WO2021111889A1 - 動力伝達装置及び動力伝達装置を用いた回転駆動装置 - Google Patents

動力伝達装置及び動力伝達装置を用いた回転駆動装置 Download PDF

Info

Publication number
WO2021111889A1
WO2021111889A1 PCT/JP2020/043193 JP2020043193W WO2021111889A1 WO 2021111889 A1 WO2021111889 A1 WO 2021111889A1 JP 2020043193 W JP2020043193 W JP 2020043193W WO 2021111889 A1 WO2021111889 A1 WO 2021111889A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
rotation
transmission device
rotating
drive
Prior art date
Application number
PCT/JP2020/043193
Other languages
English (en)
French (fr)
Inventor
賢一 小谷
Original Assignee
賢一 小谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賢一 小谷 filed Critical 賢一 小谷
Publication of WO2021111889A1 publication Critical patent/WO2021111889A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts

Definitions

  • the present invention relates to a power transmission device that transmits rotational motion from a drive source to an output rotating body and a rotation drive device that uses this power transmission device.
  • Patent Document 1 and Patent Document 2 are provided with connecting pins that are movable in the radial direction of the rotating disk at the peripheral end of the rotating disk that is rotated by a drive source.
  • the gearbox is connected and pivotally supported by a connecting rod, alternating plate gears are formed on the upper and lower inner surfaces of the gearbox, and the output rotation shafts equipped with gears meshing with each of these plate gears are penetrated and supported by the gearbox.
  • a power transmission device is described in which the output rotation shaft is configured to rotate in only one direction by the piston movement of the gearbox.
  • This power transmission device can rotate around the output rotation shaft as a fulcrum, and the four arms connected to the output rotation shaft via the one-way clutch as a one-way rotation mechanism and the four arms are the power of the one-way clutch.
  • Four tension coil springs as elastic bodies that urge each in the transmission direction, a drive rotation axis that is parallel to the output rotation axis and is rotated by the drive source, and a drive rotation axis that is connected in parallel to the drive rotation axis so as to rotate together with the drive rotation axis. It is provided with four pins that can be brought into contact with the tips of the four arms.
  • the drive source and the output rotation shaft are mechanically connected by a connecting rod, a plate gear, and a gear without play, so that the output rotation occurs.
  • the torque fluctuation of the load applied to the shaft is directly transmitted back to the drive source, and the drive source is greatly affected by the load fluctuation. Therefore, as the drive source, a drive source having a sufficiently large output torque characteristic that can absorb such load fluctuations on the output side is used, or the output rotation shaft is set by operating a transmission mechanism provided in the middle. It is necessary to change the transmitted torque according to the load fluctuation.
  • the present invention eliminates the above-mentioned inconveniences of the prior art, and an object of the present invention is a power transmission device capable of direct or indirect drive and in which load fluctuations are not directly transmitted to a drive source. It is an object of the present invention to provide a rotary drive device using a power transmission device.
  • Another object of the present invention is a power transmission device capable of automatically obtaining a continuously variable transmission function without manual operation and improving durability, and a rotary drive device using this power transmission device. Is to provide.
  • a drive rotation shaft rotated by a drive source
  • a rotation arm having one end attached to the drive rotation shaft via a unidirectional rotation mechanism and rotating together with the drive rotation shaft
  • a rotation arm on the same axis as the drive rotation shaft It is parallel to the output rotating body provided on the support shaft and the drive rotating shaft, and can rotate with each of the plurality of rotating shafts evenly provided on the outer peripheral portion of the output rotating body and each of the plurality of rotating shafts as fulcrums.
  • Each of the plurality of rotating arms is provided with, and each of the plurality of elastic bodies is pressed by the rotating arm when the tip of the rotating arm comes into contact with the output rotating body when a load of a predetermined value or more is applied. It is pushed back in the direction opposite to the urging force of, and stores elastic energy in the elastic body, and when the tip of the rotating arm comes off the contact, it is unidirectional due to the urging force of each of the accumulated elastic energy of the multiple elastic bodies.
  • a power transmission device configured to be rotationally driven in the power transmission direction of the rotation mechanism and to transmit the rotational power to the output rotating body via a plurality of first gears and second gears. Provided.
  • the mounting angle interval of the plurality of pins with respect to the drive rotation shaft is preferably 360 / N degrees (where N is the number of pins).
  • an elastic force adjusting mechanism capable of variably adjusting the elastic force of a plurality of elastic bodies.
  • the energy input from the drive source to the power transmission device can be adjusted.
  • the maximum output value and the threshold value at which the shifting function is activated can be adjusted.
  • each of the plurality of elastic bodies is provided with at least one tension coil spring. As a result, it can be easily attached and can be urged against the arm with a constant elastic force.
  • a rotary drive device using the above-mentioned power transmission device is provided.
  • each of the plurality of arms when the load applied to the output rotating body becomes larger than a predetermined value, each of the plurality of arms has an urging force of each of the plurality of elastic bodies due to the pressing of the tip when the tip of the rotating arm abuts. It is pushed back in the direction opposite to the elastic body and accumulates elastic energy in the elastic body, and when the tip of the rotating arm comes off the contact, the unidirectional rotation mechanism is operated by the urging force of each of the accumulated elastic energy of the plurality of elastic bodies. Since it is configured to be rotationally driven in the power transmission direction, it is possible to realize a power transmission device in which load fluctuations are not directly transmitted to the drive source. In addition, the continuously variable transmission function can be automatically obtained without manual operation. Further, since the one-way clutch does not operate until the load applied to the output rotating body becomes large to some extent (pre-tension force of the elastic body), the life of the one-way clutch is long and the durability of the power transmission device can be improved.
  • the power transmission device according to the present invention is compact and can be mounted on a tire wheel or the like, and a rotary drive device in which load fluctuations are not directly transmitted to a drive source can be easily configured.
  • FIG. 1 It is a perspective view which shows typically the structure of the power transmission device which concerns on embodiment of this invention. It is an exploded perspective view which shows the structure of the power transmission device of FIG. 1 schematicly. It is a perspective view for demonstrating the operation of the power transmission device of FIG. It is a figure for demonstrating the relationship between the input and load of the power transmission device of FIG. 1 and an output. It is a figure which shows schematic application example (the 1) of the power transmission device of FIG. It is a figure which shows schematic application example (the 2) of the power transmission device of FIG. It is a figure which shows schematic application example (the 3) of the power transmission device of FIG.
  • FIG. 1 schematically shows the configuration of the power transmission device 100 according to the present invention
