WO2021111892A1 - トルクセンサ - Google Patents

トルクセンサ Download PDF

Info

Publication number
WO2021111892A1
WO2021111892A1 PCT/JP2020/043240 JP2020043240W WO2021111892A1 WO 2021111892 A1 WO2021111892 A1 WO 2021111892A1 JP 2020043240 W JP2020043240 W JP 2020043240W WO 2021111892 A1 WO2021111892 A1 WO 2021111892A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
fastening
slit
axis
discontinuous
Prior art date
Application number
PCT/JP2020/043240
Other languages
English (en)
French (fr)
Inventor
石倉 義之
田中 達夫
圭司 金原
賢二 栗原
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2021111892A1 publication Critical patent/WO2021111892A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque sensor that detects torque.
  • a torque sensor having a sensor element attached to the outer peripheral surface of a rotating shaft body and detecting the magnitude of shear stress generated on the outer peripheral surface by torque from a change in resistance value in the sensor element is known (for example). See Patent Document 1). Further, the rotating shaft is composed of an outer cylinder portion and two flanges connected to both ends thereof, and an inner cylinder portion having both ends connected via a disk-shaped torque transmission portion is provided at both ends of the outer cylinder portion. A torque sensor in which a sensor element is attached to the outer peripheral surface of the inner cylinder portion is also known.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a torque sensor capable of reducing an output error.
  • the torque sensor according to the present invention is provided between the first fastening portion to which the external device is fastened, the second fastening portion to which the external device is fastened, and the first fastening portion and the second fastening portion.
  • a non-slit portion provided between the sensing portion provided with the sensor element, at least one of the first fastening portion and the second fastening portion, and the sensing portion, and a non-slit portion located rotationally symmetrically. It is provided with an external force refining portion having a plurality of circular discontinuous openings composed of arcuate slit portions provided between the non-slit portions, and at least a part of the non-slit portions is a surface perpendicular to the axis. The arrangement angle around the axis is different from the arrangement angle of the non-slit portion in the adjacent discontinuous openings among the discontinuous openings.
  • the output error can be reduced because the configuration is as described above.
  • FIG. It is a partial cross-sectional perspective view which shows the structural example of the torque sensor which concerns on Embodiment 1.
  • Embodiment 1. 1 and 2 are diagrams showing a configuration example of the torque sensor according to the first embodiment.
  • the torque sensor detects the torque.
  • this torque sensor includes a main body portion 11, a sensor element 12, and a measurement unit 13 (not shown).
  • the main body 11 is a disk-shaped member having a hole in the axis.
  • the main body 11 is made of, for example, stainless steel.
  • the main body portion 11 has a fastening portion (first fastening portion) 111, a fastening portion (second fastening portion) 112, a sensing portion 113, and an external force refining portion 114. ..
  • the fastening portion 111 is a portion where an external device (not shown) is fastened to one surface (one surface of the main body portion 11).
  • the fastening portion 111 is provided on the outer peripheral side of the main body portion 11.
  • a plurality of holes 1111 are provided in the fastening portion 111 in the circumferential direction.
  • the hole 1111 is configured so that a shaft portion of a fastening member such as a bolt can be inserted, and the external device is fastened to the fastening portion 111 via the fastening member through the hole 1111.
  • the fastening portion 112 is a portion where an external device (not shown) is fastened to one surface (the other surface of the main body portion 11).
  • the fastening portion 112 is provided on the inner peripheral side of the main body portion 11.
  • a plurality of holes 1121 are provided in the fastening portion 112 in the circumferential direction.
  • the hole 1121 is configured so that a shaft portion of a fastening member such as a bolt can be inserted, and the external device is fastened to the fastening portion 112 via the fastening member through the hole 1121.
  • a drive system such as a motor is fastened to one of the fastening portion 111 and the fastening portion 112 as an external device, and a load system such as a robot hand is fastened to the other as an external device.
  • the sensing portion 113 is provided between the fastening portion 111 and the fastening portion 112, and is a portion where the sensor element 12 is provided.
  • the external force purification unit 114 is a portion provided between at least one of the fastening portion 111 and the fastening portion 112 and the sensing portion 113. In FIGS. 1 and 2, the external force purification unit 114 is provided between the fastening unit 112 and the sensing unit 113.
  • the external force purification unit 114 has a plurality of circular discontinuous openings 1141.
  • the discontinuous openings 1141 are provided in plurality along the radial direction of the torque shaft (axis center of the torque sensor).
  • the discontinuous opening 1141 is composed of a non-slit portion 1142 located rotationally symmetrically and an arc-shaped slit portion 1143 provided between the non-slit portions 1142.
  • the external force refining unit 114 has a discontinuous opening 1141 composed of four non-slit portions 1142 and four slit portions 1143 twice in the radial direction of the torque shaft, and further to the outside of the discontinuous opening 1141, 8 It has a discontinuous opening 1141 composed of one non-slit portion 1142 and eight slit portions 1143.
  • the non-slit portion 1142 has a non-slit portion 1142 in the adjacent discontinuous opening 1141 of the discontinuous opening 1141 whose arrangement angle around the torque axis on the plane perpendicular to the torque axis is different. It is different from the placement angle. At this time, the arrangement angle of the non-slit portion 1142 around the torque axis on the plane perpendicular to the torque axis coincides with the center of the slit portion 1143 in the adjacent discontinuous openings 1141 of the discontinuous openings 1141 (substantially the same). (Including the meaning of) is desirable.
  • the non-slit portion 1142 in the discontinuous opening 1141 closest to the sensing portion 113 in the discontinuous opening 1141 has a sensor having an arrangement angle around the torque axis on a plane perpendicular to the torque axis. It is desirable that it matches the arrangement angle of the element 12 (including the meaning of substantially matching).
  • One or more sensor elements 12 are attached to the sensing unit 113.
  • the sensor element 12 outputs a signal corresponding to the shear stress from the outside.
