形方法,实现该材料复杂精密构件 的快速制造与直接制造。
[0005]本发明的技术解决方案是:
[0006] —种K4202高温合金材料的成形方法,该方法的步骤包括:
[0007] ⑴利用K4202高温合金棒材进行气雾化制粉,得到粒径范围为iSumwSSum的金属 粉料;
[000S] ⑵利用步骤⑴得到的粉料进行激光选区熔化成形,得到形状满足要求的K4202 高温合金构件;
[0009] (3)将步骤(2)得到的形状丨两足要求的K42〇2筒温合金构件进行固溶处理,得到形 状及力学性能均满足要求的K4202高温合金构件。
[0010]所述步骤(1)中,以K4202高温合金棒材为原材料,采用气雾化制粉方法,雾化气体 为氩气,压力3 • 5MPa〜5MPa,金属液过热度l〇〇°C〜30(TC,金属液流率每分钟l〇Kg〜20Kg, 得到粒径范围为15wn〜5 3ym的合金粉末;
[0011]所述步骤(2)中,激光选区熔化成形的工艺参数为:激光选区熔化成形条件是:激 光功率28〇W〜32〇W,扫描速度为8〇〇mm/s〜l2〇Omm/s,光斑直径〇. 12mm〜0• 14腕,铺粉层厚 0.03-0.06mm;
[0012]所述步骤(3)中,所述固溶处理方法为:真空热处理炉中在108(TC〜1120X:保温4h 〜6h,回充氩气冷却至室温。
[0013]本发明的有益效果是:
[00M] (1)采用上述技术方案后,获得的K4202高温合金激光选区熔化成形构件,室温抗 拉强度不低于98〇MPa,屈服强度不低于S50MPa,延伸率不低于16%;70(rC抗拉强度不低于 830MPa,屈服强度不低于490MPa,延伸率不低于10%,从而拓展了应用范围;
[0015] (2)本发明提出的K42〇2高温合金激光选区熔化成形方法,主要解决了熔模精密铸 造方法带来的冷隔、疏松、夹杂等缺陷和致密度不足的问题,生产周期缩短60% ;
[0 016 ] (3)本发明提出的方法可广泛应用于航天热端复杂构件的制造,该方法可实现 K4202高温合金复杂精密构件的快速制造与直接制造。
具体实施方式
[0017] 下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术 人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术 人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明 的保护范围。
[0018] 实施例1
[0019] 一种K42〇2高温合金激光选区熔化成形方法,该方法的步骤包括:
[0020] (1)利用K42〇2高温合金棒材进行气雾化制粉,得到粒径范围为15wn〜53wn的金属 粉料;
[0021] (2)利用步骤(1)得到的粉料进行激光选区熔化成形,得到形状满足要求K42〇2高 温合金构件;
[0022] (3)将步骤(2)得到的形状满足要求的K4202高温合金构件进行固溶处理,得到形 状及力学性能均满足要求的K4202高温合金构件。
[0023]所述步骤(1)中,以K4202高温合金棒材为原材料,采用气雾化制粉方法,雾化气体 为氩气,压力4.5MPa,金属液过热度2〇0°C,金属液流率每分钟l8Kg,得到粒径范围为I5um〜 53mi的合金粉末;
[0024]所述步骤(2)中,激光选区熔化成形的工艺参数为:采用工艺参数为激光功率 320W、光斑直径0• 14mm、扫描速度1200mm/s、铺粉层厚0.04mm;
[0025]所述步骤(3)中,固溶处理的方法为:真空热处理炉保温6h,回充氩气冷 却至室温。
[0026]对得到的构件采用同批试样进行力学性能测试,测试方法为G B / T 2 2 8 .丨和G B / T228 • 2,测试结果表明:室温下抗拉强度达到1 l66MPa〜1224MPa,屈服强度达到849MPa〜 901MPa,延伸率达到27.3%〜28.5%;700。(:抗拉强度达到9041?3〜9401^,屈服强度达到 8161?8〜8491^3,延伸率达到10.2%〜11%。
[0027] 实施例2
[0028] —种K4202高温合金激光选区熔化成形方法。利用K4202高温合金棒材进行气雾化 制粉,得到粒径范围为15wii〜53wii的金属粉料;以得到的金属粉料为原材料,采用工艺参数 为激光功率300W、光斑直径0• 14mm、扫描速度llOOmm/s、铺粉层厚制备K4202高温合 金构件,然后置于11〇〇 C真空炉中保温4h后,回充氣气冷却至室温。
[0029]得到的K42〇2高温合金构件采用同批试样进行力学性能测试,测试方法为GB/ T228.1和GB/T228 • 2,测试结果表明:室温下抗拉强度达到丨172MPa〜1264MPa,屈服强度达 到832MPa〜878MPa,延伸率达到23.3%〜26%;700<€抗拉强度达到1〇8贈£1〜1103版,屈 服强度达到701MPa〜750MPa,延伸率达到12.0 %〜13.2 %。
[0030] 实施例3
[0031] —种K4202高温合金激光选区熔化成形方法。利用K42〇2高温合金棒材进行气雾化 制粉,得到粒径范围为15mi〜53_的金属粉料;以得到的金属粉料为原材料采用工艺参数 为激光功率280W、光斑直径0 • 12臟、扫描速度9〇〇mm/s、铺粉层厚〇 •⑽咖制备K42〇2高温|金 构件,然后置于l〇80°C真空炉中保温6h后,回充氩气冷却至室温。
[0032]得到的K4202高温合金构件采用同批试样进行力学性能测试,测试方法为GB/ T228 • 1和GB/T228 • 2,测试结果表明:室温下抗拉强度达到i〇47MPa〜1 l24MPa,屈服强度达 至lj5S9MPa〜597MPa,延伸率达到19.0%〜26 • 7% ; 7〇(TC抗拉强度达到9〇6MPa^979Mp=屈 服强度达到566姐^〜57]?&amp;,延伸率达到18.0%〜18.8%。 ’
[0033] 实施例4
[0034] —种K4202高温合金激光选区熔化成形方法。利用K4202高温合金棒材进行气雾化 制粉,得到粒径范围为15wn〜53mi的金属粉料;以得到的金属粉料为原材料,采用工艺参数 为激光功率320W、光斑直径0_12mm、扫描速度l〇〇〇mm/s、铺粉层厚0.04mm制备K42〇2高^合 金构件,然后置于1080°C真空炉中保温4h后,回充氩气冷却至室温。
[0035]得到的K42〇2高温合金构件采用同批试样进行力学性能测试,测试方法为GB/ T228.1和GB/T228.2,测试结果表明:抗拉强度达到1238MPa〜1264MPa,屈服强度达到 878MPa〜895MPa,延伸率达到I8 • 3%〜2〇%,7〇〇。(:抗拉强度达到854MPa〜890MPa,屈服强 度达到6〇6MPa〜650MPa,延伸率达到13.6 %〜15 %。
[0036]综上所述,经本发明的激光选区熔化增材制造方法制备的K4202高温合金复杂构 件,室温抗拉强度不低于980MPa,屈服强度不低于550MPa,延伸率不低于16% ;70(TC抗拉强 度不低于830MPa,屈服强度不低于490MPa,延伸率不低于10%,可满足航空航天产品对 K4202高温合金构件强度及塑性的要求。
[0037]以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述 特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影 响本发明的实质内容。