  • FIG. 2 is an exploded perspective view showing the configuration of the power transmission device 100
  • FIG. 3 shows a state in the power transmission device 100 when the tip of the rotary arm 12 comes off the contact.
  • the power transmission device 100 of the present embodiment has a drive rotation shaft 10 that is rotated by a drive source, a one-way clutch 11 as a one-way rotation mechanism, and a one-way clutch 11 at one end of the drive rotation shaft 10.
  • a rotary arm 12 mounted via the drive rotary shaft 10 and rotating together with the drive rotary shaft 10, a support shaft 20 arranged on the same axis as the drive rotary shaft 10, and an output rotary body (disk member) 30 provided on the support shaft 20.
  • Four rotating shafts 40a, 40b, 40c and 40d evenly provided on the outer peripheral portion of the output rotating body 30, and four one-way clutches 50a, 50b, 50c and 50d as a plurality of one-way rotating mechanisms, respectively.
  • the drive rotation shaft 10 is connected to a motor as a drive source (via a transmission gear if necessary), and is arranged on the same axis as the support shaft 20.
  • the drive rotation shaft 10 is driven by a motor that rotates at a constant speed and rotates at a predetermined rotation speed. That is, when passing through the transmission gear, the rotation of the motor is transmitted to the gear, the speed is changed as necessary, and the drive rotation shaft 10 is rotationally driven.
  • a Stirling engine or the like may be used as a drive source.
  • the one-way clutch 11 converts the rotation of the rotary arm 12 into a unidirectional rotary motion, the outer periphery of which is connected to one end 12a of the rotary arm 12, and the drive rotary shaft 10 is mounted at the center.
  • the rotary arm 12 is formed of, for example, a square rod-shaped material, one end 12a is fixed to the one-way clutch 11, and the other end 12b is a free end.
  • the other end 12b of the rotary arm 12 is provided with a contact portion 13 for contacting the tip portions of the rotary arms 60a, 60b, 60c and 60d.
  • the contact portion 13 is a rotatable rotating roller.
  • the support shaft 20 is connected to a drive load (for example, a wheel, etc.) and is supported by a support (frame, chassis, frame, etc.) (not shown) via a one-way clutch for fixing or preventing reverse rotation, and the drive rotation shaft 20. It is arranged on the same axis as 10.
  • the support shaft 20 is provided with an output rotating body 30 and a second gear 90.
  • the output rotating body 30 is composed of a pair of disks 30a and 30b and spacers 31a, 31b, 31c and 31d.
  • Four rotating shafts 40a, 40b, 40c and 40d are evenly provided on the outer peripheral portion of the output rotating body 30.
  • one ends of the spacers 31a, 31b, 31c and 31d are the elastic body fixing portions 32a, 32b, 32c and 32d, and one ends of the four elastic bodies 70a, 70b, 70c and 70d are fixed by inserting the disk 30a.
  • four stoppers 33a, 33b, 33c and 33d are provided to limit the rotation of the rotating arms 60a, 60b, 60c and 60d to a predetermined range.
  • the stoppers 33a, 33b, 33c and 33d are, for example, rod-shaped members arranged in parallel with the rotating shafts 40a, 40b, 40c and 40d.
  • the rotating shafts 40a, 40b, 40c and 40d are evenly provided (at intervals of 90 degrees) on the outer peripheral portion of the output rotating body 30.
  • the rotating shafts 40a, 40b, 40c and 40d are provided with rotating arms 60a, 60b, 60c and 60d, and first gears 80a, 80b, 80c and 80d, respectively.
  • the rotating arms 60a, 60b, 60c and 60d are provided at the ends of the outer rotating shafts 40a, 40b, 40c and 40d of the disk 30a, and the first gears 80a, 80b, 80c and 80d are paired. It is configured to be located between the disks 30a and 30b of the above.
  • the one-way clutches 50a, 50b, 50c and 50d convert the rotation of the rotating arms 60a, 60b, 60c and 60d into a one-way rotary motion, and the outer periphery is one end of the rotating arms 60a, 60b, 60c and 60d.
  • Rotating shafts 40a, 40b, 40c and 40d are mounted at the center of the parts connected to the portion.
  • the rotating arms 60a, 60b, 60c and 60d are formed of, for example, a round bar or a square bar-shaped material, one end thereof is fixed to the one-way clutches 50a, 50b, 50c and 50d, respectively, and the other end is a free end.
  • One ends of the elastic bodies 70a, 70b, 70c and 70d are connected to the other ends of the rotating arms 60a, 60b, 60c and 60d.
  • the counterclockwise rotation of the rotating arms 60a, 60b, 60c and 60d is restricted to a predetermined range by the stoppers 33a, 33b, 33c and 33d.
  • the elastic bodies 70a, 70b, 70c and 70d are made of, for example, tension coil springs.
  • the rotating arms 60a, 60b, 60c and 60d are elastic bodies that urge the one-way clutches 50a, 50b, 50c and 50d in the power transmission direction, and one end thereof is connected to the rotating arms 60a, 60b, 60c and 60d, respectively. The ends are connected to the elastic body fixing portions 32a, 32b, 32c and 32d.
  • the first gears 80a, 80b, 80c and 80d are mounted on the rotating shafts 40a, 40b, 40c and 40d, respectively, and rotate together with the rotating shafts 40a, 40b, 40c and 40d. Also, each of the four first gears 80a, 80b, 80c and 80d can be meshed with the second gear 90. Each of the first gears 80a, 80b, 80c and 80d is configured to rotate with the output rotating body 30 when rotating with the rotating shafts 40a, 40b, 40c and 40d while engaging with the second gear 90. Has been done.
  • the second gear 90 is provided on the support shaft 20 and is configured to rotate together with the support shaft 20. It can also mesh with each of the four first gears 80a, 80b, 80c and 80d.
  • FIG. 3 shows the operating state of the power transmission device 100.
  • the load applied to the output rotating body 30 increases and the rotary arm 12 comes off from the contact. Is shown.
  • the rotating arm 12 when the drive rotating shaft 10 rotates in the direction of the arrow in the figure by driving a power source such as a motor, the rotating arm 12 also rotates, and the load applied to the output rotating body 30 is equivalent to one elastic body.
  • the tension is smaller than the tension of, the contact portion 13 provided on the other end 12b of the rotating arm 12 comes into contact with the rotating arm 60a, and the rotating energy is output from the output rotating body 30 (direct drive).
  • the contact portion 13 of the rotating arm 12 presses the tip portion of the rotating arm 60a, so that the rotating arm 60a rotates clockwise. Move.
  • the one-way clutch 50a Due to this rotation, the one-way clutch 50a is in an idling state, so that power transmission is not performed and only the elastic body 70a is pulled.
  • the drive rotation shaft 10 further rotates and the contact portion 13 separates from the tip end portion of the rotation arm 60a, the rotation arm 60a is urged by the urging force of the elastic body 70a and rotates counterclockwise. The rotation is stopped at a position where it comes into contact with the stopper 33a. In this rotation, the one-way clutch 50a is actually rotated to transmit power, and the output rotating body 30 rotates via the first gear 80a to output power.
  • the rotary arm 60b When the drive rotary shaft 10 further rotates and the contact portion 13 of the rotary arm 12 presses the tip portion of the rotary arm 60b, the rotary arm 60b performs the same operation as the rotary arm 60a described above.
  • the drive rotary shaft 10 further rotates and the contact portion 13 of the rotary arm 12 presses the tip portion of the rotary arm 60c, the rotary arm 60c performs the same operation as the rotary arm 60a described above.
  • the drive rotary shaft 10 further rotates and the contact portion 13 of the rotary arm 12 presses the tip portion of the rotary arm 60d
  • the rotary arm 60d performs the same operation as the rotary arm 60a described above.
  • the rotation arms 60a, 60b, 60c and 60d are alternately rotated, and the output rotating body 30 rotates to output power (indirect drive).
