WO2021111823A1 - ゲート駆動回路および電力変換装置 - Google Patents

ゲート駆動回路および電力変換装置 Download PDF

Info

Publication number
WO2021111823A1
WO2021111823A1 PCT/JP2020/041926 JP2020041926W WO2021111823A1 WO 2021111823 A1 WO2021111823 A1 WO 2021111823A1 JP 2020041926 W JP2020041926 W JP 2020041926W WO 2021111823 A1 WO2021111823 A1 WO 2021111823A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive circuit
voltage
gate
circuit
pulse transformer
Prior art date
Application number
PCT/JP2020/041926
Other languages
English (en)
French (fr)
Inventor
五十嵐 弘
秀康 町井
直樹 瀧川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/767,199 priority Critical patent/US11929666B2/en
Priority to JP2021562531A priority patent/JP7459131B2/ja
Publication of WO2021111823A1 publication Critical patent/WO2021111823A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present disclosure relates to a gate drive circuit and a power conversion device.
  • a pulse transformer as described in Patent Document 1 As an example of a drive method of a gate drive circuit that drives a semiconductor element such as an IGBT or MOSFET used in a main circuit in which a large current flows in a power converter at high speed, a pulse transformer as described in Patent Document 1 is used. The method is known.
  • the gate drive circuit using the pulse transformer described in Patent Document 1 conducts the MOSFET in the previous stage when the drain current flowing through the MOSFET in the previous stage connected to the secondary side of the pulse transformer exceeds the threshold value. Turn off the MOSFET used in the main circuit. This protects the short circuit of the main circuit.
  • the semiconductor switch is, for example, SiC_MOSFET
  • the SiC_MOSFET has a low negative gate withstand voltage. Therefore, in the conventional pulse transformer type gate drive circuit in which the gate voltage values are positive and negative, a negative bias is applied to the SiC_MOSFET. Cannot be driven.
  • the gate signal is isolated from the MOSFET used in the main circuit and the control circuit by a photocoupler or digital isolator, and the voltage value is changed between positive and negative. It is necessary to supply gate power to each gate drive circuit. However, since the gate drive circuit becomes complicated, there is a problem that it is difficult to miniaturize and the cost is high.
  • the overcurrent detection level also fluctuates. Even if the overcurrent detection level is set low in consideration of the temperature characteristics of the Zener diode, if the fluctuation range of the temperature characteristics of the Zener diode is large, the short-circuit tolerance of the MOSFET may not be satisfied. In particular, when SiC_MOSFET is used as the semiconductor switch, there is a risk that the short circuit withstand capability cannot be satisfied.
  • the SiC_MOSFET Since the SiC_MOSFET has a low on-resistance RDS (ON), the amount of change (dI / dt) in the short-circuit current flowing through the SiC_MOSFET is also large. Therefore, in the short-circuit protection circuit described in Patent Document 1, the back electromotive voltage due to the parasitic inductance exceeds the drain-source withstand voltage of the SiC_MOSFET at the same time when the SiC_MOSFET is turned off, and the SiC_MOSFET may fail.
  • an object of the present disclosure is a pulse transformer type gate capable of driving a semiconductor element having different rated values of the gate withstand voltage, positive and negative, and safely interrupting an overcurrent flowing through the semiconductor element to protect a short circuit. It is to provide a drive circuit and a power conversion device.
  • the gate drive circuit of the present disclosure includes a pulse transformer, a first drive circuit connected to the first end of the primary winding of the pulse transformer, and a first drive circuit connected to the second end of the primary winding of the pulse transformer.
  • the voltage clamp unit that clamps the voltage of the semiconductor element to the specified voltage and the current flowing through the semiconductor element are detected.
  • a current detection circuit that outputs a detection signal indicating the magnitude of the current, a control circuit that controls the first drive circuit and the second drive circuit based on the detection signal, and a pulse transformer 1 based on the detection signal. It is provided with a current limiting circuit that limits the current flowing through the next winding.
  • the power conversion device of the present disclosure controls a semiconductor module including a plurality of semiconductor elements, a plurality of the above-described gate drive circuits for driving corresponding semiconductor elements in the semiconductor module, and a plurality of gate drive circuits, respectively. It is equipped with a control circuit.
  • the present invention it is possible to drive a semiconductor element having different rated values of the gate withstand voltage, positive and negative, and to safely cut off the overcurrent flowing through the semiconductor element to protect against a short circuit.
  • FIG. 3 is a timing chart when a short-circuit current or an overcurrent flows through the semiconductor element 1 in the third embodiment.
  • FIG. 1 is a diagram showing a configuration of a power conversion device according to an embodiment.
  • This power conversion device is an inverter circuit that converts a DC voltage into a single-phase high-frequency AC voltage.
  • This power conversion device includes a semiconductor module 7, a DC power supply 2, a smoothing capacitor 3, gate drive circuits 4a to 4d, a gate power supply 5, and a control circuit 6.
  • the DC power supply 2 supplies a DC voltage.
  • the smoothing capacitor 3 stabilizes the DC voltage.
  • the semiconductor module 7 constitutes a full-bridge inverter circuit.
  • the semiconductor module 7 includes a circuit block 20A and a circuit block 20B.
  • the circuit block 20A includes a semiconductor element 1a of the upper arm and a semiconductor element 1b of the lower arm.
  • the circuit block 20B includes a semiconductor element 1c of the upper arm and a semiconductor element 1d of the lower arm.
  • the semiconductor elements 1a to 1d may be collectively referred to as the semiconductor element 1.
  • Each of the four semiconductor elements 1a, 1b, 1c, and 1d is an N-channel MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the four N-channel MOSFETs are, for example, SiC (Silicon Carbide) _MOSFET.
  • the four N-channel MOSFETs may be MOSFETs or IGBTs made of Si.
  • the drain terminals of the semiconductor elements 1a and 1c of the upper arm are connected to the positive terminal of the DC power supply 2 and one end of the smoothing capacitor 3.
  • the source terminals of the semiconductor elements 1a and 1c of the upper arm are connected to the drain terminals of the semiconductor elements 1b and 1d of the lower arm.
  • the source terminals of the semiconductor elements 1b and 1d of the lower arm are connected to the negative terminal of the DC power supply 2 and the other end of the smoothing capacitor 3.
  • the DC power supply 2, the smoothing capacitor 3, the semiconductor elements 1a and 1b connected in series, and the semiconductor elements 1c and 1d connected in series are connected in parallel.
  • a high-frequency AC voltage is output from the node ND1 between the source terminal of the semiconductor element 1a and the drain terminal of the semiconductor element 1b and the node ND2 between the source terminal of the semiconductor element 1c and the drain terminal of the semiconductor element 1d. ..
  • the gate drive circuits 4a, 4b, 4c, 4d drive the semiconductor elements 1a, 1b, 1c, 1d.
  • the gate drive circuits 4a, 4b, 4c, and 4d may be collectively referred to as the gate drive circuit 4.
  • the gate power supply 5 supplies power to the gate drive circuits 4a, 4b, 4c, and 4d.
  • the control circuit 6 controls the gate drive circuits 4a, 4b, 4c, and 4d by the switching signal.
  • FIG. 2 is a diagram showing the configuration of the gate drive circuit 4 of the first embodiment.
  • the gate drive circuit 4 includes a pulse transformer 8, a current limiting circuit 11, a first drive circuit 9, a second drive circuit 10, a capacitor 38, a gate resistor 12, a semiconductor element 1, and a voltage clamp. It includes 81 and a current detection circuit 15.
  • the voltage clamp portion 81 includes a clamp circuit 14 and a bypass diode 20.
  • the gate drive circuit 4 is an insulated gate drive circuit using a pulse transformer 8.
  • the pulse transformer 8 has at least one primary winding 8f and at least one secondary winding 8s.
  • the primary winding 8f and the secondary winding 8s are electrically insulated from each other.
  • the number of turns of the primary winding 8f is n1.
  • the number of turns of the secondary winding 8s is n2.
  • the first drive circuit 9 is connected to the winding start s1 (first end) of the primary winding 8f.
  • the second drive circuit 10 is connected to the winding end e1 (second end) of the primary winding 8f.
  • the first drive circuit 9 is an inverter composed of an NPN transistor 151 and a PNP transistor 152 connected in series between the gate power supply 5 and the ground.
  • the second drive circuit 10 is an inverter composed of an NPN transistor 153 and a PNP transistor 154 connected in series between the gate power supply 5 and the ground. The first drive circuit 9 and the second drive circuit 10 receive power from the gate power supply 5.
  • the control circuit 6 supplies the first switching signal Vs1 to the input of the first drive circuit 9.
  • the control circuit 6 supplies the second switching signal Vs2 to the input of the second drive circuit 10.
  • the first drive circuit 9 supplies a current to the pulse transformer 8 according to the first switching signal Vs1 from the control circuit 6.
  • the second drive circuit 10 supplies a current to the pulse transformer 8 according to the second switching signal Vs2 from the control circuit 6.
  • the current limiting circuit 11 includes a current limiting resistor 23 and a switch 21 connected in parallel.
  • the current limiting circuit 11 further includes a control unit 22 that controls on / off of the switch 21.
  • a current limiting resistor 23 and a switch 21 connected in parallel to the wiring between the winding end e1 of the primary winding 8f of the pulse transformer 8 and the second drive circuit 10 are arranged.
  • the current limiting circuit 11 limits the current flowing through the primary winding 8f of the pulse transformer 8 based on the current detection signal Isen.
  • the current limiting circuit 11 is a current flowing between the winding end e1 of the primary winding 8f of the pulse transformer 8 and the second drive circuit 10 based on the current detection signal Isen. By limiting the current, the current flowing through the primary winding 8f of the pulse transformer 8 is limited.
  • a capacitor 38 is arranged in the wiring between the winding start s1 of the primary winding 8f of the pulse transformer 8 and the first drive circuit 9.
  • One end of the gate resistor 12 is connected to the winding start s2 of the secondary winding 8s of the pulse transformer 8.
  • the other end of the gate resistor 12 is connected to the gate terminal of the semiconductor element 1.
  • a clamp circuit 14 and a bypass diode 20 connected in parallel are arranged in the wiring between the end e2 of the secondary winding 8s of the pulse transformer 8 and the node N1.
  • a current detection circuit 15 is connected between the source terminal of the semiconductor element 1 and the node N1.
  • the current detection circuit 15 detects the magnitude of the current flowing between the source terminal of the semiconductor element 1 and the node N1, and outputs a current detection signal Isen indicating the magnitude of the detected current.
  • the current detection signal Isen output from the current detection circuit 15 is input to the control unit 22 and the control circuit 6 of the current limit circuit 11.