Claims (5)

1.一种K4202高温合金材料的成形方法,其特征在于该方法的步骤包括: (1) 利用K4202高温合金棒材进行气雾化制粉,得到金属粉料;’ ’ (2) 利用步骤(1)得到的粉料进行激光选区熔化成形,得到形状满足要求的1(42〇2高温 合金构件; (3) 将步骤(2)得到的形状满足要求的K4202高温合金构件进行固溶处理,得到形状及 力学性能均满足要求的K4202高温合金构件。
2.根据权利要求1所述的一种K42〇2高温合金材料的成形方法,其特征在于:所述的步 骤⑴中,得到的金属粉料的粒径范围为15mi〜53mi。
3.根据权利要求1所述的一种K42〇2高温合金材料的成形方法,其特征在于:所述步骤 (1) 中,进行气雾化制粉时,雾化气体为氩气,压力3 • 5MPa〜5MPa,金属液过热度10CTC〜300 °C,金属液流率每分钟1 OKg〜20Kg。
4.根据权利要求1所述的一种K42〇2高温合金材料的成形方法,其特征在于:所述步骤 (2) 中,激光选区熔化成形的工艺参数为:激光选区熔化成形条件是:激光功率280W〜320W, 扫描速度为800mm/s〜1200mm/s,光斑直径0 • 12mm〜0 • 14mm,铺粉层厚〇. 03-0.06mm。
5.根据权利要求1所述的一种K4202高温合金材料的成形方法,其特征在于:所述步骤 (3) 中,所述固溶处理方法为:真空热处理炉中在1080°C〜1120°C保温4h〜6h,回充氩气冷 却至室温。
CN201711445346.2A 2017-12-27 2017-12-27 一种k4202高温合金激光选区熔化成形方法 Pending CN108188392A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711445346.2A CN108188392A (zh) 2017-12-27 2017-12-27 一种k4202高温合金激光选区熔化成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711445346.2A CN108188392A (zh) 2017-12-27 2017-12-27 一种k4202高温合金激光选区熔化成形方法

Publications (1)

Publication Number Publication Date
CN108188392A true CN108188392A (zh) 2018-06-22