  • a semiconductor strain gauge or a metal strain gauge can be used as the sensor element 12.
  • the torque sensor can reduce interference with other axes by providing the two sensor elements 12 so as to face each other via the axis of the main body 11.
  • the measuring unit 13 measures the signal output by the sensor element 12 as torque.
  • the measuring unit 13 measures the calculated value of the signal output by each sensor element 12 as a torque.
  • the measurement unit 13 is realized by a processing circuit such as a system LSI (Large Scale Integration), a CPU (Central Processing Unit) that executes a program stored in a memory or the like, or the like.
  • the torque sensor according to the first embodiment has a fastening portion 111 and a fastening portion 112 to which external devices are connected, and a sensing portion 113 provided with the sensor element 12.
  • the torque sensor is provided with an external force purification unit 114 having directional anisotropy in rigidity between at least one of the fastening portion 111 and the fastening portion 112 and the sensing portion 113.
  • the term "directional anisotropy" in the rigidity here means that the rigidity is high around the torque shaft and low in the radial direction of the torque shaft.
  • the discontinuous openings 1141 included in the external force refining unit 114 are provided in plurality along the radial direction of the torque shaft. In this way, the torque sensor reduces the output error of the torque sensor by selectively transmitting the displacement around the torque shaft and suppressing and transmitting the radial displacement of the torque shaft to the sensing unit 113. It will be possible.
  • the discontinuous opening 1141 included in the external force purification unit 114 is not limited to the configuration shown in FIGS. 1 and 2, and the number and arrangement intervals of the discontinuous openings 1141, the number and length of the non-slit portions 1142, and the slit portion.
  • the number, length, width, etc. of 1143 can be appropriately designed according to the required rigidity and the like.
  • the external force refining unit 114 has three discontinuous openings 1141 composed of four non-slit portions 1142 and four slit portions 1143 in the radial direction of the torque shaft, and further to the outside thereof. It has a discontinuous opening 1141 composed of eight non-slit portions 1142 and eight slit portions 1143.
  • the torque sensor is located between the fastening portion 111 to which the external device is fastened, the fastening portion 112 to which the external device is fastened, and the fastening portion 111 and the fastening portion 112.
  • a non-slit portion 1142 provided between the sensing portion 113 provided with the sensor element 12 and at least one of the fastening portion 111 and the fastening portion 112 and the sensing portion 113 located in rotational symmetry, and a non-slit portion 1142.
  • the external force refining portion 114 having a plurality of circular discontinuous openings 1141 formed of an arc-shaped slit portion 1143 provided between the non-slit portions 1142 is provided, and at least a part of the non-slit portions 1142 is provided.
  • the arrangement angle around the torque axis on the plane perpendicular to the torque axis is different from the arrangement angle of the non-slit portion 1142 in the adjacent discontinuous openings 1141 of the discontinuous openings 1141.
  • Embodiment 2. 5 and 6 are diagrams showing a configuration example of the torque sensor according to the second embodiment.
  • the fastening portion 23 and the sensor element 25, which will be described later, are not shown.
  • FIG. 6 the illustration of the sensing unit 29, which will be described later, is omitted.
  • the torque sensor detects the torque.
  • the torque sensor includes an outer cylinder portion (external force refining portion) 21, a fastening portion (first fastening portion) 22, a fastening portion (second fastening portion) 23, and an inner cylinder portion 24.
  • a sensor element 25, a torque transmission unit (first torque transmission unit) 26, a torque transmission unit (second torque transmission unit) 27, and a measurement unit 28 (not shown) are provided.
  • the outer cylinder portion 21 is a tubular member with both ends open.
  • the outer cylinder portion 21 is made of, for example, stainless steel. The details of the outer cylinder portion 21 will be described later.
  • the fastening portion 22 is a portion on which an external device (not shown) is fastened on the upper surface.
  • the fastening portion 22 is a ring-shaped member whose lower surface is connected to one end surface of the outer cylinder portion 21.
  • the fastening portion 22 is made of, for example, stainless steel.
  • the fastening portion 22 shown in FIG. 5 is provided with a plurality of holes 221 in the circumferential direction.
  • the hole 221 is configured so that a shaft portion of a fastening member such as a bolt can be inserted, and the external device is fastened to the fastening portion 22 via the fastening member through the hole 221 and the hole 232 described later.
  • the fastening portion 23 is a portion where an external device (not shown) is fastened to the lower surface.
  • the fastening portion 23 is a ring-shaped member whose upper surface is connected to the other end surface of the outer cylinder portion 21.
  • the fastening portion 23 is made of, for example, stainless steel.
  • the fastening portion 23 shown in FIG. 6 is provided with a plurality of bolt holes 231 in the circumferential direction.
  • the external device is fastened to the fastening portion 23 via bolts through the bolt holes 231.
  • the fastening portion 23 is provided with a plurality of holes 232 in the circumferential direction.
  • the hole 232 is located on the same axis as the hole 221 (including substantially the same meaning), and is configured so that the head of a fastening member such as a bolt can be inserted.
  • a drive system such as a motor is fastened to one of the fastening portion 22 and the fastening portion 23 as an external device, and a load system such as a robot hand is fastened to the other as an external device.
  • the inner cylinder portion 24 is located on the same axis (including substantially the same meaning) as the outer cylinder portion 21.
  • One or more sensor elements 25 are attached to the outer peripheral surface of the inner cylinder portion 24.
  • the sensor element 25 outputs a signal corresponding to the shear stress from the outside.
  • the sensor element 25 has a resistance gauge oriented in an oblique direction (45 degree direction) with respect to the torque shaft (axis center of the torque sensor). The diagonal direction is 45 degrees, but the direction is not limited to this, and some deviation (for example, 44 degrees or 46 degrees) is allowed.
  • a semiconductor strain gauge or a metal strain gauge can be used as the sensor element 25 for example.
  • the torque sensor can reduce interference with other axes.