  • a DCCT Direct Current Current Transformer
  • the control circuit 6 controls the first drive circuit 9 and the second drive circuit 10.
  • the voltage clamping unit 81 clamps the voltage of the semiconductor element 1 to a specified voltage when the voltage output from the secondary winding 8s of the pulse transformer 8 is negative.
  • FIG. 3 is a detailed view of the clamp circuit 14.
  • a clamp circuit 14 and a bypass diode 20 are connected between the end of winding e2 of the secondary winding 8s of the pulse transformer 8 and the node N1.
  • the clamp circuit 14 includes a Zener diode 16, a diode 17, an NPN transistor 18, and a resistor 19.
  • One end of the resistor 19 and the base terminal of the NPN transistor 18 are connected to the anode terminal of the Zener diode 16. The other end of the resistor 19 is connected to the node N1.
  • the collector terminal of the NPN transistor 18 is connected to the cathode terminal of the Zener diode 16.
  • the emitter terminal of the NPN transistor 18 is connected to the node N1.
  • the cathode terminal of the diode 17 is connected to the cathode terminal of the Zener diode 16.
  • the anode terminal of the diode 17 is connected to the end of winding e2 of the secondary winding 8s of the pulse transformer 8.
  • the cathode terminal of the bypass diode 20 is connected to the end of winding e2 of the secondary winding 8s of the pulse transformer 8.
  • the anode terminal of the bypass diode 20 is connected to the node N1.
  • the switch 21 of the current limiting circuit 11 is on in the steady state.
  • the control unit 22 turns off the switch 21 by lowering the switch signal SW.
  • the switch 21 arranged in parallel with the current limiting resistor 23 generally requires a response faster than the short-circuit withstand time of a MOSFET of several ⁇ s or less. Therefore, the switch 21 is not a mechanical relay, but a MOSFET capable of high-speed switching is used.
  • FIG. 4 is a diagram showing the configurations of the switch 21 and the control unit 22.
  • the switch 21 is composed of N-channel MOSFETs 35a and 35b.
  • the control unit 22 includes an insulated power supply 36 and a gate drive circuit 37.
  • the drive current IL1 flows in both directions in the switch 21. Since the MOSFET has a parasitic body diode, two N-channel MOSFETs 35a and 35b are provided in order to switch and control the current flowing in both directions. The source terminal of the N-channel MOSFET 35a and the source terminal of the N-channel MOSFET 35b are connected.
  • a dedicated insulated power supply 36 is provided with the source terminals of the two N-channel MOSFETs 35a and 35b as reference potentials.
  • the gate drive circuit 37 drives the N-channel MOSFETs 35a and 35b when the magnitude of the current detection signal Isen exceeds the threshold value Vth.
  • FIG. 5 is a timing chart of the gate drive circuit according to the first embodiment.
  • the control circuit 6 outputs the first switching signal Vs1 to the first drive circuit 9.
  • the control circuit 6 outputs the second switching signal Vs2 to the second drive circuit 10.
  • VS1 and VS2 are complementary. That is, the phase of the first switching signal Vs1 and the phase of the second switching signal Vs2 are 180 degrees out of phase with each other. However, a dead time tdead is provided so that the first switching signal Vs1 and the second switching signal Vs2 do not turn on at the moment when the logics of the first switching signal Vs1 and the second switching signal Vs2 are switched. There is.
  • the pulse transformer 8 When the first switching signal Vs1 is on and the second switching signal Vs2 is off, the pulse transformer 8 is connected to the first drive circuit 9 connected to the winding start s1 of the primary winding 8f of the pulse transformer 8.
  • the drive current IL1 of the pulse transformer 8 flows to the second drive circuit 10 connected to the winding end e1 of the primary winding 8f of the above.
  • the pulse transformer 8 When the first switching signal Vs1 is off and the second switching signal Vs2 is on, the pulse transformer 8 is transmitted from the second drive circuit 10 connected to the winding end e1 of the primary winding 8f of the pulse transformer 8.
  • the drive current IL1 of the pulse transformer flows to the first drive circuit 9 connected to the winding start s1 of the primary winding 8f of the above.
  • the capacitor 38 arranged between the winding start s1 of the primary winding 8f of the pulse transformer 8 and the first drive circuit 9 is a capacitor for preventing demagnetization of the pulse transformer 8.
  • the first drive circuit For example, at the start of the power conversion device, the transient at the end of the start of the power conversion device, the rise of the gate power supply 5, the fall of the gate power supply 5, or the noise malfunction of the control circuit 6, the first drive circuit The operation of the first switching signal Vs1 input to 9 and the second switching signal Vs2 input to the second drive circuit 10 becomes unstable.
  • the time ton at which the first switching signal Vs1 becomes high level and the time ton at which the second switching signal Vs2 becomes high level become unbalanced, the magnitude of the drive current IL1 becomes positive and negative. Will not be the same.
  • the amount of change in the magnetic flux of the core material of the pulse transformer 8 is biased in the positive and negative directions.
  • the inductance value on the primary winding 8f side of the pulse transformer 8 rapidly decreases, and the pulse transformer 8 is short-circuited. become.
  • the magnitude of the drive current IL1 can be made the same when it is positive and when it is negative. This makes it possible to prevent the pulse transformer 8 from being demagnetized.
  • the capacitor 38 is arranged between the winding start s1 of the primary winding 8f of the pulse transformer 8 and the first drive circuit 9, but the winding end e1 of the primary winding 8f of the pulse transformer 8 is arranged. Even if it is arranged between the second drive circuit 10 and the second drive circuit 10, the same effect can be obtained.
  • VL1 be the voltage at the winding start s1 of the primary winding 8f of the pulse transformer.
  • the voltage Vb of the base terminal of the NPN transistor 18 is represented by the following equation by the forward voltage Vf of the diode 17 and the Zener voltage Vz of the Zener diode 16.
  • the emitter voltage Ve of the NPN transistor 18 is a value that is lower than the base voltage Vb of the NPN transistor 18 by the base-emitter voltage Vbe.
  • the clamp voltage Vclp and the emitter voltage Ve of the NPN transistor 18 are equal to each other.
  • Vclp VL2-Vf-Vz-Vbe ... (4)
  • the gate voltage Vg of the semiconductor element 1 is clamped to the clamp voltage Vclp output by the clamp circuit 14 when the voltage is negative. That is, as shown in FIG. 5, when the gate voltage Vg of the semiconductor element 1 is at a high level, the gate voltage Vg is the first value Vx. When the gate voltage Vg of the semiconductor element 1 is at a low level, the gate voltage Vg is a specified voltage (Vclp). The magnitude (absolute value) of the specified voltage Vclp is smaller than the magnitude (absolute value) of the first value Vx.
  • the clamp voltage Vclp can be set to an arbitrary size by changing the size of the Zener voltage Vz of the Zener diode 16.
  • a semiconductor element having different rated values of gate voltage for example, SiC_MOSFET, can be driven by the rated value of the gate voltage.
  • the gate voltage Vg When the gate voltage Vg is a negative voltage, the gate voltage Vg is clamped to the clamp voltage (specified voltage) Vclp output by the clamp circuit 14. As a result, the semiconductor element 1 is turned off more slowly when the short-circuit current is cut off, so that it is possible to suppress the generation of a surge voltage Vsurge between the drain and the source of the semiconductor element 1.
  • a positive or negative gate voltage Vg can be applied.
  • the gate voltage Vg may exceed the gate withstand voltage and the SiC_MOSFET may fail.
  • a short-circuit current or overcurrent flows through the MOSFET when the output terminal of the full-bridge inverter circuit is short-circuited due to an accident, or when external noise is superimposed on the gate signal of the MOSFET and causes a malfunction. In this embodiment, these problems can be avoided.
  • FIG. 6 is a timing chart of the gate drive circuit when a short circuit occurs in the first and second embodiments.
  • the control unit 22 sets the switch signal SW to a low level to switch 21. Turn off.
  • the current limiting resistor 23 is connected to the winding end e1 of the primary winding 8f of the pulse transformer 8 to limit the drive current IL1 flowing through the primary winding 8f of the pulse transformer 8.
  • the drive current IL2 output from the secondary winding 8s of the pulse transformer 8 is also limited, so that it is in a state equivalent to an increase in the gate resistance 12.
  • the control circuit 6 After a certain period of time td, the control circuit 6 inverts the first switching signal Vs1 from the high level to the low level, and inverts the second switching signal Vs2 from the low level to the high level.
  • the gate voltage Vg on the secondary side of the pulse transformer 8 changes from a high level to a low level, but the current Ig (IL2) output from the secondary winding 8s of the pulse transformer 8 is limited by the current limiting resistor 23. Therefore, the semiconductor element 1 is gradually turned off, and it is possible to suppress the generation of a surge voltage Vsurge between the drain and the source of the semiconductor element 1.
  • SiC_MOSFET Since SiC_MOSFET has a low on-resistance, the current change dI / dt is large when a short-circuit current flows. Further, the SiC_MOSFET has a lower short-circuit tolerance because the chip size per current is smaller than that of the Si_MOSFET. Therefore, when SiC_MOSFET is used as the semiconductor element 1, the short-circuit current must be cut off at a higher speed than when Si_MOSFET is used.
  • the gate signal of the SiC_MOSFET is changed from high level to low level, and when the short-circuit current is suddenly cut off, the wiring connected to the drain end and source terminal of the SiC_MOSFET and the parasitic inductance of the printed circuit board pattern causess a surge voltage Vsurge.
  • the surge voltage Vsurge is expressed by the following equation.
  • the short-circuit protection circuit of the gate drive circuit limits the drive current IL1 flowing through the primary winding 8f of the pulse transformer 8 with the current limiting resistor 23, and then turns off the semiconductor element 1.
  • the drive current IL2 flowing through the secondary winding 8s of the pulse transformer 8 is limited in the same manner as the gate resistance 12 is increased.
  • the semiconductor element 1 is gradually turned off, so that the generation of surge voltage Vsurge can be suppressed.
  • the gate drive circuit includes the current limiting circuit 11 on the low voltage circuit side of the primary winding 8f of the pulse transformer 8 which is insulated from the high voltage by the pulse transformer 8. This makes it possible to prevent the current limiting circuit from malfunctioning due to noise. Further, the number of circuit components on the secondary winding 8s side of the pulse transformer 8 can be reduced. Further, the pattern width of the main circuit wiring connected to the MOSFET of the main circuit can be designed to be wide. As a result, since the parasitic inductance of the main circuit wiring through which a large current flows can be reduced, the surge voltage at the time of short-circuit current interruption can be suppressed, and the risk of MOSFET failure due to the surge voltage Vsurge can be reduced.
  • FIG. 7 is a diagram showing the configuration of the gate drive circuit 4 of the second embodiment.
