WO2021111941A1 - ラミネート積層体 - Google Patents

ラミネート積層体 Download PDF

Info

Publication number
WO2021111941A1
WO2021111941A1 PCT/JP2020/043806 JP2020043806W WO2021111941A1 WO 2021111941 A1 WO2021111941 A1 WO 2021111941A1 JP 2020043806 W JP2020043806 W JP 2020043806W WO 2021111941 A1 WO2021111941 A1 WO 2021111941A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
resin
heat
polyester
Prior art date
Application number
PCT/JP2020/043806
Other languages
English (en)
French (fr)
Inventor
山崎 敦史
沼田 幸裕
稲垣 京子
雄也 山口
慎太郎 石丸
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2021562590A priority Critical patent/JPWO2021111941A1/ja
Priority to EP20897324.8A priority patent/EP4070954A4/en
Priority to US17/781,567 priority patent/US20220410546A1/en
Publication of WO2021111941A1 publication Critical patent/WO2021111941A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1023Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2272/00Resin or rubber layer comprising scrap, waste or recycling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/408Matt, dull surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/384Details of packaging materials of special type or form made of recycled material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a laminate used in the packaging field of foods, pharmaceuticals, industrial products, etc. More specifically, the present invention relates to an environment-friendly laminated laminate having excellent gas barrier properties, workability, and toughness, capable of visualizing the contents, and having the convenience of being suitable for microwave oven applications.
  • the performance required for the above-mentioned environment-friendly packaging material is (1) made of recycled material, (2) gas barrier performance that can block various gases and extend the expiration date, and (3) laminated structure with less environmental load. (For example, no organic solvent is used, the amount of material used is small, and it can be made into a monomaterial).
  • polyester resin recycled from PET bottles is known as a typical recycled material, and polyester resin derived from PET bottles having a low oligomer content is subjected to static electricity without impairing productivity and quality.
  • a technique for producing a polyester film for a body-wrapping label with less trouble is known (see, for example, Patent Document 1). Demand for such film applications is expected to grow due to heightened environmental regulations in the future.
  • a metal thin film made of aluminum or the like and inorganic oxidation such as silicon oxide or aluminum oxide are formed on the surface of a base film made of plastic.
  • a gas barrier laminate in which an inorganic thin film made of a substance is formed is generally used.
  • those formed with a thin film (inorganic thin film layer) of inorganic oxides such as silicon oxide, aluminum oxide, and a mixture thereof are transparent and the contents can be confirmed, and can be used in a microwave oven. For this reason, the demand for dealuminum foil is increasing from the environmental aspect as well.
  • a pouch that does not use aluminum foil is required to have barrier properties, heat resistance, toughness (breakage resistance and pinhole resistance), and high sealing properties of the bag at the same time.
  • a vapor-deposited polyester film, a polyamide film as an intermediate layer, and an olefin-based heat-sealing resin on the inside (content side) are dry-laminated via an adhesive to have at least three layers or more.
  • a biaxially stretched polybutylene terephthalate (hereinafter sometimes abbreviated as PBT) film see, for example, Patent Document 3
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • a biaxially stretched PBT-based film obtained by simultaneously biaxially stretching the composition 2.7 to 4.0 times in each of the vertical and horizontal directions is used as a base film layer. According to such a technique, a packaging material for liquid filling having bending pinhole resistance, impact resistance, and excellent aroma retention can be obtained.
  • the specific numerical values and effects of barrier performance have not been sufficiently examined.
  • a polyester sealant having improved low adsorption and heat resistance is disclosed (see, for example, Patent Document 4).
  • the sealant of Patent Document 4 satisfies the heat-sealing property and the heat resistance by separating the layer having the heat-sealing property and the other layers and controlling the raw material composition of each of these layers separately.
  • the sealant described in Patent Document 4 does not have the ability to block gases such as oxygen and water vapor (gas barrier property), it has not contributed to the improvement of the barrier performance as a pouch.
  • Japanese Unexamined Patent Publication No. 2012-91862 Japanese Patent No. 6500219 Japanese Unexamined Patent Publication No. 2017-09746 Japanese Unexamined Patent Publication No. 2017-1655059
  • Patent Documents 1 to 4 describe the performance as individual materials, (1) the recycled material is included as a constituent material as the performance required for the above-mentioned environment-friendly packaging material, (2). ) It has a gas barrier performance that can block various gases and extend the expiration date, (3) It has a laminated structure that is easy to recycle and has a small environmental load (monomaterialization), and basic performance as a pouch (heat) Achievement of sealability, toughness, and transparency has not been studied. Conventionally, there has been no polyester-based packaging material that satisfies all of the above-mentioned configurations and performances.
  • the present invention has been made against the background of the problems of the prior art. That is, the subject of the present invention is to have a laminated structure composed of almost a single resin type mainly composed of polyester, which has a small environmental load, while containing an environmentally friendly recycled material, and has gas barrier properties required for a packaging material. It is an object of the present invention to provide a laminated laminate having necessary performances such as sealing property, toughness, and transparency.
  • the present inventors greatly improve the gas barrier performance by laminating and laminating an inorganic thin film layer, a coating layer, and a barrier protective layer on each film (resin layer) according to the required barrier performance, and further reduce the environmental load.
  • a base film using a polyester resin derived from a PET bottle and a sealant composed of a polyester component, monomaterialization was realized while maintaining toughness, sealing property, and transparency.
  • the present invention has the following configuration.
  • 1. It is a laminated laminate in which a polyester base film containing 50% by weight or more of polyester resin recycled from a PET bottle and a heat-sealing resin are laminated in this order, and the base film is an inorganic thin film layer (A) on one side.
  • a laminated film having a protective layer (a) made of urethane resin, the heat-sealing resin is composed of a polyester-based component containing ethylene terephthalate as a main component, and has a piercing strength of 10 N or more and a haze of 20% or less.
  • Laminated laminate characterized by being. 2.
  • An intermediate layer film is provided between the base film and the thermosetting resin via an adhesive, and the intermediate layer film is composed of a resin composition containing 70% by mass or more of PBT resin.
  • An inorganic thin film layer (B) is laminated on at least one surface of the thermosetting resin.
  • An inorganic thin film layer (C) is laminated on at least one side of the intermediate layer film. ⁇ 3.
  • a protective layer (b) having a urethane resin is laminated on the inorganic thin film layer (C) of the intermediate layer film. ⁇ 4.
  • a coating layer (Y) is provided between the base film and the inorganic thin film layer (C). ⁇ 5. The laminated laminate according to any one of. 7. 4. A coating layer (Y) is provided between the intermediate layer film and the inorganic thin film layer (C). ⁇ 6. The laminated laminate according to any one of. 8. 1.
  • the inorganic thin film layers (A) to (C) are layers made of aluminum oxide or a composite oxide of silicon oxide and aluminum oxide. ⁇ 7. Laminated laminate according to.
  • the present inventors have made it possible to provide a laminated laminate having necessary performances such as barrier property, sealing property, and toughness required for packaging materials while considering the environment by such technology.
  • the laminated laminate of the present invention is a laminated laminate in which a polyester base film containing 50% by weight or more of a polyester resin recycled from a PET bottle and a heat-sealing resin layer are laminated in this order, and the base material.
  • the film is a laminated film having an inorganic thin film layer (A) and a protective layer (a) containing a urethane resin on one side, and the heat-sealing resin layer is made of a polyester resin containing ethylene terephthalate as a main component. It is characterized in that the piercing strength is 10 N or more and the haze is 20% or less.
  • the base film is a mixed resin of recycled polyester resin and virgin raw material, that is, non-recycled resin, and the ultimate viscosity of the resin constituting the film is the limit of the mixed resin constituting these films. It means that it is a value obtained by measuring the viscosity.
  • the lower limit of the ultimate viscosity of the resin constituting the film obtained by measuring the base film is preferably 0.58 dl / g, more preferably 0.60 dl / g.
  • the film may be colored, which is not preferable.
  • the upper limit is preferably 0.70 dl / g, more preferably 0.68 dl / g. If it exceeds 0.70 dl / g, it becomes difficult to discharge the resin from the extruder and the productivity may decrease, which is not preferable.
  • the lower limit of the thickness of the base film is preferably 8 ⁇ m, more preferably 10 ⁇ m, and even more preferably 12 ⁇ m. If it is less than 8 ⁇ m, the strength of the film may be insufficient, which is not preferable.
  • the upper limit is preferably 200 ⁇ m, more preferably 50 ⁇ m, and even more preferably 30 ⁇ m. If it exceeds 200 ⁇ m, it may become too thick and difficult to process. Further, increasing the thickness of the film is not preferable in terms of environmental load, and it is preferable to reduce the volume as much as possible.
  • the lower limit of the refractive index in the thickness direction of the base film is preferably 1.4930, more preferably 1.4940. If it is less than 1.4930, the orientation may not be sufficient and the laminate strength may not be obtained.
  • the upper limit is preferably 1.4995, more preferably 1.4980. If it exceeds 1.4995, the orientation of the surface may be lost and the mechanical properties may be insufficient, which is not preferable.
  • the lower limit of the heat shrinkage rate of the base film by treatment at 150 ° C. for 30 minutes in the vertical direction (sometimes referred to as MD) and the horizontal direction (sometimes referred to as TD) is preferably 0.1%, which is more preferable. Is 0.3%. If it is less than 0.1%, the effect of improvement is saturated and it may become mechanically brittle, which is not preferable.
  • the upper limit is preferably 3.0%, more preferably 2.5%. If it exceeds 3.0%, pitch deviation may occur due to dimensional changes during processing such as printing, which is not preferable. Further, if it exceeds 3.0%, shrinkage in the width direction may occur due to a dimensional change during processing such as printing, which is not preferable.
  • a recycled polyester resin made of a PET bottle containing an isophthalic acid component As a raw material for the base film, it is preferable to use a recycled polyester resin made of a PET bottle containing an isophthalic acid component as an acid component. Crystallinity is controlled in the polyester used for PET bottles in order to improve the appearance of the bottle, and as a result, polyester containing 10 mol% or less of an isophthalic acid component may be used. .. In order to utilize the recycled resin, a material containing an isophthalic acid component may be used.
  • the lower limit of the amount of the terephthalic acid component in the total dicarboxylic acid component constituting the polyester resin contained in the base film is preferably 95.0 mol%, more preferably 96.0 mol%, and further preferably 96.5 mol%. Yes, especially preferably 97.0 mol%. If it is less than 95.0 mol%, the crystallinity is lowered, so that the heat shrinkage rate may be high, which is not very preferable.
  • the upper limit of the amount of the terephthalic acid component of the polyester resin contained in the film is preferably 99.5 mol%, more preferably 99.0 mol%. Many recycled polyester resins made of PET bottles have a dicarboxylic acid component other than terephthalic acid represented by isophthalic acid. Therefore, if the terephthalic acid component constituting the polyester resin in the film exceeds 99.5 mol%, it is recycled. As a result, it becomes difficult to produce a polyester film having a high proportion of resin, which is not very preferable.
  • the lower limit of the amount of the isophthalic acid component in the total dicarboxylic acid components constituting the polyester resin contained in the base film is preferably 0.5 mol%, more preferably 0.7 mol%, and further preferably 0.9 mol%. Yes, especially preferably 1.0 mol%. Since some recycled polyester resins made of PET bottles contain a large amount of isophthalic acid components, the fact that the isophthalic acid component constituting the polyester resin in the film is less than 0.5 mol% means that the ratio of the recycled resin is high in the polyester film. As a result, the production becomes difficult, which is not very preferable.
  • the upper limit of the amount of the isophthalic acid component in the total dicarboxylic acid components constituting the polyester resin contained in the film is preferably 5.0 mol%, more preferably 4.0 mol%, and further preferably 3.5 mol%. Yes, especially preferably 3.0 mol%. If it exceeds 5.0 mol%, the crystallinity decreases, so that the heat shrinkage rate may increase, which is not very preferable. Further, it is preferable to set the content of the isophthalic acid component in the above range because it is easy to produce a film having excellent lamination strength, shrinkage and thickness unevenness.
  • the upper limit of the ultimate viscosity of the recycled resin composed of PET bottles is preferably 0.90 dl / g, more preferably 0.80 dl / g, further preferably 0.77 dl / g, and particularly preferably 0.75 dl / g. .. If it exceeds 0.9 dl / g, it may be difficult to discharge the resin from the extruder and the productivity may decrease, which is not very preferable.
  • the lower limit of the content of the polyester resin recycled from the PET bottle with respect to the film is preferably 50% by weight, more preferably 65% by weight, and further preferably 75% by weight. If it is less than 50% by weight, the content of the recycled resin is poor and it is not very preferable in terms of contributing to environmental protection. Since the recycled resin is produced by solid-phase polymerization, the content of oligomers that can cause film whitening is low. Therefore, the higher the content of the recycled resin, the better the film whitening after the retort treatment tends to be. If the content of the recycled resin is less than 50%, there is a concern that uneven whitening of the film after the retort treatment may be promoted.
  • the upper limit of the content of the polyester resin recycled from the PET bottle is not particularly limited, but is preferably 95% by weight, more preferably 90% by weight, and further preferably 85% by weight. If it exceeds 95% by weight, it may not be possible to sufficiently add lubricants and additives such as inorganic particles in order to improve the function of the film, which is not very preferable.
  • a polyester resin recycled from a PET bottle can also be used as a master batch (high-concentration-containing resin) used when a lubricant such as inorganic particles or an additive is added to improve the function of the film.
  • lubricant type in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, and silica and calcium carbonate are more preferable. With these, transparency and slipperiness can be exhibited.
  • the lower limit of the lubricant content in the base film is preferably 0.01% by weight, more preferably 0.015% by weight, and even more preferably 0.02% by weight. If it is less than 0.01% by weight, the slipperiness may decrease.
  • the upper limit is preferably 1% by weight, more preferably 0.2% by weight, and even more preferably 0.1% by weight. If it exceeds 1% by weight, the transparency may decrease, which is not very preferable.
  • the method for producing the base film used for the laminated laminate of the present invention is not particularly limited, but for example, the following production method is recommended. It is important to set the temperature for melting and extruding the resin in the extruder.
  • the basic idea is that (1) the polyester resin used for PET bottles contains an isophthalic acid component, so while suppressing deterioration by extruding at the lowest possible temperature, (2) extreme viscosity and fine high crystals. In order to sufficiently and uniformly melt the sex portion, it is necessary to have a portion that melts at a high temperature or high pressure. The content of the isophthalic acid component lowers the stereoregularity of the polyester, leading to a lower melting point.
  • the melt viscosity is significantly lowered or deteriorated due to heat, the mechanical strength is lowered, and the deteriorated foreign matter is increased. Further, simply lowering the extrusion temperature does not allow sufficient melt-kneading, which may cause problems such as increased thickness unevenness and foreign matter such as fish eyes.
  • the recommended manufacturing methods include, for example, using two extruders in tandem, increasing the pressure in the filter section, and using a screw with strong shearing force as part of the screw configuration. Can be mentioned.
  • the lower limit of the set temperature of the resin melting part in the extruder (excluding the maximum set temperature of the compression part of the screw in the extruder) is preferably 270 ° C, and the upper limit is preferably 290 ° C. Extrusion is difficult below 270 ° C, and deterioration of the resin may occur above 290 ° C, which is not very preferable.
  • the lower limit of the maximum set temperature of the compression part of the screw in the extruder is preferably 295 ° C.
  • Polyester resins used in PET bottles often have crystals with a high melting point (260 ° C to 290 ° C) from the viewpoint of transparency.
  • additives, crystallization nucleating agents, etc. are added, and there are variations in the fine melting behavior in the resin material. If the temperature is lower than 295 ° C, it becomes difficult to sufficiently melt them, which is not very preferable.
  • the upper limit of the maximum set temperature of the compression part of the screw in the extruder is preferably 310 ° C. If the temperature exceeds 310 ° C, the resin may deteriorate, which is not very preferable.
  • the lower limit of the time for the resin to pass through the region of the highest set temperature of the compression part of the screw in the extruder is preferably 10 seconds, more preferably 15 seconds. If it is less than 10 seconds, the polyester resin used for the PET bottle cannot be sufficiently melted, which is not very preferable.
  • the upper limit is preferably 60 seconds, more preferably 50 seconds. If it exceeds 60 seconds, the resin tends to deteriorate, which is not very preferable.
  • the resin melted in this way is extruded into a sheet on a cooling roll and then biaxially stretched.
  • a simultaneous biaxial stretching method may be used, but a sequential biaxial stretching method is particularly preferable. These make it easy to meet the productivity and the quality required for the present invention.
  • the method of stretching the film is not particularly limited, but the following points are important.
  • the magnification and temperature of longitudinal (MD) stretching and transverse (TD) stretching are important. If the MD stretching ratio and temperature are not appropriate, the stretching force may not be applied uniformly, the orientation of the molecules may be insufficient, the thickness unevenness may increase, and the mechanical properties may be insufficient.
  • the film may be broken or an extreme increase in thickness unevenness may occur in the next TD stretching step.
  • the stretching may not be uniform, the vertical and horizontal orientation balance may be poor, and the mechanical properties may be insufficient.
  • the process proceeds to the next heat fixing step in a state where the thickness unevenness is large or the molecular chain orientation is insufficient, it cannot be uniformly relaxed, and the thickness unevenness is further increased and the mechanical properties are insufficient.
  • a roll stretching method and an IR heating method are preferable.
  • the lower limit of the MD stretching temperature is preferably 100 ° C, more preferably 110 ° C, and even more preferably 120 ° C. If the temperature is lower than 100 ° C., even if a polyester resin having an ultimate viscosity of 0.58 dl / g or more is stretched and molecularly oriented in the longitudinal direction, the film may be broken or an extreme thickness defect may occur in the next transverse stretching step. It is not preferable to do so.
  • the upper limit is preferably 140 ° C, more preferably 135 ° C, and even more preferably 130 ° C. If the temperature exceeds 140 ° C., the orientation of the molecular chain becomes insufficient and the mechanical properties may become insufficient, which is not very preferable.
  • the lower limit of the MD draw ratio is preferably 2.5 times, more preferably 3.5 times, and even more preferably 4 times. If it is less than 2.5 times, even if a polyester resin having an ultimate viscosity of 0.58 dl / g or more is stretched and molecularly oriented in the longitudinal direction, the film may be broken or an extreme thickness defect may occur in the next transverse stretching step. It is not so preferable.
  • the upper limit is preferably 5 times, more preferably 4.8 times, and even more preferably 4.5 times. If it exceeds 5 times, the effect of improving mechanical strength and thickness unevenness may be saturated, which is not very significant.
  • the MD stretching method may be the above-mentioned one-step stretching, but it is more preferable to divide the stretching into two or more steps. By dividing into two or more stages, it is possible to satisfactorily stretch a polyester resin made of a recycled resin containing isophthalic acid, which has a high ultimate viscosity, and has good thickness unevenness, laminate strength, mechanical properties, and the like.
  • the lower limit of the MD stretching temperature of the first stage is preferably 110 ° C, more preferably 115 ° C. If the temperature is lower than 110 ° C., heat will be insufficient, sufficient longitudinal stretching cannot be performed, and flatness will be poor, which is not preferable.
  • the upper limit of the MD stretching temperature of the first stage is preferably 125 ° C, more preferably 120 ° C. If the temperature exceeds 125 ° C, the orientation of the molecular chains becomes insufficient and the mechanical properties may deteriorate, which is not very preferable.
  • the lower limit of the preferred first-stage MD stretching ratio is 1.1 times, more preferably 1.3 times. If it is 1.1 times or more, the first step is weakly stretched, so that a polyester resin having an ultimate viscosity of 0.58 dl / g or more can be sufficiently longitudinally stretched to increase productivity.
  • the upper limit of the MD stretching ratio of the first stage is preferably 2 times, more preferably 1.6 times. If it exceeds 2 times, the orientation of the molecular chains in the vertical direction becomes too high, which may make it difficult to stretch the second and subsequent stages and may result in a film having poor thickness unevenness, which is not very preferable.
  • the lower limit of the MD stretching temperature of the second stage (or the final stage) is preferably 110 ° C, more preferably 115 ° C.
  • the upper limit is preferably 130 ° C, more preferably 125 ° C. If the temperature exceeds 130 ° C., crystallization is promoted, lateral stretching may become difficult, and thickness unevenness may increase, which is not very preferable.
  • the lower limit of the MD stretching ratio of the second stage (or the final stage) is preferably 2.1 times, more preferably 2.5 times. If it is less than 2.1 times, even if a polyester resin having an ultimate viscosity of 0.58 dl / g or more is stretched and molecularly oriented in the longitudinal direction, the film may be broken or an extreme thickness defect may occur in the next transverse stretching step. It is not so preferable.
  • the upper limit is preferably 3.5 times, more preferably 3.1 times. If it exceeds 3.5 times, the vertical orientation becomes too high, so that the second and subsequent stages cannot be stretched, or the film may have a large thickness unevenness, which is not very preferable.
  • the lower limit of the TD stretching temperature is preferably 110 ° C, more preferably 120 ° C, and even more preferably 125 ° C. If the temperature is lower than 110 ° C., the stretching stress in the lateral direction becomes high, the film may be broken, and the thickness unevenness may become extremely large, which is not very preferable.
  • the upper limit is preferably 150 ° C, more preferably 145 ° C, and even more preferably 140 ° C. If the temperature exceeds 150 ° C., the orientation of the molecular chains does not increase, so that the mechanical properties may deteriorate, which is not very preferable.
  • the lower limit of the lateral (TD) draw ratio is preferably 3.5 times, more preferably 3.9 times. If it is less than 3.5 times, the molecular orientation is weak and the mechanical strength may be insufficient, which is not very preferable. Further, the orientation of the molecular chains in the vertical direction is large, and the balance between the vertical and horizontal directions becomes poor, so that the thickness unevenness becomes large, which is not very preferable.
  • the upper limit is preferably 5.5 times, more preferably 4.5 times. If it exceeds 5.5 times, it may break, which is not very preferable.
  • a polyester film containing a recycled resin made of a PET bottle containing isophthalic acid has lower crystallinity than a normal polyethylene terephthalate film containing no isophthalic acid, is easily melted to a very small size, and has mechanical strength. Low. Therefore, if the film is suddenly exposed to high temperature under tension after the end of stretching, or if it is cooled under sudden tension after the end of high-temperature heat fixation, the tension balance in the width direction is disturbed due to the unavoidable temperature difference in the width direction of the film.
  • the method is not limited to this method, for example, a method of controlling the film tension according to the speed of hot air in the tenter and the temperature of each zone, and a heat treatment at a relatively low temperature in which the furnace length is sufficient after the stretching is completed. And a method of relaxing with a heating roll after the heat treatment is completed.
  • the method by controlling the temperature of the tenter is shown below.
  • the lower limit of the temperature of the heat fixation 1 is preferably 160 ° C, more preferably 170 ° C. If the temperature is lower than 160 ° C., the heat shrinkage rate will eventually increase, which may cause misalignment or shrinkage during processing, which is not very preferable.
  • the upper limit is preferably 215 ° C, more preferably 210 ° C. If the temperature exceeds 215 ° C., a high temperature is suddenly applied to the film, which may increase the thickness unevenness or break the film, which is not very preferable.
  • the lower limit of the time for heat fixing 1 is preferably 0.5 seconds, more preferably 2 seconds. If it is less than 0.5 seconds, the film temperature may not rise sufficiently.
  • the upper limit is preferably 10 seconds, more preferably 8 seconds. If it exceeds 10 seconds, productivity may decrease, which is not very preferable.
  • the lower limit of the temperature of the heat fixing 2 is preferably 220 ° C, more preferably 227 ° C. If the temperature is lower than 220 ° C., the heat shrinkage rate becomes large, which may cause deviation or shrinkage during processing, which is not very preferable.
  • the upper limit is preferably 240 ° C, more preferably 237 ° C. If the temperature exceeds 240 ° C., the film may melt, and even if it does not melt, it may become brittle, which is not very preferable.
  • the lower limit of the heat fixing 2 time is preferably 0.5 seconds, more preferably 3 seconds. If it is less than 0.5 seconds, it may easily break during heat fixing, which is not very preferable.
  • the upper limit is preferably 10 seconds, more preferably 8 seconds. If it exceeds 10 seconds, slack or the like may occur and uneven thickness may occur, which is not very preferable.
  • the lower limit of the temperature when the heat fixing 3 is provided is preferably 205 ° C, more preferably 220 ° C. If the temperature is lower than 205 ° C., the heat shrinkage rate becomes large, which may cause deviation or shrinkage during processing, which is not very preferable.
  • the upper limit is preferably 240 ° C, more preferably 237 ° C. If the temperature exceeds 240 ° C., the film will melt, and even if it does not melt, it may become brittle, which is not very preferable.
  • the lower limit of the time when the heat fixing 3 is provided is preferably 0.5 seconds, more preferably 3 seconds. If it is less than 0.5 seconds, it may easily break during heat fixing, which is not very preferable.
  • the upper limit is preferably 10 seconds, more preferably 8 seconds. If it exceeds 10 seconds, slack may occur and uneven thickness may occur, which is not very preferable.
  • TD relaxation can be performed at any location where heat is fixed.
  • the lower limit is preferably 0.5% and more preferably 3%. If it is less than 0.5%, the heat shrinkage rate in the lateral direction becomes particularly large, which may cause deviation or shrinkage during processing, which is not very preferable.
  • the upper limit is preferably 10%, more preferably 8%. If it exceeds 10%, slack may occur and uneven thickness may occur, which is not very preferable.
  • the lower limit of the slow cooling temperature after TD heat fixing is preferably 90 ° C, more preferably 100 ° C. If the temperature is lower than 90 ° C., the film contains isophthalic acid, so that the film may have a large thickness unevenness or breakage due to shrinkage due to a sudden temperature change, which is not very preferable.
  • the upper limit of the slow cooling temperature is preferably 150 ° C, more preferably 140 ° C. If the temperature exceeds 150 ° C, a sufficient cooling effect may not be obtained, which is not very preferable.
  • the lower limit of the slow cooling time after heat fixing is preferably 2 seconds, more preferably 4 seconds. If it is less than 2 seconds, a sufficient slow cooling effect may not be obtained, which is not very preferable.
  • the upper limit is preferably 20 seconds, more preferably 15 seconds. If it exceeds 20 seconds, it tends to be disadvantageous in terms of productivity, which is not very preferable.
  • the upper limit of the haze per thickness of the base film layer in the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, and further preferably 0.53% / ⁇ m.
  • the base film layer in the present invention may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, surface roughening treatment, as long as the object of the present invention is not impaired, and a known anchor coat. It may be processed, printed, decorated, etc.
  • a layer of another material may be laminated on the base film layer in the present invention, and as a method thereof, the base film layer can be bonded after production or during film formation.
  • the inorganic thin film layer (A) is provided on the surface of the base film.
  • the inorganic thin film layer (A) is a thin film made of a metal or an inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide. Things are preferred.
  • a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by mass of Al in terms of the mass ratio of the metal content. If the Al concentration is less than 20% by mass, the water vapor barrier property may be lowered. On the other hand, if it exceeds 70% by mass, the inorganic thin film layer tends to be hard, and the film may be destroyed during secondary processing such as printing or laminating, and the gas barrier property may be lowered.
  • the silicon oxide referred to here is various silicon oxides such as SiO and SiO2 or a mixture thereof
  • aluminum oxide is various aluminum oxides such as AlO and Al2O3 or a mixture thereof.
  • the film thickness of the inorganic thin film layer (A) is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer (A) is less than 1 nm, it may be difficult to obtain a satisfactory gas barrier property. On the other hand, even if the thickness exceeds 100 nm, the gas barrier property is improved accordingly. No effect is obtained, and it is rather disadvantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer (A) is not particularly limited, and for example, a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method), etc.
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • a known vapor deposition method may be appropriately adopted.
  • a typical method for forming the inorganic thin film layer (A) will be described by taking a silicon oxide / aluminum oxide thin film as an example.
  • a mixture of SiO2 and Al2O3, a mixture of SiO2 and Al, or the like is preferably used as the vapor deposition raw material.
  • Particles are usually used as these vapor deposition raw materials, but at that time, it is desirable that the size of each particle is such that the pressure at the time of vapor deposition does not change, and the particle size is preferably 1 mm to 5 mm.
  • heating methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be adopted.
  • oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as the reaction gas, or to adopt reactive vapor deposition using means such as ozone addition and ion assist.
  • the film forming conditions can be arbitrarily changed, such as applying a bias to the film to be vapor-deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be vapor-deposited.
  • a bias to the film to be vapor-deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be vapor-deposited.
  • Such vapor deposition material, reaction gas, bias of the vapor deposition body, heating / cooling, and the like can be similarly changed when the sputtering method or the CVD method is adopted.
  • a coating layer (X) can be provided between the base film layer and the inorganic thin film layer (A) for the purpose of ensuring stable gas barrier properties and lamination strength.
  • the resin composition used for the coating layer (X) provided between the base film layer and the inorganic thin film layer (A) includes urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based. Examples thereof include resins obtained by adding a curing agent such as an epoxy-based, isocyanate-based, melamine-based, oxazoline-based, or carbodiimide-based curing agent.
  • the resin composition used for these coating layers (X) preferably contains a silane coupling agent having at least one type of organic functional group.
  • organic functional group include an alkoxy group, an amino group, an epoxy group, an isocyanate group and the like.
  • the resin compositions used for the coating layer (X) it is preferable to use a mixture of a resin containing an oxazoline group or a carbodiimide group, an acrylic resin, and a urethane resin.
  • These functional groups have a high affinity with the inorganic thin film, and can react with the oxygen-deficient portion of the inorganic oxide generated during the formation of the inorganic thin film layer and the metal hydroxide, and have strong adhesion to the inorganic thin film layer. Is shown. Further, the unreacted functional group existing in the coating layer can react with the carboxylic acid terminal generated by hydrolysis of the base film layer and the coating layer to form a crosslink.
  • the amount of the coating layer (X) adhered is preferably 0.010 to 0.200 (g / m 2 ).
  • the coating layer can be uniformly controlled, and as a result, the inorganic thin film layer can be densely deposited.
  • the cohesive force inside the coating layer is improved, and the adhesion between each layer of the base film-coating layer (X) -inorganic thin film layer (A) is also increased, so that the water resistance and adhesion of the coating layer can be improved. ..
  • the adhesion amount of the coating layer (X) is preferably 0.015 (g / m 2 ) or more, more preferably 0.020 (g / m 2 ) or more, and further preferably 0.025 (g / m 2 ) or more. It is preferably 0.190 (g / m 2 ) or less, more preferably 0.180 (g / m 2 ) or less, and further preferably 0.170 (g / m 2 ) or less. If the amount of adhesion of the coating layer (X) exceeds 0.200 (g / m 2 ), the cohesive force inside the coating layer may be insufficient and good adhesion may not be exhibited. Further, the uniformity of the coating layer may not be exhibited.
  • the inorganic thin film layer may be defective and the gas barrier property may be lowered. Moreover, the manufacturing cost is high and it is economically disadvantageous.
  • the film thickness of the coating layer (X) is 0. If it is less than 010 (g / m 2 ), the base material cannot be sufficiently coated, and sufficient gas barrier properties and interlayer adhesion may not be obtained.
  • the method for forming the coating layer (X) is not particularly limited, and a conventionally known method such as a coating method can be adopted.
  • the coating methods the offline coating method and the inline coating method can be mentioned as preferable methods.
  • the conditions of drying and heat treatment at the time of coating depend on the coating thickness and the conditions of the apparatus, but immediately after coating, they are sent to the stretching process in the perpendicular direction. It is preferable to dry in the preheating zone or the stretching zone of the stretching step, and in such a case, the temperature is usually preferably about 50 to 250 ° C.
  • solvent examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and butyl acetate.
  • Etc. examples thereof include polyhydric alcohol derivatives such as ethylene glycol monomethyl ether.
  • the protective layer (a) is provided on the inorganic thin film layer (A).
  • the inorganic thin film layer composed of the metal oxide layer is not a completely dense film, but is dotted with minute defects.
  • the resin in the protective layer resin composition is formed on the defective portion of the metal oxide layer.
  • the effect of permeation is obtained, and as a result, the gas barrier property is stabilized.
  • the gas barrier performance of the laminated film is greatly improved.
  • the layer having a barrier property prevents hot water from entering the base material, the transparency of the film can be maintained as a result.
  • the amount of the protective layer (a) attached is preferably 0.10 to 0.40 (g / m 2 ).
  • the protective layer can be uniformly controlled during coating, resulting in a film having less coating unevenness and defects.
  • the cohesive force of the protective layer itself is improved, and the adhesion between the inorganic thin film layer and the protective layer is also strengthened.
  • the protective layer contributes to the suppression of oligomer expression, and the haze after retort is stabilized.
  • the amount of the protective layer (a) attached is preferably 0.13 (g / m 2 ) or more, more preferably 0.16 (g / m 2 ) or more, and further preferably 0.19 (g / m 2 ) or more.
  • It is preferably 0.37 (g / m 2 ) or less, more preferably 0.34 (g / m 2 ) or less, and further preferably 0.31 (g / m 2 ) or less.
  • the amount of adhesion of the protective layer (a) exceeds 0.400 (g / m 2 )
  • the gas barrier property is improved, but the cohesive force inside the protective layer is insufficient, and the uniformity of the protective layer is also lowered. In some cases, the appearance of the coat may be uneven or defective, or the gas barrier property and adhesiveness may not be sufficiently exhibited.