  • the contact portion 13 of the rotary arm 12 sequentially contacts the tip portions of the rotary arms 60a, 60b, 60c and 60d, respectively, and these rotary arms 60a , 60b, 60c and 60d are pressed clockwise to rotate them in sequence. Due to this clockwise rotation, the one-way clutches 50a, 50b, 50c and 50d idle, so that power transmission is not performed. However, since the elastic bodies 70a, 70b, 70c and 70d are pulled by this rotation, elastic energy for urging the rotating arms 60a, 60b, 60c and 60d in the counterclockwise direction is accumulated.
  • the contact portion 13 of the rotating arm 12 becomes with each of the tip portions of the rotating arms 60a, 60b, 60c and 60d.
  • the elastic bodies 70a, 70b, 70c and 70d are out of contact with each other, the rotating arms 60a, 60b, 60c and 60d are rotated counterclockwise by the urging force of the accumulated elastic energy of the elastic bodies 70a, 70b, 70c and 70d. Since the one-way clutches 50a, 50b, 50c and 50d are rotationally driven in the counterclockwise direction (power transmission direction), power transmission is performed, and the rotational motion is output via the output rotating body 30.
  • the tensions of the elastic bodies 70a, 70b, 70c and 70d when the contact portion 13 of the rotary arm 12 starts to contact each of the tip portions of the rotary arms 60a, 60b, 60c and 60d are small.
  • the tension after that gradually increases, which enables stable driving without momentarily applying a large load to the drive source.
  • the contact portion 13 of the rotary arm 12 comes out of contact with the tip portions of the rotary arms 60a, 60b, 60c and 60d, the rotary arms 60a, 60b, 60c and 60d are repelled. A large output torque can be obtained.
  • the force of the drive source is divided into a plurality of elastic bodies 70a, 70b, 70c and 70d and stored.
  • the timing of releasing the stored force automatically changes depending on the load applied to the output rotating body 30.
  • the load applied to the output rotating body 30 becomes larger than a predetermined value (tension equivalent to four elastic bodies)
  • the rotating arms 12 rotate and the rotating arms 60b, 60c and 60d also hit the same as the rotating arm 60a.
  • the position is out of contact, the drive rotating shaft 10 idles, the load applied to the output rotating body 30 is not directly transmitted to the drive source, and energy is accumulated in the elastic bodies 70a, 70b, 70c and 70d.
  • the load applied to the output rotating body 30 becomes equal to or less than a predetermined value, the energy stored in the elastic bodies 70a, 70b, 70c and 70d is released, the output rotating body 30 rotates, and output torque is generated.
  • FIG. 4 shows the relationship between the input and load of the power transmission device 100 and the output.
  • the input of the drive rotation shaft 10 is constant
  • the horizontal axis is the rotation speed and torque
  • the vertical axis is the load.
  • FIG. 3A shows the input of the drive rotating shaft 10 (that is, the number of rotations of the output of the power source)
  • FIG. 3B shows that the load applied to the output rotating body 30 is smaller than the tension of one elastic body.
  • the output (rotation speed and torque) of the hourly output rotating body 30 is shown. In this case, the input of the drive rotating shaft 10 becomes the output of the output rotating body 30 as it is, and the shifting effect does not occur.
  • FIG. 4 shows the output of the output rotating body 30 when the load applied to the output rotating body 30 is larger than the tension of one elastic body.
  • the rotation speed and torque of the output rotating body 30 change depending on the magnitude of the load. That is, when the load applied to the output rotating body 30 becomes large, the rotation of the rotating arm by the elastic body becomes slow, and the rotating arm 12 comes into contact with another rotating arm before the rotating arm returns, and the plurality of elastic bodies Since energy is stored in and released at one time, the larger the number of elastic bodies, the larger the stored energy and the larger the torque that is instantaneously output. Further, as shown in FIG. 4, when the load applied to the output rotating body 30 is small, the rotation speed of the output rotating body 30 is high. When the load applied to the output rotating body 30 is large, the rotation speed of the output rotating body 30 is low.
  • the power transmission device 100 includes a drive rotary shaft 10, a one-way clutch 11, a rotary arm 12, a support shaft 20 arranged on the same axis as the drive rotary shaft 10, and an output rotary body 30.
  • the power transmission device 100 in which the rotation of the drive rotation shaft 10 can directly or indirectly drive the output rotating body 30 and the load fluctuation is not directly transmitted to the drive source. it can.
  • the continuously variable transmission function can be automatically obtained without manual operation.
  • the one-way clutches 50a, 50b, 50c and 50d do not operate until the load applied to the output rotating body 30 increases to some extent (pre-tensile force of the elastic body), the life of the one-way clutches 50a, 50b, 50c and 50d is long. , The durability of the power transmission device can be improved.
  • FIG. 5 schematically shows the configuration of a two-wheeled vehicle (bicycle or motorcycle) 100A using the power transmission device 100.
  • the wheels on the drive side of the motorcycle 100A are shown.
  • the power transmission device 100 is mounted in the wheels on the drive side of the motorcycle 100A, and the outer peripheral portion thereof is covered with tires.
  • the drive rotation shaft 10 of the power transmission device 100 is rotationally driven by a chain, gears, or the like. Further, the drive rotation shaft 10 is rotatably mounted on the frame.
  • the support shaft 20A is attached to the frame via a one-way clutch for preventing reverse rotation. In this case, the rotational power of the drive rotary shaft 10 is transmitted and output by the rotation of the power transmission device 100 and the tires.
  • FIG. 6 schematically shows the configuration of the automobile 100B using the power transmission device 100.
  • the power transmission device 100 is mounted on the flywheel and is configured to transmit the rotational output from the output rotating body 30 to the rotating shaft of the drive wheel via a chain, gears, or the like. There is.
  • the power transmission device 100 itself may be used as a flywheel.
  • FIG. 7 schematically shows the configuration of the drill 100C using the power transmission device 100.
  • the power transmission device 100 is mounted on a flywheel and is configured to transmit a rotational output from an output rotating body 30 to a rotating shaft of a drill via a chain, gears, or the like. ..
  • the power transmission device 100 itself may be used as a flywheel.
  • the power transmission device 100 described above may have an elastic force adjusting mechanism for adjusting the tension (elastic force) of the elastic bodies 70a, 70b, 70c and 70d.
  • the elastic body fixing portions 32a, 32b, 32c and 32d adjust the tension (elastic force) of the elastic bodies 70a, 70b, 70c and 70d by rotation or displacement.
  • the tension (elastic force) of the elastic bodies 70a, 70b, 70c and 70d by this elastic force adjusting mechanism, the energy input from the drive source to the power transmission device 100 can be adjusted.
  • the maximum output value and the threshold value at which the shifting function is activated can be adjusted.
  • tension coil springs for the elastic bodies 70a, 70b, 70c and 70d have been described, but the present invention is not limited thereto.
  • it may be composed of a material such as rubber.
  • the above-mentioned power transmission device 100 has described an example having four rotating arms 60a, 60b, 60c and 60d, but the present invention is not limited thereto. It may have an arbitrary number of rotating arms.
  • the present invention is not limited thereto.
  • one disk may be used.
  • the present invention is not limited thereto.
  • it may be used for a rotating device such as an elevator or a mixer having a large load fluctuation.
  • the power transmission device of the present invention is most suitable for objects in which the required torque changes irregularly and constantly, and can be used for power transmission of vehicles, elevators, escalators, drills, mixers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