  • the difference between the gate drive circuit 4 of the second embodiment and the gate drive circuit 4 of the first embodiment is as follows.
  • the gate drive circuit 4 of the second embodiment includes a current limiting circuit 27 instead of the current limiting circuit 11.
  • the gate drive circuit 4 of the second embodiment includes a gate drive IC 24.
  • the gate drive IC 24 includes a level shifter 160, a first drive circuit 9, a second drive circuit 10, and output terminals o1 and o2.
  • the level shifter 160 includes a buffer 161 and a buffer 162.
  • the buffer 161 converts the level (0 to 3.3 or 5.0 V) of the first switching signal Vs1 output from the control circuit 6 into the drive voltage level (0 to Vcc), and the first drive circuit 9 Output to.
  • the buffer 162 converts the level (0 to 3.3 or 5.0 V) of the second switching signal Vs2 output from the control circuit 6 into the drive voltage level (0 to Vcc), and the second drive circuit 10 Output to.
  • the level of the voltage Vo1 output from the output terminal o1 is controlled by the first switching signal Vs1 from the control circuit 6.
  • the level of the voltage Vo2 output from the output terminal o2 is controlled by the second switching signal Vs2 from the control circuit 6.
  • the output terminal o1 of the gate drive IC 24 is connected to the winding start s1 of the primary winding 8f of the pulse transformer 8 via the capacitor 38.
  • the output terminal o2 of the gate drive IC 24 is connected to the winding end e1 of the primary winding 8f of the pulse transformer 8.
  • the current limiting circuit 27 limits the current ICC supplied to the first drive circuit 9 and the second drive circuit 10 based on the magnitude of the current detection signal Isen.
  • the current limiting circuit 27 includes a current limiting resistor 28, a P channel MOSFET 29 which is a main switch, a resistor 30, a gate resistor 31, an N channel MOSFET 32, a resistor 39, and a control unit 33.
  • a current limiting resistor 28 and a P-channel MOSFET 29 are connected in parallel between the power supply node 25 of the first drive circuit 9 and the second drive circuit 10 and the gate power supply 5.
  • the source terminal of the P channel MOSFET 29 is connected to the gate power supply 5.
  • the drain terminal of the P channel MOSFET 29 is connected to the power supply node 25.
  • a resistor 30 is connected between the gate terminal and the source terminal of the P-channel MOSFET 29.
  • the gate terminal of the P channel MOSFET 29 is connected to one end of the gate resistor 31.
  • the other end of the gate resistor 31 is connected to the drain terminal of the N channel MOSFET 32.
  • the source terminal of the N-channel MOSFET 32 is connected to GND.
  • the gate terminal of the N-channel MOSFET 32 is connected to the control unit 33 via a resistor 39.
  • the current detection signal Isen output from the current detection circuit 15 connected to the source terminal of the semiconductor element 1 on the secondary side of the pulse transformer 8 is input to the control unit 33 and the control circuit 6 of the current limit circuit 27.
  • the control unit 33 turns off the N-channel MOSFET 32.
  • the P-channel MOSFET 29, which is the main switch, is also turned off.
  • the switch signal SW output from the control unit 33 of the current limiting circuit 27 changes from high level to low level. This turns off the N-channel MOSFET 32. Along with this, the voltage between the gate and source terminals of the P-channel MOSFET 29 becomes 0 V, so that the P-channel MOSFET 29 changes from on to off. Since the P-channel MOSFET 29 is turned off, the only path between the power supply node 25 and the gate power supply 5 is the path that passes through the current limiting resistor 28, and the current ICC supplied to the gate drive IC 24 is limited.
  • the pulse transformer Since the current is supplied from the power supply node 25 of the gate drive IC 24 to the first drive circuit 9 and the second drive circuit 10, the pulse transformer is supplied from the output terminals o1 and o2 of the gate drive IC 24 due to the limitation of the supply current ICC.
  • the drive current IL1 supplied to the primary winding of 8 is also limited.
  • the gate current IG (IL2) supplied from the secondary winding 8s of the pulse transformer 8 to the gate terminal of the semiconductor element 1 via the gate resistor 12 is also limited in the same manner as when the gate resistor 12 is increased. To.
  • the control circuit 6 After a certain time delay of td, the control circuit 6 inverts the first switching signal Vs1 from the high level to the low level, and inverts the second switching signal Vs2 from the low level to the high level.
  • the gate voltage Vg on the secondary side of the pulse transformer 8 changes from a high level to a low level, but since the power supply to the gate drive IC 24 is restricted by the current limiting resistor 28, the secondary side of the pulse transformer The gate current Ig (IL2) of is also limited.
  • the semiconductor element 1 is gradually turned off, so that the surge voltage Vsurge of the drain-source voltage of the semiconductor element 1 can be suppressed.
  • the switch 21 of the current limiting circuit 11 of the gate drive circuit according to the first embodiment requires a dedicated insulated power supply 36, so that the circuit scale of the current limiting circuit 11 becomes large. Therefore, there is a problem that the cost is high and it is difficult to miniaturize.
  • the means that functions as the switch of the current limiting circuit 27 is composed of one P-channel MOSFET 29.
  • a dedicated insulated gate power supply is not required to turn the P-channel IGBT 29 on and off.
  • FIG. 8 is a diagram showing the configuration of the gate drive circuit 4 according to the third embodiment.
  • the difference between the gate drive circuit 4 of the third embodiment and the gate drive circuit 4 of the second embodiment is as follows.
  • the gate drive circuit 4 of the third embodiment includes a control circuit 106 instead of the control circuit 6.
  • the gate drive IC 24 of the gate drive circuit 4 of the third embodiment includes a level shifter 170 instead of the level shifter 160.
  • the level shifter 170 includes a buffer 171, an inverter 172, and a voltage control circuit 34.
  • the buffer 171 converts the level (0 to 3.3 V or 5.0 V) of the control signal Vs output from the control circuit 106 into a drive voltage level (0 to Vcc), and first to the first drive circuit 9.
  • Switching signal Vs1 is output.
  • the inverter 172 inverts the control signal Vs output from the control circuit 6 and converts the inverted signal level (0 to 3.3 V or 5.0 V) into a drive voltage level (0 to Vcc).
  • the second switching signal Vs2 is output to the drive circuit 10 of 2.
  • the buffer 171 and the inverter 172 operate so as to secure a dead time between the first switching signal Vs1 output from the buffer 171 and the second switching signal Vs2 output from the inverter 172.
  • the gate drive IC 24 is an off-the-shelf high-performance gate drive IC and has a low voltage detection function.
  • the output of the gate drive IC 24 is fixed or set to high impedance. This makes it possible to prevent the driven semiconductor element from being accidentally turned on.
  • the voltage control circuit 34 detects a drop in the voltage Vdd of the power supply node 25.
  • the voltage control circuit 34 detects that the voltage Vdd of the power supply node 25 has dropped to the specified value Vth_U, the output voltage Vo1 of the first drive circuit 9 is at a high level and the output voltage of the second drive circuit 10 is high.
  • Vo2 is at a low level, the output voltage Vo1 of the first drive circuit 9 is changed to a low level, and the output voltage Vo2 of the second drive circuit 10 is changed to a high level.
  • the output voltage Vo1 of the first drive circuit 9 is at a low level and the output voltage Vo2 of the second drive circuit 10 is low.
  • the output voltage Vo1 of the first drive circuit 9 is maintained at a low level, and the output voltage Vo2 of the second drive circuit 10 is maintained at a high level.
  • the voltage control circuit 34 includes a comparator and a switch.
  • the comparator compares the voltage Vdd applied to the power supply node 25 with the specified value Vth_U.
  • Vdd ⁇ Vth_U the switch connects the control signal Vs from the control circuit 106 to the input terminal in the level shifter 170.
  • Vdd ⁇ Vth_U the switch connects the input terminal in the level shifter 170 to the power supply voltage (3.3V or 5.0V).
  • the input to the buffer 171 and the input to the inverter 172 can be changed to a high level.
  • the current limiting circuit 27 of the third embodiment is the same as that described in the second embodiment except for the control unit 33.
  • the control unit 33 lowers the switch signal SW by the specified time tsw.
  • FIG. 9 is a timing chart when a short-circuit current or an overcurrent flows through the semiconductor element 1 in the third embodiment.
  • the supply voltage to the gate drive IC 24 decreases, but since the current is supplied from the bypass capacitor 138, the voltage Vdd of the power supply node 25 of the gate drive IC 24 does not decrease immediately, and the bypass capacitor 138 is static.
  • the time constant ⁇ which is determined by the capacitance and the impedance of the power supply node 25 of the gate drive IC 24, gradually decreases.
  • the voltage control circuit 34 While the switch signal SW from the control unit 33 of the current limiting circuit 27 is off, the voltage Vdd of the power supply node 25 of the gate drive IC 24 continues to decrease due to the current limiting resistor 28. When the voltage Vdd becomes equal to or less than the specified value Vth_U, the voltage control circuit 34 operates. The voltage control circuit 34 fixes the output voltage Vo1 of the gate drive IC 24 to a low level and the output voltage Vo2 to a high level.
  • the output terminals o1 and o2 of the gate drive IC 24 become high impedance.
  • a positive voltage is generated at the winding start s2 of the secondary winding 8s of the pulse transformer 8 due to the counter electromotive force generated by the exciting energy of the pulse transformer 8.
  • the semiconductor element 1 may be erroneously turned on and a short-circuit current may flow, causing the semiconductor element 1 to fail.
  • the specified time tsw is set so that the voltage Vdd of the power supply node 25 does not fall below the specified value Vth_U after the lapse of the specified time tsw.
  • the P channel MOSFET 29 is turned on before the voltage Vdd of the power node 25 of the gate drive IC 24 becomes equal to or less than the specified value Vth_U. This makes it possible to prevent the voltage control circuit 34 from operating.
  • control circuit 106 inverts the level of the first switching signal Vs1 and the level of the second switching signal Vs2 by inverting the level of the control signal Vs before the predetermined time tsw elapses.
  • the short-circuit current can be cut off while limiting the gate current of the semiconductor element 1 without operating the voltage control circuit 34.
  • the surge voltage Vsurge generated when the short-circuit current is cut off can be reduced, and the short-circuit current can be safely cut off without damaging the semiconductor element 1.
  • the gate drive circuit according to the third embodiment not only can the gate drive IC having a low voltage detection function be used, but also the mounting space can be made smaller than when the drive circuit and the level shifter are composed of discrete parts. Further, since the control signal for controlling the gate drive IC is only Vs, the number of control signals can be halved as compared with the first and second embodiments. As a result, for example, a microcomputer or FPGA (Field-Programmable Gate Array) having a small number of output ports can be adopted as the control circuit.
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