  • the torque transmission unit 26 is a thin plate member for transmitting the torque generated by the external force applied to the fastening portion 22 to the sensor element 25.
  • the torque transmission unit 26 shown in FIG. 5 a space exists in a direction other than the direction in which the sensor element 25 is located in the radial direction of the torque shaft, but the space does not have to exist.
  • irregularities are present in the radial direction of the torque shaft, but the irregularities may not be present.
  • the torque transmission unit 26 is composed of four plate members 261 having corrugated irregularities on the circumference. Two of the four plate members 261 are located in the direction in which the two sensor elements 25 are located in the radial direction of the torque shaft, and the remaining two plate members 261 are located. , The sensor element 25 is located in a direction perpendicular to the direction in which the sensor element 25 is located.
  • the torque transmission unit 27 is a thin plate member for transmitting the torque generated by the external force applied to the fastening portion 23 to the sensor element 25.
  • the torque transmission unit 27 shown in FIG. 5 a space exists in a direction other than the direction in which the sensor element 25 is located in the radial direction of the torque shaft, but the space does not have to exist.
  • irregularities are present in the radial direction of the torque shaft, but the irregularities may not be present.
  • the torque transmission unit 27 is composed of four plate members 271 having corrugated irregularities on the circumference. Two of the four plate members 271 are located in the direction in which the two sensor elements 25 are located in the radial direction of the torque shaft, and the remaining two plate members 271 are located. , The sensor element 25 is located in a direction perpendicular to the direction in which the sensor element 25 is located.
  • the external force applied in the direction in which the sensor element 25 has sensitivity in the radial direction of the torque shaft is not transmitted to the sensor element 25.
  • the transmission direction of external force can be limited.
  • the torque transmitting portion 26 is provided with irregularities in the radial direction, the deformation transmission of the torque to the sensor element 25 becomes relatively large with respect to the deformation transmission of the external force in the radial direction to the sensor element 25, and the radial direction becomes large. It is possible to reduce the output error due to the external force of. The same applies to the torque transmission unit 27.
  • the inner cylinder portion 24, the torque transmission portion 26, and the torque transmission portion 27 are provided between the fastening portion 22 and the fastening portion 23, and constitute a sensing portion 29 provided with the sensor element 25.
  • the measuring unit 28 measures the signal output by the sensor element 25 as torque.
  • the measuring unit 28 measures the calculated value of the signal output by each sensor element 25 as a torque.
  • the measurement unit 28 is realized by a processing circuit such as a system LSI, or a CPU or the like that executes a program stored in a memory or the like.
  • the outer cylinder portion 21 is a portion provided between at least one of the fastening portion 22 and the fastening portion 23 and the sensing portion 29. In FIGS. 5 to 7, the outer cylinder portion 21 is provided between the fastening portion 22 and the sensing portion 29.
  • the outer cylinder portion 21 has a plurality of circular discontinuous openings 211.
  • the discontinuous openings 211 are provided in plurality along the torque axis direction.
  • the discontinuous opening 211 is composed of a non-slit portion 212 located rotationally symmetrically and an arc-shaped slit portion 213 provided between the non-slit portions 212.
  • the outer cylinder portion 21 has two discontinuous openings 211 including four non-slit portions 212 and four slit portions 213 in the torque axis direction. In this case, for example, as shown in FIG.
  • the outer cylinder portion 21 is divided into a structure 21a having one discontinuous opening 211 and a structure 21b having the other discontinuous opening 211, and this structure is formed.
  • the outer cylinder portion 21 is formed by superimposing the 21a and the structure 21b and joining the periphery by welding or the like.
  • the non-slit portion 212 has an arrangement angle around the torque axis on a plane perpendicular to the torque axis of the non-slit portion 212 in the adjacent discontinuous openings 211 of the discontinuous openings 211. It is different from the placement angle. At this time, the arrangement angle of the non-slit portion 212 around the torque axis on the plane perpendicular to the torque axis coincides with the center of the slit portion 213 in the adjacent discontinuous openings 211 of the discontinuous openings 211 (substantially the same). (Including the meaning of) is desirable.
  • At least a part of the non-slit portion 212 in the discontinuous opening 211 closest to the sensing portion 29 in the discontinuous opening 211 has a sensor having an arrangement angle around the torque axis on a plane perpendicular to the torque axis. It is desirable to match the arrangement angle of the element 25 (including the meaning of substantially matching).
  • the torque sensor according to the second embodiment has a fastening portion 22 and a fastening portion 23 to which external devices are connected, respectively, and a sensing portion 29 provided with the sensor element 25.
  • the torque sensor is provided with an outer cylinder portion 21 having directional anisotropy in rigidity between at least one of the fastening portion 22 and the fastening portion 23 and the sensing portion 29.
  • the term "directional anisotropy" in the rigidity here means that the rigidity is high around the torque shaft and low in the radial direction of the torque shaft.
  • the discontinuous openings 211 of the outer cylinder portion 21 are provided in plurality along the torque axis direction. In this way, the torque sensor reduces the output error of the torque sensor by selectively transmitting the displacement around the torque shaft and suppressing and transmitting the radial displacement of the torque shaft to the sensing unit 29. It will be possible.
  • the discontinuous opening 211 included in the outer cylinder 21 is not limited to the configuration shown in FIGS. 5 to 7, and the number and arrangement intervals of the discontinuous openings 211, the number and length of the non-slit portions 212, and the slit portion
  • the number, length, width, etc. of 213 can be appropriately designed according to the required rigidity and the like.
  • the torque sensor according to the present invention can reduce the output error and is suitable for use as a torque sensor for detecting torque.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manipulator (AREA)