回転アームの他端に当接可能な複数の回動アームの各々は、出力回転体に所定値以上の負荷がかかり、回転アームの先端が当接した際はこの回転アームの押圧によって複数の弾性体の各々の付勢力に対抗する方向に押し戻されて弾性体に弾性エネルギを蓄積し、回転アームの先端が当接から外れた際は複数の弾性体の各々の蓄積された弾性エネルギによる付勢力によって一方向回転機構の動力伝達方向に回動駆動されその回動動力が複数の第1の歯車と第2の歯車とを介して出力回転体に伝達される。

Description

動力伝達装置及び動力伝達装置を用いた回転駆動装置
 本発明は、駆動源からの回転運動を出力回転体へ伝達する動力伝達装置及びこの動力伝達装置を用いた回転駆動装置に関する。
 この種の動力伝達装置として、特許文献1及び特許文献2には、駆動源によって回動する回転盤の周端部にこの回転盤の放射方向に移動自在とした連結ピンを設け、この連結ピンとギアボックスとを連結扞によって連結枢支し、ギアボックスの上下内面に互い違いの板歯車を形成し、これら板歯車にそれぞれ歯合する歯車が装着された出力回転軸がギアボックスに貫通支持され、この出力回転軸はギアボックスのピストン運動により、一方向にのみ回転するように構成された動力伝達装置が記載されている。
 このような動力伝達装置によれば、連結ピンを回転盤の放射方向に移動することにより、駆動源からの回転運動を無段変速して出力回転軸へ伝達することが可能である。
 また、本出願人は、負荷変動が駆動源に直接的に伝達されることのない動力伝達装置を提案している(特許文献3)。この動力伝達装置は、出力回転軸を支点として回動可能であり、一方向回転機構としてのワンウェイクラッチをそれぞれ介して出力回転軸に連結された4つのアームと、4つのアームをワンウェイクラッチの動力伝達方向にそれぞれ付勢する弾性体としての4つの引張りコイルバネと、出力回転軸と平行であり、駆動源によって回転する駆動回転軸と、駆動回転軸と共に回転するように駆動回転軸に平行に連結され、4つのアームの先端部にそれぞれ当接可能な4つのピンとを備えている。
特開2000-110912号公報 特開2006-161999号公報 特許第5945584号公報
 しかしながら、これら特許文献1及び特許文献2に記載された動力伝達装置によると、駆動源と出力回転軸とが、連結扞、板歯車及び歯車によって機械的に遊び無く連結されているため、出力回転軸に印加される負荷のトルク変動が駆動源に直接的に逆伝達され、駆動源は負荷変動の影響を大きく受けてしまう。このため、駆動源として、出力側のこのような負荷変動を吸収できるだけの充分に大きな出力トルク特性を有するものを使用するか、又は途中に設けられた変速機構を操作することによって出力回転軸に伝達されるトルクを負荷変動に応じて変化させる必要がある。
 また、特許文献3に記載された本出願人の提案した動力伝達装置は、駆動源によって回転する際に、4つのワンウェイクラッチが常に動作するため、ワンウェイクラッチの寿命が短く動力伝達装置の耐久性が低いという欠点があった。
 本発明は従来技術の上述したような不都合を解消するものであり、その目的は、直接又は間接駆動ができ、かつ負荷変動が駆動源に直接的に伝達されることのない動力伝達装置及びこの動力伝達装置を用いた回転駆動装置を提供することにある。
 本発明の他の目的は、手動で操作することなく自動的に無段変速機能を得ることができると共に、耐久性を向上することができる動力伝達装置及びこの動力伝達装置を用いた回転駆動装置を提供することにある。
 本発明によれば、駆動源によって回転する駆動回転軸と、一端が駆動回転軸に一方向回転機構を介して装着され、駆動回転軸と共に回転する回転アームと、駆動回転軸と同一軸線上の支持軸に設けられた出力回転体と、駆動回転軸と平行であり、出力回転体の外周部に均等に設けられた複数の回転軸と、複数の回転軸の各々を支点として回動可能であり、複数の一方向回転機構をそれぞれ介して複数の回転軸に設けられ、先端部が回転アームの他端に当接可能な複数の回動アームと、複数の回動アームを一方向回転機構の動力伝達方向にそれぞれ付勢する複数の弾性体と、複数の回転軸にそれぞれ設けられた複数の第1の歯車と、出力回転体に設けられ、複数の歯車とかみ合わせ可能な第2の歯車とを備えており、複数の回動アームの各々は、出力回転体に所定値以上の負荷がかかった場合、回転アームの先端が当接した際は回転アームの押圧によって複数の弾性体の各々の付勢力に対抗する方向に押し戻されて弾性体に弾性エネルギを蓄積し、回転アームの先端が当接から外れた際は複数の弾性体の各々の蓄積された弾性エネルギによる付勢力によって一方向回転機構の動力伝達方向に回動駆動され、この回動の動力が複数の第1の歯車と第2の歯車とを介して出力回転体に伝達されるように構成されている動力伝達装置が提供される。
 これにより、駆動源と弾性体とのハイブリッド効果で、出力回転体にかかる負荷が増加する際に、弾性体に蓄積されたエネルギが放出されて出力トルクが発生するため、負荷変動が駆動源に直接的に伝達されることのない動力伝達装置を実現することができる。また、出力回転体にかかる負荷が大きくなって弾性体による回動アームの回転が遅くなるとその回動アームが戻る前に回転アームの先端が次の回動アームに当接し、トルクが自動的に大きくなるため、手動で操作することなく自動的に無段変速機能を得ることができる。さらに、出力回転体にかかる負荷がある程度大きくなるまで、ワンウェイクラッチが動作しないため、ワンウェイクラッチの寿命が長く、動力伝達装置の耐久性を向上することができる。
 駆動回転軸に対する複数のピンの取り付け角度間隔は、360/N度(ただし、Nはピンの数)であることが好ましい。これにより、複数のピンが均等の時間間隔で複数のアームの先端部にそれぞれ当接することができ、安定した回転出力を得ることができる。
 複数の弾性体の弾性力を可変調整可能な弾性力調整機構をさらに備えていることが好ましい。弾性体の弾性力を調整することで、駆動源から動力伝達装置に入力するエネルギを調節できる。これにより、最大出力値や変速機能が作動する閾値を調節できる。
 複数の弾性体の各々が少なくとも1つの引張りコイルバネを備えていることが好ましい。これにより、容易に装着することができ、アームに対して一定の弾性力で付勢することができる。
 複数の回動アームの各々の回動を所定範囲に制限する複数のストッパをさらに備えていることが好ましい。
 本発明によれば、上述した動力伝達装置を用いた回転駆動装置が提供される。