  • the film thickness of the protective layer (a) is less than 0.10 (g / m 2 ), sufficient gas barrier properties and interlayer adhesion may not be obtained.
  • urethane-based resin is an essential constituent component, and polyester-based, acrylic-based, titanium-based, and isocyanate are also used. Resins such as based, imine, and polybutadiene can be used, and epoxy, isocyanate, and melamine curing agents may be added.
  • urethane resin applied a bending load because the polar groups interact with the inorganic thin film layer and also have flexibility due to the presence of amorphous portions, in addition to the barrier performance due to the high cohesiveness of the urethane bond itself. It is also preferable because damage to the inorganic thin film layer can be suppressed. Further, polyester resin is also suitable because the same effect can be expected.
  • the urethane resin used in the present invention preferably has a glass transition temperature (Tg) of 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, from the viewpoint of improving the barrier property due to cohesive force. ..
  • Tg glass transition temperature
  • a flexible resin having a Tg of 100 ° C. or lower, which is excellent in flexibility may be mixed and used.
  • the addition ratio of the soft resin is preferably in the range of 0 to 80%. It is more preferably in the range of 10 to 70%, and even more preferably in the range of 20 to 60%. When the addition ratio is within the above range, both cohesive force and flexibility can be achieved, and barrier properties and adhesion are improved. If the addition ratio exceeds 80%, the film becomes too soft, which may lead to deterioration of the barrier performance.
  • a urethane resin containing an aromatic or aromatic aliphatic diisocyanate component as a main component.
  • the ratio of aromatic or aromatic aliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (50 to 100 mol%) in 100 mol% of the polyisocyanate component (F).
  • the ratio of the total amount of the aromatic or aromatic aliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • the "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be preferably used. If the proportion of the total amount of aromatic or aromatic aliphatic diisocyanates is less than 50 mol%, good gas barrier properties may not be obtained.
  • the urethane resin used in the present invention may be blended with various cross-linking agents, silicon-based cross-linking agents, for the purpose of improving the cohesive force of the film and the moisture-heat adhesive resistance, as long as the gas barrier property is not impaired.
  • a method of introducing a silanol group into the protective layer a method of post-adding a silane coupling agent or the like is also known.
  • this method there is a possibility that the work is complicated and the amount of addition is wrongly measured.
  • by preliminarily containing a silanol group in the polyurethane dispersion skeleton there is an advantage that the above-mentioned complications and mistakes can be prevented.
  • the amount of silanol groups contained in the polyurethane dispersion is less than 700 mg per kg of resin constituting the polyurethane dispersion as the amount of Si elements contained in the silanol groups, the formation of the crosslinked structure becomes insufficient, and the resin itself when retort treatment is performed. Deterioration occurs, which causes deterioration of adhesion and gas barrier property after retort treatment. Further, if the amount of silanol groups contained exceeds 1700 mg per kg of the resin constituting the polyurethane dispersion as the amount of Si elements contained in the silanol groups, the number of crosslinked structures becomes too large, so that the flexibility of the protective layer is impaired and during retort treatment.
  • examples of the cross-linking agent that can be added later include silicon-based cross-linking agents, oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • silicon-based cross-linking agents examples include silicon-based cross-linking agents, oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • a silicon-based cross-linking agent is particularly preferable.
  • an oxazoline compound, a carbodiimide compound, an epoxy compound, or the like may be used in combination as the cross-linking agent.
  • a silane coupling agent is preferable from the viewpoint of cross-linking between an inorganic substance and an organic substance.
  • the silane coupling agent include hydrolyzable alkoxysilane compounds, for example, halogen-containing alkoxysilanes (2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltri).
  • Chloro C2-4 alkyltri C1-4 alkoxysilane such as ethoxysilane
  • alkoxysilane with epoxy group [2-glycidyloxyethyltrimethoxysilane, 2-glycidyloxyethyltriethoxysilane, 3-glycidyloxypropyltrimethoxy)
  • Glycidyloxy C2-4 alkyltri C1-4 alkoxysilane such as silane, 3-glycidyloxypropyltriethoxysilane, glycidyloxydi C2- such as 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane 4 Alkyldi C1-4 alkoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysi
  • (Meta) Acryloxy C2-4 Alkoxytri C1-4 examples thereof include (meth) acryloxydi C2-4 alkyldi C1-4 alkoxysilane such as alkoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meth) acryloxypropylmethyldiethoxysilane.
  • These silane coupling agents can be used alone or in combination of two or more. Of these silane coupling agents, a silane coupling agent having an amino group is preferable.
  • the silicon-based cross-linking agent is preferably added in the protective layer in an amount of 0.25 to 3.00% by mass, more preferably 0.5 to 2.75% by mass, still more preferably 0.75 to 2%. .50% by mass. If the amount added exceeds 3.00% by mass, the film is cured and the cohesive force is improved, but some unreacted portions are also formed, and the adhesiveness between the layers may be lowered. On the other hand, if the amount added is less than 0.25% by mass, sufficient cohesive force may not be obtained.
  • the polyester resin used for the protective layer of the present invention is produced by polycondensing a polyunsaturated carboxylic acid component and a polyhydric alcohol component.
  • the molecular weight of the polyester is not particularly limited as long as it can impart sufficient film toughness, coating suitability, and solvent solubility as a coating material, but the number average molecular weight is 1000 to 50,000, and more preferably 1500 to 30,000. ..
  • the functional group at the polyester terminal is not particularly limited, and may have both an alcohol terminal and a carboxylic acid terminal. However, when an isocyanate-based curing agent is used in combination, it is necessary to use a polyester polyol mainly containing an alcohol terminal.
  • Tg Poly glass transition temperature
  • the Tg of the polyester used in the present invention needs to be 15 ° C. or higher. This is because if the temperature is lower than this, the resin becomes sticky after the coating operation, blocking is likely to occur, and the winding operation after the coating operation becomes difficult. This is because when the Tg is 15 ° C. or lower, it becomes difficult to prevent blocking even when the pressure near the winding core is high due to the addition of the blocking prevention material.
  • a more preferable temperature of Tg is 18 ° C. or higher, more preferably 25 ° C. or higher.
  • the polyester used in the present invention is used by polycondensing a polyunsaturated carboxylic acid component and a polyhydric alcohol component.
  • the polyunsaturated carboxylic acid component of the polyester used in the present invention is characterized by containing at least one ortho-oriented aromatic dicarboxylic acid or an anhydride thereof.
  • the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or its anhydride includes orthophthalic acid or its anhydride, naphthalene 2,3-dicarboxylic acid or its anhydride, naphthalene 1,2-dicarboxylic acid or its anhydride.
  • Anhydrous, anthraquinone 2,3-dicarboxylic acid or an anhydride thereof, 2,3-anthracenecarboxylic acid or an anhydride thereof and the like can be mentioned.
  • These compounds may have a substituent on any carbon atom of the aromatic ring.
  • the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
  • a polyester polyol having a usage rate of 70 to 100% by mass with respect to all the components of these polycarboxylic acids is particularly preferable because it has a high effect of improving the barrier property and is excellent in solvent solubility which is essential as a coating material. ..
  • the polyester used in the present invention may be copolymerized with another polyunsaturated carboxylic acid component as long as the effects of the present invention are not impaired.
  • the aliphatic polyvalent carboxylic acid includes succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid and the like
  • the unsaturated bond-containing polyvalent carboxylic acid includes maleic anhydride and maleic acid.
  • Acid trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenylic acid and its anhydride, 1,2-bis ( Phenoxy) ethane-p, p'-dicarboxylic acids and anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids.
  • a polybasic acid such as a derivative can be used alone or in a mixture of two or more kinds.
  • succinic acid 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid, and diphenic acid are preferable from the viewpoint of organic solvent solubility and gas barrier property.
  • the polyhydric alcohol component of the polyester used in the present invention is not particularly limited as long as it can synthesize a polyester exhibiting gas barrier filling performance, but ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, and 1,3 -It is preferable to contain a polyhydric alcohol component containing at least one selected from the group consisting of bishydroxyethylbenzene. Among them, it is presumed that the smaller the number of carbon atoms between oxygen atoms is, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, it is most preferable to use ethylene glycol as a main component.
  • the polyester used in the present invention preferably uses the above-mentioned polyhydric alcohol component, but in addition, other polyhydric alcohol components may be copolymerized as long as the effects of the present invention are not impaired.
  • the diols include 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, and triethylene.
  • Glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol are trihydric or higher alcohols such as glycerol, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butane.
  • examples thereof include triol, pentaerythritol and dipentaerythritol.
  • polyester using glycerol and tris (2-hydroxyethyl) isocyanurate in combination has good organic solvent solubility due to its branched structure and moderately high crosslink density. It also has an excellent barrier function and is particularly preferably used.
  • Examples of the catalyst used in the reaction for obtaining the polyester used in the present invention include tin-based catalysts such as monobutyltin oxide and dibutyltin oxide, titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate, and tetra-butyl-zirconeate.
  • tin-based catalysts such as monobutyltin oxide and dibutyltin oxide
  • titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate
  • tetra-butyl-zirconeate examples include acid catalysts such as zirconia-based catalysts. It is preferable to use the titanium-based catalyst such as tetra-isopropyl-titanate and tetra-butyl-titanate, which have high activity against the ester reaction, in combination with the zirconia
  • the amount of the catalyst used is 1 to 1000 ppm, more preferably 10 to 100 ppm, based on the total mass of the reaction raw materials used. If it is less than 1 ppm, it is difficult to obtain the effect as a catalyst, and if it exceeds 1000 ppm, there may be a problem of inhibiting the urethanization reaction when an isocyanate curing agent is used.
  • the coating agent constituting the protective layer when a polyester resin is used as the main agent of the coating agent constituting the protective layer, it is necessary to use an isocyanate-based curing agent as the curing agent and use it as a urethane resin.
  • the coating layer becomes a crosslinked system, there is an advantage that heat resistance, wear resistance, and rigidity are improved. Therefore, it is easy to use for boiling and retort packaging.
  • the liquid cannot be reused after mixing the curing agent, and the curing (aging) step becomes indispensable after coating.
  • the polyester has a hydroxyl group
  • at least a part of the polyisocyanate compound used in the protective layer (a) of the present invention reacts to form a urethane structure to make it highly polar as a resin component and agglomerate between polymer chains.
  • the gas barrier function can be further strengthened.
  • the resin of the coating material is a linear resin
  • heat resistance and abrasion resistance can be imparted by cross-linking with a polyisocyanate having a valence of 3 or more.
  • the polyisocyanate compound used in the present invention may be any of diisocyanate, trivalent or higher valent polyisocyanate, low molecular weight compound, and high molecular weight compound, but if a part of the skeleton contains an aromatic ring or an aliphatic ring, the gas barrier is improved. Preferred from a functional point of view.
  • isocyanates having an aromatic ring include toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, naphthalene diisocyanate, and isocyanates having an aliphatic ring include hydride xylylene diisocyanate, hydrogenated toluene diisocyanate, isophorone diisocyanate, and norborn diisocyanate.
  • examples thereof include terminal isocyanate group-containing compounds obtained by reacting with molecularly active hydrogen compounds or various polyester polyols, polyether polyols, high molecular weight active hydrogen compounds of polyamides and the like.
  • the coating method of the resin composition for the protective layer is not particularly limited as long as it is a method of coating the film surface to form a layer.
  • a usual coating method such as gravure coating, reverse roll coating, wire bar coating, and die coating can be adopted.
  • the drying temperature at that time is preferably 110 to 190 ° C, more preferably 130 to 185 ° C. , More preferably 150 to 180 ° C. If the drying temperature is less than 110 ° C., the protective layer may be insufficiently dried, or the protective layer may not be formed and the cohesive force and water-resistant adhesiveness may be lowered, resulting in a decrease in barrier property and hand-cutting property. There is.
  • the film may be overheated and the film may become brittle, resulting in a decrease in piercing strength or shrinkage, resulting in poor workability.
  • the film formation of the protective layer progresses effectively, and the adhesive area between the resin of the protective layer and the inorganic thin film layer becomes larger, so that the water resistance is improved. can do.
  • the protective film is particularly preferable when the solvent is first volatilized under relatively low temperature conditions of 90 ° C. to 110 ° C. and then dried at 150 ° C. or higher because a uniform and transparent film can be obtained. Further, apart from drying, applying additional heat treatment in a low temperature region as much as possible is more effective in advancing the film formation of the protective layer.
  • a polyester film containing PBT as a main constituent can be used as an intermediate layer in order to secure the toughness of the bag while enabling monomaterialization.
  • the intermediate layer film used in the present invention is a biaxially stretched film made of a resin composition containing 70% by mass or more of PBT.
  • the PBT content is more preferably 75% by mass or more. If the PBT content is less than 70% by mass, the piercing strength will decrease, and the film characteristics will not be sufficient.
  • the dicarboxylic acid component PBT preferably contains terephthalic acid in an amount of 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol%.
  • the glycol component of 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol at the time of polymerization. It does not contain anything other than by-products produced by the ether bond of the diol.
  • the resin composition used for the intermediate layer film of the present invention can contain a polyester other than PBT for the purpose of adjusting the film-forming property at the time of biaxial stretching and the mechanical properties of the obtained film.
  • the polyester other than PBT include at least one polyester selected from the group consisting of PET, polyethylene naphthalate, polybutylene naphthalate and polypropylene terephthalate, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid and cyclohexanedicarboxylic acid.
  • PBT ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1, which are copolymerized with at least one dicarboxylic acid selected from the group consisting of adipic acid, azelaic acid and sebacic acid.
  • dicarboxylic acid selected from the group consisting of adipic acid, azelaic acid and sebacic acid.
  • PBT in which at least one diol component selected from the group consisting of 5-pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol and polycarbonate diol is copolymerized.
  • the upper limit of the amount of the polyester resin other than PBT added is preferably 30% by mass or less, more preferably 25% by mass or less. If the amount of polyester other than PBT added exceeds 30% by mass, the mechanical properties of polybutylene terephthalate will be impaired, impact strength, pinhole resistance, or bag breakage resistance will be insufficient, as well as transparency and gas barrier. Problems such as deterioration of sex may occur.
  • the lower limit of the intrinsic viscosity of polybutylene terephthalate (PBT) used in the present invention is preferably 0.9 dl / g, more preferably 0.95 dl / g, and further preferably 1.0 dl / g.
  • PBT polybutylene terephthalate
  • the upper limit of the intrinsic viscosity of polybutylene terephthalate is preferably 1.4 dl / g.
  • the polybutylene terephthalate (PBT) resin may contain conventionally known additives such as lubricants, stabilizers, colorants, antistatic agents, and ultraviolet absorbers.
  • lubricant type in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable in that haze is reduced. These can be expressed as transparent and slippery.
  • the lower limit of the lubricant concentration is preferably 100 ppm, more preferably 500 ppm, and even more preferably 800 ppm. If it is less than the above, the slipperiness of the base film layer may decrease.
  • the upper limit of the lubricant concentration is preferably 20000 ppm, more preferably 10000 ppm, and even more preferably 1800 ppm. If it exceeds the above, transparency may decrease.
  • the upper limit of the heat shrinkage rate after heating at 150 ° C. for 15 minutes in the longitudinal (longitudinal) direction (MD) and the transverse (width) direction (TD) of the biaxially stretched polyester film constituting the intermediate layer film in the present invention is preferable. Is 4.0%, more preferably 3.0%, and even more preferably 2%. If the upper limit is exceeded, the inorganic thin film layer may be cracked due to the dimensional change of the intermediate layer film that occurs in the process of forming the inorganic thin film layer / protective layer or in the high temperature treatment such as retort sterilization treatment, and the gas barrier property may be deteriorated. , Pitch shift may occur due to dimensional changes during processing such as printing.
  • the lower limit of the heat shrinkage rate after heating at 150 ° C. for 15 minutes in the longitudinal stretching direction (MD) and the transverse stretching direction (TD) of the biaxially stretched polyester film constituting the intermediate layer film in the present invention is preferably 0%. Even if it falls below the above lower limit, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.
  • the lower limit of the impact strength of the biaxially stretched polyester film constituting the intermediate layer film in the present invention is preferably 0.05 J / ⁇ m. If it is 0.05 J / ⁇ m or more, the strength becomes sufficient when used as a bag.
  • the upper limit of the impact strength of the biaxially stretched polyester film constituting the intermediate layer film in the present invention is preferably 0.2 J / ⁇ m. Even if the above upper limit is exceeded, the effect of improvement cannot be obtained any more (saturation).
  • the lower limit of the plane orientation ( ⁇ P) of the PBT film, which is the intermediate layer film of the present invention, is preferably 0.144, more preferably 0.148, and even more preferably 0.15. If it is less than the above, the orientation is weak, so that sufficient strength cannot be obtained and the piercing strength may decrease. In addition, when an inorganic thin film layer (C) is provided on the intermediate layer film to form a laminated film. The tension and temperature applied during the formation of the inorganic thin film layer make it easy to stretch, and the inorganic thin film layer is cracked, so that the gas barrier property may be lowered.
  • the upper limit of the plane orientation ( ⁇ P) of the intermediate layer film in the present invention is preferably 0.160, more preferably 0.158. If it exceeds the above, the orientation becomes too strong and it becomes easy to break during film formation. Further, as the orientation is increased, heat fixation at a high temperature is required to reduce the heat shrinkage rate, and crystallization may rather reduce the strength of the film.
  • the upper limit of haze per thickness of the biaxially stretched polyester film constituting the intermediate layer film in the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, and further preferably 0. It is 53% / ⁇ m.
  • the upper limit of the intrinsic viscosity (IV) of the biaxially stretched polyester film constituting the intermediate layer film in the present invention is preferably 1.20 dl / g, more preferably 1.15 dl / g, and further preferably 1.15 dl / g. It is 1.10 dl / g. If the upper limit is exceeded, the strength of the film is improved, but the pressure load applied to the filter during extrusion increases, which makes manufacturing difficult.
  • the lower limit is preferably 0.60 dl / g, more preferably 0.65 dl / g, and even more preferably 0.70 dl / g. Below the lower limit, the strength of the film may decrease.
  • the biaxially stretched polyester film constituting the intermediate layer film in the present invention may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment as long as the object of the present invention is not impaired. Also, known anchor coating treatment, printing, decoration and the like may be applied.
  • the manufacturing method for obtaining the biaxially stretched polyester film constituting the intermediate layer film of the present invention is a step of melt-extruding a polyester raw material resin into a sheet and cooling it on a casting drum to form an unstretched sheet.
  • a longitudinal stretching step of stretching the unstretched sheet in the longitudinal direction a preheating step of preheating to a temperature at which the unstretched sheet can be stretched after the longitudinal stretching, a transverse stretching step of stretching in the width direction orthogonal to the longitudinal direction, the longitudinal stretching and the transverse stretching.
  • This comprises a heat-fixing step of heating and crystallizing the film after the above, a heat-relaxing step of removing residual strain of the heat-fixed film, and a cooling step of cooling the heat-relaxed film.
  • the film raw material is dried or hot air dried.
  • the raw materials are weighed, mixed, supplied to an extruder, heated and melted, and melt-casted in the form of a sheet.
  • the molten resin sheet is brought into close contact with a cooling roll (casting roll) by an electrostatic application method to be cooled and solidified to obtain an unstretched sheet.
  • the electrostatic application method is a method in which a voltage is applied to an electrode installed in the vicinity of a molten resin sheet in contact with a rotating metal roll and in the vicinity of a surface opposite to the surface of the resin sheet in contact with the rotating metal roll. This is a method in which the resin sheet is charged and the resin sheet and the rotary cooling roll are brought into close contact with each other.
  • the lower limit of the heating and melting temperature of the resin is preferably 200 ° C., more preferably 250 ° C., and even more preferably 260 ° C. If it is less than the above, the discharge may become unstable.
  • the upper limit of the resin melting temperature is preferably 280 ° C, more preferably 270 ° C. If it exceeds the above, the decomposition of the resin proceeds and the film becomes brittle.
  • the molten polyester resin When the molten polyester resin is cast on an extruded cooling roll, it is preferable to reduce the difference in crystallinity in the width direction. Specific methods for this include extruding the molten polyester resin and casting the raw materials having the same composition in multiple layers when casting, and further lowering the cooling roll temperature. Since the PBT resin has a high crystallization rate, crystallization proceeds even during casting. At this time, when cast in a single layer without multi-layering, the spherulite grows into a large-sized spherulite because there is no barrier capable of suppressing the growth of the crystal.
  • the yield stress of the obtained unstretched sheet becomes high, and not only is it easy to break during biaxial stretching, but also the impact strength, pinhole resistance, or bag breaking resistance of the obtained biaxially stretched film is improved.
  • the film will be inadequate.
  • the stretching stress of the unstretched sheet can be reduced, and the subsequent biaxial stretching can be stably performed.
  • a method of extruding a molten polyester resin and casting by stacking raw materials having the same composition in multiple layers when casting is specifically a step of melting a resin composition containing 70% by weight or more of PBT resin to form a molten fluid (a step of forming a molten fluid. 1), a step of forming a laminated fluid having a laminated number of 60 or more composed of the formed molten fluid (2), the formed laminated fluid is discharged from a die and brought into contact with a cooling roll to be solidified to form a laminated unstretched sheet. It has at least a step of forming (3) and a step of biaxially stretching the laminated unstretched sheet (4).
  • steps may be inserted between the steps (1) and the steps (2), and between the steps (2) and the steps (3).
  • a filtration step, a temperature changing step, or the like may be inserted between the steps (1) and (2).
  • a temperature changing step, a charge adding step, and the like may be inserted between the steps (2) and the steps (3).
  • the method of melting the polyester resin composition to form a molten fluid is not particularly limited, but a preferred method includes a method of heating and melting using a single-screw extruder or a twin-screw extruder. Can be done.
  • the method for forming the laminated fluid in the step (2) is not particularly limited, but a static mixer and / or a multilayer feed block is more preferable from the viewpoint of equipment simplicity and maintainability. Further, from the viewpoint of uniformity in the sheet width direction, those having a rectangular melt line are more preferable. It is further preferred to use a static mixer or multi-layer feed block with rectangular melt lines.
  • the resin composition composed of a plurality of layers formed by merging the plurality of resin compositions may be passed through any one or more of the static mixer, the multilayer feed block, and the multilayer manifold.
  • the number of theoretical stacks in step (2) is preferably 60 or more.
  • the lower limit of the theoretical stacking number is more preferably 500. If the number of theoretical layers is too small, or if the distance between the layer interfaces becomes too long, the crystal size becomes too large, and the effect of the present invention tends not to be obtained. In addition, the crystallinity near both ends of the sheet increases, the film formation becomes unstable, and the transparency after molding may decrease.
  • the upper limit of the number of theoretical stacks in the step (2) is not particularly limited, but is preferably 100,000, more preferably 10,000, and even more preferably 7,000. Even if the number of theoretical stacks is made extremely large, the effect may be saturated.
  • step (2) When stacking in step (2) is performed with a static mixer, the theoretical number of stacks can be adjusted by selecting the number of elements in the static mixer.
  • the static mixer is generally known as a static mixer (line mixer) without a drive unit, and the fluid entering the mixer is sequentially stirred and mixed by an element.
  • a typical static mixer element has a structure in which a rectangular plate is twisted 180 degrees, and depending on the direction of twist, there are a right element and a left element, and the dimensions of each element are 1.5 times longer than the diameter. It is basic.
  • the static mixer that can be used in the present invention is not limited to such a mixer.
  • the theoretical number of laminations can be adjusted by selecting the number of divisions and laminations of the multilayer feed block.
  • Multiple multilayer feed blocks can be installed in series.
  • the high-viscosity fluid itself supplied to the multilayer feed block can be used as the multilayer fluid.
  • the number of laminated high-viscosity fluids supplied to the multilayer feed block is p
  • the number of divided / stacked multilayer feed blocks is q
  • the number of installed multilayer feed blocks is r
  • step (3) the laminated fluid is discharged from the die and brought into contact with the cooling roll to solidify.
  • the lower limit of the cooling roll temperature is preferably ⁇ 10 ° C. If it is less than the above, the effect of suppressing crystallization may be saturated.
  • the upper limit of the cooling roll temperature is preferably 40 ° C. If it exceeds the above, the crystallinity may become too high and stretching may become difficult.
  • the upper limit of the cooling roll temperature is preferably 25 ° C. When the temperature of the cooling roll is within the above range, it is preferable to lower the humidity of the environment near the cooling roll in order to prevent dew condensation. It is preferable to reduce the temperature difference in the width direction of the cooling roll surface.
  • the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m.
  • the unstretched sheet having a multilayer structure described above has at least 60 layers or more, preferably 250 layers or more, and more preferably 1000 layers or more. If the number of layers is small, the effect of improving stretchability is lost.
  • the stretching method can be either simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the puncture strength, it is necessary to increase the degree of surface orientation, and the film forming speed is high and the productivity is high. In the above, sequential biaxial stretching is most preferable.
  • the lower limit of the stretching temperature in the longitudinal stretching direction is preferably 55 ° C, more preferably 60 ° C. Breakage is unlikely to occur at 55 ° C. or higher. Further, since the vertical orientation of the film does not become too strong, the shrinkage stress during the heat fixing treatment can be suppressed, and a film with less distortion of the molecular orientation in the width direction can be obtained.
  • the upper limit of the stretching temperature in the longitudinal stretching direction is preferably 100 ° C., more preferably 95 ° C. When the temperature is 100 ° C. or lower, the orientation of the film is not too weak and the mechanical properties of the film are not deteriorated.
  • the lower limit of the draw ratio in the longitudinal stretching direction is preferably 2.8 times, particularly preferably 3.0 times. When it is 2.8 times or more, the degree of surface orientation increases and the piercing strength of the film is improved.
  • the upper limit of the draw ratio in the longitudinal stretching direction is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. When it is 4.3 times or less, the degree of orientation of the film in the lateral direction does not become too strong, the shrinkage stress during the heat fixing process does not become too large, and the distortion of the molecular orientation in the lateral direction of the film becomes small, resulting in As a result, the vertical tearability is improved. Moreover, the effect of improving the mechanical strength and the thickness unevenness is saturated in this range.
  • the lower limit of the stretching temperature in the transverse stretching direction is preferably 60 ° C., and if it is 60 ° C. or higher, fracture may be less likely to occur.
  • the upper limit of the stretching temperature in the transverse stretching direction is preferably 100 ° C., and when it is 100 ° C. or lower, the degree of orientation in the transverse direction increases, so that the mechanical properties are improved.
  • the lower limit of the draw ratio in the transverse stretching direction is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is 3.5 times or more, the degree of orientation in the lateral direction is not too weak, and the mechanical properties and thickness unevenness are improved.
  • the upper limit of the draw ratio in the transverse stretching direction is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If it is 5.0 times or less, the effect of improving the mechanical strength and thickness unevenness is maximized (saturated) even in this range.
  • the lower limit of the heat fixing temperature in the heat fixing step is preferably 195 ° C., more preferably 200 ° C.
  • the upper limit of the heat fixing temperature is preferably 220 ° C., and if it is 220 ° C. or lower, the base film layer does not melt and is less likely to become brittle.
  • the lower limit of the relaxation rate in the heat relaxation section step is preferably 0.5%. If it is 0.5% or more, breakage may be less likely to occur during heat fixing.
  • the upper limit of the relaxation rate is preferably 10%. When it is 10% or less, the shrinkage in the longitudinal direction at the time of heat fixing becomes small, and as a result, the distortion of the molecular orientation at the edge of the film becomes small, and the straight tearability is improved. In addition, the film is less likely to sag and uneven thickness is less likely to occur.
  • the temperature of the surface of the edge portion of the polyester film is preferably 80 ° C. or lower. If the temperature of the edge of the film after passing through the cooling step exceeds 80 ° C., the edge is stretched by the tension applied when the film is wound, and as a result, the heat shrinkage rate of the edge in the vertical direction becomes high. As a result, the heat shrinkage distribution in the width direction of the roll becomes non-uniform, and when such a roll is heated and conveyed for vapor deposition processing, streaky wrinkles occur, and the final gas barrier is obtained. The physical properties of the film may become non-uniform in the width direction.
  • a shielding plate is provided on the center side in the width direction of the cooling zone to select the edge.
  • a method of cooling the film or a method of locally blowing cold air on the edge of the film can be used.
  • the intermediate layer film of the present invention may be provided with a coating layer (Y), an inorganic thin film layer (C), and a protective layer (b) in the same manner as the base film, for the purpose of ensuring sufficient barrier properties and lamination strength. it can.
  • a coating layer (Y) As the layer to be coated (Y), the above-mentioned method for forming the composition, the amount of adhesion, and the coating layer described as the coating layer (X) can be applied.
  • the inorganic thin film layer (C) the above-mentioned method for forming the composition, film thickness, and inorganic thin film layer described as the inorganic thin film layer (A) can be applied.
  • the protective layer (b) the composition, the amount of adhesion, and the method for forming the protective layer described as the protective layer (a) can be applied.
  • the laminated laminate of the present invention has a heat-sealing resin layer containing polyester as a component, and when it is desired to further improve the barrier performance, an inorganic thin film layer (B) is placed on the non-sealing surface of the heat-sealing resin layer. ), Further, a protective layer (c) can be provided on the inorganic thin film layer (B).
  • the sealing surface (the surface opposite to the non-sealing surface) of the heat-sealing resin layer must be provided on either one of the outermost layers of the laminated body.
  • the inorganic thin film layer (B) As the inorganic thin film layer (B), the above-mentioned method for forming the composition, film thickness, and inorganic thin film layer described as the inorganic thin film layer (A) can be applied.
  • the protective layer (c) As the protective layer (c), the composition, the amount of adhesion, and the method for forming the protective layer described as the protective layer (a) can be applied.
  • the layer structure of the heat-sealing resin layer of the present invention is preferably a two-layer structure in which a heat-resistant layer is provided in addition to the heat-sealing layer constituting the sealing surface.
  • the heat-resistant layer is arranged on the non-sealing surface side of the thermosetting resin layer.
  • the constituent requirements for each layer will be described later, but in the case of a configuration including a heat seal layer and a heat resistant layer, the layer having the highest ethylene terephthalate component content is the heat resistant layer.
  • the layer structure of the laminate of the present invention is composed of three layers, a heat seal layer / a heat resistant layer / an inorganic thin film layer (B), in order from one of the outermost layers (seal surface side).
  • the heat-sealing resin layer of the present invention may be provided with a protective layer on the outermost surface layer on the opposite side (non-sealing surface side) of the heat-sealing layer.
  • a protective layer on the outermost surface layer on the opposite side (non-sealing surface side) of the heat-sealing layer.
  • the thickness of the thermosetting resin layer is not particularly limited, but is preferably 3 ⁇ m or more and 200 ⁇ m or less. If the thickness of the heat-sealing resin layer is thinner than 3 ⁇ m, the heat-sealing strength may be insufficient and processing such as printing may become difficult, which is not very preferable. Further, the thickness of the laminated body may be thicker than 200 ⁇ m, but this is not preferable because the weight of the laminated body used increases and the cost increases. The thickness of the laminate is more preferably 5 ⁇ m or more and 160 ⁇ m or less, and further preferably 7 ⁇ m or more and 120 ⁇ m or less.
  • the layer ratio of the heat-sealing layer to the entire heat-sealing resin layer is preferably 20% or more and 80% or less. If the layer ratio of the heat-sealing layer is less than 20%, the heat-sealing strength of the heat-sealing resin layer is lowered, which is not preferable. When the layer ratio of the heat-sealing layer is higher than 80%, the heat-sealing property of the heat-sealing resin layer is improved, but the heat resistance is lowered, which is not preferable.
  • the layer ratio of the heat seal layer is more preferably 30% or more and 70% or less.
  • the layer ratio of the heat-resistant layer is preferably 20% or more and 80% or less. If the layer ratio of the heat-resistant layer is less than 20%, the heat resistance of the film is lowered, which is not preferable. If the layer ratio of the heat-resistant layer is higher than 80%, the ratio of the heat-sealing layer of the laminated body is reduced by that amount, and the heat-sealing property is sacrificed, which is not preferable.
  • the layer ratio of the heat-resistant layer is more preferably 30% or more and 70% or less.
  • the outermost layer (including the heat seal layer) of the laminate of the present invention is provided with a layer that has been subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the printability and slipperiness of the film surface.