Family

ID=62584570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711445346.2A Pending CN108188392A (zh) 2017-12-27 2017-12-27 一种k4202高温合金激光选区熔化成形方法

Country Status (1)

Country Link
CN (1) CN108188392A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109332696A (zh) * 2018-11-14 2019-02-15 西安航天发动机有限公司 一种2024铝合金激光选区熔化成形方法
CN110964992A (zh) * 2019-11-28 2020-04-07 西安航天发动机有限公司 一种低温环境工作的增材制造高温合金的热处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120723A (ja) * 2012-12-19 2014-06-30 Tamura Seisakusho Co Ltd 圧粉磁心とその製造方法
CN104923797A (zh) * 2015-04-28 2015-09-23 上海材料研究所 用于激光选区熔化技术的Inconel625镍基合金粉末的制备方法
CN105108142A (zh) * 2015-06-18 2015-12-02 航星利华(北京)科技有限公司 一种激光3d打印制备单晶和定向凝固零件的方法
CN106001573A (zh) * 2016-07-08 2016-10-12 湖北三江航天江北机械工程有限公司 镍基高温合金喷注器成型方法
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法
CN107225232A (zh) * 2017-05-25 2017-10-03 北京康普锡威科技有限公司 一种增材制造用金属粉末的制备方法
CN107338370A (zh) * 2016-04-29 2017-11-10 中国科学院沈阳自动化研究所 一种k465镍基高温合金结构件的激光增材制造工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120723A (ja) * 2012-12-19 2014-06-30 Tamura Seisakusho Co Ltd 圧粉磁心とその製造方法
CN104923797A (zh) * 2015-04-28 2015-09-23 上海材料研究所 用于激光选区熔化技术的Inconel625镍基合金粉末的制备方法
CN105108142A (zh) * 2015-06-18 2015-12-02 航星利华(北京)科技有限公司 一种激光3d打印制备单晶和定向凝固零件的方法
CN107338370A (zh) * 2016-04-29 2017-11-10 中国科学院沈阳自动化研究所 一种k465镍基高温合金结构件的激光增材制造工艺
CN106001573A (zh) * 2016-07-08 2016-10-12 湖北三江航天江北机械工程有限公司 镍基高温合金喷注器成型方法
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法
CN107225232A (zh) * 2017-05-25 2017-10-03 北京康普锡威科技有限公司 一种增材制造用金属粉末的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
左蔚等: ""K4202镍基高温合金激光选区熔化成形室温拉伸性能研究"", 《火箭推进》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109332696A (zh) * 2018-11-14 2019-02-15 西安航天发动机有限公司 一种2024铝合金激光选区熔化成形方法
CN110964992A (zh) * 2019-11-28 2020-04-07 西安航天发动机有限公司 一种低温环境工作的增材制造高温合金的热处理方法

Similar Documents

Publication Publication Date Title
Kuo et al. The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing
JP2018021252A (ja) 金属合金の熱間加工性を改善する方法
CN104862508B (zh) 一种铝基石墨烯复合材料的制备方法
Moussaoui et al. Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties
Montero-Sistiaga et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)
Guan et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel
CN103088275B (zh) 高温合金组件或配件的生产方法
CN104690256B (zh) 控制镍基高温合金台阶状铸件杂晶缺陷的定向凝固方法
KR20160101972A (ko) 파우더 기반 첨가 제조 공정에서 사용하기 위한 감마 프라임 석출 강화 니켈계 초합금
CN103465027B (zh) 一种gh4169合金细晶盘坯制造方法
CN103469136B (zh) 一种疲劳强度高的tc11钛合金饼材的制备方法
CN104805319A (zh) 一种2xxx系超大规格铝合金圆锭的制造方法
CN101439396B (zh) 一种舱门盖铸件的差压铸造工艺
CN105562694B (zh) 一种适用于增材制造零部件的热等静压三控方法
Shouren et al. Centrifugal precision cast TiAl turbocharger wheel using ceramic mold
CN105543747B (zh) 一种保留有Laves相的增材制造镍基高温合金的制备方法
CN109234601B (zh) 一种电弧熔覆用的高熵合金实心丝材及其制备方法
CN103509974B (zh) 一种精密铸造钛合金叶轮的制备方法
CN108486433A (zh) 选区激光熔化技术用Al-Mg-Sc-Zr系铝合金组合物及成型件制备方法
CN104325128B (zh) 一种3d打印用耐热模具钢材料及其制备方法
CN103949646A (zh) 一种Nb-Si基超高温合金涡轮叶片的制备方法
Kim et al. A feasibility study of the partial squeeze and vacuum die casting process
CN107881385A (zh) 一种铝合金构件的增材制造工艺
Wang et al. Review on powder-bed laser additive manufacturing of Inconel 718 parts
CN102808113B (zh) 一种镍基高温合金的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180622