 本発明によれば、出力回転体にかかる負荷が所定値以上に大きくなると、複数のアームの各々は、回転アームの先端が当接した際は先端の押圧によって複数の弾性体の各々の付勢力に対抗する方向に押し戻されて弾性体に弾性エネルギを蓄積し、回転アームの先端が当接から外れた際は複数の弾性体の各々の蓄積された弾性エネルギによる付勢力によって一方向回転機構の動力伝達方向に回動駆動されるように構成されていることで、負荷変動が駆動源に直接的に伝達されることのない動力伝達装置を実現することができる。また、手動で操作することなく自動的に無段変速機能を得ることができる。さらに、出力回転体にかかる負荷がある程度(弾性体の予引張力)大きくなるまで、ワンウェイクラッチが動作しないため、ワンウェイクラッチの寿命が長く、動力伝達装置の耐久性を向上することができる。
 また、本発明に係る動力伝達装置はコンパクトでありタイヤのホイール等に装着でき、かつ負荷変動が駆動源に直接的に伝達されることのない回転駆動装置を容易に構成できる。
本発明の実施形態に係る動力伝達装置の構成を概略的に示す斜視図である。 図1の動力伝達装置の構成を概略的に示す分解斜視図である。 図1の動力伝達装置の動作を説明するための斜視図である。 図1の動力伝達装置の入力及び負荷と出力との関係を説明するための図である。 図1の動力伝達装置の応用例(その1)を概略的に示す図である。 図1の動力伝達装置の応用例(その2)を概略的に示す図である。 図1の動力伝達装置の応用例(その3)を概略的に示す図である。
 以下、本発明に係る動力伝達装置(無段変速装置)の実施形態について説明する。図1は本発明に係る動力伝達装置100の構成を概略的に示しており、図2は動力伝達装置100の構成を示す分解斜視図である。図3は動力伝達装置100において、回転アーム12の先端が当接から外れた際の状態を示している。
 図1に示すように、本実施形態の動力伝達装置100は、駆動源によって回転する駆動回転軸10と、一方向回転機構としてのワンウェイクラッチ11と、一端が駆動回転軸10にワンウェイクラッチ11を介して装着され、駆動回転軸10と共に回転する回転アーム12と、駆動回転軸10と同一軸線上に配置される支持軸20と、支持軸20に設けられた出力回転体(円盤部材)30と、出力回転体30の外周部に均等に設けられた4つの回転軸40a、40b、40c及び40dと、複数の一方向回転機構として4つのワンウェイクラッチ50a、50b、50c及び50dをそれぞれ介して回転軸40a、40b、40c及び40dに設けられ、先端部が回転アーム12の他端に当接可能な4つの回動アーム60a、60b、60c及び60dと、4つの回動アーム60a、60b、60c及び60dをワンウェイクラッチ50a、50b、50c及び50dの動力伝達方向にそれぞれ付勢する4つの弾性体70a、70b、70c及び70dと、4つの回転軸40a、40b、40c及び40dにそれぞれ設けられた4つの第1の歯車80a、80b、80c及び80dと、出力回転体30に設けられ、4つの第1の歯車80a、80b、80c及び80dとかみ合わせ可能な第2の歯車90とを備えている。
 駆動回転軸10は、駆動源としてのモータに(必要に応じて変速ギアを介して)連結されており、支持軸20と同一軸線上に配置されている。この駆動回転軸10は、定速回転するモータによって駆動され所定の回転速度で回転する。即ち、変速ギアを介す場合、モータの回転がギアに伝達され、必要に応じて変速されて駆動回転軸10が回転駆動される。なお、モータ以外に、スターリングエンジン等を駆動源として用いても良い。
 ワンウェイクラッチ11は、回転アーム12の回転を一方向回転運動に変換するものであり、外周が回転アーム12の一端12aに連結され、中心に駆動回転軸10が装着されている。
 回転アーム12は、例えば、角棒状等の材料から形成され、一端12aがワンウェイクラッチ11に固定され、他端12bが自由端とされている。回転アーム12の他端12bには、回動アーム60a、60b、60c及び60dの先端部と当接するための当接部13が設けられている。当接部13は回転自在の回転ローラである。
 支持軸20は、駆動負荷(例えば、車輪等)に連結されており、図示しない支持体(フレーム、シャーシ、枠等)によって固定又は逆回転防止のワンウェイクラッチを介して支持されて、駆動回転軸10と同一軸線上に配置されている。この支持軸20には、出力回転体30と第2の歯車90とが設けられている。
 出力回転体30は、1対の円板30a及び30bと、スペーサ31a、31b、31c及び31dとから構成されている。出力回転体30の外周部には、4つの回転軸40a、40b、40c及び40dが均等に設けられている。また、スペーサ31a、31b、31c及び31dの一端が弾性体固定部32a、32b、32c及び32dとして、円板30aを挿通して4つの弾性体70a、70b、70c及び70dのそれぞれの一端が固定されている。また、円板30aの表面には、回動アーム60a、60b、60c及び60dの各々の回動を所定範囲に制限する4つのストッパ33a、33b、33c及び33dが設けられている。ストッパ33a、33b、33c及び33dは、例えば、回転軸40a、40b、40c及び40dと平行に配置された棒状部材である。
 回転軸40a、40b、40c及び40dは、出力回転体30の外周部に均等に(90度間隔に)設けられている。回転軸40a、40b、40c及び40dには、回動アーム60a、60b、60c及び60dと、第1の歯車80a、80b、80c及び80dとが各々設けられている。例えば、回動アーム60a、60b、60c及び60dは、円板30aの外側回転軸40a、40b、40c及び40dの端部に設けられ、第1の歯車80a、80b、80c及び80dは、1対の円板30aと30bとの間に位置するように構成されている。
 ワンウェイクラッチ50a、50b、50c及び50dは、回動アーム60a、60b、60c及び60dの回動を一方向回転運動に変換するものであり、外周が回動アーム60a、60b、60c及び60dの一端部に連結され、中心に回転軸40a、40b、40c及び40dが装着されている。