  • a layer that has been subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the printability and slipperiness of the film surface.
  • layers made of polyester resin such as heat seal layer and heat resistant layer is described as "polyester resin layer” to distinguish them from inorganic thin film layers and protective layers.
  • the upper limit of haze per thickness of the heat seal layer in the present invention is preferably 0.50% / ⁇ m, more preferably 0.40% / ⁇ m, and even more preferably 0.30% / ⁇ m.
  • the heat seal strength when the heat seal layers of the laminated laminate of the present invention are heat-sealed at a temperature of 200 ° C., a seal bar pressure of 0.2 MPa, and a seal time of 4 seconds is 8 N / 15 mm or more and 30 N / 15 mm or less. ..
  • the heat seal strength is preferably 9 N / 15 mm or more, and more preferably 10 N / 15 mm or more. It is preferable that the heat seal strength is high, but the upper limit that can be obtained at present is about 30 N / 15 mm.
  • the laminated laminate of the present invention preferably has a hot water heat shrinkage rate of -5% or more and 5% or less in both the width direction and the longitudinal direction when treated in hot water at 98 ° C. for 3 seconds.
  • a hot water heat shrinkage rate exceeds 5%, when the bag made of the laminated body is heat-treated such as retort treatment, the bag is deformed so much that the original shape cannot be maintained, and the bag is made of an inorganic substance. It is not preferable because cracks occur and the gas barrier property is lowered.
  • the hot water heat shrinkage rate is more preferably 4% or less, and further preferably 3% or less.
  • the heat shrinkage rate of hot water is less than -5%, it means that the laminated body is stretched, which is not preferable because it becomes difficult for the bag to maintain its original shape as in the case where the shrinkage rate is high.
  • the heat shrinkage rate of the laminated body in hot water is more preferably -4% or more and 4% or less, and further preferably -3% or more and 3% or less.
  • the laminate of the present invention preferably has a folding holding angle of 20 degrees or more and 70 degrees or less as measured by the method described later. If the folding holding angle exceeds 70 degrees, it is difficult to make creases when the bag is made, and the appearance is deteriorated, which is not preferable. On the other hand, the smaller the folding holding angle is, the more preferable it is, but the range covered by the present invention is the lower limit of 20 degrees, and even if the folding holding angle is 25 degrees or more, it can be said that it is practically preferable.
  • the upper limit of the folding holding angle is more preferably 65 degrees, and even more preferably 60 degrees.
  • the raw material species of the polyester-based resin layer constituting the laminate of the present invention contains an ethylene terephthalate unit as a main constituent component.
  • "to be the main constituent component” means that the content is 50 mol% or more when the total amount of the constituent component is 100 mol%.
  • the polyester used for the polyester resin layer of the present invention contains at least one component other than ethylene terephthalate. This is because the heat seal strength of the heat seal layer is improved by the presence of components other than ethylene terephthalate.
  • the amount of components other than ethylene terephthalate is small, but by containing components other than ethylene terephthalate, the difference in shrinkage rate from the heat seal layer can be reduced, and the curl of the laminate can be reduced. Leads to. Since the content of each component differs between the heat seal layer and the heat resistant layer, it will be described later.
  • the dicarboxylic acid monomer that can be a component other than terephthalic acid constituting ethylene terephthalate include isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, aromatic dicarboxylic acid such as orthophthalic acid, adipic acid, and the like.
  • Examples thereof include aliphatic dicarboxylic acids such as adipic acid, sebacic acid and decandicarboxylic acid, and alicyclic dicarboxylic acids.
  • the polyunsaturated carboxylic acid having a trivalent or higher value for example, trimellitic acid, pyromellitic acid and their anhydrides is not contained in the polyester.
  • polyester may not contain a diol having 8 or more carbon atoms (for example, octane diol) or a polyhydric alcohol having 3 or more valences (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.). preferable.
  • a diol having 8 or more carbon atoms for example, octane diol
  • a polyhydric alcohol having 3 or more valences for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.
  • a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol, or the like may be contained. Since the polyester elastomer has the effect of lowering the melting point of the polyester resin layer, it can be particularly preferably used for the heat seal layer.
  • neopentyl glycol 1,4-cyclohexanedimethanol, 1,4-butanediol, and diethylene glycol
  • neopentyl glycol and 1,4-cyclohexanedimethanol it is particularly preferable to use neopentyl glycol.
  • polyester resin layer constituting the laminated laminate of the present invention
  • various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, thickeners, and heat stabilizers are contained as required.
  • Agents, color pigments, color inhibitors, UV absorbers and the like can be added.
  • fine particles as a lubricant that improves the slipperiness of the film to at least the outermost layer of the film.
  • Any fine particles can be selected.
  • examples of the inorganic fine particles include silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate
  • examples of the organic fine particles include acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene. Particles and the like can be mentioned.
  • the average particle size of the fine particles can be appropriately selected within the range of 0.05 to 3.0 ⁇ m when measured with a Coulter counter, if necessary.
  • the polyester-based resin layer constituting the laminated laminate of the present invention for example, it can be added at any stage of producing a polyester-based resin (resin), but at the stage of esterification, Alternatively, it is preferable to add it as a slurry dispersed in ethylene glycol or the like after the transesterification reaction is completed and before the polycondensation reaction is started to proceed with the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol, water, or other solvent with a polyester resin raw material using a kneading extruder with a vent or a method of kneading and extruding dried particles and a polyester resin raw material.
  • a method of blending using a machine there is also a method of blending using a machine.
  • the polyester used for the heat seal layer constituting the laminated laminate of the present invention contains 30 mol% or more of a dicarboxylic acid monomer and / or a diol monomer which are components other than terephthalic acid and ethylene glycol constituting ethylene terephthalate. It is preferable, 32 mol% or more is more preferable, and 34 mol% or more is particularly preferable. Further, the upper limit of the monomer content as a component other than the ethylene terephthalate is 50 mol%.
  • the amount of the monomer other than the ethylene terephthalate contained in the heat seal layer is less than 30 mol%, even if the molten resin is extruded from the die and then rapidly cooled and solidified, it will crystallize in the subsequent stretching and heat fixing steps. Therefore, it is difficult to set the heat seal strength to 8 N / 15 mm or more, which is not preferable.
  • the amount of the monomer other than the ethylene terephthalate contained in the heat seal layer is 50 mol% or more, the heat seal strength of the film can be increased, but the heat resistance of the heat seal layer becomes extremely low. Therefore, when heat-sealing, the periphery of the sealing portion is blocked (a phenomenon in which heat is sealed in a wider range than intended due to heat conduction from the heating member), which makes proper heat-sealing difficult. ..
  • the content of the monomer as a component other than ethylene terephthalate is more preferably 48 mol% or less, and particularly preferably 46% or less.
  • the polyester used for the heat-resistant layer that can form the laminated laminate of the present invention contains 9 mol% or more of a dicarboxylic acid monomer and / or a diol monomer that is a component other than terephthalic acid and ethylene glycol constituting ethylene terephthalate. It is preferable, 10 mol% or more is more preferable, and 11 mol% or more is particularly preferable. Further, the upper limit of the monomer content as a component other than the ethylene terephthalate is 20 mol%.
  • the amount of the monomer contained in the heat-resistant layer, which is a component other than the ethylene terephthalate, is less than 9 mol%, the difference in heat shrinkage with the heat-sealed layer becomes large, and the curl of the laminated body becomes large, which is not preferable. If the difference in the monomer content of the heat-resistant layer and the heat-sealed layer, which is a component other than the ethylene terephthalate, becomes large, the difference in the heat shrinkage rate between the layers during heat fixing becomes large, and even if the cooling after heat fixing is strengthened. Even so, the shrinkage to the heat seal layer side becomes large, and the curl becomes large.
  • the amount of the monomer contained in the heat-resistant layer, which is a component other than the ethylene terephthalate, is 20 mol% or more, the heat resistance of the sealant is lowered, for example, holes are formed due to the heat applied during heat sealing. Therefore, it is not preferable.
  • the content of the monomer as a component other than the ethylene terephthalate is more preferably 19 mol% or less, and particularly preferably 18% or less.
  • the difference between the heat seal layer and the heat-resistant layer is 20 mol% or more and 35 mol% or less as the monomer content which is a component other than the ethylene terephthalate for controlling curl. Is more preferable, and 21 mol% or more and 34 mol% or less is further preferable.
  • the polyester-based resin layer (hereinafter, may be simply referred to as a film) constituting the laminated laminate of the present invention is described in 3.1 above. It can be obtained by melt-extruding the polyester raw material described in "Raw material type of polyester-based resin layer" with an extruder to form an unstretched laminated film, and stretching the unstretched laminated film by a predetermined method shown below.
  • the film contains a heat-sealing layer, a heat-resistant layer, or other layers, the timing of laminating each layer may be before or after stretching.
  • the polyester resin can be obtained by polycondensing by selecting the type and amount of the dicarboxylic acid component and the diol component so as to contain an appropriate amount of a monomer that can be a component other than ethylene terephthalate.
  • two or more kinds of chip-shaped polyester can be mixed and used as a raw material for the polyester resin layer.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material of each layer is dried in this way, it is melted at a temperature of 200 to 300 ° C. using an extruder and extruded as a laminated film.
  • any existing method such as a T-die method or a tubular method can be adopted. Then, the unstretched film can be obtained by quenching the film melted by extrusion.
  • a method for rapidly cooling the molten resin a method of casting the molten resin from a mouthpiece onto a rotary drum and quenching and solidifying the molten resin to obtain a substantially unoriented resin sheet can be preferably adopted.
  • the film may be formed by any method of non-stretching, uniaxial stretching (stretching in at least one of the longitudinal (longitudinal) direction and the horizontal (width) direction), and biaxial stretching. From the viewpoint of mechanical strength and productivity of the laminate of the present invention, uniaxial stretching is preferable, and biaxial stretching is more preferable.
  • the sequential biaxial stretching method by longitudinal stretching-transverse stretching in which longitudinal stretching is first performed and then transverse stretching will be described. However, even in the case of transverse stretching-longitudinal stretching in which the order is reversed, the main orientation direction is It doesn't matter because it only changes. Further, the simultaneous biaxial stretching method may be used.
  • the unstretched film For stretching in the longitudinal direction, it is preferable to introduce the unstretched film into a longitudinal stretching machine in which a plurality of roll groups are continuously arranged.
  • the longitudinal stretching it is preferable to preheat the film with a preheating roll until the film temperature reaches 65 ° C. to 90 ° C. If the film temperature is lower than 65 ° C., it becomes difficult to stretch the film when it is stretched in the vertical direction, and breakage is likely to occur, which is not preferable. Further, if the temperature is higher than 90 ° C., the film tends to adhere to the roll, and the film is easily wrapped around the roll or the roll is easily soiled due to continuous production, which is not preferable. When the film temperature reaches 65 ° C.
  • the longitudinal stretching ratio is preferably 1 to 5 times or less. Since 1x is not longitudinally stretched, the longitudinal stretching ratio is 1x to obtain a horizontally uniaxially stretched film, and 1.1 times or more is required to obtain a biaxially stretched film.
  • the upper limit of the longitudinal stretching ratio may be any number, but if the longitudinal stretching ratio is too high, it becomes difficult to laterally stretch and breakage is likely to occur, so it is preferably 5 times or less.
  • the shrinkage rate in the longitudinal direction of the film caused by longitudinal stretching can be reduced.
  • the Boeing phenomenon (distortion) that occurs in the tenter can be reduced. This is because in the lateral stretching and final heat treatment in the post-process, both ends in the film width direction are gripped and heated, so that only the central portion of the film shrinks in the longitudinal direction.
  • the relaxation rate in the longitudinal direction is preferably 0% or more and 70% or less (a relaxation rate of 0% means that relaxation is not performed). Since the upper limit of the relaxation rate in the longitudinal direction is determined by the raw materials used and the longitudinal stretching conditions, relaxation cannot be performed beyond this.
  • the relaxation rate in the longitudinal direction is limited to 70%. Relaxation in the longitudinal direction can be carried out by heating the film after longitudinal stretching at a temperature of 65 ° C. to 100 ° C. or lower and adjusting the speed difference of the rolls. As the heating means, any of roll, near infrared ray, far infrared ray, hot air heater and the like can be used. Further, relaxation in the longitudinal direction can be performed not immediately after longitudinal stretching, but also in lateral stretching (including preheating zone) and final heat treatment by narrowing the clip interval in the longitudinal direction (in this case, both ends in the film width direction). (Because it is relaxed in the longitudinal direction, Boeing distortion is reduced), it can be performed at any time. After relaxing in the longitudinal direction (longitudinal stretching if not relaxing), it is preferable to cool the film once, and it is preferable to cool it with a cooling roll having a surface temperature of 20 to 40 ° C.
  • transverse stretching After longitudinal stretching, it is preferable to perform transverse stretching at a stretching ratio of about 3 to 5 times at 65 ° C. to 110 ° C. while holding both ends of the film in the width direction with clips in the tenter. Preheating is preferably performed before stretching in the lateral direction, and preheating is preferably performed until the film surface temperature reaches 75 ° C. to 120 ° C.
  • the film after the transverse stretching is passed through an intermediate zone where no active heating operation is performed. Since the temperature is higher in the next final heat treatment zone than in the transverse stretching zone of the tenter, the heat of the final heat treatment zone (hot air itself or radiant heat) will flow into the transverse stretching process unless the intermediate zone is provided. In this case, since the temperature of the laterally stretched zone is not stable, not only the thickness accuracy of the film deteriorates, but also the physical properties such as heat seal strength and shrinkage rate vary. Therefore, it is preferable that the film after the transverse stretching is passed through the intermediate zone to allow a predetermined time to elapse, and then the final heat treatment is performed.
  • the accompanying flow accompanying the running of the film, the transverse stretching zone, and the final so that when the strip-shaped piece of paper hangs down without passing through the film, the piece of paper hangs down almost completely in the vertical direction. It is important to block hot air from the heat treatment zone. It is sufficient that the transit time of the intermediate zone is about 1 second to 5 seconds. If it is shorter than 1 second, the length of the intermediate zone becomes insufficient and the heat blocking effect is insufficient. On the other hand, it is preferable that the intermediate zone is long, but if it is too long, the equipment will become large, so about 5 seconds is sufficient.
  • the intermediate zone After passing through the intermediate zone, it is preferable to perform heat treatment in the final heat treatment zone at a transverse stretching temperature of 250 ° C. or lower. If the heat treatment temperature is not equal to or higher than the transverse stretching temperature, the effect of the heat treatment will not be exhibited. In this case, the shrinkage rate of the film at 80 ° C. is higher than 5%, which is not preferable. The higher the heat treatment temperature, the lower the shrinkage of the film, but above 250 ° C, the haze of the film becomes higher than 15%, and the film melts and falls into the tenter during the final heat treatment process. Therefore, it is not preferable.
  • the shrinkage rate in the width direction can be reduced by reducing the distance between the clips of the tenter at an arbitrary magnification (relaxation in the width direction). Therefore, in the final heat treatment, it is preferable to relax in the width direction in the range of 0% or more and 10% or less (a relaxation rate of 0% means that relaxation is not performed).
  • a relaxation rate of 0% means that relaxation is not performed.
  • the higher the relaxation rate in the width direction, the lower the shrinkage rate in the width direction, but the upper limit of the relaxation rate (shrinkage rate in the width direction of the film immediately after lateral stretching) is the raw material used, the stretching conditions in the width direction, and the heat treatment temperature. It is not possible to carry out relaxation beyond this, as it is determined by.
  • the relaxation rate in the width direction is limited to 10%.
  • the passage time of the final heat treatment zone is preferably 2 seconds or more and 20 seconds or less. If the passing time is 2 seconds or less, the surface temperature of the film passes through the heat treatment zone without reaching the set temperature, which makes the heat treatment meaningless. The longer the transit time, the higher the effect of the heat treatment. Therefore, it is preferably 2 seconds or longer, and more preferably 5 seconds or longer. However, if the transit time is to be lengthened, the equipment will become huge, so 20 seconds or less is sufficient for practical use.
  • the film After passing through the final heat treatment, it is preferable to cool the film with cooling air of 10 ° C. or higher and 30 ° C. or lower in the cooling zone. At this time, the cooling efficiency is improved by lowering the temperature of the cooling air or increasing the wind speed so that the actual temperature of the film at the outlet of the tenter becomes lower than the glass transition temperature of the heat seal layer or the heat resistant layer, whichever is lower. It is preferable to let it.
  • the actual temperature is the film surface temperature measured by a non-contact radiation thermometer. If the actual temperature of the film at the outlet of the tenter exceeds the glass transition temperature, the film will heat shrink when both ends of the film gripped by the clips are released. At this time, since the film curls to the heat seal layer having a large heat shrinkage rate, the radius of curvature becomes small, which is not preferable.
  • the passage time of the cooling zone is preferably 2 seconds or more and 20 seconds or less. If the passing time is 2 seconds or less, the surface temperature of the film passes through the cooling zone without reaching the glass transition temperature, so that the radius of curvature becomes small. The longer the transit time, the higher the cooling effect. Therefore, it is preferably 2 seconds or longer, and more preferably 5 seconds or longer. However, if the transit time is to be lengthened, the equipment will become huge, so 20 seconds or less is sufficient for practical use. After that, a film roll can be obtained by winding while cutting and removing both ends of the film.
  • Adhesive layer As the adhesive layer used in the present invention, a general-purpose adhesive for laminating can be used. For example, poly (ester) urethane type, polyester type, polyamide type, epoxy type, poly (meth) acrylic type, polyethyleneimine type, ethylene- (meth) acrylic acid type, polyvinyl acetate type, (modified) polyolefin type, polybutagen.
  • a solvent-based (non-) solvent-based, water-based, or heat-melting type adhesive containing a system, a wax system, a caseine system, or the like as a main component can be used.
  • urethane-based or polyester-based materials are preferable in consideration of moisture and heat resistance that can withstand retort treatment and flexibility that can follow dimensional changes of each base material.
  • the method for laminating the adhesive layer include a direct gravure coating method, a reverse gravure coating method, a kiss coating method, a die coating method, a roll coating method, a dip coating method, a knife coating method, a spray coating method, a fonten coating method, and the like.
  • the coating amount after drying is preferably 1 to 8 g / m 2 because it can be applied by the method described in the above and sufficient adhesiveness is exhibited after retorting.
  • the coating amount is less than 1 g / m 2 , it becomes difficult to bond the entire surface, and the adhesive strength is lowered. On the other hand, if it exceeds 8 g / m 2, it takes time to completely cure the film, unreacted substances are likely to remain, and the adhesive strength is lowered.
  • At least one or more printing layers or other plastic substrates may be laminated between or outside the inorganic thin film layer or the substrate film layer and the thermosetting resin layer.
  • laminating is limited to polyester-based ones.
  • water-based and solvent-based resin-containing printing inks can be preferably used as the printing ink forming the printing layer.
  • the resin used for the printing ink include an acrylic resin, a urethane resin, a polyester resin, a vinyl chloride resin, a vinyl acetate copolymer resin, and a mixture thereof.
  • Known printing inks include antistatic agents, light blocking agents, UV absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, cross-linking agents, blocking agents, antioxidants and the like. Additives may be included.
  • the printing method for providing the print layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used.
  • known drying methods such as hot air drying, hot roll drying, and infrared drying can be used.
  • the laminated laminate of the present invention preferably has an oxygen permeability of 5 ml / m 2 ⁇ d ⁇ MPa or less under the condition of 23 ° C. ⁇ 65% RH from the viewpoint of exhibiting good gas barrier properties. Further, by providing a barrier layer on each film, it can be preferably 4 ml / m 2 ⁇ d ⁇ MPa or less, more preferably 3 ml / m 2 ⁇ d ⁇ MPa or less. If the oxygen permeability exceeds 5 ml / m 2 ⁇ d ⁇ MPa, it becomes difficult to meet applications requiring high gas barrier properties such as aluminum foil replacement.
  • the oxygen permeability is less than 0.5 ml / m 2 ⁇ d ⁇ MPa, the barrier performance is excellent, but the residual solvent is difficult to permeate to the outside of the bag, and the amount of transfer to the contents is relatively large. Is not preferable because it may increase.
  • the preferable lower limit of oxygen permeability is 0.5 ml / m 2 ⁇ d ⁇ MPa or more.
  • the laminate of the present invention preferably has a water vapor transmission rate of 1.0 g / m 2 ⁇ d or less under the conditions of 40 ° C. ⁇ 90% RH from the viewpoint of exhibiting good gas barrier properties. Further, by providing a barrier layer on each film, it can be preferably 0.75 g / m 2 ⁇ d or less, more preferably 0.5 g / m 2 ⁇ d or less. If the water vapor transmission rate exceeds 1.0 g / m 2 ⁇ d, it becomes difficult to meet applications requiring high gas barrier properties such as aluminum foil replacement.
  • the water vapor transmission rate is less than 0.1 g / m 2 , the barrier performance is excellent, but the residual solvent is difficult to permeate to the outside of the bag, and the amount transferred to the contents may increase relatively. Not preferable.
  • the preferable lower limit of the water vapor transmission rate is 0.1 g / m 2 ⁇ d or more.
  • the laminated laminate of the present invention preferably has a piercing strength of 10 N or more, more preferably 12 N or more, still more preferably 14 N or more, as measured according to JIS Z1707. If the piercing strength is less than 10N, when used as a bag, a hole may be opened when an external load is applied, and the contents may leak out.
  • the laminated laminate of the present invention preferably has a haze of 20% or less, more preferably 18% or less, still more preferably 16% or less, as measured according to JIS K7136. If the haze is 20% or more, the transparency is poor when used as a bag, which is not preferable from the viewpoint of visibility of the contents from the viewpoint of safety and the appearance after printing.
  • the heat seal strength when the heat seal layers of the laminated laminate of the present invention are heat-sealed at a temperature of 200 ° C., a seal bar pressure of 0.2 MPa, and a seal time of 4 seconds is 8 N / 15 mm or more and 30 N / 15 mm or less. .. If the heat seal strength is less than 8N / 15 mm, the seal portion is easily peeled off, so that it cannot be used as a packaging bag.
  • the heat seal strength is preferably 9 N / 15 mm or more, and more preferably 10 N / 15 mm or more. It is preferable that the heat seal strength is high, but the upper limit that can be obtained at present is about 30 N / 15 mm.
  • Thickness of various films Measured using a dial gauge in accordance with JIS K7130-199 A method.
  • each laminated film obtained at the stage of laminating the protective layer on the base film was used as a sample, and a test piece of 100 mm ⁇ 100 mm was cut out from this sample.
  • the protective layer was wiped with 1-methoxy-2-propanol or dimethylformamide, and the amount of adhesion was calculated from the change in mass of the film before and after wiping.
  • Oxygen Permeability Evaluation Method For the laminated laminate produced in (4) above, an oxygen permeability measuring device (MOCON's "OX-TRAN (registered trademark) 2/22) according to the JIS-K7126 B method. ”), The oxygen permeability was measured in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH. The oxygen permeability was measured in the direction in which oxygen permeated from the base film side of the laminated laminate to the heat-sealing resin layer side.
  • OX-TRAN registered trademark 2/22
  • Heat seal strength evaluation method The heat seal strength of the laminated laminate produced in (4) above was measured in accordance with JIS Z1707. The specific procedure is shown. The heat-sealed surfaces of the samples were bonded to each other with a heat sealer. The heat sealing conditions were an upper bar temperature of 200 ° C., a lower bar temperature of 30 ° C., a pressure of 0.2 MPa, and a time of 4 seconds. The adhesive sample was cut out so that the seal width was 15 mm. The peel strength was measured at a tensile speed of 200 mm / min using a universal tensile tester "DSS-100" (manufactured by Shimadzu Corporation). The peel strength is indicated by the strength per 15 mm (N / 15 mm).
  • Carbodiimide-based cross-linking agent (A) As a carbodiimide-based cross-linking agent, a commercially available "carbodilite (registered trademark) SV-02" manufactured by Nisshinbo Holdings Co., Ltd .; solid content 40%) was prepared.
  • Resin having an oxazoline group (B) As a resin having an oxazoline group, a commercially available water-soluble oxazoline group-containing acrylate (“Epocross (registered trademark) WS-300” manufactured by Nippon Shokubai Co., Ltd .; solid content 10%) was prepared. The amount of oxazoline groups in this resin was 7.7 mmol / g.
  • acrylic resin (C) As an acrylic resin, a 25% by mass emulsion of a commercially available acrylic acid ester copolymer (“Mobile (registered trademark) 7980” manufactured by Nichigo Mobile Co., Ltd.” was prepared. The acid value (theoretical value) of this acrylic resin is 4 mgKOH. It was / g.
  • urethane resin (D) As the urethane resin, a commercially available polyester urethane resin dispersion (“Takelac (registered trademark) W605” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 100 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1H-NMR was 55 mol%.
  • silane Coupling Agent (E) As a silane coupling agent, a commercially available "(registered trademark) KBM903" manufactured by Shin-Etsu Chemical Co., Ltd .; 100% solid content) was prepared. At the time of use, it was diluted with water to make a 2% aqueous solution.
  • reaction solution was stirred and it was confirmed that the reaction solution reached a predetermined amine equivalent.
  • reaction solution was cooled to 35 ° C., and then 9.14 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution.
  • 794.97 parts by mass of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 15 ° C., and the polyurethane prepolymer solution was added while stirring and mixing at 2000 min-1.
  • aqueous amine solution prepared by mixing 22.96 parts by mass of 2-[(2-aminoethyl) amino] ethanol and 91.84 parts by mass of water was added, and then N-2- (aminoethyl) -3 was added.
  • N-2- (aminoethyl) -3 was added.
  • -Amine aqueous solution prepared by mixing 2.38 parts by mass of aminopropyltrimethoxysilane (trade name; KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) and 9.50 parts by mass of water was added, and a chain extension reaction was carried out.
  • a polyurethane dispersion (E) having a solid content of 25% by mass and an average particle size of 70 nm was obtained.
  • the Si content (according to the preparation calculation) of the obtained polyurethane dispersion (D-1) was 1200 mg / 1 kg, and the metaxylylene group content (according to the preparation calculation) was 32% by mass.
  • polyester resin (G) As the polyester component, a polyester polyol (“DF-COAT GEC-004C” manufactured by DIC Corporation: solid content 30%) was used.
  • Polyisocyanate cross-linking agent (H) As the polyisocyanate component, a trimethylolpropane adduct of metaxylylene diisocyanate (“Takenate D-110N” manufactured by Mitsui Chemicals, Inc .: solid content 75%) was used.
  • Silane Coupling Agent (I) As a silane coupling agent, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (“KBM-603” manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
  • Coating liquid 1 used for coating layer Each material was mixed at the following blending ratio to prepare a coating liquid (resin composition for coating layer).
  • Coating liquid 2 used for coating layer Each material was mixed at the following blending ratio to prepare a coating liquid (resin composition for coating layer).
  • Coating liquid 3 used for coating the protective layer The following coating agents were mixed to prepare a coating liquid 3.
  • the mass ratio of the urethane resin (E) in terms of solid content is as shown in Table 1.
  • polyester A Adjustment of polyester resin recycled from PET bottles
  • the flakes obtained by crushing are melted by an extruder, and the filter is changed to a finer one with an opening size in order to filter out finer foreign substances twice.
  • the polyester recycled raw material was obtained by filtering with a filter having the smallest opening size of 50 ⁇ m for the third time.
  • the melt extruded from the T-die was brought into close contact with a cooling roll to form an unstretched sheet, which was subsequently heated to 118 ° C. and stretched 1.41 times in the longitudinal direction with a roll having a peripheral speed difference (MD1). Further, it was stretched 2.92 times (MD2) in the longitudinal direction with a roll heated to 128 ° C. and having a difference in peripheral speed.
  • MD1 peripheral speed difference
  • MD2 peripheral speed difference
  • the vertically stretched sheet was guided to a tenter, and the coating liquid 1 was coated on one side of the film by the fountain bar coating method. It was led to a tenter while drying, preheated at 121 ° C., and then laterally stretched 4.3 times at 131 ° C. Continued heat fixation at 180 ° C.
  • the resin composition for the adhesive layer (coating liquid 1) was applied by the fountain bar coating method. Then, it is guided to a tenter while drying, then passed through the tenter and stretched 4.0 times in the lateral direction at 90 ° C., and subjected to tension heat treatment at 200 ° C. for 3 seconds and relaxation treatment of 9% for 1 second, and then 50. The film was cooled by cooling at ° C. for 2 seconds. The surface temperature of the edge of the film at this time was 75 ° C.
  • Polyester (A) was obtained.
  • This polyester (A) is polyethylene terephthalate.
  • the composition of the polyester is shown in Table 1.
  • Polyesters (B) to (E) having different monomers were obtained in the same procedure as in Synthesis Example 1. The composition of each polyester is shown in Table 1.
  • TPA is terephthalic acid
  • BD is 1,4-butanediol
  • NPG is neopentyl glycol
  • CHDM is 1,4-cyclohexanedimethanol
  • DEG diethylene glycol.
  • SiO2 Siliconicia 266 manufactured by Fuji Silysia Chemical Ltd.
  • Polyester A, polyester B, polyester D, and polyester E are mixed in a mass ratio of 10:60:24: 6 as raw materials for the heat-sealing layer, and polyester A, polyester B, polyester D, and polyester E are mixed in mass ratio as raw materials for the heat-resistant layer.
  • the mixture was mixed at 57: 31: 6: 6.
  • the mixed raw materials of the heat seal layer and the heat resistant layer were put into separate twin-screw extruders, and both were melted at 270 ° C.
  • Each molten resin was joined by a feed block in the middle of the flow path, discharged from a T die, and cooled on a chill roll set to a surface temperature of 30 ° C. to obtain an unstretched laminated film.
  • the flow path of the molten resin is set so that one side of the laminated film is a heat-sealing layer and the other side is a heat-resistant layer (a two-layer structure consisting of a heat-sealing layer / a heat-resistant layer), and the thickness ratio between the heat-sealing layer and the heat-resistant layer is set.
  • the discharge amount was adjusted so that the value was 50/50.
  • the unstretched laminated film obtained by cooling and solidifying is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated on preheating rolls until the film temperature reaches 78 ° C., and then stretched 4.1 times. did.
  • the film immediately after longitudinal stretching was passed through a heating furnace set at 100 ° C. with a hot air heater, and a 20% relaxation treatment was performed in the longitudinal direction by utilizing the speed difference between the rolls at the inlet and the outlet of the heating furnace. Then, the vertically stretched film was forcibly cooled by a cooling roll set to a surface temperature of 25 ° C.
  • the film after the relaxation treatment was guided to a transverse stretching machine (tenter), preheated for 5 seconds until the surface temperature reached 105 ° C., and then stretched 4.0 times in the width direction (lateral direction).
  • the film after the transverse stretching was directly led to the intermediate zone and passed in 1.0 second.
  • the hot air from the final heat treatment zone and the lateral stretching zone so that when the strip-shaped piece of paper hangs down without passing through the film, the piece of paper hangs down almost completely in the vertical direction. The hot air from was cut off.
  • the film that passed through the intermediate zone was led to the final heat treatment zone and heat-treated at 190 ° C. for 5 seconds.
  • the heat treatment was performed and at the same time, the clip interval in the film width direction was narrowed to perform a 3% relaxation treatment in the width direction.
  • the film was cooled with cooling air at 30 ° C. for 5 seconds.
  • the actual film temperature at the outlet of the tenter was 45 ° C.
  • the continuous vacuum vapor deposition machine is depressurized to 10-4 Torr or less, metallic aluminum having a purity of 99.99% is loaded into an alumina crucible from the lower part of the cooling drum, the metallic aluminum is heated and evaporated, and oxygen is contained in the vapor. Was supplied and deposited on the film while undergoing an oxidation reaction to form an aluminum oxide film having a thickness of 10 nm.
  • inorganic thin film layer M-2 a composite oxide layer of silicon dioxide and aluminum oxide was formed on a base film layer or an intermediate layer or a heat-resistant layer of a heat-sealed resin by an electron beam deposition method.
  • the vapor deposition source particulate SiO2 (purity 99.9%) and A12O3 (purity 99.9%) having a thickness of about 3 mm to 5 mm were used.
  • the film thickness of the inorganic thin film layer (SiO2 / A12O3 composite oxide layer) in the film (inorganic thin film layer / coating layer-containing film) thus obtained was 13 nm.
  • the coating liquid 3 prepared above is applied onto the inorganic thin film layer of the obtained vapor-deposited film by the gravure roll coating method, pre-dried at 110 ° C., and then main-dried at 160 ° C. to provide a protective layer with a predetermined coating amount. Got Then, after heat treatment was performed at 40 ° C. for 2 days.
  • the above-prepared coating liquid 4 is applied onto the inorganic thin film layer of the obtained vapor-deposited film by the gravure roll coating method, pre-dried at 110 ° C., and then main-dried at 190 ° C. to provide a protective layer with a predetermined coating amount. Got Then, heat treatment was performed after 40 degreeC ⁇ 4 days.
  • the film laminates 1 to 3 shown in Table 2 having a coating layer / an inorganic thin film layer / a protective layer on each film were produced.
  • the films 1 to 3 were used and bonded by a dry laminating method using an adhesive to obtain a laminated laminate having the constitution shown in Table 3.
  • a polyamide film (Toyobo N1100-15 ⁇ m; NY) is used as an intermediate layer, and a linear low-density polyethylene film (Toyobo L4102-40 ⁇ m; LLDPE) or a non-stretched polypropylene film (LLDPE) is used as a heat seal resin.
  • Toyobo P1146-70 ⁇ m (referred to as CPP) was used.
  • the structure of the produced laminated laminate is shown in Table 3.
  • various evaluations were carried out on the obtained laminated laminate. The results are shown in Table 3.
  • the gas barrier performance is greatly improved by laminating and adhering an inorganic thin film layer, a coating layer, and a barrier protective layer on each film, and a base film using a polyester resin derived from a PET bottle with less environmental load.
  • laminating a sealant made of polyester component we have realized monomaterialization while maintaining toughness, sealing property and transparency.
  • the laminated film of the present invention can be easily manufactured with few processing steps, it is excellent in both economic efficiency and production stability, and it is possible to provide a gas barrier film having uniform characteristics.