Abstract

外部機器が締結される締結部(111)と、外部機器が締結される締結部(112)と、締結部(111)と締結部(112)との間に設けられ、センサ素子(12)が設けられたセンシング部(113)と、締結部(111)及び締結部(112)のうちの少なくとも一方とセンシング部(113)との間に設けられ、回転対称に位置する非スリット部(1142)、及び、当該非スリット部(1142)間に設けられた円弧状のスリット部(1143)から成る円状の不連続開口部(1141)を多重に有する外力精製部(114)とを備え、非スリット部(1142)は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、不連続開口部(1141)のうちの隣り合う不連続開口部(1141)における非スリット部(1142)の配置角度とは異なる。

Description

トルクセンサ
 この発明は、トルクを検出するトルクセンサに関する。
 従来、回転軸体の外周面に取付けられたセンサ素子を有し、トルクにより当該外周面に生じるせん断応力の大きさを、センサ素子における抵抗値変化から検出するトルクセンサが知られている(例えば特許文献1参照)。
 また、回転軸体を外筒部及びその両端に連結された2枚のフランジから構成し、外筒部の両端にディスク状のトルク伝達部を介して両端が連結された内筒部を設け、この内筒部の外周面にセンサ素子が取付けられたトルクセンサも知られている。
特開2002-139391号公報
 一方、トルクセンサには、トルクセンサの前後に取付けられる外部機器から、計測対象であるトルクの他にも各種の力が外乱として加えられる。
 上記外乱となる力のうち、トルク軸(トルクセンサの軸心)の径方向の力が非定常的にトルクセンサに加えられる場合には、トルクセンサの配置関係で、疑似的にトルクが加えられた場合と同様の荷重が加えられることになる。これはトルクセンサの出力誤差要因となるため、改善が必要である。
 この発明は、上記のような課題を解決するためになされたもので、出力誤差を低減可能となるトルクセンサを提供することを目的としている。
 この発明に係るトルクセンサは、外部機器が締結される第1の締結部と、外部機器が締結される第2の締結部と、第1の締結部と第2の締結部との間に設けられ、センサ素子が設けられたセンシング部と、第1の締結部及び第2の締結部のうちの少なくとも一方とセンシング部との間に設けられ、回転対称に位置する非スリット部、及び、当該非スリット部間に設けられた円弧状のスリット部から成る円状の不連続開口部を多重に有する外力精製部とを備え、非スリット部のうちの少なくとも一部は、軸心に垂直な面における軸心周りの配置角度が、不連続開口部のうちの隣り合う不連続開口部における非スリット部の配置角度とは異なることを特徴とする。
 この発明によれば、上記のように構成したので、出力誤差を低減可能となる。
実施の形態1に係るトルクセンサの構成例を示す上面図である。 実施の形態1に係るトルクセンサの構成例を示す一部断面斜視図である。 実施の形態1に係るトルクセンサの別の構成例を示す上面図である。 実施の形態1に係るトルクセンサの別の構成例を示す斜視図である。 実施の形態2に係るトルクセンサの構成例を示す一部断面斜視図である。 実施の形態2に係るトルクセンサの構成例を示す斜視図である。 実施の形態2における外筒部の構成例を示す分解斜視図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1,2は実施の形態1に係るトルクセンサの構成例を示す図である。
 トルクセンサは、トルクを検出する。このトルクセンサは、図1,2に示すように、本体部11、センサ素子12及び計測部13(不図示)を備えている。
 本体部11は、軸心に孔を有するディスク状部材である。本体部11は、例えばステンレスにより構成される。この本体部11は、図1,2に示すように、締結部(第1の締結部)111、締結部(第2の締結部)112、センシング部113及び外力精製部114を有している。
 締結部111は、一方の面(本体部11の一方の面)に外部機器(不図示)が締結される部位である。図1,2では、締結部111は、本体部11の外周側に設けられている。また図1,2では、締結部111には、孔1111が周方向に複数設けられている。孔1111はボルト等の締結部材の軸部を挿入可能に構成され、孔1111により上記外部機器が当該締結部材を介して締結部111に締結される。
 締結部112は、一方の面(本体部11の他方の面)に外部機器(不図示)が締結される部位である。図1,2では、締結部112は、本体部11の内周側に設けられている。また図1,2では、締結部112には、孔1121が周方向に複数設けられている。孔1121はボルト等の締結部材の軸部を挿入可能に構成され、孔1121により上記外部機器が当該締結部材を介して締結部112に締結される。
 なお、締結部111及び締結部112のうちの一方には、外部機器としてモータ等の駆動系が締結され、他方には、外部機器としてロボットハンド等の負荷系が締結される。