第1の駆動回路(9)は、パルストランス(8)の1次巻線の第1端に接続される。第2の駆動回路(10)は、パルストランス(8)の1次巻線の第2端に接続される。電圧クランプ部(81)は、パルストランス(8)の2次巻線から出力された電圧が負のときに、半導体素子(1)の電圧を規定の電圧にクランプする。電流検出回路(15)は、半導体素子(1)に流れる電流を検出して、検出信号を出力する。制御回路(6)は、検出信号に基づいて、第1の駆動回路(9)および第2の駆動回路(10)を制御する。電流制限回路(11)は、検出信号に基づいて、パルストランス(8)の1次巻線に流れる電流を制限する。

Description

ゲート駆動回路および電力変換装置
 本開示は、ゲート駆動回路および電力変換装置に関する。
 電力変換器において大電流が流れる主回路に使われるIGBT、またはMOSFETなどの半導体素子を高速に駆動するゲート駆動回路の駆動方式の例として、特許文献1に記載されるようなパルストランスを使った方式が知られている。
 特許文献1に記載されるパルストランスを使ったゲート駆動回路は、パルストランス2次側に接続された前段のMOSFETに流れるドレイン電流が閾値を超えたときに、前段のMOSFETを導通させることによって、主回路に使われるMOSFETをオフする。これによって、主回路の短絡を保護している。
 特許文献1に記載されるパルストランスを使った絶縁型ゲート駆動回路では、パルストランスの1次巻線に正の駆動信号が印加されると、パルストランスの2次巻線にパルストランスの巻き数比に比例した絶縁された正の駆動信号が発生する。これによって、半導体スイッチである主回路に使われるMOSFETのゲートとソースとの間に正の駆動信号が印加されて、主回路に使われるMOSFETがオンする。パルストランスの1次巻線に負の駆動信号を印加されると、パルストランスの2次巻線に、パルストランスの巻き数比に比例した絶縁された負の駆動信号が発生する。これによって、パルストランス2次側の前段のMOSFETがオンする。その結果、主回路に使われるMOSFETのゲート電圧が0Vに変化することによって、主回路のMOSFETがオフする。
特開昭62-11916号公報
 しかしながら、特許文献1に記載されるゲート駆動回路では、主回路に使われるMOSFETのゲート端子に印加されるゲート電圧が0~VG[V]である。よって、主回路に使われるMOSFETが高周波大電流をスイッチングする際に、ノイズによって誤ってオンしやすいという問題がある。
 特許文献1のゲート駆動回路において、ノイズによって誤ってオンするのを防止するために、パルストランス2次側の付随回路を省き、パルストランス2次巻線を直接、ゲート抵抗を介して主回路に使われるMOSFETのゲート端子に接続することによって、正負のゲート電圧±VGを印加する方法が考えられる。
 しかしながら、半導体スイッチが例えばSiC_MOSFETの場合、SiC_MOSFETは負電圧のゲート耐電圧が低いため、ゲート電圧値が正負で等しくなる従来のパルストランス方式のゲート駆動回路では、負のバイアスが印加されてSiC_MOSFETを駆動することができない。
 負のバイアスのゲート電圧を低くしてSiC_MOSFETを駆動するには、ゲート信号をフォトカプラまたはデジタルアイソレータによって、主回路に使われるMOSFETと制御回路とを絶縁して、正負で電圧値を変えた絶縁ゲート電源をゲート駆動回路毎に供給する必要がある。しかし、ゲート駆動回路が複雑化するので、小型化が難しい上にコストが高くなるという問題がある。
 特許文献1の短絡保護回路は、主回路に使われるMOSFETに過電流が流れて、主回路に使われるMOSFETのオン抵抗RDS(ON)によって、ドレイン-ソース電圧VDSが上昇する。これによって、ツェナーダイオードが導通している期間に、主回路に使われるMOSFETがオフして過電流を遮断する。過電流が遮断されてドレイン-ソース電圧VDSが低下すると、主回路に使われるMOSFETは再び導通状態(オン)になる。よって、過電流の原因が取り除かれない限り、主回路に使われるMOSFETがオフする状態が繰り返される。その結果、主回路に使われるMOSFETの損失増大、および発熱による故障といった2次故障の恐れがある。
 また、ツェナーダイオードの温度特性によって、ツェナー電圧が変動するため、過電流の検出レベルも変動する。ツェナーダイオードの温度特性を考慮し、過電流の検出レベルを低めに設定しても、ツェナーダイオードの温度特性の変動幅が大きい場合は、MOSFETの短絡耐量を満足できない恐れがある。特に半導体スイッチとしてSiC_MOSFETを用いる場合に、短絡耐量を満足できない恐れがある。
 SiC_MOSFETは、オンしたときのドレイン-ソース間の抵抗値であるオン抵抗RDS(ON)が低いため、過電流によるドレイン-ソース間の電圧VDSの上昇も低い。そのため、外部ノイズによって短絡保護回路が誤動作する問題がある。
 SiC_MOSFETは、オン抵抗RDS(ON)が低いため、SiC_MOSFETに流れる短絡電流の変化量(dI/dt)も大きい。よって、特許文献1に記載される短絡保護回路では、SiC_MOSFETをオフすると同時に寄生インダクタンスによる逆起電圧がSiC_MOSFETのドレイン-ソース耐電圧を超えてしまい、SiC_MOSFETが故障する恐れがある。
 それゆえに、本開示の目的は、ゲート耐電圧の定格値が正負で異なる半導体素子を駆動できるとともに、半導体素子に流れる過電流を安全に遮断して短絡を保護することができるパルストランス方式のゲート駆動回路および電力変換装置を提供することである。
 本開示のゲート駆動回路は、パルストランスと、パルストランスの1次巻線の第1端に接続される第1の駆動回路と、パルストランスの1次巻線の第2端に接続される第2の駆動回路と、パルストランスの2次巻線から出力された電圧が負のときに、半導体素子の電圧を規定の電圧にクランプする電圧クランプ部と、半導体素子に流れる電流を検出して、電流の大きさを表わす検出信号を出力する電流検出回路と、検出信号に基づいて、第1の駆動回路および第2の駆動回路を制御する制御回路と、検出信号に基づいて、パルストランスの1次巻線に流れる電流を制限する電流制限回路とを備える。
 本開示の電力変換装置は、複数の半導体素子を含む半導体モジュールと、各々が、半導体モジュール内の対応する半導体素子を駆動する複数の上記記載のゲート駆動回路と、複数のゲート駆動回路を制御する制御回路とを備える。
 本発明によれば、ゲート耐電圧の定格値が正負で異なる半導体素子を駆動できるとともに、半導体素子に流れる過電流を安全に遮断して短絡を保護することができる。
実施の形態に係る電力変換装置の構成を表わす図である。 実施の形態1のゲート駆動回路4の構成を表わす図である。 クランプ回路14の詳細図である。 スイッチ21および制御部22の構成を表わす図である。 実施の形態1に係るゲート駆動回路のタイミングチャートである。 実施の形態1および実施の形態2における短絡発生時のゲート駆動回路のタイミングチャートである。 実施の形態2のゲート駆動回路4の構成を表わす図である。 実施の形態3に係るゲート駆動回路4の構成を表わす図である。 実施の形態3において、短絡電流または過電流が半導体素子1に流れる場合のタイミングチャートである。
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態に係る電力変換装置の構成を表わす図である。
 この電力変換装置は、直流電圧を単相の高周波交流電圧に変換するインバータ回路である。この電力変換装置は、半導体モジュール7と、直流電源2と、平滑コンデンサ3と、ゲート駆動回路4a~4dと、ゲート電源5と、制御回路6とを備える。
 直流電源2は、直流電圧を供給する。
 平滑コンデンサ3は、直流電圧を安定化させる。
 半導体モジュール7は、フルブリッジインバータ回路を構成する。半導体モジュール7は、回路ブロック20Aと、回路ブロック20Bとを備える。回路ブロック20Aは、上アームの半導体素子1aと、下アームの半導体素子1bとを備える。回路ブロック20Bは、上アームの半導体素子1cと、下アームの半導体素子1dとを備える。以下の説明では、半導体素子1a~1dを総称して、半導体素子1と記載することもある。
 4個の半導体素子1a,1b,1c,1dの各々は、NチャネルMOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)である。4つのNチャネルMOSFETは、たとえば、SiC(Silicon Carbide)_MOSFETである。あるいは、4つのNチャネルMOSFETは、SiからなるMOSFETまたはIGBTであってもよい。
 上アームの半導体素子1a,1cのドレイン端子は、直流電源2の正端子および平滑コンデンサ3の一端に接続される。上アームの半導体素子1a,1cのソース端子は、下アームの半導体素子1b,1dのドレイン端子に接続される。下アームの半導体素子1b,1dのソース端子は、直流電源2の負端子および平滑コンデンサ3の他端に接続される。
 直流電源2と、平滑コンデンサ3と、直列接続された半導体素子1a、1bと、直列接続された半導体素子1c、1dとは並列に接続されている。
 半導体素子1aのソース端子と半導体素子1bのドレイン端子との間のノードND1と、半導体素子1cのソース端子と半導体素子1dのドレイン端子との間のノードND2とから、高周波交流電圧が出力される。
 ゲート駆動回路4a,4b,4c,4dは、半導体素子1a,1b,1c,1dを駆動する。以下の説明では、ゲート駆動回路4a,4b,4c,4dを総称して、ゲート駆動回路4と記載することもある。
 ゲート電源5は、ゲート駆動回路4a,4b,4c,4dに電力を供給する。
 制御回路6は、スイッチング信号によってゲート駆動回路4a,4b,4c,4dを制御する。
 図2は、実施の形態1のゲート駆動回路4の構成を表わす図である。