Landscapes

  • Laminated Bodies (AREA)

Abstract

【課題】環境に配慮したリサイクル材料を含有しつつ、ポリエステルを主体とした環境負荷が少ないほぼ単一の樹脂種から構成されたラミネート構成を有すると共に、包装材料に求められるガスバリア性やヒートシール性、強靭性、透明性等の必要性能を有するラミネート積層体を提供すること。 【解決手段】 ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂層がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂を含有する保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂層はエチレンテレフタレートを主たる構成成分とするポリエステル系樹脂からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするラミネート積層体。

Description

ラミネート積層体
 本発明は、食品、医薬品、工業製品等の包装分野に用いられる積層体に関する。更に詳しくは、ガスバリア性、加工性、強靭性に優れ、さらに内容物の可視化が可能で、電子レンジ用途にも対応できる利便性を備えた、環境対応型のラミネート積層体に関する。
 近年、欧州はじめ世界各国において、使い捨てプラスチック使用削減に向けた規制が強化されている。その背景には、資源循環への国際的な意識の高まりや新興国におけるごみ問題の深刻化がある。そのため、食品、医薬品等に求められるプラスチック製包装材料についても、3R(recycle, reuse, reduce)の観点から環境対応型の製品が求められている。
 前述の環境に優しい包装材料に求められる性能として、(1)リサイクル材料から成ること、(2)各種ガスを遮断し賞味期限を延長できるガスバリア性能を有すること、(3)環境負荷が少ないラミネート構成にすること(例えば有機溶剤を使用しないことや材料の使用量自体が少ないこと、モノマテリアル化可能であること)等が挙げられる。
 前記(1)について、代表的なリサイクル材料として、ペットボトルからリサイクルされたポリエステル樹脂が知られており、オリゴマー含有量の少ないペットボトル由来のポリエステル樹脂から、生産性、品位を損なうことなく静電気によるトラブルが少ない胴巻ラベル用ポリエステルフィルムにするという技術が知られている(例えば特許文献1参照)。今後の環境規制の高まりにより、こういったフィルム用途としての需要拡大が見込まれている。
 前記(2)について、水蒸気や酸素等の各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルムの表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層体が、一般的に用いられている。中でも、酸化ケイ素や酸化アルミニウム、これらの混合物等の無機酸化物の薄膜(無機薄膜層)を形成したものは、透明であり内容物の確認が可能であること、電子レンジでの使用が可能であることから、脱アルミ箔という環境的側面からも、その需要を伸ばしている。
 前述のリサイクル材料と無機薄膜から成るガスバリアフィルムについて、ペットボトルからリサイクルされたポリエステル樹脂を用い、低熱収縮性、厚みムラが小さいことにより
無機薄膜層およびシーラント層を備えたガスバリア性積層フィルムとした際、良好なガスバリア性を発現する積層フィルムが提案されている(例えば特許文献2参照)。しかし、かかる従来技術では、アルミ箔を代替するにはバリア性能が不十分であった。
 前記(3)について、アルミ箔を使用しないパウチは、袋のバリア性、耐熱性、強靭性(耐破袋性や耐ピンホール性)、高いシール性が同時に求められることから、袋の外側に蒸着ポリエステルフィルム、中間層にポリアミドフィルム、内側(内容物側)にオレフィン系ヒートシール性樹脂を接着剤を介してドライラミネートした少なくとも3層以上の構成が一般的である。
 前述のレトルトパウチ構成において、環境的側面からモノマテリアル化を達成するためには、袋としてのバリア性能のさらなる向上(アルミ箔並)、ポリアミドフィルムおよびオレフィン系シーラントを使用しない、またはポリエステル系材料に変更することが必要であるが、従来技術では変更は容易ではなかった。また、オレフィン系シーラントを用いた構成にした場合、透明性が不十分である場合があり、視認安全性の観点や、印刷後の外観の観点で好ましくない問題があった。
 ポリアミドフィルムの代替として、二軸延伸したポリブチレンテレフタレート(以下PBTと略記する場合がある)フィルムをもちいることが検討されている(例えば特許文献3参照)。では、少なくともポリブチレンテレフタレート樹脂、またはポリブチレンテレフタレート樹脂に対してポリエチレンテレフタレート(以下PETと略記する場合がある)樹脂を30重量%以下の範囲で配合したポリエステル系樹脂組成物のいずれかからなる樹脂組成物を縦横それぞれ2.7~4.0倍同時二軸延伸することにより得られた二軸延伸PBT系フィルムを基材フィルム層に使用することが知られていた。かかる技術によれば、耐屈曲ピンホール性、および耐衝撃性を持ち、かつ優れた保香性を併せ持つ液体充填用包材が得られるというものである。しかし、本文献ではバリア性能の具体的な数値や効果についての検討が不十分であった。
 また、オレフィン系シーラントの代替として、低吸着性・耐熱性を向上させたポリエステル系シーラントが開示されている(例えば特許文献4参照)。特許文献4のシーラントは、ヒートシール性を有する層とそれ以外の層を分け、これらの層の原料組成をそれぞれ別々に制御することにより、ヒートシール性と耐熱性を満足させている。しかし、特許文献4に記載のシーラントには、酸素や水蒸気といった気体を遮断する性能(ガスバリア性)がないため、パウチとしてのバリア性能向上には寄与していなかった。
特開2012-91862号公報 特許第6500629号公報 特開2017―094746号公報 特開2017-165059号公報
 上記特許文献1~4では、個々の素材としての性能等については述べられているが、前記の環境に優しい包装材料に求められる性能としての(1)リサイクル材料を構成材料として含むこと、(2)各種ガスを遮断し賞味期限を延長できるガスバリア性能を有すること、(3)リサイクルしやすく環境負荷が少ないラミネート構成にすること(モノマテリアル化) の3点と、さらにパウチとしての基本性能(ヒートシール性と強靭性、透明性の両立については検討されていなかった。前記構成と性能をいずれも満足するポリエステル系包装材料は、従来はなかった。
 本発明は、かかる従来技術の問題点を背景になされたものである。
 すなわち、本発明の課題は環境に配慮したリサイクル材料を含有しつつ、ポリエステルを主体とした環境負荷が少ないほぼ単一の樹脂種から構成されたラミネート構成を有すると共に、包装材料に求められるガスバリア性やシール性、強靭性、透明性等の必要性能を有するラミネート積層体を提供することである。
 本発明者らは、要求されるバリア性能に合わせ無機薄膜層、被覆層、バリア保護層を各フィルム(樹脂層)上に積層し貼り合わせることでガスバリア性能を大きく向上させ、さらに環境負荷の少ないペットボトル由来のポリエステル樹脂を用いた基材フィルムと、ポリエステル成分からなるシーラントをラミネートすることで、強靭性とシール性、透明性を保持したままモノマテリアル化を実現した。
 すなわち本発明は、以下の構成からなる。
1.ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂から成る保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂はエチレンテレフタレートを主たる構成成分とするポリエステル系成分からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするラミネート積層体。
2.前記基材フィルムとヒートシール性樹脂の間に、接着剤を介して中間層フィルムを有し、前記中間層フィルムがPBT樹脂を70質量%以上含む樹脂組成物からなることを特徴とする1.に記載のラミネート積層体。
3.前記ヒートシール性樹脂の少なくとも片面に無機薄膜層(B)が積層されていることを特徴とする1.または2.に記載のラミネート積層体。
4.前記中間層フィルムの少なくとも片面に無機薄膜層(C)が積層されていることを特徴とする1.~3.のいずれかに記載のラミネート積層体。
5.前記中間層フィルムの無機薄膜層(C)上にウレタン樹脂を有する保護層(b)が積層されていることを特徴とする1.~4.のいずれかに記載のラミネート積層体。
6.前記基材フィルムと前記無機薄膜層(C)の間に、被覆層(Y)を有することを特徴とする、1.~5.のいずれかに記載のラミネート積層体。
7.前記中間層フィルムと前記無機薄膜層(C)の間に、被覆層(Y)を有することを特徴とする、4.~6.のいずれかに記載のラミネート積層体。
8.前記無機薄膜層(A)~(C)が酸化アルミニウムまたは酸化ケイ素と酸化アルミニウムの複合酸化物からなる層であることを特徴とする1.~7.に記載のラミネート積層体。
 本発明者らは、かかる技術によって、環境に配慮しつつ、包装材料に求められるバリア性やシール性、強靭性等の必要性能を有するラミネート積層体を提供することが可能となった。
 以下、本発明について詳細に説明する。
 本発明のラミネート積層体は、ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂層がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂を含有する保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂層はエチレンテレフタレートを主たる構成成分とするポリエステル系樹脂からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするものである。
[基材フィルム層]
 本発明においては後述の通り、酸成分としてイソフタル酸成分を含有するペットボトルから再生されたリサイクルポリエステル樹脂を基材フィルムの原料として使用することが好ましい態様である。従って、基材フィルムはリサイクルされたポリエステル樹脂とバージン原料、即ちリサイクルされていない樹脂との混合樹脂となり、前記フィルムを構成している樹脂の極限粘度とは、これらフィルムを構成する混合樹脂の極限粘度を測定して得られた値であることを意味する。基材フィルムを測定して得られるフィルムを構成している樹脂の極限粘度の下限は0.58dl/gであることが好ましく、より好ましくは0.60dl/gである。0.58dl/g未満であると、ペットボトルからなるリサイクル樹脂は極限粘度が0.68dl/gを超えるものが多く、それを用いてフィルムを作製する際に粘度を低下させると厚みムラ不良となることがあるので好ましくない。また、フィルムが着色する場合があるため好ましくない。上限は0.70dl/gであることが好ましく、より好ましくは0.68dl/gである。0.70dl/gを超えると押出機からの樹脂が吐出しにくくなり生産性が低下することがあるので好ましくない。
 基材フィルムの厚みの下限は好ましくは8μmであり、より好ましくは10μmであり、さらに好ましくは12μmである。8μm未満であるとフィルムとしての強度が不足となることがあるので好ましくない。上限は好ましくは200μmであり、より好ましくは50μmであり、さらに好ましくは30μmである。200μmを超えると厚くなりすぎて加工が困難となることがある。また、フィルムの厚みが厚くなることは環境負荷の面でも好ましくなく、できるだけ減容化することが好ましい。
 基材フィルムの厚み方向の屈折率の下限は好ましくは1.4930であり、より好ましくは1.4940である。1.4930未満であると配向が十分でないため、ラミネート強度が得られない場合がある。上限は好ましくは1.4995であり、より好ましくは1.4980である。1.4995を超えると、面の配向が崩れ、力学的特性が不足することがあるので好ましくない。
 基材フィルムの縦方向(MDと記載することがある)及び横方向(TDと記載することがある)の150℃、30分処理による熱収縮率の下限は好ましくは0.1%であり、より好ましくは0.3%である。0.1%未満であると改善の効果が飽和するほか、力学的に脆くなってしまうことがあるので好ましくない。上限は好ましくは3.0%であり、より好ましくは2.5%である。3.0%を超えると印刷などの加工時の寸法変化により、ピッチズレなどが起こることがあるので好ましくない。また、3.0%を超えると印刷などの加工時の寸法変化により、幅方向での縮みなどが起こることがあるため好ましくない。
 基材フィルムの原料としては酸成分としてイソフタル酸成分を含有するペットボトルからなるリサイクルポリエステル樹脂を使用することが好ましい。ペットボトルに使用されているポリエステルにはボトル外観を良好にするため、結晶性の制御が行われており、その結果、10モル%以下のイソフタル酸成分を含むポリエステルが用いられていることがある。リサイクル樹脂を活用するためには、イソフタル酸成分を含む材料を使用することになる場合がある。
 基材フィルム中に含まれるポリエステル樹脂を構成する全ジカルボン酸成分に占めるテレフタル酸成分の量の下限は好ましくは95.0モル%であり、より好ましくは96.0モル%であり、さらに好ましくは96.5モル%であり、特に好ましくは97.0モル%である。95.0モル%未満であると結晶性が低下するため、熱収縮率が高くなることがあり、あまり好ましくない。また、フィルム中に含まれるポリエステル樹脂のテレフタル酸成分の量の上限は好ましくは99.5モル%であり、より好ましくは99.0モル%である。ペットボトルからなるリサイクルポリエステル樹脂は、イソフタル酸に代表されるテレフタル酸以外のジカルボン酸成分を有するものが多いため、フィルム中のポリエステル樹脂を構成するテレフタル酸成分が99.5モル%を超えることは、リサイクル樹脂の比率の高いポリエステルフィルムの製造が結果として困難になり、あまり好ましくない。
 基材フィルム中に含まれるポリエステル樹脂を構成する全ジカルボン酸成分に占めるイソフタル酸成分の量の下限は好ましくは0.5モル%であり、より好ましくは0.7モル%であり、さらに好ましくは0.9モル%であり、特に好ましくは1.0モル%である。ペットボトルからなるリサイクルポリエステル樹脂は、イソフタル酸成分を多く含むものがあるため、フィルム中のポリエステル樹脂を構成するイソフタル酸成分が0.5モル%未満であることは、リサイクル樹脂の比率の高いポリエステルフィルムの製造が結果として困難になり、あまり好ましくない。フィルム中に含まれるポリエステル樹脂を構成する全ジカルボン酸成分に占めるイソフタル酸成分の量の上限は好ましくは5.0モル%であり、より好ましくは4.0モル%であり、さらに好ましくは3.5モル%であり、特に好ましくは3.0モル%である。5.0モル%を超えると結晶性が低下するため、熱収縮率が高くなることがあり、あまり好ましくない。また、イソフタル酸成分の含有率を上記範囲とすることでラミネート強度、収縮率、厚みムラに優れたフィルムの作成が容易となり好ましい。
 ペットボトルからなるリサイクル樹脂の極限粘度の上限は好ましくは0.90dl/gであり、より好ましくは0.80dl/gであり、さらに好ましくは0.77dl/gであり、特に好ましくは0.75dl/gである。0.9dl/gを超えると押出機からの樹脂が吐出しにくくなって生産性が低下することがあり、あまり好ましくない。
 フィルムに対するペットボトルからリサイクルされたポリエステル樹脂の含有率の下限は好ましくは50重量%であり、より好ましくは65重量%であり、さらに好ましくは75重量%である。50重量%未満であるとリサイクル樹脂の活用としては、含有率に乏しく、環境保護への貢献の点であまり好ましくない。リサイクル樹脂は固相重合により作成されるため、フィルム白化の要因となりうるオリゴマーの含有量が少ない。そのため、リサイクル樹脂の含有率が大きい方が、レトルト処理後のフィルム白化が改善される傾向にある。リサイクル樹脂の含有率が50%未満であると、レトルト処理後のフィルムの白化ムラが助長される懸念がある。一方、ペットボトルからリサイクルされたポリエステル樹脂の含有率の上限は特に限定されないが、好ましくは95重量%であり、より好ましくは90重量%であり、さらに好ましくは85重量%である。95重量%を超えるとフィルムとして機能向上のために無機粒子などの滑剤や添加剤を十分に添加することができない場合があり、あまり好ましくない。なお、フィルムとして機能向上のために無機粒子などの滑剤や添加剤を添加する場合に用いるマスターバッチ(高濃度含有樹脂)としてペットボトルからリサイクルされたポリエステル樹脂を用いることもできる。
 滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑材のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましい。これらにより透明性と滑り性を発現することができる。
 基材フィルム中の滑剤含有率の下限は好ましくは0.01重量%であり、より好ましくは0.015重量%であり、さらに好ましくは0.02重量%である。0.01重量%未満であると滑り性が低下することがある。上限は好ましくは1重量%であり、より好ましくは0.2重量%であり、さらに好ましくは0.1重量%である。1重量%を超えると透明性が低下することがあり、あまり好ましくない。
 本発明のラミネート積層体に使用される基材フィルムの製造方法は特に限定されないが、例えば、以下のような製造方法が推奨される。押出機内の樹脂を溶融、押出するための温度設定が重要になる。基本的な考え方は、(1)ペットボトルに使用されるポリエステル樹脂はイソフタル酸成分を含有することから、できるだけ低い温度で押出することで劣化を抑えながら、(2)極限粘度や微細な高結晶性部分を十分かつ均一に溶融するために、高温や高圧力などで溶融する部分を有することにある。イソフタル酸成分の含有は、ポリエステルの立体規則性の低下となり、融点の低下につながる。そのため、高い温度での押出しでは、熱による溶融粘度の大幅な低下や劣化となり、機械的強度低下や劣化異物の増大となる。また、押出し温度を下げるだけでは、十分な溶融混練ができず、厚みムラの増大やフィッシュアイなどの異物が問題となる場合がある。以上のとこから、推奨する製造方法としては、例えば、押出機を2台タンデムで使用することやフィルタ部での圧力を上げる方法、スクリュー構成の一部に剪断力の強いスクリューを用いる方法などが挙げられる。
 押出機内の樹脂溶融部の設定温度(押出機内のスクリューの圧縮部の最高の設定温度を除く)の下限は好ましくは270℃であり、上限は好ましくは290℃である。270℃未満では押出が困難であり、290℃を超えると樹脂の劣化が起こることがあり、あまり好ましくない。
 押出機内のスクリューの圧縮部の最高の設定温度の下限は好ましくは295℃である。ペットボトルに使用されるポリエステル樹脂は、透明性の点から高融点の結晶(260℃~290℃)が存在していることが多い。また、添加剤や結晶化核剤などが添加されており、樹脂材料内の微細な溶融挙動にバラツキがみられる。295℃未満であるとそれらを十分に溶融させることが困難となり、あまり好ましくない。押出機内のスクリューの圧縮部の最高の設定温度の上限は好ましくは310℃である。310℃を超えると樹脂の劣化が起こる場合があり、あまり好ましくない。
 押出機内のスクリューの圧縮部の最高の設定温度の領域を樹脂が通過する時間の下限は好ましくは10秒であり、より好ましくは15秒である。10秒未満であるとペットボトルに使用されるポリエステル樹脂を十分に溶融させることができず、あまり好ましくない。上限は好ましくは60秒、より好ましくは50秒である。60秒を超えると樹脂の劣化が起こり易くなり、あまり好ましくない。押出機の設定をこのような範囲にすることで、ペットボトルからリサイクルされたポリエステル樹脂を多く用いながら、厚みムラやフィッシュアイなどの異物、着色の少ないフィルムを得ることができる。
 このようにして溶融された樹脂は、冷却ロール上にシート状に押し出された後、二軸延伸される。延伸方法としては同時二軸延伸方式でも構わないが、特に逐次二軸延伸方式が好ましい。これらにより生産性と本発明に求める品質とを満たすことが容易になる。
 本発明においてフィルムの延伸方法は特に限定されないが、以下のような点が重要となる。極限粘度が0.58dl/g以上でイソフタル酸成分を含有する樹脂を延伸するには、縦方向(MD)延伸と横方向(TD)延伸の倍率と温度が重要である。MD延伸倍率や温度が適切でないと、均一に延伸の力がかからず、分子の配向が不十分となり、厚みムラの増大や力学特性が不十分となる場合がある。また、次のTD延伸工程でフィルムの破断が発生したり、極端な厚みムラの増大が発生したりする場合がある。TD延伸倍率や温度が適切でないと、均一に延伸されず、縦横の配向バランスが悪く、力学特性が不十分となる場合がある。また、厚みムラが大きい状態や分子鎖の配向性が不十分な状態で次の熱固定の工程に進んだ場合、均一に緩和ができず、厚みムラの更なる増大や力学特性が不十分となる問題が起こる。そのため、基本的には、MD延伸では以下に述べる温度調節を行って段階的に延伸を行い、TD延伸では配向バランスが極端に悪くならないように適切な温度で延伸することが推奨される。以下の態様に限定されるものではないが、一例を挙げて説明する。
 縦方向(MD)延伸方法としてはロール延伸方式、IR加熱方式が好ましい。
 MD延伸温度の下限は好ましくは100℃であり、より好ましくは110℃であり、さらに好ましくは120℃である。100℃未満であると極限粘度が0.58dl/g以上のポリエステル樹脂を延伸し、縦方向に分子配向させても、次の横延伸工程でフィルムの破断が発生したり、極端な厚み不良が発生したりして好ましくない。上限は好ましくは140℃であり、より好ましくは135℃であり、さらに好ましくは130℃である。140℃を超えると分子鎖の配向性が不十分となり、力学特性が不十分となる場合があるので、あまり好ましくない。
 MD延伸倍率の下限は好ましくは2.5倍であり、より好ましくは3.5倍であり、さらに好ましくは4倍である。2.5倍未満であると極限粘度が0.58dl/g以上のポリエステル樹脂を延伸し、縦方向に分子配向させても、次の横延伸工程でフィルムの破断が発生したり、極端な厚み不良が発生する場合があり、あまり好ましくない。上限は好ましくは5倍であり、より好ましくは4.8倍であり、さらに好ましくは4.5倍である。5倍を超えると力学強度や厚みムラ改善の効果が飽和することがあり、あまりその意義がない。
 MD延伸方法としては上記の一段延伸でも構わないが、延伸を二段以上に分けることがより好ましい。二段以上に分けることで、極限粘度が高く、イソフタル酸を含有するリサイクル樹脂からなるポリエステル樹脂を良好に延伸することが可能となり、厚みムラやラミネート強度、力学的特性などが良好となる。
 好ましい一段目のMD延伸温度の下限は110℃であり、より好ましくは115℃である。110℃未満であると熱不足となり、十分に縦延伸できず、平面性が乏しくなって好ましくない。好ましい一段目のMD延伸温度の上限は125℃であり、より好ましくは120℃である。125℃を超えると分子鎖の配向性が不十分となり、力学特性が低下する場合があるのであまり好ましくない。
 好ましい一段目のMD延伸倍率の下限は1.1倍であり、より好ましくは1.3倍である。1.1倍以上であると一段目の弱延伸とすることで、最終的に極限粘度が0.58dl/g以上のポリエステル樹脂を十分に縦延伸し、生産性を上げることができる。好ましい一段目のMD延伸倍率の上限は2倍であり、より好ましくは1.6倍である。2倍を超えると縦方向の分子鎖の配向性が高くなりすぎるため、二段目以降の延伸がしづらくなることや厚みムラが不良のフィルムとなることがあり、あまり好ましくない。
 好ましい二段目(または最終段)のMD延伸温度の下限は好ましくは110℃であり、より好ましくは115℃である。110℃以上であると極限粘度が0.58dl/g以上のポリエステル樹脂を十分に縦延伸し、次工程での横延伸が可能となり、縦横方向の厚みムラが良好となる。上限は好ましくは130℃であり、より好ましくは125℃である。130℃を超えると結晶化が促進され、横延伸が困難になったり、厚みムラが大きくなることがあり、あまり好ましくない。
 好ましい二段目(または最終段)のMD延伸倍率の下限は好ましくは2.1倍であり、より好ましくは2.5倍である。2.1倍未満であると極限粘度が0.58dl/g以上のポリエステル樹脂を延伸し、縦方向に分子配向させても、次の横延伸工程でフィルムの破断が発生したり、極端な厚み不良が発生する場合があり、あまり好ましくない。上限は好ましくは3.5倍であり、より好ましくは3.1倍である。3.5倍を越えると縦配向が高くなりすぎるため、二段目以降の延伸ができなくなったり、厚みムラが大きいフィルムとなることがあり、あまり好ましくない。
 TD延伸温度の下限は好ましくは110℃であり、より好ましくは120℃であり、さらに好ましくは125℃である。110℃未満であると横方向への延伸応力が高くなり、フィルムの破断が発生したり、厚みムラが極端に大きくなる場合があり、あまり好ましくない。上限は好ましくは150℃であり、より好ましくは145℃であり、さらに好ましくは140℃である。150℃を超えると分子鎖の配向性が高まらないため力学特性が低下することがあり、あまり好ましくない。
 横方向(TD)延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.9倍である。3.5倍未満であると、分子配向が弱く、力学強度が不十分となる場合があり、あまり好ましくない。また、縦方向の分子鎖の配向性が大きく、縦横のバランスが悪くなることで、厚みムラが大きくなり、あまり好ましくない。上限は好ましくは5.5倍であり、より好ましくは4.5倍である。5.5倍を超えると破断することがあり、あまり好ましくない。
 本発明の積層フィルムに使用される基材フィルムを得るためには、TD延伸終了後引き続きテンター内で行われる熱固定および、その後フィルムを室温まで低下するときの条件を適切に設定することが望ましい。イソフタル酸を含有するペットボトルからなるリサイクル樹脂を含むポリエステルフィルムは通常のイソフタル酸を含まないポリエチレンテレフタレートフィルムに比べると結晶性が低く、また極微小に溶融しやすくなっており、また力学的強度も低い。そのため延伸終了後に急激に緊張下で高温にさらされる場合やまた高温の熱固定終了後に急激に緊張下で冷却すると、避けがたいフィルムの幅方向での温度差により幅方向での張力バランスが乱れ、厚みムラや力学的特性が不良となる。一方、熱固定温度を下げてこの現象に対応しようとすると十分なラミネート強度が得られない場合がある。本発明においては、延伸終了後に、やや低温の熱固定1と十分高温な熱固定2(必要に応じて熱固定3)、その後に徐冷工程を設けて室温まで下げることが推奨される。ただし、この方法に限定されるものではなく、例えばテンター内での熱風の速度や各ゾーンの温度に合わせフィルム張力を制御する方法、延伸終了後に炉長が十分にある比較的温度が低い熱処理をする方法および熱固定終了後に加熱ロールで緩和させる方法なども挙げられる。
 一例として、テンターの温度制御による方法を以下に示す。
 熱固定1の温度の下限は好ましくは160℃であり、より好ましくは170℃である。160℃未満であると最終的に熱収縮率が大きくなり、加工時のズレや縮みが起こるとなることがあり、あまり好ましくない。上限は好ましくは215℃であり、より好ましくは210℃である。215℃を超えると急激に高温がフィルムにかかることになり、厚みムラが大きくなったり、破断したりすることがあるので、あまり好ましくない。
 熱固定1の時間の下限は好ましくは0.5秒であり、より好ましくは2秒である。0.5秒未満であるとフィルム温度上昇不足となることがある。上限は好ましくは10秒であり、より好ましくは8秒である。10秒を超えると生産性が低下する場合があり、あまり好ましくない。
 熱固定2の温度の下限は好ましくは220℃であり、より好ましくは227℃である。220℃未満であると熱収縮率が大きくなり、加工時のズレや縮みとなることがあり、あまり好ましくない。上限は好ましくは240℃であり、より好ましくは237℃である。240℃を超えるとフィルムが融けてしまう場合があるほか、融けない場合でも脆くなるとなることがあり、あまり好ましくない。
 熱固定2の時間の下限は好ましくは0.5秒であり、より好ましくは3秒である。0.5秒未満であると熱固定時に破断が起こりやすくなるとなることがあり、あまり好ましくない。上限は好ましくは10秒であり、より好ましくは8秒である。10秒を超えると、たるみなどが生じて厚みムラが発生することがあり、あまり好ましくない。
 必要に応じて、熱固定3を設ける場合の温度の下限は好ましくは205℃であり、より好ましくは220℃である。205℃未満であると熱収縮率が大きくなり、加工時のズレや縮みとなることがあり、あまり好ましくない。上限は好ましくは240℃であり、より好ましくは237℃である。240℃を超えるとフィルムが融けてしまうほか、融けない場合でも脆くなるとなることがあり、あまり好ましくない。
 必要に応じて、熱固定3を設ける場合の時間の下限は好ましくは0.5秒であり、より好ましくは3秒である。0.5秒未満であると熱固定時に破断が起こりやすくなるとなることがあり、あまり好ましくない。上限は好ましくは10秒であり、より好ましくは8秒である。10秒を超えるとたるみなどが生じて厚みムラが発生することがあり、あまり好ましくない。
 TDリラックスは、熱固定の任意の箇所で実施できる。下限は好ましくは0.5%でありより好ましくは3%である。0.5%未満であると特に横方向の熱収縮率が大きくなり、加工時のズレや縮みとなることがあり、あまり好ましくない。上限は好ましくは10%であり、より好ましくは8%である。10%を超えるとたるみなどが生じて厚みムラが発生することがあり、あまり好ましくない。
 TD熱固定後の徐冷温度の下限は好ましくは90℃であり、より好ましくは100℃である。90℃未満であるとイソフタル酸を含有するフィルムであることから、急激な温度変化による収縮などにより厚みムラが大きくなったり、破断が発することがあり、あまり好ましくない。徐冷温度の上限は好ましくは150℃であり、より好ましくは140℃である。150℃を超えると十分な冷却効果が得られないことがあり、あまり好ましくない。