 センシング部113は、締結部111と締結部112との間に設けられ、センサ素子12が設けられた部位である。
 外力精製部114は、締結部111及び締結部112のうちの少なくとも一方とセンシング部113との間に設けられた部位である。図1,2では、外力精製部114は、締結部112とセンシング部113との間に設けられている。
 外力精製部114は、円状の不連続開口部1141を多重に有している。図1,2では、不連続開口部1141は、トルク軸(トルクセンサの軸心)の径方向に沿って多重に設けられている。不連続開口部1141は、回転対称に位置する非スリット部1142、及び、非スリット部1142間に設けられた円弧状のスリット部1143から成る。図1,2では、外力精製部114は、4つの非スリット部1142及び4つのスリット部1143から成る不連続開口部1141をトルク軸の径方向に2重に有し、更にその外側に、8つの非スリット部1142及び8つのスリット部1143から成る不連続開口部1141を有している。
 なお、非スリット部1142のうちの少なくとも一部は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、不連続開口部1141のうちの隣り合う不連続開口部1141における非スリット部1142の配置角度とは異なる。この際、非スリット部1142は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、不連続開口部1141のうちの隣り合う不連続開口部1141におけるスリット部1143の中央に一致(略一致の意味を含む)することが望ましい。
 また、不連続開口部1141のうちのセンシング部113に最も近い不連続開口部1141における非スリット部1142のうちの少なくとも一部は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、センサ素子12の配置角度と一致(略一致の意味を含む)することが望ましい。
 センサ素子12は、センシング部113に1つ以上貼付けられている。センサ素子12は、外部からのせん断応力に応じた信号を出力する。センサ素子12としては、例えば半導体歪ゲージ又は金属歪ゲージを用いることができる。
 なお図1,2に示すように、本体部11の軸心を介して対向するように2つのセンサ素子12が設けられることで、トルクセンサは他軸干渉を低減可能となる。
 計測部13は、センサ素子12により出力された信号をトルクとして計測する。トルクセンサに2つ以上のセンサ素子12が設けられる場合には、計測部13は、各センサ素子12により出力された信号の演算値をトルクとして計測する。なお、計測部13は、システムLSI(Large Scale Integration)等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU(Central Processing Unit)等により実現される。
 このように、実施の形態1に係るトルクセンサは、外部機器がそれぞれ接続される締結部111及び締結部112と、センサ素子12が設けられたセンシング部113とを有する。そして、このトルクセンサは、締結部111及び締結部112のうちの少なくとも一方とセンシング部113との間に、剛性に方向異方性がある外力精製部114が設けられている。ここでいう剛性に方向異方性があるとは、トルク軸周りに高剛性であり、且つ、トルク軸の径方向に低剛性であるということを意味する。なお、実施の形態1では、外力精製部114が有する不連続開口部1141が、トルク軸の径方向に沿って多重に設けられている。このように、このトルクセンサは、センシング部113に対し、選択的にトルク軸周りの変位を伝達し且つトルク軸の径方向の変位を抑制して伝達することで、トルクセンサの出力誤差を低減可能となる。
 なお、外力精製部114が有する不連続開口部1141は図1,2に示す構成に限らず、不連続開口部1141の数及び配置間隔、非スリット部1142の数及び長さ、並びに、スリット部1143の数、長さ及び幅等は、要求される剛性等に応じて適宜設計可能である。例えば図3,4では、外力精製部114は、4つの非スリット部1142及び4つのスリット部1143から成る不連続開口部1141をトルク軸の径方向に3重に有し、更にその外側に、8つの非スリット部1142及び8つのスリット部1143から成る不連続開口部1141を有している。
 以上のように、この実施の形態1によれば、トルクセンサは、外部機器が締結される締結部111と、外部機器が締結される締結部112と、締結部111と締結部112との間に設けられ、センサ素子12が設けられたセンシング部113と、締結部111及び締結部112のうちの少なくとも一方とセンシング部113との間に設けられ、回転対称に位置する非スリット部1142、及び、当該非スリット部1142間に設けられた円弧状のスリット部1143から成る円状の不連続開口部1141を多重に有する外力精製部114とを備え、非スリット部1142のうちの少なくとも一部は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、不連続開口部1141のうちの隣り合う不連続開口部1141における非スリット部1142の配置角度とは異なる。これにより、実施の形態1に係るトルクセンサは、出力誤差を低減可能となる。