 回動アーム60a、60b、60c及び60dは、例えば、丸棒又は角棒状材料から形成され、一端はそれぞれワンウェイクラッチ50a、50b、50c及び50dに固定され、他端は自由端とされている。回動アーム60a、60b、60c及び60dの他端には、弾性体70a、70b、70c及び70dの一端が連結されている。回動アーム60a、60b、60c及び60dの反時計回り方向の回転はストッパ33a、33b、33c及び33dにより所定範囲に制限されている。回動アーム60a、60b、60c及び60dの取り付け角度間隔は、360/4=90度である。即ち、駆動回転軸10が90度を回転するごとに回転アーム12が回動アーム60a、60b、60c及び60dにそれぞれ当接するように構成されている。
 弾性体70a、70b、70c及び70dは、例えば、引張りコイルバネからなる。回動アーム60a、60b、60c及び60dをワンウェイクラッチ50a、50b、50c及び50dの動力伝達方向に付勢する弾性体として、一端がそれぞれ回動アーム60a、60b、60c及び60dに連結され、他端が弾性体固定部32a、32b、32c及び32dに連結されている。
 第1の歯車80a、80b、80c及び80dは、回転軸40a、40b、40c及び40dにそれぞれ装着され、回転軸40a、40b、40c及び40dと共に回転する。また、4つの第1の歯車80a、80b、80c及び80dの各々は、第2の歯車90とかみ合わせ可能である。第1の歯車80a、80b、80c及び80dの各々は、第2の歯車90とかみあいながら回転軸40a、40b、40c及び40dと共に回転する際に、出力回転体30と一緒に回転するように構成されている。
 第2の歯車90は、支持軸20に設けられ、支持軸20と共に回転するように構成されている。また、4つの第1の歯車80a、80b、80c及び80dの各々とかみ合わせ可能である。
 次に、本実施形態における動力伝達装置100の動作を説明する。図3は動力伝達装置100の動作状態を示している。図3において、回転アーム12が回動アーム60aに当接し始めた状態(図中2点破線)から、出力回転体30にかかった負荷が大きくなって、回転アーム12が当接から外れた状態を示している。
 図3に示すように、モータ等の動力源の駆動により駆動回転軸10が図中矢印の方向に回転すると、回転アーム12も回転し、出力回転体30にかかった負荷が弾性体1本分の張力より小さい時、回転アーム12の他端12bに設けられた当接部13が回動アーム60aに当接し、回転エネルギを出力回転体30から出力する(直接駆動)。このように回転する際に、出力回転体30にかかる負荷が大きくなると、回転アーム12の当接部13が回動アーム60aの先端部を押圧することにより、回動アーム60aは時計回りに回動する。この回動によっては、ワンウェイクラッチ50aが空転状態となるため、動力伝達が行われず、弾性体70aが引っ張られるのみとなる。駆動回転軸10がさらに回転して当接部13が回動アーム60aの先端部から離れると、回動アーム60aは、弾性体70aの付勢力により付勢されて反時計回りに回動し、ストッパ33aに当接する位置で回動を停止する。この回動はワンウェイクラッチ50aを実回転させ動力伝達が行われて第1の歯車80aを介して出力回転体30が回転し動力を出力する。駆動回転軸10がさらに回転し、回転アーム12の当接部13が回動アーム60bの先端部を押圧すると、回動アーム60bが上述した回動アーム60aと同様な動作を行う。駆動回転軸10がさらに回転し、回転アーム12の当接部13が回動アーム60cの先端部を押圧すると、回動アーム60cが上述した回動アーム60aと同様な動作を行う。駆動回転軸10がさらに回転し、回転アーム12の当接部13が回動アーム60dの先端部を押圧すると、回動アーム60dが上述した回動アーム60aと同様な動作を行う。このように、駆動回転軸10が回転運動することにより、回動アーム60a、60b、60c及び60dが交互に回動せしめられ、出力回転体30が回転し動力を出力する(間接駆動)。
 このように、駆動回転軸10が回転運動することにより、回転アーム12の当接部13が、順次、回動アーム60a、60b、60c及び60dの先端部にそれぞれ当接し、これら回動アーム60a、60b、60c及び60dを時計回り方向へ押圧して順次回動させる。この時計回りの回動によっては、ワンウェイクラッチ50a、50b、50c及び50dが空転するので動力伝達が行われない。しかしながら、この回動により弾性体70a、70b、70c及び70dがそれぞれ引っ張られるので、回動アーム60a、60b、60c及び60dを反時計回り方向に付勢する弾性エネルギが蓄積される。出力回転体30にかかった負荷が所定値(弾性体1本分の張力)以上に大きくなると、回転アーム12の当接部13が回動アーム60a、60b、60c及び60dの先端部の各々との当接から外れた際は、弾性体70a、70b、70c及び70dの各々の蓄積された弾性エネルギによる付勢力によって回動アーム60a、60b、60c及び60dを反時計回り方向に回転せしめられ、ワンウェイクラッチ50a、50b、50c及び50dが反時計回り方向(動力伝達方向)に回動駆動されるので動力伝達が行われ、回転運動は出力回転体30を介して出力される。この場合、回転アーム12の当接部13が回動アーム60a、60b、60c及び60dの先端部の各々との当接し始めた際の弾性体70a、70b、70c及び70dの各々の張力は小さいが、その後の張力は徐々に大きくなり、これにより、駆動源に対して瞬間的に大きい負荷をかけることなく、安定した駆動ができる。一方、回転アーム12の当接部13が回動アーム60a、60b、60c及び60dの先端部との当接から外れた際は、回動アーム60a、60b、60c及び60dが弾かれるため、より大きな出力トルクを得ることができる。
 即ち、動力伝達装置100において、駆動源の力を複数の弾性体70a、70b、70c及び70dに分けて保存される。貯めた力を放出するタイミングは出力回転体30にかかった負荷によって自動的に変化する。また、出力回転体30にかかった負荷が所定値(弾性体4本分の張力)以上に大きくなると、回転アーム12の回転によって回動アーム60b、60c及び60dも回動アーム60aと同様に当接から外れた位置になり、駆動回転軸10が空回転し、出力回転体30にかかった負荷が駆動源に直接的に伝達されず、エネルギが弾性体70a、70b、70c及び70dに蓄積されている。出力回転体30にかかった負荷が所定値以下になると、弾性体70a、70b、70c及び70dに蓄積されたエネルギが放出されて出力回転体30が回転し出力トルクが発生する。