 熱固定後の徐冷時間の下限は好ましくは2秒であり、より好ましくは4秒である。2秒未満であると十分な徐冷効果が得られないことがあるので、あまり好ましくない。上限は好ましくは20秒であり、より好ましくは15秒である。20秒を超えると生産性の点で不利になり易く、あまり好ましくない。
 本発明における基材フィルム層の厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。
 また本発明における基材フィルム層には、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。
 また、本発明における基材フィルム層に他素材の層を積層しても良く、その方法として、基材フィルム層を作製後に貼り合わせるか、製膜中に貼り合わせることができる。
[無機薄膜層]
 本発明では、前記基材フィルムの表面に無機薄膜層(A)を有する。無機薄膜層(A)は金属または無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70質量%の範囲であることが好ましい。Al濃度が20質量%未満であると、水蒸気バリア性が低くなる場合がある。一方、70質量%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合
物である。
 無機薄膜層(A)の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層(A)の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
 無機薄膜層(A)を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層(A)を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl2O3の混合物、あるいはSiO2とAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。
[被覆層]
 本発明のラミネート積層体は、安定したガスバリア性やラミネート強度を確保することを目的として、基材フィルム層と前記無機薄膜層(A)との間に被覆層(X)を設けることができる。基材フィルム層と前記無機薄膜層(A)との間に設ける被覆層(X)に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系、オキサゾリン系、カルボジイミド系等の硬化剤を添加したものが挙げられる。これらの被覆層(X)に用いる樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加によって、レトルト処理後のラミネート強度がより向上する。
 前記被覆層(X)に用いる樹脂組成物の中でも、オキサゾリン基またはカルボジイミド基を含有する樹脂とアクリル系樹脂及びウレタン系樹脂の混合物を用いることが好ましい。これらの官能基は無機薄膜との親和性が高く、また無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物とが反応することができ、無機薄膜層と強固な密着性を示す。また被覆層中に存在する未反応の官能基は、基材フィルム層および被覆層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができる。
 本発明においては、被覆層(X)の付着量を0.010~0.200(g/m)とすることが好ましい。これにより、被覆層を均一に制御することができるため、結果として無機薄膜層を緻密に堆積させることが可能になる。また、被覆層内部の凝集力が向上し、基材フィルム-被覆層(X)-無機薄膜層(A)の各層間の密着性も高くなるため、被覆層の耐水接着性を高めることができる。被覆層(X)の付着量は、好ましくは0.015(g/m)以上、より好ましくは0.020(g/m)以上、さらに好ましくは0.025(g/m)以上であり、好ましくは0.190(g/m)以下、より好ましくは0.180(g/m)以下、さらに好ましくは0.170(g/m)以下である。被覆層(X)の付着量が0.200(g/mを超えると、被覆層内部の凝集力が不充分となり、良好な密着性を発現できない場合がある。また、被覆層の均一性も低下するため、無機薄膜層に欠陥が生じて、ガスバリア性が低下するおそれがある。しかも、製造コストが高くなり経済的に不利になる。一方、被覆層(X)の膜厚が0.010(g/m)未満であると、基材を十分に被覆することが出来ず、充分なガスバリア性および層間密着性が得られないおそれがある。
 前記被覆層(X)を形成するための方法としては、特に限定されるものではなく、例えばコート法など従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルム層を製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。
 コート法を用いる場合に使用する溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。
[保護層]
 本発明においては、前記無機薄膜層(A)の上に保護層(a)を有する。金属酸化物層からなる無機薄膜層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層(a)を形成することにより、金属酸化物層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層(a)そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。さらに、バリア性を有する層は基材への熱水の侵入を防ぐため、結果としてフィルムの透明性も保持することができる。
 本発明においては、保護層(a)の付着量を0.10~0.40(g/m)とすることが好ましい。これにより、塗工において保護層を均一に制御することができるため、結果としてコートムラや欠陥の少ない膜となる。また保護層自体の凝集力が向上し、無機薄膜層-保護層間の密着性も強固になる。さらに、保護層がオリゴマー表出抑制に寄与し、レトルト後のヘイズが安定化する。保護層(a)の付着量は、好ましくは0.13(g/m)以上、より好ましくは0.16(g/m)以上、さらに好ましくは0.19(g/m)以上であり、好ましくは0.37(g/m)以下、より好ましくは0.34(g/m)以下、さらに好ましくは0.31(g/m)以下である。保護層(a)の付着量が0.400(g/m)を超えると、ガスバリア性は向上するが、保護層内部の凝集力が不充分となり、また保護層の均一性も低下するため、コート外観にムラや欠陥が生じたり、ガスバリア性・接着性を充分に発現できない場合がある。一方、保護層(a)の膜厚が0.10(g/m)未満であると、充分なガスバリア性および層間密着性が得られないおそれがある。
 本発明のラミネート積層体の無機薄膜層の表面に形成する保護層(a)に用いる樹脂組成物としては、ウレタン系樹脂を必須の構成成分として、その他にポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂を用いることができ、さらにエポキシ系、イソシアネート系、メラミン系等の硬化剤を添加してもよい。
 特にウレタン樹脂の含有は、ウレタン結合自体の高い凝集性によるバリア性能に加え、極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。また、ポリエステル樹脂も同様の効果が期待できるため、好適である。
(ウレタン樹脂)
 本発明で使用するウレタン樹脂は、凝集力によるバリア性向上の観点から、ガラス転移温度(Tg)が100℃以上であることが好ましく、より好ましくは110℃以上、さらに好ましくは120℃以上である。ただし、密着力を発現させるために、柔軟性に優れるTg100℃以下の柔軟樹脂を混合して用いてもよい。その場合、前記柔軟樹脂の添加比率は0~80%の範囲内であるのが好ましい。より好ましくは10~70%の範囲内、さらに好ましくは20~60%の範囲内である。添加比率が上記範囲内であると、凝集力と柔軟性を両立させることができ、バリア性と密着性が良好となる。なお、添加比率が80%を超えると、膜が柔らかくなりすぎ、バリア性能の低下を招くがある。
 前記ウレタン樹脂は、ガスバリア性向上の面から、芳香族または芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。
 その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。
 本発明においては、ウレタン樹脂中の芳香族または芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族または芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族または芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。
 本発明で使用するウレタン樹脂には、膜の凝集力向上および耐湿熱接着性を向上させる目的で、ガスバリア性を損なわない範囲で、各種の架橋剤ケイ素系架橋剤を配合してもよい。保護層にシラノール基を導入する方法として、シランカップリング剤等を後添加する方法も知られている。ただ、この方法の場合、作業の煩雑さの増加や添加量の計量を間違う可能性がある。一方、ポリウレタンディスパージョン骨格に予めシラノール基を含有させておくことで、前述の煩雑さや間違いが防げる利点がある。
 ポリウレタンディスパージョン中の含有シラノール基量がシラノール基に含まれるSi元素の量としてポリウレタンディスパージョンを構成する樹脂1kg当たり700mg未満では架橋構造の形成が不十分となり、レトルト処理を行った際の樹脂自体の劣化が起こるため、レトルト処理後の密着性やガスバリア性の低下の原因となる。
 また、含有シラノール基量がシラノール基に含まれるSi元素の量としてポリウレタンディスパージョンを構成する樹脂1kg当たり1700mgを超えると架橋構造が多くなりすぎるため、保護層の柔軟性が損なわれ、レトルト処理時における無機薄膜の劣化や耐屈曲性の低下が起きる。さらに、未反応シラノール基量が増えるために、耐水性に弱くなり、レトルト処理を行った際の樹脂自体の劣化が起こることも考えられる。
 一方、後添加できる架橋剤としては、例えば、ケイ素系架橋剤、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物等が例示できる。その中でも、ケイ素系架橋剤を配合することにより、特に無機薄膜層との耐水接着性を向上させることができる。この観点から、ケイ素系架橋剤が特に好ましい。その他に架橋剤として、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物等を併用してもよい。
 ケイ素系架橋剤としては、無機物と有機物との架橋という観点から、シランカップリング剤が好ましい。シランカップリング剤としては、加水分解性アルコキシシラン化合物、例えば、ハロゲン含有アルコキシシラン(2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロC2-4アルキルトリC1-4アルコキシシランなど)、エポキシ基を有するアルコキシシラン[2-グリシジルオキシエチルトリメトキシシラン、2-グリシジルオキシエチルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン等のグリシジルオキシC2-4アルキルトリC1-4アルコキシシラン、3-グリシジルオキシプロピルメチルジメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン等のグリシジルオキシジC2-4アルキルジC1-4アルコキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン等の(エポキシシクロアルキル)C2-4アルキルトリC1-4アルコキシシラン等]、アミノ基を有するアルコキシシラン[2-アミノエチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノC2-4アルキルトリC1-4アルコキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等のアミノジC2-4アルキルジC1-4アルコシシラン、2-[N-(2-アミノエチル)アミノ]エチルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリエトキシシラン等の(2-アミノC2-4アルキル)アミノC2-4アルキルトリC1-4アルコキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジエトキシシラン等の(アミノC2-4アルキル)アミノジC2-4アルキルジC1-4アルコキシシラン等]、メルカプト基を有するアルコキシシラン(2-メルカプトエチルトリメトキシシラン
、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトC2-4アルキルトリC1-4アルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等のメルカプトジC2-4アルキルジC1-4アルコキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリC1-4アルコキシシラン等)、エチレン性不飽和結合基を有するアルコキシシラン[2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシC2-4アルキルトリC1-4アルコキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロキシジC2-4アルキルジC1-4アルコキシシラン等)等が例示できる。これらのシランカップリング剤は、単独で又は二種以上組み合わせて使用できる。これらのシランカップリング剤のうち、アミノ基を有するシランカップリング剤が好ましい。
 シランカップリング剤ケイ素系架橋剤は保護層中に、0.25~3.00質量%添加することが好ましく、より好ましくは0.5~2.75質量%、さらに好ましくは0.75~2.50質量%である。添加量が3.00質量%を超えると、膜の硬化が進み凝集力が向上するが、一部未反応部分も生じ、層間の接着性は低下するおそれがある。一方、添加量が0.25質量%未満であると、十分な凝集力が得られないおそれがある。
(ポリエステル樹脂)
 本発明の保護層に用いるポリエステル樹脂は、多価カルボン酸成分と、多価アルコール成分を重縮合することにより製造される。ポリエステルの分子量としては、コーティング材として十分な膜の靭性や塗工適性、溶媒溶解性が付与できるのであれば特に制限はないが数平均分子量で1000~50000、さらに好ましくは、1500~30000である。ポリエステル末端の官能基としても特に制限はなく、アルコール末端でも、カルボン酸末端でも、これらの両方を持っていても良い。但し、イソシアネート系硬化剤を併用する場合には、アルコール末端が主体であるポリエステルポリオールとする必要がある。  
 [ポリエステルのガラス転移温度(Tg)]  
 本発明で用いる前記ポリエステルのTgは15℃以上である必要がある。これ以上温度が低いと、樹脂がコーティング操作後に粘着性を持ち、ブロッキングを生じやすくなり、コーティング後の巻き取り操作がしにくくなるためである。Tgが15℃以下になるとブロッキング防止材の添加によっても巻き芯付近の圧力が高い状況下でもブロッキング防止対応が困難になるためである。Tgのより好ましい温度は18℃以上、さらに好ましくは25℃以上である。  
  本発明で用いる前記ポリエステルは、多価カルボン酸成分と、多価アルコール成分とを重縮合して用いる。  
[多価カルボン酸成分]  
 本発明で用いる前記ポリエステルの多価カルボン酸成分は、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含むことに特徴を有する。
  カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物としては、オルトフタル酸又はその無水物、ナフタレン2,3-ジカルボン酸又はその無水物、ナフタレン1,2-ジカルボン酸又はその無水物、アントラキノン2,3-ジカルボン酸又はその無水物、及び2,3-アントラセンカルボン酸又はその無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していてもよい。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。また、これらのポリカルボン酸全成分に対する使用率が70~100質量%であるポリエステルポリオールであると、バリア性の向上効果が高い上に、コーティング材として必須の溶媒溶解性に優れることから特に好ましい。  
 本発明で用いる前記ポリエステルは発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、ジフェン酸及びその無水物、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。中でも、有機溶剤溶解性とガスバリア性の観点からコハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。  
[多価アルコール成分]  
 本発明で用いるポリエステルの多価アルコール成分はガスバリア補填の性能を示すポリエステルを合成することができれば特に限定されないが、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、及び1,3-ビスヒドロキシエチルベンゼンからなる群から選ばれる少なくとも1種を含む多価アルコール成分を含有することが好ましい。中でも、酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを主成分として使用することが最も好ましい。  
 本発明で用いるポリエステルは前述の多価アルコール成分を用いることが好ましいが、このほか、本発明の効果を損なわない範囲において、他の多価アルコール成分を共重合させてもよい。具体的には、ジオールとしては1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールが、三価以上のアルコールとしては、グリセロール、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等があげられる。特に、三価のアルコールの内、グリセロール及び、トリス(2-ヒドロキシエチル)イソシアヌレートを併用したポリエステルは、分岐構造に由来して架橋密度も適度に高いことにより有機溶媒溶解性が良好な上、バリア機能も優れており、特に好ましく用いられる。
 本発明で用いる前記ポリエステルを得る反応に用いられる触媒としては、モノブチル酸化錫、ジブチル酸化錫等錫系触媒、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等のチタン系触媒、テトラ-ブチル-ジルコネート等のジルコニア系触媒等の酸触媒が挙げられる。エステル反応に対する活性が高い、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等の上記チタン系触媒と上記ジルコニア触媒を組み合わせて用いることが好ましい。前記触媒量は、使用する反応原料全質量に対して1~1000ppm用いられ、より好ましくは10~100ppmである。1ppmを下回ると触媒としての効果が得られにくく、1000ppmを上回るとイソシアネート硬化剤を用いる場合にウレタン化反応を阻害する問題が生じる場合がある。  
  本発明では、保護層を構成するコーティング剤の主剤としてポリエステル樹脂を用いる場合、硬化剤としてはイソシアネート系のものを用いて、ウレタン樹脂とする必要がある。この場合、コーティング層が架橋系になるため耐熱性や、耐摩耗性、剛性が向上する利点がある。従って、ボイルやレトルト包装にも使用しやすい。その一方で硬化剤を混合した後では液を再利用できない、塗工後に硬化(エージング)工程が必須になる問題点もある。
 本発明の保護層(a)で用いられるポリイソシアネート化合物は、ポリエステルが水酸基を有する場合、少なくとも一部が反応し、ウレタン構造を作ることで樹脂成分として高極
性化し、ポリマー鎖間を凝集させることでガスバリア機能を更に強化できる。また、コーティング材の樹脂が直鎖型の樹脂である場合に、3価以上のポリイソシアネートで架橋することで、耐熱性や、耐摩耗性を付与することができる。本発明で用いられるポリイソシアネート化合物としてはジイソシアネート、3価以上のポリイソシアネート、低分子化合物、高分子化合物のいずれでもよいが、骨格の一部に芳香族環、または脂肪族環を含有するとガスバリア向上機能の観点から好ましい。たとえば、芳香族環を持つイソシアネートとしては、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、脂肪族環を持つイソシアネートとしては、水素化キシリレンジイソシアネート、水素化トルエンジイソシアネート、イソホロンジイソシアネート、ノルボルンジイソシアネート、あるいはこれらのイソシアネート化合物の3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの低分子活性水素化合物または各種ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られる末端イソシアネート基含有化合物が挙げられる。  
 保護層用樹脂組成物の塗工方式は、フィルム表面に塗工して層を形成させる方法であれば特に限定されるものではない。例えば、グラビアコーティング、リバースロールコーティング、ワイヤーバーコーティング、ダイコーティング等の通常のコーティング方法を採用することができる。
 保護層(a)を形成する際には、保護層用樹脂組成物を塗布した後、加熱乾燥することが好ましく、その際の乾燥温度は110~190℃が好ましく、より好ましくは130~185℃、さらに好ましくは150~180℃である。乾燥温度が110℃未満であると、保護層に乾燥不足が生じたり、保護層の造膜が進行せず凝集力および耐水接着性が低下し、結果としてバリア性や手切れ性が低下するおそれがある。一方、乾燥温度が190℃を超えると、フィルムに熱がかかりすぎてしまいフィルムが脆くなり突刺し強度が低下したり、収縮して加工性が悪くなったりする虞がある。特に、150℃以上好ましくは160℃以上で乾燥することにより、保護層の造膜が効果的に進行し、保護層の樹脂と無機薄膜層における接着面積がより大きくなるために耐水接着性を向上することができる。保護膜は塗布直後に90℃~110℃の比較的低温条件でまず溶媒を揮発させ、その後150℃以上で乾燥させると、均一で透明な膜が得られるため、特に好ましい。また、乾燥とは別に、できるだけ低温領域で追加の熱処理を加えることも、保護層の造膜を進行させるうえで、さらに効果的である。
 [中間層フィルム]
 本発明では、モノマテリアル化を可能にしつつ、袋の強靭性を確保するため、PBTを主たる構成成分とするポリエステルフィルムを中間層として用いることができる。本発明に用いられる中間層フィルムは、PBTを70質量%以上含む樹脂組成物からなる二軸延伸フィルムである。PBTの含有率は、75質量%以上がより好ましい。PBTの含有率が70質量%未満であると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
 PBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
 本発明の中間層フィルムに用いられる樹脂組成物は二軸延伸時の製膜性や得られたフィルムの力学特性を調整する目的でPBT以外のポリエステルを含有することができる。
 PBT以外のポリエステルとしては、PET、ポリエチレンナフタレート、ポリブチレンナフタレート及びポリプロピレンテレフタレートからなる群から選ばれる少なくとも1種のポリエステル、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選ばれる少なくとも1種のジカルボン酸が共重合されたPBT、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートジオールからなる群から選ばれる少なくとも1種のジオール成分が共重合されたPBTが挙げられる。
 これらPBT以外のポリエステル樹脂の添加量の上限としては、30質量%以下が好ましく、より好ましくは25質量%以下である。PBT以外のポリエステルの添加量が30質量%を超えると、ポリブチレンテレフタレートとしての力学特性が損なわれ、衝撃強度、耐ピンホール性、又は耐破袋性が不十分となるほか、透明性やガスバリア性が低下するなどの不具合が起こることがある。
 本発明に用いるポリブチレンテレフタレート(PBT)の固有粘度の下限は好ましくは0.9dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。
 原料であるポリブチレンテレフタレート(PBT)の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、突き刺し強度、衝撃強度、耐ピンホール性、又は耐破袋性などが低下するとなることがある。
ポリブチレンテレフタレートの固有粘度の上限は好ましくは1.4dl/gである。上記を越えると延伸時の応力が高くなりすぎ、製膜性が悪化することがある。固有粘度の高いポリブチレンテレフタレートを使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、ポリブチレンテレフタレートをより高温で押出しすると分解物が出やすくなることがある。
 前記ポリブチレンテレフタレート(PBT)樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、静電防止剤、紫外線吸収剤等を含有していてもよい。
 滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、中でもシリカがヘイズを低減する点で特に好ましい。これらにより透明性と滑り性と発現することができる。
 滑剤濃度の下限は好ましくは100ppmであり、より好ましくは500ppmであり、さらに好ましくは800ppmである。上記未満であると基材フィルム層の滑り性が低下となることがある。滑剤濃度の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは1800ppmである。上記を越えると透明性が低下となることがある。
 本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの縦延伸(長手)方向(MD)及び横延伸(幅)方向(TD)における150℃で15分間加熱後の熱収縮率の上限は好ましくは4.0%であり、より好ましくは3.0%であり、さらに好ましくは2%である。上限を越えると無機薄膜層・保護層の形成工程や、レトルト殺菌処理のような高温処理において生じる中間層フィルムの寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の寸法変化により、ピッチズレなどが起こることがある。
 本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの縦延伸方向(MD)及び横延伸方向(TD)における150℃で15分間加熱後の熱収縮率の下限は好ましくは0%である。上記下限を下回っても改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。
 本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの衝撃強度の下限は好ましくは0.05J/μmである。0.05J/μm以上であると袋として用いる際に強度が十分となる。
 本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの衝撃強度の上限は好ましくは0.2J/μmである。上記上限を上回っても改善の効果がそれ以上得られない(飽和する)。
 本発明の中間層フィルムであるPBTフィルムの面配向度(ΔP)の下限は、好ましくは0.144であり、より好ましくは0.148であり、さらに好ましくは0.15である。上記未満であると配向が弱いため、十分な強度が得られず、突刺し強度が低下することがあるばかりか、中間層フィルム上に無機薄膜層(C)を設けて積層フィルムとした場合に、無機薄膜層形成時にかかる張力と温度によって伸び易くなり、無機薄膜層が割れてしまうために、ガスバリア性が低下することがある。
 本発明における中間層フィルムの面配向度(ΔP)の上限は、好ましくは0.1 60であり、より好ましくは0.158である。上記を超えると配向が強くなりすぎて、製膜時に破断しやすくなる。また、配向を高くする分、熱収縮率を低減するために高い温度での熱固定が必要となり、結晶化によりかえってフィルムの強度を低下させてしまう恐れがある。
 本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材層に印刷を施した際に、印刷された文字や画像の品位が向上する。
 本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの固有粘度(I.V.)の上限は好ましくは1.20dl/gであり、より好ましくは1.15dl/gであり、更に好ましくは1.10dl/gである。上限を越えるとフィルムの強度は向上するが、押出時のフィルターにかかる圧力負荷が大きくなり、製造が困難となる。また下限は好ましくは0.60dl/gであり、より好ましくは0.65dl/gであり、更に好ましくは0.70dl/gである。下限を下回るとフィルムの強度が低下するおそれがある。
