WO2021110028A1 - 柱镜光学复合膜及其制备方法、3d显示器 - Google Patents

柱镜光学复合膜及其制备方法、3d显示器 Download PDF

Info

Publication number
WO2021110028A1
WO2021110028A1 PCT/CN2020/133320 CN2020133320W WO2021110028A1 WO 2021110028 A1 WO2021110028 A1 WO 2021110028A1 CN 2020133320 W CN2020133320 W CN 2020133320W WO 2021110028 A1 WO2021110028 A1 WO 2021110028A1
Authority
WO
WIPO (PCT)
Prior art keywords
lenticular
array
forming material
liquid
convex
Prior art date
Application number
PCT/CN2020/133320
Other languages
English (en)
French (fr)
Inventor
刁鸿浩
黄玲溪
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Priority to US17/779,545 priority Critical patent/US20230019555A1/en
Priority to EP20896110.2A priority patent/EP4071524A4/en
Publication of WO2021110028A1 publication Critical patent/WO2021110028A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/229Image signal generators using stereoscopic image cameras using a single 2D image sensor using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • This application relates to the field of 3D display technology, for example, to a lenticular optical composite film and a preparation method thereof, and a 3D display.
  • the embodiments of the present disclosure provide a lenticular optical composite film, a preparation method thereof, and a 3D display, so as to solve at least some problems existing in related technologies in terms of bonding, cleaning, optical effects, and the like.
  • a lenticular optical composite film including: a first polarizer; and a lenticular grating bonded to the first polarizer, including a first lenticular array and a second lenticular array; wherein, The opposite surfaces of the first lenticular array and the second lenticular array are flat, and the opposite surfaces of the first lenticular array and the second lenticular array have complementary unevenness, and the first polarizer is attached to the lenticular grating .
  • the inventor of the present invention reconstructed the display and its components based on 3D display, simplified the overall manufacturing process, and greatly reduced the process cost.
  • the polarizer and the grating realize the alignment and bonding with the display components in different processes, and the grating is usually made of software, which increases the difficulty of alignment and bonding.
  • This application combines the polarizer with the lenticular grating and is independent of the display panel assembly processing.
  • the polarizer does not need to be aligned with the lenticular grating, and the polarizer and the lenticular grating can be attached to the display panel at one time, saving the process.
  • the combination of the polarizer and the lenticular grating will increase the hardness of the lenticular grating, which is conducive to alignment and bonding.
  • the use of the lenticular optical composite film of the present application eliminates the need for additional auxiliary alignment tools such as alignment marks and substrates, which reduces the process difficulty.
  • the outer surfaces of the two lenticular lens arrays in the lenticular grating are flat, which are easy to clean and install and fit with the aid of auxiliary installation tools such as suction cups.
  • one of the first cylindrical lens array and the second cylindrical lens array is a plano-convex cylindrical lens array, and the other cylindrical lens array is a plano-concave cylindrical lens array;
  • One surface is a flat surface, and the opposite surface is formed with a plurality of convex arcs arranged side by side; or one surface of the plano-concave lenticular lens array is a flat surface, and the opposite surface is formed with a plurality of convexities that are similar to the plano-convex lenticular array.
  • the difference n ⁇ between the refractive index of the plano-convex cylindrical lens array and the refractive index of the plano-concave cylindrical lens array is 0.1 ⁇ n ⁇ 0.3.
  • the refractive index n1 of the plano-convex cylindrical lens array is 1.56 ⁇ n1 ⁇ 1.66; or the refractive index n2 of the plano-concave cylindrical lens array is 1.36 ⁇ n2 ⁇ 1.46.
  • the lenticular grating includes a pair of lining layers spaced apart; wherein the surface of the first lining layer of the pair of lining layers facing away from the second lining layer is bonded to the first polarizer, and the first lenticular lens
  • the array and the second lenticular array are sandwiched between a pair of lining layers, and the planes of the first lenticular array and the second lenticular array are each bonded to one of the pair of lining layers.