 ゲート駆動回路4は、パルストランス8と、電流制限回路11と、第1の駆動回路9と、第2の駆動回路10と、コンデンサ38と、ゲート抵抗12と、半導体素子1と、電圧クランプ部81と、電流検出回路15と、を備える。電圧クランプ部81は、クランプ回路14と、バイパスダイオード20とを備える。ゲート駆動回路4は、パルストランス8を使った絶縁型のゲート駆動回路である。
 パルストランス8は、少なくとも一つの1次巻線8fと少なくとも一つの2次巻線8sとを有する。1次巻線8fと2次巻線8sとは電気的に絶縁されている。1次巻線8fの巻数がn1である。2次巻線8sの巻数がn2である。
 1次巻線8fの巻始めs1(第1端)に第1の駆動回路9が接続される。1次巻線8fの巻終りe1(第2端)に第2の駆動回路10が接続される。
 第1の駆動回路9は、ゲート電源5とグランドとの間に直列に接続されたNPNトランジスタ151とPNPトランジスタ152とによって構成されるインバータである。第2の駆動回路10は、ゲート電源5とグランドとの間に直列に接続されたNPNトランジスタ153とPNPトランジスタ154とによって構成されるインバータである。第1の駆動回路9および第2の駆動回路10は、ゲート電源5から電力供給を受ける。
 制御回路6は、第1の駆動回路9の入力へ第1のスイッチング信号Vs1を供給する。制御回路6は、第2の駆動回路10の入力へ第2のスイッチング信号Vs2を供給する。
 第1の駆動回路9は、制御回路6からの第1のスイッチング信号Vs1に従って、パルストランス8に電流を供給する。第2の駆動回路10は、制御回路6からの第2のスイッチング信号Vs2に従って、パルストランス8に電流を供給する。
 電流制限回路11は、並列接続された電流制限抵抗23およびスイッチ21を備える。電流制限回路11は、さらに、スイッチ21のオン/オフを制御する制御部22を備える。パルストランス8の1次巻線8fの巻終りe1と第2の駆動回路10との間の配線に並列接続された電流制限抵抗23およびスイッチ21が配置される。電流制限回路11は、電流検出信号Isenに基づいて、パルストランス8の1次巻線8fに流れる電流を制限する。具体的には、実施の形態では、電流制限回路11は、電流検出信号Isenに基づいて、パルストランス8の1次巻線8fの巻終りe1と第2の駆動回路10との間に流れる電流を制限することによって、パルストランス8の1次巻線8fに流れる電流を制限する。
 パルストランス8の1次巻線8fの巻始めs1と第1の駆動回路9との間の配線にコンデンサ38が配置されている。
 パルストランス8の2次巻線8sの巻始めs2にはゲート抵抗12の一端が接続されている。ゲート抵抗12の他端は、半導体素子1のゲート端子に接続されている。
 パルストランス8の2次巻線8sの巻終りe2と、ノードN1との間の配線には、並列接続されたクランプ回路14およびバイパスダイオード20が配置される。
 半導体素子1のソース端子とノードN1との間には、電流検出回路15が接続されている。電流検出回路15は、半導体素子1のソース端子とノードN1との間を流れる電流の大きさを検出して、検出した電流の大きさを表わす電流検出信号Isenを出力する。
 電流検出回路15から出力される電流検出信号Isenは、電流制限回路11の制御部22と制御回路6に入力される。実施の形態1に関わるゲート駆動回路4では、電流検出回路15として、DCCT(Direct Current Current Transformer)が用いられる。制御回路6は、第1の駆動回路9および第2の駆動回路10を制御する。
 電圧クランプ部81は、パルストランス8の2次巻線8sから出力された電圧が負のときに、半導体素子1の電圧を規定の電圧にクランプする。
 図3は、クランプ回路14の詳細図である。
 パルストランス8の2次巻線8sの巻終りe2とノードN1との間にクランプ回路14およびバイパスダイオード20が接続される。
 クランプ回路14は、ツェナーダイオード16、ダイオード17、NPNトランジスタ18、および抵抗19を備える。
 ツェナーダイオード16のアノード端子には、抵抗19の一端とNPNトランジスタ18のベース端子とが接続されている。抵抗19の他端は、ノードN1に接続されている。
 NPNトランジスタ18のコレクタ端子は、ツェナーダイオード16のカソード端子に接続されている。NPNトランジスタ18のエミッタ端子は、ノードN1に接続されている。
 ツェナーダイオード16のカソード端子に、ダイオード17のカソード端子が接続されている。ダイオード17のアノード端子はパルストランス8の2次巻線8sの巻終りe2に接続される。
 バイパスダイオード20のカソード端子が、パルストランス8の2次巻線8sの巻終りe2に接続されている。バイパスダイオード20のアノード端子が、ノードN1に接続されている。
 再び、図2を参照して、電流制限回路11のスイッチ21は、定常時はオンである。電流検出回路15からの絶縁された電流検出信号Isenの大きさが閾値Vthを超えると、制御部22は、スイッチ信号SWをロウレベルにすることによって、スイッチ21をオフにする。電流制限抵抗23に並列されたスイッチ21は一般的に数μs以下のMOSFETの短絡耐量時間よりも速い応答性を要する。そのため、スイッチ21は機械式リレーではなく、高速スイッチが可能なMOSFETが使用される。
 図4は、スイッチ21および制御部22の構成を表わす図である。
 スイッチ21は、NチャネルMOSFET35aと35bとによって構成される。制御部22は、絶縁電源36と、ゲート駆動回路37とを備える。
 スイッチ21には、駆動電流IL1が双方向に流れる。MOSFETは、寄生のボディダイオードを有するので、双方向に流れる電流をスイッチング制御するために、2つのNチャネルMOSFET35a,35bが設けられる。NチャネルMOSFET35aのソース端子とNチャネルMOSFET35bのソース端子とが接続される。
 2つのNチャネルMOSFET35a,35bを駆動するには、ソース端子を基準に2つのNチャネルMOSFET35a,35bのゲート端子にゲート閾値を超えるゲート電圧を印加する必要がある。2つのNチャネルMOSFET35a,35bのソース端子はGNDから絶縁されているため、2つのNチャネルMOSFET35a,35bのソース端子を基準電位とした専用の絶縁電源36が設けられる。
 ゲート駆動回路37は、電流検出信号Isenの大きさが閾値Vthを超えるときに、NチャネルMOSFET35a,35bを駆動する。
 図5は、実施の形態1に係るゲート駆動回路のタイミングチャートである。
 制御回路6は、第1の駆動回路9へ第1のスイッチング信号Vs1を出力する。制御回路6は、第2の駆動回路10へ第2のスイッチング信号Vs2を出力する。VS1とVS2とは相補的である。すなわち、第1のスイッチング信号Vs1の位相と第2のスイッチング信号Vs2の位相とは、互いに180度ずれている。ただし、第1のスイッチング信号Vs1と第2のスイッチング信号Vs2の論理が入れ替わる瞬間に、第1のスイッチング信号Vs1と第2のスイッチング信号Vs2とが同時にオンしないように、デッドタイムtdeadが設けられている。
 第1のスイッチング信号Vs1がオン、かつ第2のスイッチング信号Vs2がオフのときに、パルストランス8の1次巻線8fの巻始めs1に接続された第1の駆動回路9から、パルストランス8の1次巻線8fの巻終りe1に接続された第2の駆動回路10へパルストランス8の駆動電流IL1が流れる。
 第1のスイッチング信号Vs1がオフ、かつ第2のスイッチング信号Vs2がオンのときに、パルストランス8の1次巻線8fの巻終りe1に接続された第2の駆動回路10から、パルストランス8の1次巻線8fの巻始めs1に接続された第1の駆動回路9へパルストランスの駆動電流IL1が流れる。
 パルストランス8の1次巻線8fの巻始めs1と第1の駆動回路9との間に配置されたコンデンサ38は、パルストランス8の偏磁防止用のコンデンサである。
 例えば、電力変換装置の起動開始時、電力変換装置の起動終わりの過渡時、ゲート電源5の立上がり時、ゲート電源5の立下り時、または制御回路6のノイズ誤動作時において、第1の駆動回路9に入力される第1のスイッチング信号Vs1と第2の駆動回路10に入力される第2のスイッチング信号Vs2の動作が不安定になる。第1のスイッチング信号Vs1がハイレベルとなる時間tonと、第2のスイッチング信号Vs2がハイレベルとなる時間toffとがアンバランスになると、駆動電流IL1の大きさが正のときと負のときとで同じにならない。その結果、パルストランス8のコア材の磁束の変化量が正負で偏って偏磁する。
 正負の磁束の変化量の差が積み重なり、パルストランス8のコア材の飽和磁束密度を超えるとパルストランス8の1次巻線8f側のインダクタンス値が急速に低下して、パルストランス8が短絡状態になる。コンデンサ38を介してパルストランス8を駆動することによって、駆動電流IL1の大きさが正のときと負のときとで同じになるようにすることができる。これによって、パルストランス8が偏磁するのを防止することができる。
 本実施の形態では、コンデンサ38はパルストランス8の1次巻線8fの巻始めs1と第1の駆動回路9との間に配置したが、パルストランス8の1次巻線8fの巻終りe1と第2の駆動回路10との間に配置しても、同様な効果が得られる。
 パルストランスの1次巻線8fの巻始めs1の電圧をVL1とする。
 第1のスイッチング信号Vs1がオン、かつ第2のスイッチング信号Vs2がオフの時、パルストランス8の2次巻線8sの巻始めs2に、次のような正の電圧+VL2が発生する。
 +VL2=VL1×(n2/n1)・・・(1)
 +VL2はゲート抵抗12を介して、半導体素子1のゲート端子に印加される。これによって、バイパスダイオード20が導通する。このとき、パルストランス8の2次巻線8sの巻始めs2から順に、ゲート抵抗12、半導体素子1、クランプ回路14、パルストランス8の巻終りe2への経路で閉回路が形成される。
 第1のスイッチング信号Vs1がオフ、かつ第2のスイッチング信号Vs2がオンの時、パルストランス8の2次巻線8sの巻始めs2に、次のような負の電圧-VL2が発生する。
 -VL2=-VL1×(n2/n1)・・・(2)