 また本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。
 次に、本発明の中間層フィルムを構成する二軸延伸ポリエステルフィルムを得るため製造方法を具体的に説明する。これらに限定されるものではない。
 本発明の中間層フィルムを構成する二軸延伸ポリエステルフィルムを得るための製造方法は、ポリエステル原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程、成形された前記未延伸シートを長手方向に延伸する縦延伸工程、前記縦延伸後に横延伸可能な温度に予熱する予熱工程、前記長手方向と直交する幅方向に延伸する横延伸工程、前記縦延伸及び横延伸を行なった後のフィルムを加熱し結晶化させる熱固定工程、前記熱固定されたフィルムの残留歪みを除去する熱緩和工程、および熱緩和後のフィルムを冷却する冷却工程からなる。
[未延伸シート成形工程]
 まず、フィルム原料を乾燥あるいは熱風乾燥する。次いで、原料を計量、混合して押し出し機に供給し、加熱溶融して、シート状に溶融キャスティングを行う。
 さらに、溶融状態の樹脂シートを、静電印加法を用いて冷却ロール(キャスティングロール)に密着させて冷却固化し、未延伸シートを得る。静電印加法とは、溶融状態の樹脂シートが回転金属ロールに接触する付近で、樹脂シートの回転金属ロールに接触した面の反対の面の近傍に設置した電極に電圧を印加することによって、樹脂シートを帯電させ、樹脂シートと回転冷却ロールを密着させる方法である。
 樹脂の加熱溶融温度の下限は好ましくは200℃であり、より好ましくは250℃であり、さらに好ましくは260℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは280℃であり、より好ましくは270℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。
 溶融したポリエステル樹脂を押出し冷却ロール上にキャスティングする時に、幅方向の結晶化度の差を小さくすることが好ましい。このための具体的な方法としては、溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングすること、またさらに冷却ロール温度を低温とすることが挙げられる。
 PBT樹脂は結晶化速度が速いため、キャスティング時にも結晶化が進行する。
 このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、サイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、二軸延伸時に破断しやすくなるばかりでなく、得られた二軸延伸フィルムの衝撃強度、耐ピンホール性、又は耐破袋性が不十分なフィルムとなってしまう。一方、同一の樹脂を多層積層することで、未延伸シートの延伸応力を低減でき、その後の二軸延伸を安定して行うことが可能となる。
 溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングする方法は、具体的にはPBT樹脂を70重量%以上含む樹脂組成物を溶融して溶融流体を形成する工程(1)、形成された溶融流体からなる積層数60以上の積層流体を形成するする工程(2)、形成された積層流体をダイスから吐出し、冷却ロールに接触させて固化させ積層未延伸シートを形成する工程(3)、前記積層未延伸シートを二軸延伸する工程(4)を少なくとも有する。
 工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
 工程(1)において、ポリエステル樹脂組成物を溶融して溶融流体を形成する方法は特に限定されないが、好適な方法としては、一軸押出機や二軸押出機を用いて加熱溶融する方法を挙げることができる。
 工程(2)における積層流体を形成する方法は特に限定されないが、設備の簡便さや保守性の面から、スタティックミキサーおよび/または多層フィードブロックがより好ましい。また、シート幅方向の均一性の面から、矩形のメルトラインを有するものがより好ましい。矩形のメルトラインを有するスタティックミキサーまたは多層フィードブロックを用いることがさらに好ましい。なお、複数の樹脂組成物を合流させることによって形成された複数層からなる樹脂組成物を、スタティックミキサー、多層フィードブロックおよび多層マニホールドのいずれか1種または2種以上に通過させてもよい。
 工程(2)における理論積層数は60以上であることが好ましい。理論積層数の下限は、より好ましくは500である。理論積層数が少なすぎると、あるいは、層界面間距離が長くなって結晶サイズが大きくなりすぎ、本発明の効果が得られない傾向にある。また、シート両端近傍での結晶化度が増大し、製膜が不安定となるほか、成型後の透明性が低下することがある。工程(2)における理論積層数の上限は特に限定されないが、好ましくは100000であり、より好ましくは10000であり、さらに好ましくは7000である。理論積層数を極端に大きくしてもその効果が飽和する場合がある。
 工程(2)における積層をスタティックミキサーで行う場合、スタティックミキサーのエレメント数を選択することにより、理論積層数を調整することができる。スタティックミキサーは、一般的には駆動部のない静止型混合器(ラインミキサー)として知られており、ミキサー内に入った流体は、エレメントにより順次撹拌混合される。ところが、高粘度流体をスタティックミキサーに通過させると、高粘度流体の分割と積層が生じ、積層流体が形成される。スタティックミキサーの1エレメントを通過するごとに、高粘度流体は2分割され次いで合流し積層される。このため、高粘度流体をエレメント数nのスタティックミキサーに通過させると、理論積層数N=2nの積層流体が形成される。
 典型的なスタティックミキサーエレメントは、長方形の板を180度ねじる構造を有し、ねじれの方向により、右エレメントと左エレメントがあり、各エレメントの寸法は直径に対して1.5倍の長さを基本としている。本発明に用いることのできるスタティックミキサーはこの様なものに限定されない。
 工程(2)における積層を多層フィードブロックで行う場合、多層フィードブロックの分割・積層回数を選択することによって、理論積層数を調整することができる。多層フィードブロックは複数直列に設置することが可能である。また、多層フィードブロックに供給する高粘度流体自体を積層流体とすることも可能である。例えば、多層フィードブロックに供給する高粘度流体の積層数がp、多層フィードブロックの分割・積層数がq、多層フィードブロックの設置数がrの場合、積層流体の積層数Nは、N=p×qrとなる。
 工程(3)において、積層流体をダイスから吐出し、冷却ロールに接触させて固化させる。
 冷却ロール温度の下限は好ましくは-10℃である。上記未満であると結晶化抑制の効果が飽和することがある。冷却ロール温度の上限は好ましくは40℃である。上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。冷却ロール温度の上限は好ましくは25℃である。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。冷却ロール表面の幅方向の温度差は少なくすることが好ましい。このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。
 上述における多層構造の未延伸シートは、少なくとも60層以上、好ましくは250層以上、更に好ましくは1000層以上である。層数が少ないと、延伸性の改善効果が失われる。
[縦延伸および横延伸工程]
 次に延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、突き刺し強度を高めるためには、面配向度を高めておく必要があるほか、製膜速度が速く生産性が高いという点においては逐次二軸延伸が最も好ましい。
 縦延伸方向の延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃以上であると破断が起こりにくい。また、フィルムの縦配向度が強くなり過ぎないため、熱固定処理の際の収縮応力を抑えられ、幅方向の分子配向の歪みの少ないフィルムが得られる。縦延伸方向の延伸温度の上限は、好ましくは100℃であり、より好ましくは95℃である。100℃以下であるとフィルムの配向が弱くなり過ぎないためフィルムの力学特性が低下しない。
 縦延伸方向の延伸倍率の下限は好ましくは2.8倍であり、特に好ましくは3.0倍である。2.8倍以上であると面配向度が大きくなり、フィルムの突き刺し強度が向上する。
 縦延伸方向の延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。4.3倍以下であると、フィルムの横方向の配向度が強くなり過ぎず、熱固定処理の際の収縮応力が大きくなり過ぎず、フィルムの横方向の分子配向の歪みが小さくなり、結果として縦方向の直進引裂き性が向上する。また、力学強度や厚みムラの改善の効果はこの範囲では飽和する。
 横延伸方向の延伸温度の下限は好ましくは60℃であり、60℃以上であると破断が起こりにくくなることがある。横延伸方向の延伸温度の上限は好ましくは100℃であり、100℃以下であると横方向の配向度が大きくなるため力学特性が向上する。
 横延伸方向の延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。3.5倍以上であると横方向の配向度が弱くなり過ぎず、力学特性や厚みムラが向上する。横延伸方向の延伸倍率の上限は好ましくは5倍であり、より好ましくは4.5倍であり、特に好ましくは4.0倍である。5.0倍以下
であると力学強度や厚みムラ改善の効果はこの範囲でも最大となる(飽和する)。
[熱固定工程]
 熱固定工程での熱固定温度の下限は好ましくは195℃であり、より好ましくは200℃である。195℃以上であるとフィルムの熱収縮率が小さくなり、ボイル処理後においても、無機薄膜層がダメージを受けにくいため、ガスバリア性が向上する。熱固定温度の上限は好ましくは220℃であり、220℃以下であると基材フィルム層が融けることがなく、脆くなり難い。
[熱緩和部工程]
 熱緩和部工程でのリラックス率の下限は好ましくは0.5%である。0.5%以上であると熱固定時に破断が起こりにくくなることがある。リラックス率の上限は好ましくは10%である。10%以下であると熱固定時の長手方向への収縮が小さくなる結果、フィルム端部の分子配向の歪みが小さくなり、直進引裂き性が向上する。また、フィルムのたるみなどが生じにくく、厚みムラが発生しにくい。
[冷却工程]
 熱緩和部工程でのリラックスを行った後の冷却工程において、ポリエステルフィルムの端部の表面の温度を80℃以下とすることが好ましい。
 冷却工程通過後のフィルム端部の温度が80℃を超えていると、フィルムを巻き取る際にかかる張力により端部が引き伸ばされ、結果的に端部の縦方向の熱収縮率が高くなってしまうため、ロールの幅方向の熱収縮率分布が不均一となり、このようなロールを加熱搬送して蒸着加工などを行う際に、筋状のシワが発生してしまい、最終的に得られるガスバリアフィルムの物性が幅方向で不均一となってしまうことがある。
 前記冷却工程において、フィルム端部の表面温度を80℃以下とする方法としては、冷却工程の温度や風量を調整するほか、冷却ゾーンの幅方向における中央側に遮蔽板を設けて端部を選択的に冷却する方法や、フィルムの端部に対し局所的に冷風を吹き付けるといった方法を用いることが出来る。
 本発明の中間層フィルムは、十分なバリア性やラミネート強度を確保することを目的として、基材フィルム同様に被覆層(Y)・無機薄膜層(C)・保護層(b)を設けることができる。被層(Y)としては、前記被覆層(X)として記載されている前記の、組成、付着量、および被覆層を形成する方法が適用できる。無機薄膜層(C)としては、無機薄膜層(A)としてとして記載されている前記の、組成、膜厚、および無機薄膜層を形成する方法が適用できる。保護層(b)としては、保護層(a)として記載されている前記の、組成、付着量、および保護層を形成する方法が適用できる。
[ヒートシール性樹脂層]
 本発明のラミネート積層体は、ポリエステルを成分とするヒートシール性樹脂層を有し、さらにバリア性能を向上させたい場合には、ヒートシール性樹脂層の非シール面上に、無機薄膜層(B)、さらに無機薄膜層(B)上に保護層(c)を有することができる。所定のヒートシール強度を満たすため、ヒートシール樹脂層のシール面(非シール面と逆側の面)は積層体における最表層のどちらか一方に設けなければならない。無機薄膜層(B)としては、無機薄膜層(A)としてとして記載されている前記の、組成、膜厚、および無機薄膜層を形成する方法が適用できる。保護層(c)としては、保護層(a)として記載されている前記の、組成、付着量、および保護層を形成する方法が適用できる。
 本発明のヒートシール性樹脂層の層構成はシール面を構成するヒートシール層に加えて、耐熱層を設けた2層構成であると好ましい。耐熱層は、ヒートシール性樹脂層の非シール面側に配置される。各層に関する構成要件は後述するが、ヒートシール層と耐熱層を含む構成の場合、エチレンテレフタレート成分含有量の最も多い層が耐熱層となる。本発明の積層体の層構成は、いずれか一方の最表層(シール面側)から順に、ヒートシール層/耐熱層/無機物薄膜層(B)の3層で構成されているとより好ましい。
 本発明のヒートシール性樹脂層は、ヒートシール層と反対側(非シール面側)の最表層に保護層を設けることもできる。この場合、ヒートシール層/耐熱層/無機薄膜層(B)/保護層(c)の順で4層が積層されている構成が好ましい。保護層を設けることにより、ガスバリア性が向上するだけでなく、他素材と積層するときのラミネート強度が向上する、擦れや屈曲によるクラックの発生が抑制できる等のメリットが生まれる。
 ヒートシール性樹脂層の厚みは特に限定されないが、3μm以上200μm以下が好ましい。ヒートシール性樹脂層の厚みが3μmより薄いとヒートシール強度の不足や印刷等の加工が困難になるおそれがありあまり好ましくない。また積層体の厚みが200μmより厚くても構わないが、積層体の使用重量が増えてコストが高くなるので好ましくない。積層体の厚みは5μm以上160μm以下であるとより好ましく、7μm以上120μm以下であるとさらに好ましい。
 ヒートシール性樹脂層全体に対するヒートシール層の層比率は、20%以上~80%以下であることが好ましい。ヒートシール層の層比率が20%より少ない場合、ヒートシール性樹脂層のヒートシール強度が低下してしまうため好ましくない。ヒートシール層の層比率が80%よりも高くなると、ヒートシール性樹脂層のヒートシール性は向上するが、耐熱性が低下してしまうため好ましくない。ヒートシール層の層比率は、30%以上~70%以下がより好ましい。
 耐熱層の層比率は、20%以上~80%以下であることが好ましい。耐熱層の層比率が20%より少ない場合、フィルムの耐熱性が低下してしまうため好ましくない。耐熱層の層比率が80%よりも高くなると、その分だけ積層体のヒートシール層の比率が低下してしまい、ヒートシール性が犠牲となってしまうため好ましくない。耐熱層の層比率は、30%以上~70%以下がより好ましい。
 また、本発明の積層体の最表層(ヒートシール層を含む)には、フィルム表面の印刷性や滑り性を良好にするためにコロナ処理、コーティング処理や火炎処理などを施した層を設けることも可能であり、本発明の要件を逸しない範囲で任意に設けることができる。以下の説明では、ヒートシール層や耐熱層といったポリエステル系樹脂からなる層の総称を「ポリエステル系樹脂層」と記載し、無機薄膜層や保護層と区別する。
 (ヒートシール層の特性) 
 本発明におけるヒートシール層の厚みあたりのヘイズの上限は好ましくは0.50%/μmであり、より好ましくは0.40%/μmであり、更に好ましくは0.30%/μmである。0.50%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。
 本発明のラミネート積層体のヒートシール層同士を温度200℃、シールバー圧力0.2MPa、シール時間4秒でヒートシールした際のヒートシール強度が8N/15mm以上30N/15mm以下であることが好ましい。ヒートシール強度が8N/15mm未満であると、シール部分が容易に剥離されるため、包装袋として用いることができない。ヒートシール強度は9N/15mm以上が好ましく、10N/15mm以上がより好ましい。ヒートシール強度は大きいことが好ましいが、現状得られる上限は30N/15mm程度である。
 本発明のラミネート積層体は、98℃の温湯中で3秒間に亘って処理した場合における幅方向、長手方向の温湯熱収縮率がいずれも-5%以上5%以下であると好ましい。収縮率が5%を超えると、積層体を用いて作製した袋をレトルト処理などの加熱処理するとき、袋の変形が大きくなって元の形状を保てなくなるだけでなく、無機物からなる層にクラックが生じてガスバリア性が低下してしまうため好ましくない。温湯熱収縮率は4%以下であるとより好ましく、3%以下であるとさらに好ましい。一方、温湯熱収縮率が-5%を下回る場合、積層体が伸びることを意味しており、収縮率が高い場合と同様に袋が元の形状を維持できにくくなるため好ましくない。積層体の温湯熱収縮率は-4%以上4%以下であるとより好ましく、-3%以上3%以下であるとさらに好ましい。
 本発明の積層体は、後述する方法で測定される折りたたみ保持角度が20度以上70度以下であると好ましい。折りたたみ保持角度が70度を超えると、袋としたときに折り目がつきにくくなるため外観が悪くなってしまい好ましくない。一方、折りたたみ保持角度は小さければ小さいほど好ましいが、本発明のカバーできる範囲は20度が下限であり、折りたたみ保持角度が25度以上であっても、実用上は好ましいものといえる。折りたたみ保持角度の上限は65度であるとより好ましく、60度であるとさらに好ましい。
(ポリエステル系樹脂層の構成原料)
 本発明の積層体を構成するポリエステル系樹脂層の原料種は、エチレンテレフタレートユニットを主たる構成成分とするものである。ここで、「主たる構成成分とする」とは、全構成成分量を100モル%としたとき、50モル%以上含有することを指す。
 また、本発明のポリエステル系樹脂層に使用するポリエステルにエチレンテレフタレート以外の成分を1種以上含むことが好ましい。エチレンテレフタレート以外の成分が存在することによって、ヒートシール層のヒートシール強度が向上するためである。耐熱層においては、エチレンテレフタレート以外の成分は少ない方が好ましいが、エチレンテレフタレート以外の成分を含むことによって、ヒートシール層との収縮率差を少なくすることができ、積層体のカールを小さくすることにつながる。各成分の含有量はヒートシール層と耐熱層で異なるため後述する。エチレンテレフタレートを構成するテレフタル酸以外の成分となりうるジカルボン酸モノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸が挙げられる。ただし、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)はポリエステル中に含有させないことが好ましい。
 また、エチレンテレフタレートを構成するエチレングリコール以外の成分となりうるジオールモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。ただし、ポリエステルには炭素数8個以上のジオール(例えば、オクタンジオール等)、または3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリンなど)を含有させないことが好ましい。
 さらに、ポリエステルを構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを含んでいてもよい。ポリエステルエラストマーは、ポリエステル系樹脂層の融点を下げる効果があるため、特にヒートシール層に好適に使用することができる。
 これらのなかでも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-ブタンジオール、ジエチレングリコールのいずれか1種以上を用いることでヒートシール層同士のヒートシール強度を8N/15mm以上としやすくなるので好ましい。ネオペンチルグリコール、1,4-シクロヘキサンジメタノールのいずれか1種以上を用いることがより好ましく、ネオペンチルグリコールを用いることが特に好ましい。
 本発明のラミネート積層体を構成するポリエステル系樹脂層の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤などを添加することができる。また、フィルムのすべり性を良好にする滑剤としての微粒子を、少なくともフィルムの最表層に添加することが好ましい。微粒子としては、任意のものを選択することができる。例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウムなどをあげることができ、有機系微粒子としては、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子などを挙げることができる。微粒子の平均粒径は、コールターカウンタにて測定したときに0.05~3.0μmの範囲内で必要に応じて適宜選択することができる。
 本発明のラミネート積層体を構成するポリエステル系樹脂層の中に粒子を配合する方法として、例えば、ポリエステル系樹脂(レジン)を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコールなどに分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールや水、そのほかの溶媒に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法や、乾燥させた粒子とポリエステル系樹脂原料とを混練押出し機を用いてブレンドする方法なども挙げられる。
以下、ヒートシール層と耐熱層に含まれる好ましい成分について説明する。
 本発明のラミネート積層体の構成するヒートシール層に用いるポリエステルは、エチレンテレフタレートを構成するテレフタル酸およびエチレングリコール以外の成分となるジカルボン酸モノマーおよび/又はジオールモノマーの含有量が30モル%以上であることが好ましく、32モル%以上がより好ましく、34モル%以上が特に好ましい。また、前記エチレンテレフタレート以外の成分となるモノマー含有量の上限は50モル%である。ヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが30モル%より低い場合、溶融樹脂をダイから押し出した後に例え急冷固化したとしても、後の延伸および熱固定工程で結晶化してしまうため、ヒートシール強度を8N/15mm以上とすることが困難となってしまうため好ましくない。
 一方、ヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが50モル%以上である場合、フィルムのヒートシール強度を高くすることができるものの、ヒートシール層の耐熱性が極端に低くなるため、ヒートシールするときにシール部の周囲がブロッキング(加熱用部材からの熱伝導によって、意図した範囲よりも広い範囲でシールされてしまう現象)してしまうため、適切なヒートシールが困難となる。エチレンテレフタレート以外の成分となるモノマーの含有量は48モル%以下であるとより好ましく、46%以下であると特に好ましい。
 本発明のラミネート積層体を構成しうる耐熱層に用いるポリエステルは、エチレンテレフタレートを構成するテレフタル酸およびエチレングリコール以外の成分となるジカルボン酸モノマーおよび/又はジオールモノマーの含有量が9モル%以上であることが好ましく、10モル%以上がより好ましく、11モル%以上が特に好ましい。また、前記エチレンテレフタレート以外の成分となるモノマー含有量の上限は20モル%である。耐熱層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが9モル%より低い場合、ヒートシール層との熱収縮率差が大きくなり、積層体のカールが大きくなってしまうため好ましくない。耐熱層とヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマー含有量の差が大きくなると、熱固定中の各層における熱収縮率差が大きくなってしまい、たとえ熱固定後の冷却を強化してもヒートシール層側への収縮が大きくなり、カールが大きくなってしまう。
 一方、耐熱層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが20モル%以上である場合、ヒートシールの際にかかる熱によって穴あきが生じるといったように、シーラントの耐熱性が低下してしまうため好ましくない。前記エチレンテレフタレート以外の成分となるモノマーの含有量は19モル%以下であるとより好ましく、18%以下であると特に好ましい。また、カールを制御するための前記エチレンテレフタレート以外の成分となるモノマー含有量は、上記の各層単体での量に加えて、ヒートシール層と耐熱層との差が20モル%以上35モル%以下であるとより好ましく、21モル%以上34モル%以下であるとさらに好ましい。
 (積層体の製造条件)
 本発明のラミネート積層体を構成するポリエステル系樹脂層(以下、単にフィルムと記載することがある)は、上記3.1.「ポリエステル系樹脂層の原料種」で記載したポリエステル原料を、押し出し機により溶融押し出しして未延伸の積層フィルムを形成し、それを以下に示す所定の方法により延伸することによって得ることができる。なお、フィルムがヒートシール層と耐熱層、またはそれ以外の層を含む場合、各層を積層させるタイミングは延伸の前後いずれであっても構わない。延伸前に積層させる場合、各層の原料となる樹脂をそれぞれ別々の押し出し機によって溶融押し出しし、樹脂流路の途中でフィードブロック等を用いて接合させる方法を採用するのが好ましい。延伸後に積層させる場合、それぞれ別々に製膜したフィルムを接着剤によって貼りあわせるラミネート、単独または積層させたフィルムの表層に溶融させたポリエステル樹脂を流して積層させる押出ラミネートを採用するのが好ましい。これらの中でも、延伸前に各層を積層させる方法が好ましい。
 ポリエステル樹脂は、前記のように、エチレンテレフタレート以外の成分となり得るモノマーを適量含有するように、ジカルボン酸成分とジオール成分の種類と量を選定して重縮合させることで得ることができる。また、チップ状のポリエステルを2種以上混合してポリエステル系樹脂層の原料として使用することもできる。
 原料樹脂を溶融押し出しするとき、各層のポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのように各層のポリエステル原料を乾燥させた後、押出機を利用して200~300℃の温度で溶融して積層フィルムとして押し出す。押し出しはTダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 その後、押し出しで溶融されたフィルムを急冷することにより、未延伸のフィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 フィルムは、無延伸、一軸延伸(縦(長手)方向、横(幅)方向のいずれか少なくとも一方向への延伸)、二軸延伸いずれの方式で製膜されてもよい。本発明の積層体の機械強度や生産性の観点からは、一軸延伸であることが好ましく、二軸延伸であるとより好ましい。以下では、最初に縦延伸、次に横延伸を実施する縦延伸-横延伸による逐次二軸延伸法について説明するが、順番を逆にする横延伸-縦延伸であっても、主配向方向が変わるだけなので構わない。また同時二軸延伸法でも構わない。
 縦方向の延伸は、未延伸フィルムを複数のロール群を連続的に配置した縦延伸機へと導入するとよい。縦延伸にあたっては、予熱ロールでフィルム温度が65℃~90℃になるまで予備加熱することが好ましい。フィルム温度が65℃より低いと、縦方向に延伸する際に延伸しにくくなり、破断が生じやすくなるため好ましくない。また90℃より高いとロールにフィルムが粘着しやすくなり、ロールへのフィルムの巻き付きや連続生産によるロールの汚れやすくなるため好ましくない。
 フィルム温度が65℃~90℃になったら縦延伸を行う。縦延伸倍率は、1倍以上5倍以下とすると良い。1倍は縦延伸をしていないということなので、横一軸延伸フィルムを得るには縦の延伸倍率を1倍に、二軸延伸フィルムを得るには1.1倍以上の縦延伸となる。また縦延伸倍率の上限は何倍でも構わないが、あまりに高い縦延伸倍率だと横延伸しにくくなって破断が生じやすくなるので5倍以下であることが好ましい。
 また、縦延伸後にフィルムを長手方向へ弛緩すること(長手方向へのリラックス)により、縦延伸で生じたフィルム長手方向の収縮率を低減することができる。さらに、長手方向へのリラックスにより、テンター内で起こるボーイング現象(歪み)を低減することができる。後工程の横延伸や最終熱処理ではフィルム幅方向の両端が把持された状態で加熱されるため、フィルムの中央部だけが長手方向へ収縮するためである。長手方向へのリラックス率は0%以上70%以下(リラックス率0%はリラックスを行わないことを指す)であることが好ましい。長手方向へのリラックス率の上限は、使用する原料や縦延伸条件よって決まるため、これを超えてリラックスを実施することはできない。本発明のポリエステル系シーラントにおいては、長手方向へのリラックス率は70%が上限である。長手方向へのリラックスは、縦延伸後のフィルムを65℃~100℃以下の温度で加熱し、ロールの速度差を調整することで実施できる。加熱手段はロール、近赤外線、遠赤外線、熱風ヒータ等のいずれも用いる事ができる。また、長手方向へのリラックスは縦延伸直後でなくとも、例えば横延伸(予熱ゾーン含む)や最終熱処理でも長手方向のクリップ間隔を狭めることで実施することができ(この場合はフィルム幅方向の両端も長手方向へリラックスされるため、ボーイング歪みは減少する)、任意のタイミングで実施できる。長手方向へのリラックス(リラックスを行わない場合は縦延伸)の後は、一旦フィルムを冷却することが好ましく、表面温度が20~40℃の冷却ロールで冷却することが好ましい。