 図4は動力伝達装置100の入力及び負荷と出力との関係を示している。図4において、駆動回転軸10の入力が一定であり、また、横軸が回転数及びトルクで、縦軸(図中(C)から(E)に対して)が負荷である。同図(A)は駆動回転軸10の入力(即ち、動力源の出力の回転数)を示しており、(B)は出力回転体30にかかった負荷が弾性体1本分の張力より小さい時出力回転体30の出力(回転数及びトルク)を示しており、この場合、駆動回転軸10の入力がそのまま出力回転体30の出力となり、変速効果は発生しない。(C)から(E)は出力回転体30にかかった負荷が弾性体1本分の張力より大きい時出力回転体30の出力を示しており、この場合、出力回転体30の出力と駆動回転軸10の入力とは異なり、変速効果が発生する。また、負荷の大小によって出力回転体30の回転数及びトルクが変わる。即ち、出力回転体30にかかる負荷が大きくなると、弾性体による回動アームの回転が遅くなり、その回動アームが戻る前に回転アーム12が他の回動アームに当接し、複数の弾性体にエネルギが蓄積されて、これが一時に放出されるため、弾性体の数が多いほど蓄積されたエネルギが大きくなり、瞬時に出力されるトルクが大きくなる。また、図4に示すように、出力回転体30にかかる負荷が小さい時、出力回転体30の回転数が高い。出力回転体30にかかる負荷が大きい時、出力回転体30の回転数が低い。
 以上説明したように、動力伝達装置100は、駆動回転軸10と、ワンウェイクラッチ11と、回転アーム12と、駆動回転軸10と同一軸線上に配置される支持軸20と、出力回転体30と、4つの回転軸40a、40b、40c及び40dと、4つのワンウェイクラッチ50a、50b、50c及び50dと、4つの回動アーム60a、60b、60c及び60dと、4つの弾性体70a、70b、70c及び70dと、4つの第1の歯車80a、80b、80c及び80dと、第2の歯車90とを備えている。
 これにより、駆動回転軸10の回転が出力回転体30を直接又は間接的に駆動するができ、かつ負荷変動が駆動源に直接的に伝達されることのない動力伝達装置100を実現することができる。また、手動で操作することなく自動的に無段変速機能を得ることができる。さらに、出力回転体30にかかる負荷がある程度(弾性体の予引張力)大きくなるまで、ワンウェイクラッチ50a、50b、50c及び50dが動作しないため、ワンウェイクラッチ50a、50b、50c及び50dの寿命が長く、動力伝達装置の耐久性を向上することができる。
 以下、本発明に係る動力伝達装置100用いた回転駆動装置の構成例について説明する。図5は動力伝達装置100を用いた二輪車(自転車又は自動二輪車)100Aの構成を概略的に示している。同図において、二輪車100Aの駆動側の車輪を示している。図5に示すように、動力伝達装置100は、二輪車100Aの駆動側の車輪中に装着されており、その外周部はタイヤで覆われている。動力伝達装置100の駆動回転軸10は、チェーンやギアなどにより回転駆動される。また、駆動回転軸10は、フレームに回転自在に装着されている。支持軸20Aは、逆回転防止のワンウェイクラッチを介してフレームに装着されている。この場合、動力伝達装置100及びタイヤの回転により駆動回転軸10の回転動力を伝達し出力する。
 図6は動力伝達装置100を用いた自動車100Bの構成を概略的に示している。図6に示すように、動力伝達装置100は、フライホイールに装着されており、出力回転体30から、チェーンやギアなどを介して回転出力を駆動輪の回転軸に伝達するように構成されている。なお、動力伝達装置100自体がフライホイールとして利用しても良い。
 図7は動力伝達装置100を用いたドリル100Cの構成を概略的に示している。図7に示すように、動力伝達装置100は、フライホイールに装着されており、出力回転体30から、チェーンやギアなどを介して回転出力をドリルの回転軸に伝達するように構成されている。なお、動力伝達装置100自体がフライホイールとして利用しても良い。
 なお、上述した動力伝達装置100において、弾性体70a、70b、70c及び70dの張力(弾性力)を調整する弾性力調整機構を有するようにしても良い。例えば、弾性体固定部32a、32b、32c及び32dが、回転又は変位によって弾性体70a、70b、70c及び70dの張力(弾性力)を調整する。この弾性力調整機構により、弾性体70a、70b、70c及び70dの張力(弾性力)を調整することで、駆動源から動力伝達装置100に入力するエネルギを調節できる。これにより、最大出力値や変速機能が作動する閾値を調節できる。
 また、上述した動力伝達装置100において、弾性体70a、70b、70c及び70dは、引張りコイルバネを用いた例を説明したが、本発明はこれに限定されるものではない。例えば、ゴム等の材料から構成するようにしても良い。
 また、上述した動力伝達装置100において、4つの回動アーム60a、60b、60c及び60dを有する例を説明したが、本発明はこれに限定されるものではない。任意の数の回動アームを有するようにしても良い。
 また、上述した動力伝達装置100において、出力回転体30は、1対の円板30a及び30bを用いた例を説明したが、本発明はこれに限定されるものではない。例えば、1つの円板を用いても良い。
 さらに、上述した動力伝達装置100の応用例として、二輪車100A、四輪自動車100B及びドリル100Cの例を説明したが、本発明はこれに限定されるものではない。例えば、エレベーター、ミキサー等の負荷変動の大きい回転装置に用いても良い。
 以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
 本発明の動力伝達装置は、必要なトルクが不規則に絶えず変化する物に最適であり、車両、エレベーター、エスカレーター、ドリル又はミキサー等の動力伝達に利用することができる。
 10 駆動回転軸
 11、50a、50b、50c、50d ワンウェイクラッチ
 12 回転アーム
 13 当接部
 20、20A 支持軸
 30 出力回転体(円盤部材)
 30a、30b 円板
 31a、31b、31c、31d スペーサ
 32a、32b、32c、32d 弾性体固定部
 33a、33b、33c、33d ストッパ
 40a、40b、40c、40d 回転軸
 60a、60b、60c、60d 回動アーム
 70a、70b、70c、70d 弾性体
 80a、80b、80c、80d 第1の歯車
 90 第2の歯車
 100 動力伝達装置
 100A 二輪車(回転駆動装置)
 100B 自動車(回転駆動装置)
 100C ドリル(回転駆動装置)