実施の形態2.
 図5,6は実施の形態2に係るトルクセンサの構成例を示す図である。図5では、後述する締結部23及びセンサ素子25の図示を省略している。また図6では、後述するセンシング部29の図示を省略している。
 トルクセンサは、トルクを検出する。このトルクセンサは、図5,6に示すように、外筒部(外力精製部)21、締結部(第1の締結部)22、締結部(第2の締結部)23、内筒部24、センサ素子25、トルク伝達部(第1のトルク伝達部)26、トルク伝達部(第2のトルク伝達部)27及び計測部28(不図示)を備えている。
 外筒部21は、両端が開口した筒状部材である。外筒部21は、例えばステンレスにより構成される。外筒部21の詳細については後述する。
 締結部22は、上面に外部機器(不図示)が締結される部位である。図5では、締結部22は、下面が外筒部21の一端面に連結されたリング状部材である。締結部22は、例えばステンレスにより構成される。また図5に示す締結部22には、孔221が周方向に複数設けられている。孔221はボルト等の締結部材の軸部を挿入可能に構成され、孔221及び後述する孔232により上記外部機器が当該締結部材を介して締結部22に締結される。
 締結部23は、下面に外部機器(不図示)が締結される部位である。図6では、締結部23は、上面が外筒部21の他端面に連結されたリング状部材である。締結部23は、例えばステンレスにより構成される。また図6に示す締結部23には、ボルト孔231が周方向に複数設けられている。ボルト孔231により上記外部機器がボルトを介して締結部23に締結される。また、締結部23には、孔232が周方向に複数設けられている。孔232は、孔221と同一(略同一の意味を含む)軸心上に位置し、且つ、ボルト等の締結部材の頭部を挿入可能に構成されている。
 なお、締結部22及び締結部23のうちの一方には、外部機器としてモータ等の駆動系が締結され、他方には、外部機器としてロボットハンド等の負荷系が締結される。
 内筒部24は、外筒部21と同一(略同一の意味を含む)軸心上に位置する。
 センサ素子25は、内筒部24の外周面に1つ以上貼付けられている。センサ素子25は、外部からのせん断応力に応じた信号を出力する。このセンサ素子25は、トルク軸(トルクセンサの軸心)に対して斜め方向(45度方向)を向いた抵抗ゲージを有する。なお、斜め方向は45度方向としているが、これに限らず、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。センサ素子25としては、例えば半導体歪ゲージ又は金属歪ゲージを用いることができる。
 なお、内筒部24を挟んで対向するように2つのセンサ素子25が設けられることで、トルクセンサは他軸干渉を低減可能となる。
 トルク伝達部26は、一端が外筒部21の一端側の内周面に連結され、他端が内筒部24の一端側の外周面に連結されている。トルク伝達部26は、締結部22に加えられた外力により生じるトルクをセンサ素子25に伝達するための薄板部材である。
 図5に示すトルク伝達部26では、トルク軸の径方向のうちのセンサ素子25が位置する方向を除く方向に空間が存在しているが、空間が存在していなくてもよい。また図5に示すトルク伝達部26では、トルク軸の径方向に凹凸が存在しているが、凹凸が存在していなくてもよい。図5では、トルク伝達部26が円周状に波形の凹凸を有する4枚の板部材261から構成されている。そして、4枚の板部材261のうちの2枚の板部材261は、トルク軸の径方向のうちの2つのセンサ素子25が位置する方向にそれぞれ位置し、残りの2枚の板部材261は、センサ素子25が位置する方向に対して垂直な方向にそれぞれ位置している。
 トルク伝達部27は、一端が外筒部21の他端側の内周面に連結され、他端が内筒部24の他端側の外周面に連結されている。トルク伝達部27は、締結部23に加えられた外力により生じるトルクをセンサ素子25に伝達するための薄板部材である。
 図5に示すトルク伝達部27では、トルク軸の径方向のうちのセンサ素子25が位置する方向を除く方向に空間が存在しているが、空間が存在していなくてもよい。また図5に示すトルク伝達部27では、トルク軸の径方向に凹凸が存在しているが、凹凸が存在していなくてもよい。図5では、トルク伝達部27が円周状に波形の凹凸を有する4枚の板部材271から構成されている。そして、4枚の板部材271のうちの2枚の板部材271は、トルク軸の径方向のうちの2つのセンサ素子25が位置する方向にそれぞれ位置し、残りの2枚の板部材271は、センサ素子25が位置する方向に対して垂直な方向にそれぞれ位置している。