 縦延伸の後、テンター内でフィルムの幅方向の両端際をクリップによって把持した状態で、65℃~110℃で3~5倍程度の延伸倍率で横延伸を行うことが好ましい。横方向の延伸を行う前には、予備加熱を行っておくことが好ましく、予備加熱はフィルム表面温度が75℃~120℃になるまで行うとよい。
 横延伸の後は、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させることが好ましい。テンターの横延伸ゾーンに対し、その次の最終熱処理ゾーンでは温度が高いため、中間ゾーンを設けないと最終熱処理ゾーンの熱(熱風そのものや輻射熱)が横延伸工程に流れ込んでしまう。この場合、横延伸ゾーンの温度が安定しないため、フィルムの厚み精度が悪化するだけでなく、ヒートシール強度や収縮率などの物性にもバラツキが生じてしまう。そこで、横延伸後のフィルムは中間ゾーンを通過させて所定の時間を経過させた後、最終熱処理を実施するのが好ましい。この中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流、横延伸ゾーンや最終熱処理ゾーンからの熱風を遮断することが重要である。中間ゾーンの通過時間は、1秒~5秒程度で充分である。1秒より短いと、中間ゾーンの長さが不充分となって、熱の遮断効果が不足する。一方、中間ゾーンは長い方が好ましいが、あまりに長いと設備が大きくなってしまうので、5秒程度で充分である。
 中間ゾーンの通過後は最終熱処理ゾーンにて、横延伸温度以上 250℃以下で熱処理を行うことが好ましい。熱処理温度は横延伸温度以上でなければ熱処理としての効果を発揮しない。この場合、フィルムの80℃温湯収縮率が5%よりも高くなってしまうため好ましくない。熱処理温度が高くなるほどフィルムの収縮率は低下するが、250℃よりも高くなるとフィルムのヘイズが15%よりも高くなったり、最終熱処理工程中にフィルムが融けてテンター内に落下してしまったりするため好ましくない。
 最終熱処理の際、テンターのクリップ間距離を任意の倍率で縮めること(幅方向へのリラックス)によって幅方向の収縮率を低減させることができる。そのため、最終熱処理では、0%以上10%以下の範囲で幅方向へのリラックスを行うことが好ましい(リラックス率0%はリラックスを行わないことを指す)。幅方向へのリラックス率が高いほど幅方向の収縮率は下がるものの、リラックス率(横延伸直後のフィルムの幅方向への収縮率)の上限は使用する原料や幅方向への延伸条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明のポリエステル系シーラントにおいては、幅方向へのリラックス率は10%が上限である。
 また、最終熱処理ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度が設定温度に到達しないまま熱処理ゾーンを通過してしまうため、熱処理の意味をなさなくなる。通過時間は長ければ長いほど熱処理の効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。
 最終熱処理通過後は冷却ゾーンにて、10℃以上30℃以下の冷却風でフィルムを冷却することが好ましい。このとき、テンター出口のフィルムの実温度が、ヒートシール層もしくは耐熱層いずれか低い方のガラス転移温度より低い温度になるよう、冷却風の温度を下げたり風速を上げたりして冷却効率を向上させることが好ましい。なお実温度とは、非接触の放射温度計で測定したフィルム表面温度のことである。テンター出口のフィルムの実温度がガラス転移温度を上回ると、クリップで把持していたフィルム両端部が解放されたときにフィルムが熱収縮してしまう。このとき、フィルムは熱収縮率の大きいヒートシール層へカールしてしまうため、曲率半径が小さくなり好ましくない。
 冷却ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度がガラス転移温度に到達しないまま冷却ゾーンを通過してしまうため、曲率半径が小さくなってしまう。通過時間は長ければ長いほど冷却効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。後は、フィルム両端部を裁断除去しながら巻き取れば、フィルムロールが得られる。
[接着剤層]
 本発明で用いられる接着剤層は、汎用的なラミネート用接着剤が使用できる。たとえば、ポリ(エステル)ウレタン系、ポリエステル系、ポリアミド系、エポキシ系、ポリ(メタ)アクリル系、ポリエチレンイミン系、エチレン-(メタ)アクリル酸系、ポリ酢酸ビニル系、(変性)ポリオレフィン系、ポリブタジェン系、ワックス系、カゼイン系等を主成分とする(無)溶剤型、水性型、熱溶融型の接着剤を使用することができる。この中でも、レトルト処理に耐え得る耐湿熱性と、各基材の寸法変化に追随できる柔軟性を考慮すると、ウレタン系またはポリエステル系が好ましい。上記接着剤層の積層方法としては、たとえば、ダイレクトグラビアコート法、リバースグラビアコート法、キスコート法、ダイコート法、ロールコート法、ディップコート法、ナイフコート法、スプレーコート法、フォンテンコート法、その他の方法で塗布することができ、レトルト後に十分な接着性を発現するため、乾燥後の塗工量は1~8g/mが好ましい。より好ましくは2~7g/m、さらに好ましくは3~6g/mである。塗工量が1g/m未満であると、全面で貼り合せることが困難になり、接着力が低下する。また、8g/m以上を超えると、膜の完全な硬化に時間がかかり、未反応物が残りやすく、接着力が低下する。
 さらに、本発明のラミネート積層体には、無機薄膜層または基材フィルム層とヒートシール性樹脂層との間またはその外側に、印刷層や他のプラスチック基材を少なくとも1層以上積層してもよい。ただし、モノマテリアル化の観点から、積層するのはポリエステル系のものに限定される。
 印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。
[ラミネート積層体の特性]
 本発明のラミネート積層体は、23℃×65%RH条件下における酸素透過度が5ml/m・d・MPa以下となることが、良好なガスバリア性を発現する点で好ましい。さらに、各フィルム上にバリア層を設けることで、好ましくは4ml/m・d・MPa以下、より好ましくは3ml/m・d・MPa以下とすることができる。酸素透過度が5ml/m・d・MPaを超えると、アルミ箔代替のような、高いガスバリア性が要求される用途に対応することが難しくなる。他方、酸素透過度がいずれも0.5ml/m・d・MPa未満であると、バリア性能には優れるが残留溶剤が袋の外側に透過しにくくなり、相対的に内容物への移行量が増えるおそれがあるので好ましくない。酸素透過度の好ましい下限は、0.5ml/m・d・MPa以上である。
 本発明の積層体は、40℃×90%RH条件下における水蒸気透過度がいずれも1.0g/m・d以下であることが、良好なガスバリア性を発現する点で好ましい。さらに各フィルム上にバリア層を設けることで、好ましくは0.75g/m・d以下、より好ましくは0.5g/m・d以下とすることができる。水蒸気透過度が1.0g/m・dを超えると、アルミ箔代替のような高いガスバリア性が要求される用途に対応することが難しくなる。他方、水蒸気透過度が0.1g/m未満であると、バリア性能には優れるが残留溶剤が袋の外側に透過しにくくなり、相対的に内容物への移行量が増えるおそれがあるので好ましくない。水蒸気透過度の好ましい下限は、0.1g/m・d以上である。
 本発明のラミネート積層体は、JIS Z1707に準じて測定した突き刺し強度が10N以上であることが好ましく、より好ましくは12N以上、さらに好ましくは14N以上である。突き刺し強度が10N未満であると、袋として使用した際に、外的負荷がかかると穴が開いて、内容物が漏れ出す恐れがある。
 本発明のラミネート積層体は、JISK7136に準じて測定したヘイズが20%以下であることが好ましく、より好ましくは18%以下、さらに好ましくは16%以下である。ヘイズが20%以上であると、袋として使用した際に透明性が悪く、安全の観点からの内容物視認性や、印刷後の外観の観点で好ましくない。
 本発明のラミネート積層体のヒートシール層同士を温度200℃、シールバー圧力0.2MPa、シール時間4秒でヒートシールした際のヒートシール強度が8N/15mm以上30N/15mm以下であることが好ましい。ヒートシール強度が8N/15mm未満であると、シール部分が容易に剥離されるため、包装袋として用いることができない。ヒートシール強度は9N/15mm以上が好ましく、10N/15mm以上がより好ましい。ヒートシール強度は大きいことが好ましいが、現状得られる上限は30N/15mm程度である。
 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、各種評価は次の測定法によって行った。
(1)各種フィルムの厚み
 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
(2)無機薄膜層の組成・膜厚
 実施例、比較例で得られた積層フィルム(薄膜積層後)について、蛍光X線分析装置((株)リガク製「ZSX100e」)を用いて、予め作成した検量線により膜厚組成を測定した。なお、励起X線管の条件として50kV、70mAとした。
(3) 保護層の付着量
 各実施例および比較例において、基材フィルム上に保護層を積層した段階で得られた各積層フィルムを試料とし、この試料から100mm×100mmの試験片を切り出し、1-メトキシ-2-プロパノールまたはジメチルホルムアミドによる保護層の拭き取りを行い、拭き取り前後のフィルムの質量変化から付着量を算出した。
[ラミネート積層体の作製]
 (4) 評価用ラミネート積層体の作製
 実施例、比較例に記載の基材フィルム、中間層フィルム、ヒートシール樹脂について、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」とを13.5:1(質量比)の割合で配合)を用いてドライラミネート法により貼り合せ、40℃で4日間エージングを施すことによって、評価用のラミネートガスバリア性積層体(以下「ラミネート積層体A」と称することもある)を得た。なお、ウレタン系2液硬化型接着剤で形成された接着剤層の乾燥後の厚みはいずれも約4μmであった。
(5) 酸素透過度の評価方法
 上記(4)で作製したラミネート積層体について、JIS-K7126 B法に準じて、酸素透過度測定装置(MOCON社製「OX-TRAN(登録商標)2/22」)を用い、温度23℃、湿度65%RHの雰囲気下で、酸素透過度を測定した。なお、酸素透過度の測定は、ラミネート積層体の基材フィルム側からヒートシール性樹脂層側に酸素が透過する方向で行った。
(6)水蒸気透過度の評価方法
 上記(4)で作成したラミネート積層体について、JIS-K7129 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W 3/33MG」)を用い、温度40℃、湿度90%RHの雰囲気下で、水蒸気透過度を測定した。なお、水蒸気透過度の測定は、ラミネート積層体のヒートシール性樹脂層側から基材フィルム側に向けて水蒸気が透過する方向で行った。
(7) ヒートシール強度の評価方法 
 上記(4)で作製したラミネート積層体について、JIS Z1707に準拠してヒートシール強度測定を行った。具体的な手順を示す。ヒートシーラーにて、サンプルのヒートシール面同士を接着した。ヒートシール条件は、上バー温度200℃、下バー温度30℃、圧力0.2MPa、時間4秒とした。接着サンプルは、シール幅が15mmとなるように切り出した。剥離強度は、万能引張試験機「DSS-100」(島津製作所製)を用いて引張速度200mm/分で測定した。剥離強度は、15mmあたりの強度(N/15mm)で示す。
(9)突き刺し強度の評価方法
 上記(4)で作製したラミネート積層体を5cm角にサンプリングし、株式会社イマダ製デジタルフォースゲージ「ZTS-500N」、電動計測スタンド「MX2-500N」及び突き刺し治具「TKS-250N」を用いて、JIS Z1707に準じてフィルムの突き刺し強度を測定した。
(10) ラミネート積層体のヘイズ
 実施例、比較例で得られたラミネート積層体に対して、ヘイズメーターNDH-2000(日本電色工業製)にてJISK7136に準じて、ヘイズを測定した。
(11)モノマテリアル化の評価基準
 上記(4)で作製したラミネート積層体について、モノマテリアル化の評価基準として、総厚みに対するポリエステル系素材の厚みが90%以上であるものを○(モノマテ)とした。
(12)視認・レンジ適性
 上記(4)で作製したラミネート積層体について、ヘイズが20%以下かつアルミ箔を用いていないものを○、ヘイズが20%以上かつアルミ箔を用いていないものを△、アルミ箔を用いているものを×とした。
 以下に本実施例及び比較例で使用する塗工液の詳細を記す。なお、実施例1~7、及び比較例1~7で使用した。
 [カルボジイミド系架橋剤(A)]
 カルボジイミド系架橋剤として、市販の日清紡社製「カルボジライト(登録商標)SV-02」;固形分40%)を用意した。
[オキサゾリン基を有する樹脂(B)]
 オキサゾリン基を有する樹脂として、市販の水溶性オキサゾリン基含有アクリレート(日本触媒社製「エポクロス(登録商標)WS-300」;固形分10%)を用意した。この樹脂のオキサゾリン基量は7.7mmol/gであった。
[アクリル樹脂(C)]
 アクリル樹脂として、市販のアクリル酸エステル共重合体の25質量%エマルジョン(ニチゴー・モビニール(株)社製「モビニール(登録商標)7980」を用意した。このアクリル樹脂の酸価(理論値)は4mgKOH/gであった。
[ウレタン樹脂(D)]
 ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)W605」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は100℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、55モル%であった。
[シランカップリング剤(E)]
 シランカップリング剤として、市販の信越化学社製「(登録商標)KBM903」;固形分100%)を用意した。使用時は水で希釈して2%水溶液とした。
[ウレタン樹脂(F)]
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、メタキシリレンジイソシアネート143.95質量部、4,4’-メチレンビス(シクロヘキシルイソシアネート)25.09質量部、エチレングリコール28.61質量部、トリメチロールプロパン5.50質量部、ジメチロールプロピオン酸12.37質量部、及び溶剤としてメチルエチルケトン120.97質量部を混合し、窒素雰囲気下、70℃で撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を35℃にまで降温した後、トリエチルアミン9.14質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水794.97質量部を添加して、15℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散させ、2-[(2-アミノエチル)アミノ]エタノール22.96質量部と水91.84質量部を混合したアミン水溶液を添加し、次いで、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(商品名;KBM-603、信越化学社製)2.38質量部と水9.50質量部を混合したアミン水溶液を添加し、鎖伸長反応を行った。その後、減圧下で、メチルエチルケトンおよび水の一部を除去することにより、固形分25質量%、平均粒子径70nmのポリウレタンディスパージョン(E)を得た。得られたポリウレタンディスパージョン(D-1)のSi含有量(仕込み計算による)は1200mg/1kg、メタキシリレン基含有量(仕込み計算による)は32質量%であった。
[ポリエステル樹脂(G)]
 ポリエステル成分として、ポリエステルポリオール(DIC社製「DF-COAT GEC-004C」:固形分30%)を用いた。
[ポリイソシアネート架橋剤(H)]
 ポリイソシアネート成分として、メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体(三井化学社製「タケネートD-110N」:固形分75%)を用いた。
[シランカップリング剤(I)]
 シランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学社製「KBM-603」)を用いた。
[被覆層に用いる塗工液1]
 下記の配合比率で各材料を混合し、塗布液(被覆層用樹脂組成物)を作成した。
  水                      54.40質量%
  イソプロパノール               25.00質量%
  オキサゾリン基含有樹脂 (A)        15.00質量%
  アクリル樹脂 (B)             3.60質量%
  ウレタン樹脂 (C)             2.00質量%
[被覆層に用いる塗工液2]
 下記の配合比率で各材料を混合し、塗布液(被覆層用樹脂組成物)を作成した。
  水                      57.80質量%
  イソプロパノール               25.00質量%
  カルボジイミド系架橋剤 (A)        2.10質量%
  ウレタン樹脂 (F)             8.00質量%
  シランカップリング剤 (E)         7.10質量%
[保護層のコートに用いる塗工液3]
 下記の塗剤を混合し、塗工液3を作成した。ここでウレタン樹脂(E)の固形分換算の質量比は表1に示す通りである。
  水                      22.00質量%
  イソプロパノール               30.00質量%
  ウレタン樹脂(F)              48.00質量%
[保護層のコートに用いる塗工液4]
 シランカップリング剤(I)をアセトンに溶解した溶液(15%wt)およびイソシアネート(G)を下記比率で混合させ、10分間マグネチックスターラ―を用いて撹拌した。得られた調合液をメチルエチルケトンで希釈し、さらにポリエステル樹脂(G)を添加し、塗工液を得た。混合比を以下に示す。
 ポリエステル樹脂(G)              4.90質量%
  イソシアネート(H)              1.87質量%
  シランカップリング剤(I)※アセトン希釈液  0.85質量% 
  メチルエチルケトン             92.39質量%
 以下に各実施例及び比較例で使用する積層フィルムの作製方法を記す。なお、実施例1~8、及び比較例1~7で使用し、表2に示した。
1.基材フィルム
(ペットボトルからリサイクルされたポリエステル樹脂の調整)
 飲料用ペットボトルから残りの飲料などの異物を洗い流した後、粉砕して得たフレークを押出機で溶融し、順次目開きサイズの細かなものにフィルタを変えて2回更に細かな異物を濾別し、3回目に50μmの最も小さな目開きサイズのフィルタで濾別して、ポリエステル再生原料を得た。得られた樹脂の構成は、テレフタル酸/イソフタル酸//エチレングリコール=97.0/3.0//100(モル%)で、樹脂の極限粘度は0.70dl/gであった。これをポリエステルAとする。
(基材フィルムの製造)
 ポリエステルBとしてテレフタル酸//エチレングリコール=100//100(モル%)からなる極限粘度0.62dl/gのポリエチレンテレフタレート樹脂を、ポリエステルCとして、ポリエステルBに平均粒子径1.5μmの不定形シリカを0.3%含有するマスターバッチとしてものを作製した。各原料は、33Paの減圧下、125℃で8時間乾燥した。それらをA/B/C=80/10/10(重量比)となるよう混合したものを、一軸押出機に投入した。押出機から、メルトライン、フィルタおよびT-ダイまでは樹脂の温度が280℃となるように温度設定した。ただし、押出機のスクリューの圧縮部の開始点から30秒間は樹脂の温度が305℃となるように設定し、その後は再び、280℃となるようにした。
 T-ダイから押し出された溶融物を冷却ロールに密着させ、未延伸シートとし、それを引き続き118℃に加熱した周速差のあるロールにて縦方向に1.41倍延伸し(MD1)、さらに128℃に加熱した周速差のあるロールにて縦方向に2.92倍延伸(MD2)した。その縦延伸したシートをテンターに導き、フィルムの片面に、上記塗工液1をファウンテンバーコート法によりコートした。乾燥しつつテンターに導き、121℃で予熱した後に、131℃で4.3倍横延伸した。引き続き熱固定として、180℃、リラックスなし(0%)で2.5秒行った(TS1)後に引き続き231℃、リラックス5%、3.0秒行った(TS2)後に引き続き222℃、リラックスなしで2.5秒行った(TS3)。引き続き、同じテンター内で、120℃で6.0秒間の冷却を行い、最終的にワインダーで巻き取ることで厚さ12μmの二軸延伸ポリエステルフィルムを得た。
 各実施例および比較例記載の基材フィルム層を調製するにあたり、樹脂A/B/Cの配合量を変更したこと以外は、同様にして積層フィルムを作製し、評価を実施した。
2.中間層フィルム
(PBT樹脂の調整)
1)ポリブチレンテレフタレート(PBT)樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するポリブチレンテレフタレート樹脂は1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)を用いた。
2)ポリエチレンテレフタレート(PET)樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するポリエチレンテレフタレート樹脂はテレフタル酸//エチレングリコール=100//100(モル%)(東洋紡社製、固有粘度0.62dl/g)を用いた。
(フィルムの製造)
 一軸押出機を用い、PBT樹脂を80質量%とPET樹脂を20質量%混合したものに、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として混合樹脂に対して900ppmとなるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、ポリエステル樹脂溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。265℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
 次いで、60℃で縦方向に2.9倍ロール延伸し、縦延伸後に接着層用樹脂組成物(塗工液1)をファウンテンバーコート法により塗布した。その後、乾燥しながらテンターに導き、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。この時のフィルム端部の表面温度は75℃であった。
 次いで、両端の把持部を9%ずつ切断除去して厚みが15μmのポリエステルフィルムに0.030g/m2の被覆層が形成された積層フィルムを得た。得られたフィルムの物性を表1に示した。
3.ヒートシール性樹脂層
(ポリエステル原料調製)
[合成例1]
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)用いて、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、280℃で26.7Paの減圧条件下、重縮合反応を行い、固有粘度0.75dl/gのポリエステル(A)を得た。このポリエステル(A)は、ポリエチレンテレフタレートである。ポリエステルの組成を表1に示す。
[合成例2]
 合成例1と同様の手順でモノマーを変更したポリエステル(B)~(E)を得た。各ポリエステルの組成を表1に示す。表1において、TPAはテレフタル酸、BDは1,4-ブタンジオール、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、DEGはジエチレングリコールである。なお、ポリエステル(E)の製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して7,000ppmの割合で添加した。各ポリエステルは、適宜チップ状にした。
Figure JPOXMLDOC01-appb-T000001
[フィルム作成]
 ヒートシール層の原料としてポリエステルAとポリエステルBとポリエステルDとポリエステルEを質量比10:60:24:6で混合し、耐熱層の原料としてポリエステルAとポリエステルBとポリエステルDとポリエステルEを質量比57:31:6:6で混合した。ヒートシール層及び耐熱層の混合原料はそれぞれ別々の二軸スクリュー押出機に投入し、いずれも270℃で溶融させた。それぞれの溶融樹脂は、流路の途中でフィードブロックによって接合させてTダイより吐出し、表面温度30℃に設定したチルロール上で冷却することによって未延伸の積層フィルムを得た。積層フィルムは片側がヒートシール層、もう片側が耐熱層(ヒートシール層/耐熱層の2種2層構成)となるように溶融樹脂の流路を設定し、ヒートシール層と耐熱層の厚み比率が50/50となるように吐出量を調整した。
 冷却固化して得た未延伸の積層フィルムを複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が78℃になるまで予備加熱した後に4.1倍に延伸した。縦延伸直後のフィルムを熱風ヒータで100℃に設定された加熱炉へ通し、加熱炉の入口と出口のロール間の速度差を利用して、長手方向に20%リラックス処理を行った。その後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。
 リラックス処理後のフィルムを横延伸機(テンター)に導いて表面温度が105℃になるまで5秒間の予備加熱を行った後、幅方向(横方向)に4.0倍延伸した。横延伸後のフィルムはそのまま中間ゾーンに導き、1.0秒で通過させた。なお、テンターの中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、最終熱処理ゾーンからの熱風と横延伸ゾーンからの熱風を遮断した。
 その後、中間ゾーンを通過したフィルムを最終熱処理ゾーンに導き、190℃で5秒間熱処理した。このとき、熱処理を行うと同時にフィルム幅方向のクリップ間隔を狭めることにより、幅方向に3%リラックス処理を行った。最終熱処理ゾーンを通過後はフィルムを30℃の冷却風で5秒間冷却した。このとき、テンター出口のフィルム実温度は45℃であった。両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ30μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。
 以下に各実施例及び比較例で使用する無機薄膜層の作製方法を記す。なお、実施例1~8、及び比較例1~7で使用し、表2に示した。
(無機薄膜層M-1の形成)
 無機薄膜層M-1として、基材フィルム層または中間層またはヒートシール樹脂の耐熱
層上に酸化アルミニウムの蒸着を行った。基材フィルム層への酸化アルミニウムを蒸着する方法は、フィルムを連続式真空蒸着機の巻出し側にセットし、冷却金属ドラムを介して走行させフィルムを巻き取る。この時、連続式真空蒸着機を10-4Torr以下に減圧し、冷却ドラムの下部よりアルミナ製るつぼに純度99.99%の金属アルミニウムを装填し、金属アルミニウムを加熱蒸発させ、その蒸気中に酸素を供給し酸化反応させながらフィルム上に付着堆積させ、厚さ10nmの酸化アルミニウム膜を形成した。
(無機薄膜層M-2の形成)
 無機薄膜層M-2として、基材フィルム層または中間層またはヒートシール樹脂の耐熱層上に、二酸化ケイ素と酸化アルミニウムの複合酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO2(純度99.9%)とA12O3(純度99.9%)とを用いた。このようにして得られたフィルム(無機薄膜層/被覆層含有フィルム)における無機薄膜層(SiO2/A12O3複合酸化物層)の膜厚は13nmであった。またこの複合酸化物層の組成は、SiO2/A12O3(質量比)=60/40であった。
(蒸着フィルムへの塗工液3のコート(保護層の積層))
 上記調製した塗工液3をグラビアロールコート法によって、得られた蒸着フィルムの無機薄膜層上に塗布し、110℃で予備乾燥した後、160℃で本乾燥させ、所定の塗布量の保護層を得た。その後、40℃×2日間の後加熱処理を施した。
(蒸着フィルムへの塗工液4のコート(保護層の積層))
 上記調製した塗工液4をグラビアロールコート法によって、得られた蒸着フィルムの無機薄膜層上に塗布し、110℃で予備乾燥した後、190℃で本乾燥させ、所定の塗布量の保護層を得た。その後、40℃×4日間の後加熱処理を施した。
 以上のようにして、各フィルムの上に被覆層/無機薄膜層/保護層を備えた表2に記載のフィルム積層体1~3を作製した。各実施例、比較例は、1~3の各フィルムを使用して、接着剤を用いたドライラミネート法で貼り合わせて表3に記載の構成のラミネート積層体とした。なお、比較例として中間層にポリアミドフィルム(東洋紡製N1100-15μm;NYとする)、ヒートシール樹脂として直鎖状低密度ポリエチレンフィルム(東洋紡製L4102―40μm;LLDPEとする)または無延伸ポリプロピレンフィルム(東洋紡製P1146-70μm;CPPとする)を用いた。作製したラミネート積層体の構成は表3に示す。また、得られたラミネート積層体について、各種評価を実施した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明により、無機薄膜層、被覆層、バリア保護層を各フィルム上に積層し貼り合わせることでガスバリア性能を大きく向上させ、さらに環境負荷の少ないペットボトル由来のポリエステル樹脂を用いた基材フィルムと、ポリエステル成分からなるシーラントをラミネートすることで、強靭性やシール性、透明性を保持したままモノマテリアル化を実現した。しかも、本発明の積層フィルムは加工工程が少なくかつ容易に製造できるので、経済性と生産安定性の両方に優れており、均質な特性のガスバリア性フィルムを提供することができる。