Claims (6)

  1.  駆動源によって回転する駆動回転軸と、
     一端が前記駆動回転軸に一方向回転機構を介して装着され、前記駆動回転軸と共に回転する回転アームと、
     前記駆動回転軸と同一軸線上の支持軸に設けられた出力回転体と、
     前記駆動回転軸と平行であり、前記出力回転体の外周部に均等に設けられた複数の回転軸と、
     前記複数の回転軸の各々を支点として回動可能であり、複数の一方向回転機構をそれぞれ介して前記複数の回転軸に設けられ、先端部が前記回転アームの他端に当接可能な複数の回動アームと、
     前記複数の回動アームを前記一方向回転機構の動力伝達方向にそれぞれ付勢する複数の弾性体と、
     前記複数の回転軸にそれぞれ設けられた複数の第1の歯車と、
     前記出力回転体に設けられ、前記複数の歯車とかみ合わせ可能な第2の歯車とを備えており、
     前記複数の回動アームの各々は、前記出力回転体に所定値以上の負荷がかかった場合、前記回転アームの先端が当接した際は該前記回転アームの押圧によって前記複数の弾性体の各々の付勢力に対抗する方向に押し戻されて前記弾性体に弾性エネルギを蓄積し、前記回転アームの先端が当接から外れた際は前記複数の弾性体の各々の前記蓄積された弾性エネルギによる付勢力によって前記一方向回転機構の前記動力伝達方向に回動駆動され、該回動の動力が前記複数の第1の歯車と前記第2の歯車とを介して出力回転体に伝達されるように構成されていることを特徴とする動力伝達装置。
  2.  前記駆動回転軸に対する前記複数の回転軸の取り付け角度間隔は、360/N度(ただし、Nは回転軸の数)であることを特徴とする請求項1に記載の動力伝達装置。
  3.  前記複数の弾性体の弾性力を可変調整可能な弾性力調整機構をさらに備えていることを特徴とする請求項1又は2に記載の動力伝達装置。
  4.  前記複数の弾性体の各々が少なくとも1つの引張りコイルバネを備えていることを特徴とする請求項1から3のいずれか1項に記載の動力伝達装置。
  5.  前記複数の回動アームの各々の回動を所定範囲に制限する複数のストッパをさらに備えていることを特徴とする請求項1から4のいずれか1項に記載の動力伝達装置。
  6.  請求項1から5のいずれか1項に記載の動力伝達装置を用いたことを特徴とする回転駆動装置。
PCT/JP2020/043193 2019-12-04 2020-11-19 動力伝達装置及び動力伝達装置を用いた回転駆動装置 WO2021111889A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019219252A JP2021089021A (ja) 2019-12-04 2019-12-04 動力伝達装置及びそれを用いた回転駆動装置
JP2019-219252 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021111889A1 true WO2021111889A1 (ja) 2021-06-10

Family

ID=76219762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043193 WO2021111889A1 (ja) 2019-12-04 2020-11-19 動力伝達装置及び動力伝達装置を用いた回転駆動装置

Country Status (2)

Country Link
JP (1) JP2021089021A (ja)
WO (1) WO2021111889A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129772A (ja) * 1974-04-03 1975-10-14
JPS5042296Y1 (ja) * 1969-11-29 1975-12-01
JP5945584B2 (ja) * 2014-12-01 2016-07-05 賢一 小谷 動力伝達装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042296Y1 (ja) * 1969-11-29 1975-12-01
JPS50129772A (ja) * 1974-04-03 1975-10-14
JP5945584B2 (ja) * 2014-12-01 2016-07-05 賢一 小谷 動力伝達装置

Also Published As

Publication number Publication date
JP2021089021A (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
US8820188B2 (en) Park-position mechanism for engine
JP4524191B2 (ja) ロータが制御された変速機
EP1865237B1 (en) Park-position mechanism
AU2009331014B2 (en) Continuously variable transmission apparatus
WO2021111889A1 (ja) 動力伝達装置及び動力伝達装置を用いた回転駆動装置
KR101006779B1 (ko) 무단변속장치
US4576056A (en) Rotary assistance mechanism, particularly for vehicle steering
JP3914307B2 (ja) 無段変速可能な巻掛け式変速機
JP5945584B2 (ja) 動力伝達装置
CN111173910A (zh) 一种扭力放大机构及驱动机构
CN212225908U (zh) 一种无级变速器
US6609600B1 (en) Centrifugal clutch
US20230160440A1 (en) Clutch
KR101029316B1 (ko) 허브타입의 무단변속장치
JP5074961B2 (ja) 車両用遠心クラッチ装置
JP2021038833A (ja) 捩り振動低減装置
KR20020089678A (ko) 무단변속장치
JPS6335850B2 (ja)
JPH0681921A (ja) 回転駆動装置
JPS6159406B2 (ja)
JP5441030B2 (ja) 自動変速装置
CN111677827A (zh) 一种无级变速器
KR20020087033A (ko) 무단변속 장치
KR100694878B1 (ko) 자전거용 마찰전동 무단변속장치
KR100787366B1 (ko) 원심력을 이용한 차동제한장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20896989

Country of ref document: EP

Kind code of ref document: A1