  • the first polarizer includes: a pair of supporting films spaced apart; and a polarizing film sandwiched between the pair of supporting films and having an absorption axis; wherein the lenticular grating and the pair of supporting films A supporting film is joined.
  • the lenticular optical composite film further includes: a protective film attached to the surface of the lenticular grating that faces away from the first polarizer.
  • the lenticular optical composite film further includes: a release film attached to the surface of the first polarizer facing away from the lenticular grating.
  • a 3D display including: a display panel layer; and the lenticular optical composite film as described above; wherein the display panel layer is bonded to the first polarizer of the lenticular optical composite film.
  • the display panel layer includes: a pair of spaced apart glass substrates; a color filter attached to a surface of the first glass substrate of the pair of glass substrates facing the second glass substrate; A thin film transistor attached to the surface of the second glass substrate facing the first glass substrate; a second polarizer attached to the surface of the second glass substrate facing away from the first glass substrate; and a pair of The liquid crystal layer between the glass substrates; wherein the first polarizer of the lenticular optical composite film is attached to the surface of the first glass substrate facing away from the second glass substrate.
  • a method for preparing a lenticular optical composite film including: forming a lenticular grating; including forming a first lenticular array, forming a second lenticular array, making the first lenticular array and the second lenticular array
  • the opposite surfaces of the lenticular lens array are complementary to each other, and the opposite surfaces of the first lenticular array and the second lenticular array are formed as planes; the polarizer is attached to the lenticular grating to obtain the lenticular optical composite membrane.
  • forming the first lenticular array and forming the second lenticular array includes: forming one of the first lenticular array and the second lenticular array so that one surface is flat and the opposite surface is formed with A plano-convex lenticular array with a plurality of convex arcs arranged side by side; and the other of the first lenticular array and the second lenticular array is formed so that one surface is flat and the opposite surface is formed with a plano-convex column A plano-concave cylindrical lens array with a plurality of concave curved surfaces complementary to the convex curved surfaces of the mirror array; wherein the refractive index of the plano-convex cylindrical lens array is higher than the refractive index of the plano-concave cylindrical lens array.
  • the preparation method further includes: attaching the protective film to the surface of the lenticular lens facing away from the polarizer; or attaching the release film to the surface of the polarizer facing away from the lenticular lens.
  • forming the lenticular lens includes: providing a first lining layer, a second lining layer, a first liquid lenticular lens forming material and a second liquid lenticular lens forming material; providing a first mold having a first molding surface, The first molding surface is configured as a plurality of arc surfaces arranged side by side; a second mold with a second molding surface is provided, and the second molding surface is configured as a flat surface; the first liquid column is made by the first molding surface of the first mold
  • the lens forming material is formed as a first lenticular lens array on the first lining layer; and the second liquid lenticular lens forming material is formed between the first lenticular array and the second lining layer by means of the second molding surface of the second mold
  • the second lenticular array is complementary to the concave and convex of the first lenticular array.
  • using the first molding surface of the first mold to form the first liquid lenticular lens forming material on the first lining layer into the first lenticular array includes: coating the first liquid lenticular lens forming material on the first lining layer A lining layer; extruding the surface of the first liquid lenticular lens forming material facing away from the first lining layer with the first molding surface of the first mold; and curing the extruded first liquid lenticular lens forming material to A first lenticular array is formed.
  • forming the first liquid lenticular lens forming material on the first lining layer into a first lenticular array by means of the first molding surface of the first mold includes: positioning the first mold relative to the first lining layer, So that there is a gap between the first molding surface of the first mold and the first liner; fill the gap with the first liquid lenticular lens forming material; and solidify the first liquid lenticular lens forming material in the gap to form a second A cylindrical lens array.
  • the second liquid lenticular lens forming material is formed between the first lenticular lens array and the second lining material by means of the second molding surface of the second mold as a first lenticular lens array that is complementary to the concave and convex of the first lenticular array.
  • the two lenticular lens array includes: coating the second liquid lenticular lens forming material on the surface of the first lenticular lens array facing away from the first liner; and extruding the second liquid lenticular lens forming material with the second molding surface of the second mold The surface facing away from the first lenticular array; curing the squeezed second liquid lenticular forming material to form a second lenticular array complementary to the concave and convex of the first lenticular array; leaving the second mold away from the first lenticular array Two lenticular arrays; and attaching the second lining layer to the surface of the second lenticular array facing away from the first lenticular array.