 パルストランス8の2次巻線8sの巻始めs2に負の電圧-VL2が発生すると、パルストランス8の2次巻線8sの巻終りe2から順に、クランプ回路14、半導体素子1、ゲート抵抗12、パルストランス8の巻始めs2への経路で閉回路が形成される。
 クランプ回路14では、ダイオード17が導通する。NPNトランジスタ18のベース端子の電圧Vbは、ダイオード17の順方向電圧Vfとツェナーダイオード16のツェナー電圧Vzとによって以下の式で表される。
 Vb=VL2-Vf-Vz・・・(3)
 NPNトランジスタ18のエミッタ電圧Veは、NPNトランジスタ18のベース電圧Vbからベースーエミッタ電圧Vbe分低下した値である。クランプ電圧VclpとNPNトランジスタ18のエミッタ電圧Veとは等しい。
 Vclp=VL2-Vf-Vz-Vbe・・・(4)
 図5のタイミングチャートに示すように、半導体素子1のゲート電圧Vgは、負電圧のときに、クランプ回路14が出力するクランプ電圧Vclpにクランプされる。すなわち、図5に示すように、半導体素子1のゲート電圧Vgはハイレベルのときに、ゲート電圧Vgは、第1の値Vxである。半導体素子1のゲート電圧Vgはロウレベルのときに、ゲート電圧Vgは、規定の電圧(Vclp)である。規定の電圧Vclpの大きさ(絶対値)は、第1の値Vxの大きさ(絶対値)よりも小さい。
 クランプ電圧Vclpはツェナーダイオード16のツェナー電圧Vzの大きさを変更することによって、任意の大きさに設定できる。実施の形態1に係るゲート駆動回路によれば、半導体素子1として、ゲート電圧の定格値が正負で異なる半導体素子、例えばSiC_MOSFETを定格値のゲート電圧で駆動することができる。
 ゲート電圧Vgが負電圧のときに、ゲート電圧Vgは、クランプ回路14が出力するクランプ電圧(規定の電圧)Vclpにクランプされる。これによって、短絡電流遮断時に半導体素子1は、より緩やかにオフするので、半導体素子1のドレイン-ソース間にサージ電圧Vsurgeが発生するのを抑制することができる。
 特許文献1に記載されるような一般的なパルストランス方式のゲート駆動回路では、ゲート電圧が0~Vgで変化するため、SiC_MOSFETのように正負でゲート耐電圧の定格値が異なる半導体素子を駆動することはできる。しかしながら、ゲート電圧を負バイアスできないため、高周波大電流をスイッチングする場合に、ゲート電圧にノイズが重畳して誤ってオンする恐れがある。
 特許文献1に記載されるゲート駆動回路のパルストランス2次側の付随回路を省き、パルストランスの2次巻線から直接、ゲート抵抗を介して主回路のMOSFETのゲート端子に接続することによって、正負のゲート電圧Vgを印加できる。しかしながら、ゲート電圧の定格値が正負で異なるSiC_MOSFETでは、このゲート電圧Vgがゲート耐電圧を超えて、SiC_MOSFETが故障する恐れがある。
 フルブリッジインバータ回路の出力端子が事故により短絡した場合、またはMOSFETのゲート信号に外部ノイズが重畳し誤動作するなどした場合に、MOSFETに短絡電流、または過電流が流れる。本実施の形態では、これらの問題を回避できる。
 図6は、実施の形態1および実施の形態2における短絡発生時のゲート駆動回路のタイミングチャートである。
 半導体素子1に過電流が流れて、電流検出回路15から出力される電流検出信号Isenの大きさが閾値Vthを超えると、制御部22は、スイッチ信号SWをロウレベルにすることによって、スイッチ21をオフにする。その結果、電流制限抵抗23がパルストランス8の1次巻線8fの巻終りe1に接続されることによって、パルストランス8の1次巻線8fに流れる駆動電流IL1が制限される。これに伴って、パルストランス8の2次巻線8sら出力される駆動電流IL2も制限されるため、ゲート抵抗12が大きくなったのと等価状態になる。
 一定時間tdの後、制御回路6は、第1のスイッチング信号Vs1をハイレベルからロウレベルに反転させ、第2のスイッチング信号Vs2をロウレベルからハイレベルに反転させる。これと同時に、パルストランス8の2次側のゲート電圧Vgがハイレベルからロウレベルに変化するが、パルストランス8の2次巻線8sから出力される電流Ig(IL2)が電流制限抵抗23によって制限されているので、半導体素子1は緩やかにオフし、半導体素子1のドレイン-ソース間にサージ電圧Vsurgeが発生するのを抑制することができる。
 SiC_MOSFETはオン抵抗が低いため、短絡電流が流れると、電流変化dI/dtが大きい。また、SiC_MOSFETは、電流あたりのチップサイズがSi_MOSFETよりも小さいため短絡耐量が低い。したがって、半導体素子1としてSiC_MOSFETを用いる場合、Si_MOSFETを用いる場合よりも高速に短絡電流を遮断しなければならない。
 短絡電流を検出したときに、SiC_MOSFETのゲート信号をハイレベルからロウレベルに変えて、急に短絡電流を遮断すると、SiC_MOSFETのドレイン端およびソース端子に接続された配線、およびプリント基板のパターンの寄生インダクタンスによってサージ電圧Vsurgeが発生する。
 インダクタンス値をLS、短絡電流の通電時間をTS、遮断時の短絡電流値をISとするとサージ電圧Vsurgeは、以下の式で表される。
 Vsurge=(LS×IS)/TS・・・(5)
 特許文献1に記載の短絡保護回路は、短絡電流を緩やかに遮断できないため、サージ電圧Vsurgeが高く、SiC_MOSFETのドレイン_ソース電圧の定格値を超えて故障する恐れがある。
 実施の形態1に係るゲート駆動回路の短絡保護回路は、パルストランス8の1次巻線8fに流れる駆動電流IL1を電流制限抵抗23で制限してから、半導体素子1をオフする。これによって、パルストランス8の2次巻線8sに流れる駆動電流IL2が、ゲート抵抗12を大きくしたのと同じように制限される。これによって、半導体素子1が緩やかにオフするので、サージ電圧Vsurgeの発生を抑えることができる。
 以上のように、本実施の形態に係るゲート駆動回路は、パルストランス8によって高電圧から絶縁された、パルストランス8の1次巻線8fの低電圧回路側に電流制限回路11を備える。これによって、ノイズによる電流制限回路の誤動作が発生しにくいようにすることができる。また、パルストランス8の2次巻線8s側の回路部品点数が少なくすることができる。さらに、主回路のMOSFETに接続される主回路配線のパターン幅が広くなるように設計できる。その結果、大電流が流れる主回路配線の寄生インダクタンスを低減できるので、短絡電流遮断時のサージ電圧が抑制され、サージ電圧VsurgeによってMOSFETが故障するリスクを軽減できる。
 実施の形態2.
 図7は、実施の形態2のゲート駆動回路4の構成を表わす図である。実施の形態2のゲート駆動回路4が実施の形態1のゲート駆動回路4と相違する点は、以下である。実施の形態2のゲート駆動回路4は、電流制限回路11に代えて、電流制限回路27を備える。実施の形態2のゲート駆動回路4は、ゲート駆動IC24を備える。
 ゲート駆動IC24は、レベルシフタ160と、第1の駆動回路9と、第2の駆動回路10と、出力端子o1、o2とを備える。
 レベルシフタ160は、バッファ161と、バッファ162とを備える。バッファ161は、制御回路6から出力される第1のスイッチング信号Vs1のレベル(0~3.3または5.0V)を駆動電圧レベル(0~Vcc)に変換して、第1の駆動回路9へ出力する。バッファ162は、制御回路6から出力される第2のスイッチング信号Vs2のレベル(0~3.3または5.0V)を駆動電圧レベル(0~Vcc)に変換して、第2の駆動回路10へ出力する。
 制御回路6からの第1のスイッチング信号Vs1によって出力端子o1から出力される電圧Vo1のレベルが制御される。制御回路6からの第2のスイッチング信号Vs2によって出力端子o2から出力される電圧Vo2のレベルが制御される。
 ゲート駆動IC24の出力端子o1は、コンデンサ38を介してパルストランス8の1次巻線8fの巻始めs1と接続される。ゲート駆動IC24の出力端子o2は、パルストランス8の1次巻線8fの巻終りe1と接続される。
 電流制限回路27は、電流検出信号Isenの大きさに基づいて、第1の駆動回路9および第2の駆動回路10へ供給する電流ICCを制限する。
 電流制限回路27は、電流制限抵抗28と、主スイッチであるPチャネルMOSFET29と、抵抗30と、ゲート抵抗31と、NチャネルMOSFET32と、抵抗39と、制御部33とを備える。
 第1の駆動回路9および第2の駆動回路10の電源ノード25とゲート電源5との間に、電流制限抵抗28と、PチャネルMOSFET29とが並列に接続される。
 PチャネルMOSFET29のソース端子は、ゲート電源5に接続される。PチャネルMOSFET29のドレイン端子は、電源ノード25に接続される。PチャネルMOSFET29のゲート端子とソース端子との間には、抵抗30が接続される。PチャネルMOSFET29のゲート端子は、ゲート抵抗31の一端と接続されている。
 ゲート抵抗31の他端は、NチャネルMOSFET32のドレイン端子と接続される。NチャネルMOSFET32のソース端子は、GNDと接続される。NチャネルMOSFET32のゲート端子は、抵抗39を介して、制御部33と接続される。
 パルストランス8の2次側の半導体素子1のソース端子に接続された電流検出回路15から出力された電流検出信号Isenは、電流制限回路27の制御部33と制御回路6に入力される。
 電流検出信号Isenが閾値Vthを超えると、制御部33は、NチャネルMOSFET32をオフにする。これによって、主スイッチであるPチャネルMOSFET29もオフする。
 パルストランスの2次側の主回路の半導体素子1に過電流、または短絡電流が流れた場合のゲート駆動回路の短絡保護回路の動作を、実施の形態1で説明した図6を参照して説明する。