 なお図5に示すように、トルク伝達部26に空間が設けられることで、トルク軸の径方向のうちのセンサ素子25が感度を有する方向に加えられた外力をセンサ素子25に伝達しないように外力の伝達方向を限定可能となる。また、トルク伝達部26に径方向に凹凸が設けられることで、トルクのセンサ素子25への変形伝達が径方向の外力のセンサ素子25への変形伝達に対して相対的に大きくなり、径方向の外力による出力誤差の低減を実現可能となる。トルク伝達部27についても同様である。
 なお、内筒部24、トルク伝達部26及びトルク伝達部27は、締結部22と締結部23との間に設けられ、センサ素子25が設けられたセンシング部29を構成する。
 計測部28は、センサ素子25により出力された信号をトルクとして計測する。トルクセンサに2つ以上のセンサ素子25が設けられる場合には、計測部28は、各センサ素子25により出力された信号の演算値をトルクとして計測する。なお、計測部28は、システムLSI等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU等により実現される。
 次に、外筒部21の詳細について、図5~7を参照しながら説明する。
 外筒部21は、締結部22及び締結部23のうちの少なくとも一方とセンシング部29との間に設けられた部位である。図5~7では、外筒部21は、締結部22とセンシング部29との間に設けられている。
 外筒部21は、円状の不連続開口部211を多重に有している。図5~7では、不連続開口部211は、トルク軸方向に沿って多重に設けられている。不連続開口部211は、回転対称に位置する非スリット部212、及び、非スリット部212間に設けられた円弧状のスリット部213から成る。図5~7では、外筒部21は、4つの非スリット部212及び4つのスリット部213から成る不連続開口部211をトルク軸方向に2重に有している。この場合、例えば図7に示すように、外筒部21を、一方の不連続開口部211を有する構造21aと、他方の不連続開口部211を有する構造21bとに分けて構成し、この構造21aと構造21bとを重ね合わせて周囲を溶接等により接合することで外筒部21を構成する。
 なお、非スリット部212のうちの少なくとも一部は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、不連続開口部211のうちの隣り合う不連続開口部211における非スリット部212の配置角度とは異なる。この際、非スリット部212は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、不連続開口部211のうちの隣り合う不連続開口部211におけるスリット部213の中央に一致(略一致の意味を含む)することが望ましい。
 また、不連続開口部211のうちのセンシング部29に最も近い不連続開口部211における非スリット部212のうちの少なくとも一部は、トルク軸に垂直な面におけるトルク軸周りの配置角度が、センサ素子25の配置角度と一致(略一致の意味を含む)することが望ましい。
 このように、実施の形態2に係るトルクセンサは、外部機器がそれぞれ接続される締結部22及び締結部23と、センサ素子25が設けられたセンシング部29とを有する。そして、このトルクセンサは、締結部22及び締結部23のうちの少なくとも一方とセンシング部29との間に、剛性に方向異方性がある外筒部21が設けられている。ここでいう剛性に方向異方性があるとは、トルク軸周りに高剛性であり、且つ、トルク軸の径方向に低剛性であるということを意味する。なお、実施の形態2では、外筒部21が有する不連続開口部211が、トルク軸方向に沿って多重に設けられている。このように、このトルクセンサは、センシング部29に対し、選択的にトルク軸周りの変位を伝達し且つトルク軸の径方向の変位を抑制して伝達することで、トルクセンサの出力誤差を低減可能となる。
 なお、外筒部21が有する不連続開口部211は図5~7に示す構成に限らず、不連続開口部211の数及び配置間隔、非スリット部212の数及び長さ、並びに、スリット部213の数、長さ及び幅等は、要求される剛性等に応じて適宜設計可能である。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組合わせ、或いは各実施の形態の任意の構成要素の変形、若しくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るトルクセンサは、出力誤差を低減可能となり、トルクを検出するトルクセンサに用いるのに適している。
11 本体部
12 センサ素子
13 計測部
21 外筒部(外力精製部)
22 締結部(第1の締結部)
23 締結部(第2の締結部)
24 内筒部
25 センサ素子
26 トルク伝達部(第1のトルク伝達部)
27 トルク伝達部(第2のトルク伝達部)
28 計測部
29 センシング部
111 締結部(第1の締結部)
112 締結部(第2の締結部)
113 センシング部
114 外力精製部
211 不連続開口部
212 非スリット部
213 スリット部
221 孔
231 ボルト孔
232 孔
261 板部材
271 板部材
1111 孔
1121 孔
1141 不連続開口部
1142 非スリット部
1143 スリット部