  • the second liquid lenticular lens forming material is formed between the first lenticular lens array and the second lining layer by the second molding surface of the second mold, and the second lenticular lens array is complementary to the concave and convex of the first lenticular array.
  • the lenticular array includes: coating a second liquid lenticular lens forming material on a second lining layer; attaching the surface of the second liquid lenticular lens forming material facing away from the second lining layer to the first lenticular lens array facing away The surface of a lining layer; pressing the surface of the second lining layer facing away from the second liquid lenticular lens forming material with the second molding surface of the second mold; and curing the extruded second liquid lenticular lens forming material , To form a second lenticular array that is complementary to the concave and convex of the first lenticular array.
  • the second liquid lenticular lens forming material is formed between the first lenticular lens array and the second lining layer by the second molding surface of the second mold, and the second lenticular lens array is complementary to the concave and convex of the first lenticular array.
  • the cylindrical lens array includes: positioning the second mold relative to the first cylindrical lens array so that there is a gap between the second molding surface of the second mold and the surface of the first cylindrical lens array facing away from the first liner;
  • the liquid lenticular lens forming material fills the gap;
  • the second liquid lenticular lens forming material in the gap is solidified to form a second lenticular lens array complementary to the concave and convex of the first lenticular array;
  • the second mold is moved away from the second lenticular lens Array; and attaching the second liner to the surface of the second lenticular array facing away from the first lenticular array.
  • the second liquid lenticular lens forming material is formed between the first lenticular lens array and the second lining layer by the second molding surface of the second mold, and the second lenticular lens array is complementary to the concave and convex of the first lenticular array.
  • the lenticular array includes: placing a second lining layer on the second molding surface of the second mold; positioning the second mold relative to the first lenticular array so that the second lining layer and the first lenticular array are facing away from the first lenticular array.
  • gaps between the surfaces of a backing layer There are gaps between the surfaces of a backing layer; the gaps are filled with a second liquid lenticular lens forming material; and the second liquid lenticular lens forming material in the gap is cured to form a second lenticular lens array that is complementary to the unevenness of the first lenticular lens array.
  • Two cylinder lens array Two cylinder lens array.
  • the lenticular optical composite film, the preparation method thereof, and the 3D display provided by the embodiments of the present disclosure can realize the effects of easy bonding and cleaning without affecting the optical output.
  • FIG. 1 is a schematic structural diagram of a 3D display provided by an embodiment of the present disclosure
  • Figure 2 is a side view of a 3D display provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the structure of a lenticular optical composite film provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the structure of a lenticular grating provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a polarizer provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a polarizer provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the structure of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 8 is a preparation flow chart of a lenticular optical composite film provided by an embodiment of the present disclosure.
  • FIG. 9 is a preparation flow chart of the lenticular optical composite film provided by an embodiment of the present disclosure.
  • FIG. 16 is a corresponding flowchart of the preparation process shown in FIG. 10 to FIG. 15;
  • FIG. 17 is an alternative step of the preparation process shown in FIG. 10 to FIG. 15;
  • FIG. 23 is a corresponding flowchart of the preparation process shown in FIG. 18 to FIG. 22;
  • FIG. 24 is a preparation flow chart of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 25 is a preparation flow chart of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 26 is a preparation flow chart of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 27 is a preparation flow chart of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 28 is a preparation flow chart of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 29 is a preparation flow chart of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 30 is a manufacturing process of a lenticular grating provided by an embodiment of the present disclosure.
  • Figure 31 is a corresponding flow chart of the preparation process shown in Figure 29;
  • FIG. 32 is a manufacturing process of a lenticular grating provided by an embodiment of the present disclosure.
  • FIG. 33 is a corresponding flow chart of the preparation process shown in FIG. 31;
  • FIG. 34 is a manufacturing process of a lenticular grating provided by an embodiment of the present disclosure.