 短絡電流によって、電流検出信号Isenの大きさが閾値Vthを超えると、電流制限回路27の制御部33から出力されるスイッチ信号SWがハイレベルからロウレベルに変化する。これによって、NチャネルMOSFET32がオフする。それに伴い、PチャネルMOSFET29のゲート-ソース端子間の電圧が0Vになるので、PチャネルMOSFET29がオンからオフに変化する。PチャネルMOSFET29がオフするので、電源ノード25とゲート電源5との間の経路が、電流制限抵抗28を通過する経路だけとなり、ゲート駆動IC24への供給電流ICCが制限される。
 ゲート駆動IC24の電源ノード25から第1の駆動回路9、および第2の駆動回路10へ電流が供給されるため、供給電流ICCの制限によって、ゲート駆動IC24の出力端子o1、o2から、パルストランス8の1次巻線に供給される駆動電流IL1も制限される。その結果、パルストランス8の2次巻線8sからゲート抵抗12を介して半導体素子1のゲート端子に供給されるゲート電流IG(IL2)も、ゲート抵抗12を大きくしたときと同じように制限される。
 一定時間tdだけ遅れて、制御回路6は、第1のスイッチング信号Vs1をハイレベルからロウレベルに反転させ、第2のスイッチング信号Vs2をロウレベルからハイレベルに反転させる。これと同時に、パルストランス8の2次側のゲート電圧Vgがハイレベルからロウレベルに変化するが、電流制限抵抗28によって、ゲート駆動IC24への電源供給が制限されているので、パルストランス2次側のゲート電流Ig(IL2)も制限される。これによって、半導体素子1は緩やかにオフするので、半導体素子1のドレイン-ソース間電圧のサージ電圧Vsurgeを抑えることができる。
 実施の形態1に係るゲート駆動回路の電流制限回路11のスイッチ21は、上述したように、専用の絶縁電源36を要するため、電流制限回路11の回路規模が大きくなる。よって、コストが高くなるとともに、小型化が難しいという問題がある。
 これに対して、本実施の形態に係るゲート駆動回路によれば、電流制限回路27のスイッチとして機能する手段は、1個のPチャネルMOSFET29によって構成される。PチャネルMOSFET29をオン、オフするのに専用の絶縁ゲート電源を必要としない。その結果、電流制限回路27の回路規模が小さくなり、低コストかつ小型化することができる。
 実施の形態3.
 図8は、実施の形態3に係るゲート駆動回路4の構成を表わす図である。
 実施の形態3のゲート駆動回路4が実施の形態2のゲート駆動回路4と相違する点は、以下である。
 実施の形態3のゲート駆動回路4は、制御回路6に代えて、制御回路106を備える。実施の形態3のゲート駆動回路4のゲート駆動IC24は、レベルシフタ160に代えて、レベルシフタ170を備える。
 レベルシフタ170は、バッファ171と、インバータ172と、電圧制御回路34とを備える。
 バッファ171は、制御回路106から出力される制御信号Vsのレベル(0~3.3Vまたは5.0V)を駆動電圧レベル(0~Vcc)に変換して、第1の駆動回路9へ第1のスイッチング信号Vs1を出力する。インバータ172は、制御回路6から出力される制御信号Vsを反転して、反転した信号のレベル(0~3.3Vまたは5.0V)を駆動電圧レベル(0~Vcc)に変換して、第2の駆動回路10へ第2のスイッチング信号Vs2を出力する。バッファ171から出力される第1のスイッチング信号Vs1とインバータ172とから出力される第2のスイッチング信号Vs2との間のデッドタイムが確保されるように、バッファ171およびインバータ172が動作する。
 ゲート駆動IC24は、既製品の高機能なゲート駆動ICであって、低電圧検知機能を備えている。電圧制御回路34は、ゲート電源の低下、もしくは喪失を検知したら、ゲート駆動IC24の出力を固定、またはハイインピーダンスにする。これによって、駆動される半導体素子が誤ってオンするのを防止することができる。
 電圧制御回路34は、電源ノード25の電圧Vddの低下を検出する。電圧制御回路34は、電源ノード25の電圧Vddが規定値Vth_Uまで低下したことを検出した場合に、第1の駆動回路9の出力電圧Vo1がハイレベル、かつ第2の駆動回路10の出力電圧Vo2がロウレベルのときには、第1の駆動回路9の出力電圧Vo1をロウレベルに変化させ、第2の駆動回路10の出力電圧Vo2をハイレベルに変化させる。電圧制御回路34は、電源ノード25の電圧Vddが規定値Vth_Uまで低下したことを検出した場合に、第1の駆動回路9の出力電圧Vo1がロウレベル、かつ第2の駆動回路10の出力電圧Vo2がハイレベルのときには、第1の駆動回路9の出力電圧Vo1をロウレベルに維持し、第2の駆動回路10の出力電圧Vo2をハイレベルに維持する。
 たとえば、電圧制御回路34は、コンパレータと、スイッチとを備える。コンパレータが、電源ノード25に印加される電圧Vddと規定値Vth_Uとを比較する。Vdd≧Vth_Uのときに、スイッチにより、制御回路106からの制御信号Vsがレベルシフタ170内の入力端子と接続される。Vdd≦Vth_Uのときに、スイッチにより、レベルシフタ170内の入力端子が電源電圧(3.3Vまたは5.0V)に接続される。これによって、バッファ171への入力およびインバータ172への入力をハイレベルに変化させることができる。
 実施の形態3の電流制限回路27は、制御部33を除いて実施の形態2で説明したものと同様である。制御部33は、電流検出信号Isenで表される電流の大きさが閾値Vthを超えると、スイッチ信号SWを規定時間tswだけロウレベルにする。
 図9は、実施の形態3において、短絡電流または過電流が半導体素子1に流れる場合のタイミングチャートである。
 アーム短絡が発生して、半導体素子1に過電流が流れる。電流検出信号Isenが閾値Vthを超えると、電流制限回路27の制御部33は、スイッチ信号SWを規定時間tswだけロウレベルに変化させる。スイッチ信号SWがオフの期間に、電流制限回路27の前段のNチャネルMOSFET32がオフする。それに伴って、主スイッチであるPチャネルMOSFET29がオフする。その結果、ゲート電源5と電源ノード25との間の経路が電流制限抵抗28を通過する経路のみとなる。
 これによって、ゲート駆動IC24への供給電圧は低下するが、バイパスコンデンサ138から、電流が供給されるため、ゲート駆動IC24の電源ノード25の電圧Vddは、直ちには低下せず、バイパスコンデンサ138の静電容量とゲート駆動IC24の電源ノード25のインピーダンスによって決まる時定数τで緩やかに低下する。
 電流制限回路27の制御部33からのスイッチ信号SWがオフの間、ゲート駆動IC24の電源ノード25の電圧Vddが電流制限抵抗28によって低下し続ける。電圧Vddが規定値Vth_U以下となると、電圧制御回路34が動作する。電圧制御回路34は、ゲート駆動IC24の出力電圧Vo1をロウレベルに固定し、かつ出力電圧Vo2をハイレベルに固定する。
 出力電圧Vo1をロウレベル、かつ出力電圧Vo2をハイレベルに固定されることによって、パルストランス8に負方向の電流(-IL1)が流れ続けて、パルストランス8が偏磁して短絡状態になる。その結果、ゲート駆動IC24に過電流が流れて故障にいたる。
 もしくは、出力電圧Vo1をロウレベル、かつ出力電圧Vo2をハイレベルに固定されることによって、ゲート駆動IC24の動作が停止すると、ゲート駆動IC24の出力端子o1、o2がハイインピーダンスになる。その結果、パルストランス8の励磁エネルギーによる逆起電力によって、パルストランス8の2次巻線8sの巻始めs2に正の電圧が発生する。これによって、半導体素子1が誤ってオンして短絡電流が流れ、半導体素子1が故障する恐れがある。
 そこで、本実施の形態では、規定時間tsw経過後に、電源ノード25の電圧Vddが規定値Vth_U以下とならないように、規定時間tswが設定されている。その結果、ゲート駆動IC24の電源ノード25の電圧Vddが、規定値Vth_U以下となる前に、PチャネルMOSFET29をオンする。これによって、電圧制御回路34が動作するのを防止することができる。
 その後、制御回路106は、規定時間tswが経過する前に、制御信号Vsのレベルを反転させることによって、第1のスイッチング信号Vs1のレベルおよび第2のスイッチング信号Vs2のレベルを反転させる。
 本実施の形態では、電圧制御回路34を動作させることなく、半導体素子1のゲート電流を制限しながら、短絡電流を遮断することができる。その結果、短絡電流を遮断する際に発生するサージ電圧Vsurgeを低減し、半導体素子1を故障させることなく、安全に短絡電流を遮断することができる。
 実施の形態3に係るゲート駆動回路においては、低電圧検知機能を有したゲート駆動ICが使えるだけでなく、駆動回路、およびレベルシフタをディスクリート部品で構成した場合よりも、実装スペースを小さくできる。また、ゲート駆動ICを制御する制御信号がVsのみなので、実施の形態1、2と比較して制御信号の数を半分にすることができる。これによって、制御回路として、例えば出力ポート数の少ないマイコンまたはFPGA(Field-Programmable Gate Array)を採用することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1a,1b,1c,1d 半導体素子、2 直流電源、3 平滑コンデンサ、4,4a,4b,4c,4d,37 ゲート駆動回路、5 ゲート電源、6,106 制御回路、7 半導体モジュール、8 パルストランス、8f 1次巻線、8s 2次巻線、9 第1の駆動回路、10 第2の駆動回路、11,27 電流制限回路、12,31 ゲート抵抗、14 クランプ回路、15 電流検出回路、16 ツェナーダイオード、17 ダイオード、18,35a,151,152,153,154 トランジスタ、19,30,39 抵抗、20 バイパスダイオード、20A,20B 回路ブロック、21 スイッチ、22,33 制御部、23,28 電流制限抵抗、24 ゲート駆動IC、25 電源ノード、29,32,35a,35b MOSFET、34 電圧制御回路、36 絶縁電源、38 コンデンサ、81 電圧クランプ部、138 バイパスコンデンサ、160,170 レベルシフタ、161,162,171 バッファ、172 インバータ。