Claims (5)

  1.  外部機器が締結される第1の締結部と、
     外部機器が締結される第2の締結部と、
     前記第1の締結部と前記第2の締結部との間に設けられ、センサ素子が設けられたセンシング部と、
     前記第1の締結部及び前記第2の締結部のうちの少なくとも一方と前記センシング部との間に設けられ、回転対称に位置する非スリット部、及び、当該非スリット部間に設けられた円弧状のスリット部から成る円状の不連続開口部を多重に有する外力精製部とを備え、
     前記非スリット部のうちの少なくとも一部は、軸心に垂直な面における軸心周りの配置角度が、前記不連続開口部のうちの隣り合う不連続開口部における前記非スリット部の配置角度とは異なる
     ことを特徴とするトルクセンサ。
  2.  前記不連続開口部のうちの前記センシング部に最も近い不連続開口部における前記非スリット部のうちの少なくとも一部は、軸心に垂直な面における軸心周りの配置角度が、前記センサ素子の配置角度と一致する
     ことを特徴とする請求項1記載のトルクセンサ。
  3.  前記非スリット部は、軸心に垂直な面における軸心周りの配置角度が、前記不連続開口部のうちの隣り合う不連続開口部における前記スリット部の中央に一致する
     ことを特徴とする請求項1又は請求項2記載のトルクセンサ。
  4.  前記不連続開口部は、軸心の径方向に沿って多重に設けられた
     ことを特徴とする請求項1から請求項3のうちの何れか1項記載のトルクセンサ。
  5.  前記不連続開口部は、軸心方向に沿って多重に設けられた
     ことを特徴とする請求項1から請求項3のうちの何れか1項記載のトルクセンサ。
PCT/JP2020/043240 2019-12-04 2020-11-19 トルクセンサ WO2021111892A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-219493 2019-12-04
JP2019219493A JP2021089199A (ja) 2019-12-04 2019-12-04 トルクセンサ

Publications (1)

Publication Number Publication Date
WO2021111892A1 true WO2021111892A1 (ja) 2021-06-10

Family

ID=76220104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043240 WO2021111892A1 (ja) 2019-12-04 2020-11-19 トルクセンサ

Country Status (2)

Country Link
JP (1) JP2021089199A (ja)
WO (1) WO2021111892A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139391A (ja) * 2000-11-02 2002-05-17 Exedy Corp トルク検出装置
JP2009533607A (ja) * 2006-03-15 2009-09-17 トランセンス テクノロジーズ ピーエルシー フレキシブル駆動カップリングプレートにおけるトルク測定
JP2009300214A (ja) * 2008-06-12 2009-12-24 Nsk Ltd 回転角検出器の取付け構造、及び連結板
KR20160035873A (ko) * 2014-09-24 2016-04-01 (주)다이나텍 토크 측정을 위한 회전 플레이트 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139391A (ja) * 2000-11-02 2002-05-17 Exedy Corp トルク検出装置
JP2009533607A (ja) * 2006-03-15 2009-09-17 トランセンス テクノロジーズ ピーエルシー フレキシブル駆動カップリングプレートにおけるトルク測定
JP2009300214A (ja) * 2008-06-12 2009-12-24 Nsk Ltd 回転角検出器の取付け構造、及び連結板
KR20160035873A (ko) * 2014-09-24 2016-04-01 (주)다이나텍 토크 측정을 위한 회전 플레이트 및 그 제조 방법

Also Published As

Publication number Publication date
JP2021089199A (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
US9003896B2 (en) Dual-flange disc-shaped torque sensor
KR102353857B1 (ko) 션트 스포크를 구비하는 토크 센서
JPWO2005075950A1 (ja) トルク計
JP2010169586A (ja) トルク量変換器
US9612171B2 (en) Torque-measuring shaft
JP2007040774A (ja) トルク計
TWI773840B (zh) 可檢測預負載之螺桿裝置
US6640651B2 (en) Torque detector
WO2021111892A1 (ja) トルクセンサ
WO2020008836A1 (ja) トルクセンサ
JPH04230818A (ja) トルク測定装置
WO2022124078A1 (ja) 切削工具
JP7021834B2 (ja) トルクセンサ
JP7021835B2 (ja) トルクセンサ
JP2004077172A (ja) トルク計測装置
JP2021089239A (ja) トルクセンサ
JP2012127884A (ja) トルクセンサ及びこれを備えた駆動装置
JP2023035339A (ja) トルクセンサ
JP2023035338A (ja) トルクセンサ
JP2023157443A (ja) トルクセンサ
JP2020186924A (ja) 振動計測装置
JP6853534B2 (ja) トルクセンサ
JP7420840B2 (ja) トルクセンサ、操舵角度センサおよび対応する統合型のセンサならびに監視システム
JP2569775Y2 (ja) エンコーダ本体の弾性支持構造
JP2023179173A (ja) 起歪体およびこれを備えた作業ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896558

Country of ref document: EP

Kind code of ref document: A1