Claims (8)

  1.  ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂層がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂を含有する保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂層はエチレンテレフタレートを主たる構成成分とするポリエステル系樹脂からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするラミネート積層体。
  2.  前記基材フィルムとヒートシール性樹脂層の間に、接着剤を介して中間層フィルムを有し、前記中間層フィルムがポリブチレンテレフタレート樹脂を70質量%以上含む樹脂組成物からなることを特徴とする請求項1に記載のラミネート積層体。
  3.  前記ヒートシール性樹脂層上に無機薄膜層(B)が積層されていることを特徴とする請求項1または2に記載のラミネート積層体。
  4.  前記中間層フィルム上に無機薄膜層(C)が積層されていることを特徴とする請求項2または3のいずれかに記載のラミネート積層体。
  5.  前記中間層フィルムの無機薄膜層(C)上にウレタン樹脂を含有する保護層(b)が積層されていることを特徴とする請求項2~4のいずれかに記載のラミネート積層体。
  6.  前記基材フィルムと前記無機薄膜層(A)の間に、被覆層(X)を有することを特徴とする、請求項1~5のいずれかに記載のラミネート積層体。
  7.  前記中間層フィルムと前記無機薄膜層(C)の間に、被覆層(Y)を有することを特徴とする、請求項4~6のいずれかに記載のラミネート積層体。
  8.  前記無機薄膜層(A)~(C)がいずれも酸化アルミニウムまたは酸化ケイ素と酸化アルミニウムの複合酸化物からなる層であることを特徴とする請求項1~7のいずれかに記載のラミネート積層体。
PCT/JP2020/043806 2019-12-05 2020-11-25 ラミネート積層体 WO2021111941A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562590A JPWO2021111941A1 (ja) 2019-12-05 2020-11-25
EP20897324.8A EP4070954A4 (en) 2019-12-05 2020-11-25 LAMINATED LAYER BODY
US17/781,567 US20220410546A1 (en) 2019-12-05 2020-11-25 Laminated body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-220373 2019-12-05
JP2019220373 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021111941A1 true WO2021111941A1 (ja) 2021-06-10

Family

ID=76222209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043806 WO2021111941A1 (ja) 2019-12-05 2020-11-25 ラミネート積層体

Country Status (5)

Country Link
US (1) US20220410546A1 (ja)
EP (1) EP4070954A4 (ja)
JP (1) JPWO2021111941A1 (ja)
TW (1) TW202130516A (ja)
WO (1) WO2021111941A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176850A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器
WO2023176851A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220379589A1 (en) * 2019-11-20 2022-12-01 Toyobo Co., Ltd. Laminated film
BR112022015350A2 (pt) * 2020-02-20 2022-09-20 Toyo Boseki Película laminada

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02629B2 (ja) 1981-08-08 1990-01-08 Fuji Electric Co Ltd
JP2006305975A (ja) * 2005-05-02 2006-11-09 Fujimori Kogyo Co Ltd 積層フィルムおよび包装袋ならびにシーラント層の形成方法
JP2007517685A (ja) * 2003-12-22 2007-07-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 熱成形可能なポリエステル含有ラミネート
JP2012091862A (ja) 2009-06-05 2012-05-17 Toyobo Co Ltd 容器の胴巻ラベル用二軸配向ポリエステルフィルム及び容器の胴巻用ラベル
JP2012146636A (ja) * 2010-12-24 2012-08-02 Kohjin Co Ltd 二軸延伸ポリブチレンテレフタレートフィルムを含む冷間成形用電池ケース包材
WO2015146496A1 (ja) * 2014-03-26 2015-10-01 東洋紡株式会社 積層フィルム
JP2017007175A (ja) * 2015-06-19 2017-01-12 東洋紡株式会社 積層フィルム
JP2017094746A (ja) 2017-01-26 2017-06-01 興人フィルム&ケミカルズ株式会社 二軸延伸ポリブチレンテレフタレート系フィルムを含む液体充填用包材
JP2017165059A (ja) 2016-03-18 2017-09-21 東洋紡株式会社 シーラント用途のポリエステルフィルム、積層体及び包装体
WO2020138048A1 (ja) * 2018-12-28 2020-07-02 東洋紡株式会社 積層体及びそれを用いた包装体
WO2020203106A1 (ja) * 2019-03-29 2020-10-08 東洋紡株式会社 ポリエステルフィルム及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552169A (en) * 1991-04-25 1996-09-03 Sealed Air Corporation Food package adapted for microwave or other cooking
DE60031523T2 (de) * 1999-09-10 2007-06-06 Ishida Co., Ltd. Beutel für nahrungsmittel, verfahren zum verpacken und verwendung eines mehrschichtfilms für beutel
WO2012074030A1 (ja) * 2010-12-01 2012-06-07 東洋紡績株式会社 積層フィルム
JP6794633B2 (ja) * 2016-02-23 2020-12-02 東洋紡株式会社 積層フィルム
JP6944656B2 (ja) * 2017-07-13 2021-10-06 大日本印刷株式会社 積層体
JP7027972B2 (ja) * 2018-03-09 2022-03-02 大日本印刷株式会社 バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料
JP6642748B2 (ja) * 2019-02-05 2020-02-12 東洋紡株式会社 積層フィルム
CN113891799A (zh) * 2019-05-29 2022-01-04 凸版印刷株式会社 聚酯膜的选定方法、层叠体的制造方法、封装体的制造方法及层叠体
US20220379589A1 (en) * 2019-11-20 2022-12-01 Toyobo Co., Ltd. Laminated film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02629B2 (ja) 1981-08-08 1990-01-08 Fuji Electric Co Ltd
JP2007517685A (ja) * 2003-12-22 2007-07-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 熱成形可能なポリエステル含有ラミネート
JP2006305975A (ja) * 2005-05-02 2006-11-09 Fujimori Kogyo Co Ltd 積層フィルムおよび包装袋ならびにシーラント層の形成方法
JP2012091862A (ja) 2009-06-05 2012-05-17 Toyobo Co Ltd 容器の胴巻ラベル用二軸配向ポリエステルフィルム及び容器の胴巻用ラベル
JP2012146636A (ja) * 2010-12-24 2012-08-02 Kohjin Co Ltd 二軸延伸ポリブチレンテレフタレートフィルムを含む冷間成形用電池ケース包材
WO2015146496A1 (ja) * 2014-03-26 2015-10-01 東洋紡株式会社 積層フィルム
JP2017007175A (ja) * 2015-06-19 2017-01-12 東洋紡株式会社 積層フィルム
JP2017165059A (ja) 2016-03-18 2017-09-21 東洋紡株式会社 シーラント用途のポリエステルフィルム、積層体及び包装体
JP2017094746A (ja) 2017-01-26 2017-06-01 興人フィルム&ケミカルズ株式会社 二軸延伸ポリブチレンテレフタレート系フィルムを含む液体充填用包材
WO2020138048A1 (ja) * 2018-12-28 2020-07-02 東洋紡株式会社 積層体及びそれを用いた包装体
WO2020203106A1 (ja) * 2019-03-29 2020-10-08 東洋紡株式会社 ポリエステルフィルム及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4070954A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176850A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器
WO2023176851A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器

Also Published As

Publication number Publication date
US20220410546A1 (en) 2022-12-29
JPWO2021111941A1 (ja) 2021-06-10
EP4070954A4 (en) 2023-12-20
EP4070954A1 (en) 2022-10-12
TW202130516A (zh) 2021-08-16

Similar Documents

Publication Publication Date Title
WO2021111941A1 (ja) ラミネート積層体
EP2647500B1 (en) Multilayer film
CN114728498B (zh) 层叠薄膜
JP6962364B2 (ja) 積層フィルム
TW201841976A (zh) 具備了含有呋喃二甲酸單元的聚酯膜與熱封性樹脂層的積層體及包裝袋
EP4137310A1 (en) Laminated layered body
JP6927336B2 (ja) ガスバリア性積層フィルムおよびその製造方法
EP3778234A1 (en) Laminate and package using same
JP7006445B2 (ja) ポリエステルフィルムおよびガスバリア性積層フィルム
EP4371770A1 (en) Laminated film for forming inorganic thin film layer
JP7060842B2 (ja) ラミネート積層体
WO2023127594A1 (ja) 包装材料
WO2020203105A1 (ja) ポリエステルフィルム及びその製造方法
JPWO2020145254A1 (ja) 積層フィルム
JP5500846B2 (ja) 保護フィルム
JP7380916B2 (ja) 積層フィルム
CN115103766B (zh) 层叠薄膜
JP7279759B2 (ja) 積層フィルム、積層体及び包装体
WO2023026953A1 (ja) 積層フィルム
WO2024058167A1 (ja) 包装材料
JP2022036177A (ja) ポリエステルフィルムおよびガスバリア性積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897324

Country of ref document: EP

Effective date: 20220705