Claims (17)

  1.  パルストランスと、
     前記パルストランスの1次巻線の第1端に接続される第1の駆動回路と、
     前記パルストランスの前記1次巻線の第2端に接続される第2の駆動回路と、
     前記パルストランスの2次巻線から出力された電圧が負のときに、半導体素子の電圧を規定の電圧にクランプする電圧クランプ部と、
     前記半導体素子に流れる電流を検出して、前記電流の大きさを表わす検出信号を出力する電流検出回路と、
     前記検出信号に基づいて、前記第1の駆動回路および前記第2の駆動回路を制御する制御回路と、
     前記検出信号に基づいて、前記パルストランスの前記1次巻線に流れる電流を制限する電流制限回路とを備えた、ゲート駆動回路。
  2.  前記電圧クランプ部は、前記半導体素子のゲート電圧が負のときに、前記半導体素子のゲート電圧を前記規定の電圧にクランプする、請求項1記載のゲート駆動回路。
  3.  前記半導体素子のゲート電圧がハイレベルのときに、前記ゲート電圧は、第1の値であり、
     前記半導体素子のゲート電圧はロウレベルのときに、前記ゲート電圧は、前記規定の電圧であり、
     前記規定の電圧の大きさは、前記第1の値よりも小さい、請求項2記載のゲート駆動回路。
  4.  前記パルストランスの前記2次巻線の第1端は、ゲート抵抗を介して、前記半導体素子のゲート端子と接続され、
     前記電流検出回路は、前記半導体素子のソース端子とノードとの間に配置され、
     前記電圧クランプ部は、前記パルストランスの前記2次巻線の第2端と、前記ノードとの間に配置される、請求項1記載のゲート駆動回路。
  5.  前記電圧クランプ部は、並列接続されたクランプ回路とバイパスダイオードとを含む、請求項4記載のゲート駆動回路。
  6.  前記電流制限回路は、前記検出信号に基づいて、前記パルストランスの前記1次巻線の前記第2端と前記第2の駆動回路との間に流れる電流を制限する、請求項1~5のいずれか1項に記載のゲート駆動回路。
  7.  前記電流制限回路は、
     前記パルストランスの前記1次巻線の前記第2端と前記第2の駆動回路との間に並列に接続された電流制限抵抗およびスイッチと、
     前記検出信号によって表される前記電流の大きさが閾値を超えると、前記スイッチをオフにする制御部とを備える、請求項6記載のゲート駆動回路。
  8.  前記制御回路は、前記第1の駆動回路の入力へ第1のスイッチング信号を供給し、前記第2の駆動回路の入力へ前記第1のスイッチング信号と相補的な第2のスイッチング信号を供給し、
     前記制御回路は、前記スイッチをオフにしてから一定時間後に、前記第1のスイッチング信号のレベルおよび前記第2のスイッチング信号のレベルを反転させる、請求項7記載のゲート駆動回路。
  9.  前記電流制限回路は、前記検出信号に基づいて、前記第1の駆動回路および前記第2の駆動回路に供給する電流を制限する、請求項1~5のいずれか1項に記載のゲート駆動回路。
  10.  前記電流制限回路は、
     前記第1の駆動回路および前記第2の駆動回路の電源ノードと、ゲート電源との間に並列に接続された電流制限抵抗およびPチャネルMOSFETと、
     前記検出信号によって表される前記電流の大きさが閾値を超えると、前記PチャネルMOSFETをオフにする制御部とを備える、請求項9記載のゲート駆動回路。
  11.  前記電流制限回路は、さらに、
     グランドと、前記PチャネルMOSFETのゲートとの間に配置されたNチャネルMOSFETと、
     前記制御部は、前記検出信号によって表される前記電流の大きさが閾値を超えると、前記NチャネルMOSFETをオフにすることによって前記PチャネルMOSFETをオフにする、請求項10記載のゲート駆動回路。
  12.  前記制御回路は、前記第1の駆動回路の入力へ第1のスイッチング信号を供給し、前記第2の駆動回路の入力へ前記第1のスイッチング信号と相補的な第2のスイッチング信号を供給し、
     前記制御回路は、前記PチャネルMOSFETをオフにしてから一定時間後に、前記第1のスイッチング信号のレベルおよび前記第2のスイッチング信号のレベルを反転させる、請求項10または11記載のゲート駆動回路。
  13.  前記電源ノードの電圧が規定値以下となったときに、前記第1の駆動回路の出力電圧がハイレベル、かつ前記第2の駆動回路の出力電圧がロウレベルのときには、前記第1の駆動回路の出力電圧をロウレベルに変化させ、かつ前記第2の駆動回路の出力電圧をハイレベルに変化させる電圧制御回路を備え、
     前記制御部は、前記検出信号によって表される前記電流の大きさが閾値を超えると、前記PチャネルMOSFETを規定時間だけオフにし、
     前記規定時間の経過後に、前記電源ノードの電圧が前記規定値以下とならないように、前記規定時間が設定されている、請求項10または11記載のゲート駆動回路。
  14.  前記電源ノードに接続されたバイパスコンデンサを備える、請求項13記載のゲート駆動回路。
  15.  駆動ICを備え、
     前記駆動ICは、
     前記第1の駆動回路と、
     前記第2の駆動回路と、
     前記電圧制御回路と、
     前記制御回路からの制御信号に従って、前記第1の駆動回路の入力へ第1のスイッチング信号を供給し、前記第2の駆動回路の入力へ前記第1のスイッチング信号と相補的な第2のスイッチング信号を供給するレベルシフタとを含み、
     前記制御回路は、前記規定時間が経過する前に、前記制御信号のレベルを反転させることによって、前記第1のスイッチング信号のレベルおよび前記第2のスイッチング信号のレベルを反転させる、請求項14記載のゲート駆動回路。
  16.  前記パルストランスの前記1次巻線の第1端と前記第1の駆動回路との間、または前記パルストランスの前記1次巻線の第2端と前記第2の駆動回路との間に配置されたコンデンサを備える、請求項1~15のいずれか1項に記載のゲート駆動回路。
  17.  複数の半導体素子を含む半導体モジュールと、
     各々が、前記半導体モジュール内の対応する前記半導体素子を駆動する複数のゲート駆動回路と、
     前記複数のゲート駆動回路を制御する制御回路とを備え、
     前記ゲート駆動回路は、請求項1~16のいずれか1項に記載のゲート駆動回路である、電力変換装置。
PCT/JP2020/041926 2019-12-03 2020-11-10 ゲート駆動回路および電力変換装置 WO2021111823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/767,199 US11929666B2 (en) 2019-12-03 2020-11-10 Gate drive circuit and power conversion device
JP2021562531A JP7459131B2 (ja) 2019-12-03 2020-11-10 ゲート駆動回路および電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218475 2019-12-03
JP2019-218475 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021111823A1 true WO2021111823A1 (ja) 2021-06-10

Family

ID=76221206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041926 WO2021111823A1 (ja) 2019-12-03 2020-11-10 ゲート駆動回路および電力変換装置

Country Status (3)

Country Link
US (1) US11929666B2 (ja)
JP (1) JP7459131B2 (ja)
WO (1) WO2021111823A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929666B2 (en) * 2019-12-03 2024-03-12 Mitsubishi Electric Corporation Gate drive circuit and power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211916A (ja) * 1985-07-10 1987-01-20 Yaskawa Electric Mfg Co Ltd 電力用mos電界効果トランジスタの過電流保護回路
JP2012170244A (ja) * 2011-02-15 2012-09-06 Denso Corp 半導体スイッチング素子の駆動回路
US20170047926A1 (en) * 2015-03-30 2017-02-16 Halliburton Energy Services, Inc. Simplified gate driver for power transistors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182920A (ja) 1982-04-21 1983-10-26 Fuji Electric Co Ltd パワ−スイツチングトランジスタの過電流保護方式
JP4430531B2 (ja) * 2004-12-28 2010-03-10 株式会社日立製作所 双方向絶縁型dc−dcコンバータ
JP4918795B2 (ja) * 2006-03-16 2012-04-18 富士電機株式会社 パワーエレクトロニクス機器
DE112015006097T5 (de) * 2015-02-02 2017-11-30 Mitsubishi Electric Corporation Dc/dc-wandler
CN109478851B (zh) * 2016-07-19 2020-07-21 三菱电机株式会社 Dc/dc转换器
JP2017170244A (ja) 2017-07-07 2017-09-28 株式会社ユニバーサルエンターテインメント 遊技機
CN111446861B (zh) * 2019-01-16 2021-02-26 台达电子企业管理(上海)有限公司 直流/直流变换器及其控制方法
US11929666B2 (en) * 2019-12-03 2024-03-12 Mitsubishi Electric Corporation Gate drive circuit and power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211916A (ja) * 1985-07-10 1987-01-20 Yaskawa Electric Mfg Co Ltd 電力用mos電界効果トランジスタの過電流保護回路
JP2012170244A (ja) * 2011-02-15 2012-09-06 Denso Corp 半導体スイッチング素子の駆動回路
US20170047926A1 (en) * 2015-03-30 2017-02-16 Halliburton Energy Services, Inc. Simplified gate driver for power transistors

Also Published As

Publication number Publication date
US11929666B2 (en) 2024-03-12
JP7459131B2 (ja) 2024-04-01
JPWO2021111823A1 (ja) 2021-06-10
US20220376604A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
KR100627126B1 (ko) 전압 구동형 반도체 소자용 구동 회로
US8040162B2 (en) Switch matrix drive circuit for a power element
US9698654B2 (en) Soft shutdown for isolated drivers
US7176744B2 (en) Semiconductor device
US5200878A (en) Drive circuit for current sense igbt
US9059709B2 (en) Gate drive circuit for transistor
US7750720B2 (en) Circuit arrangement and a method for galvanically separate triggering of a semiconductor switch
JP6742528B2 (ja) 電力変換装置
US6285235B1 (en) Gate control circuit for voltage drive switching element
CN107852159B (zh) 驱动装置
JP6979981B2 (ja) スイッチング電源装置
KR970005567B1 (ko) 단락 보호 회로
JP2006333459A (ja) 故障認識機能を備えた、パワー半導体スイッチを駆動するための回路装置、並びにそれに付属する方法。
EP0677925B1 (en) Three-terminal insulated-gate power electronic device with a variable-slope saturated output characteristic depending in a discontinuous way on the output current
US11545972B2 (en) Overcurrent protection circuit for switching element turned on and off based on control voltage
WO2015064206A1 (ja) 半導体装置
WO2021111823A1 (ja) ゲート駆動回路および電力変換装置
JP2019110431A (ja) 半導体装置およびパワーモジュール
JP3409994B2 (ja) 自己消弧形素子駆動回路
JP4003833B2 (ja) 電界制御型半導体素子の駆動回路
US6683777B2 (en) Semiconductor protective control unit for controlling output transistors connected to inductive load
JPS59103567A (ja) トランジスタの過電流保護回路
JPH0250518A (ja) 静電誘導形自己消弧素子の駆動回路及び静電誘導形自己消弧素子を有するインバータ装置
WO2021048973A1 (ja) 過電流保護回路及びスイッチング回路
WO2023162032A1 (ja) ゲート駆動回路およびこれを用いた電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895481

Country of ref document: EP

Kind code of ref document: A1