  • Fig. 35 is a corresponding flow chart of the preparation process shown in Fig. 33;
  • FIG. 36 is a manufacturing process of a lenticular grating provided by an embodiment of the present disclosure.
  • Fig. 37 is a corresponding flow chart of the preparation process shown in Fig. 35.
  • “arrangement side by side” may refer to an arrangement in which two adjacent elements are arranged in sequence without overlap or slight overlap in a group of elements.
  • the multiple elements "arranged side by side” may be arranged sequentially on a plane, or may be arranged sequentially in the circumferential direction (for example, the circumferential direction) and the like.
  • an embodiment of the present disclosure provides a 3D display (for example: a naked eye 3D display), wherein FIG. 1 is a cross-sectional view to provide a schematic diagram of the structure of the 3D display, and FIG. 2 is a side view
  • FIG. 1 is a cross-sectional view to provide a schematic diagram of the structure of the 3D display
  • FIG. 2 is a side view
  • the form provides a schematic diagram of the 3D display structure.
  • the 3D display includes a display panel layer 2 and a lenticular optical composite film 1 attached to the display panel layer 2.
  • the display panel layer 2 includes a pair of spaced-apart substrates 21, 22, and a liquid crystal layer 25 is provided in the space between the two substrates 21, 22.
  • the substrates 21 and 22 may be glass substrates, for example.
  • the liquid crystal material can be directly filled between the pair of substrates 21 and 22 to form the liquid crystal layer 25.
  • a stopper may be provided between the substrates 21 and 22 to prevent the liquid crystal layer 25 from overflowing around the substrates 21 and 22.
  • the liquid crystal material may be pre-filled in the covering material to form a liquid crystal package, and then the liquid crystal package is filled between the substrates 21 and 22 to form the liquid crystal layer 25.
  • the surface of the substrate 21 facing the substrate 22 is attached with a color filter 24 and electrodes (including a common electrode and a pixel electrode, not shown), and the lenticular optical composite film 1 is attached to the back of the substrate 21 The surface of the substrate 22.
  • a thin film transistor (TFT) 23 is attached to the surface of the substrate 22 facing the substrate 21, and another polarizer 26 is attached to the surface of the substrate 22 facing away from the substrate 21.
  • TFT thin film transistor
  • a backlight source can also be provided on the side of the substrate 22 facing away from the substrate 21 to provide the display panel layer 2 with uniform and bright light.
  • FIG. 3 shows a schematic structural diagram of a lenticular optical composite film 1 provided according to an embodiment of the present disclosure, wherein the lenticular optical composite film 1 exists as an independent product that has not been assembled with the display panel layer 2.
  • the lenticular lens 11 and the polarizer 12 of the lenticular optical composite film 1 are joined (for example, pasted) together, and the joining method may be through an adhesive such as a pressure sensitive adhesive. Together.
  • the protective film 10 is attached to the surface of the lenticular grating 11 facing away from the polarizer 12.
  • the release film 13 can also be attached to the surface of the polarizer 12 facing away from the lenticular grating 11.
  • the release film 13 may be adhered to the polarizer 12 by, for example, an adhesive having a thickness of 0.10 mm, which has almost no influence on the thickness of the lenticular optical composite film.
  • the adhesive can be pressure-sensitive adhesive.
  • FIG. 4 shows a schematic structural diagram of a lenticular grating 11 provided according to an embodiment of the present disclosure in the form of a cross-sectional view.
  • the plano-convex lenticular array 112 of the lenticular grating 11 and the plano-concave lenticular array 113 are combined to form a prism-free lens array.
  • the outer surface of the prism-free lens array (that is, the opposite surfaces of the plano-convex lenticular array 112 and the plano-concave lenticular array 113) is a flat surface.
  • one side of the plano-convex lenticular lens array 112 is a flat surface, and the other side is composed of a plurality of convex arc surfaces
  • one side of the plano-concave lenticular lens array 113 is a flat surface, and the other side is composed of a plurality of concave arcs. ⁇ Surface composition.
  • the concave arc surface of the plano-concave lenticular array 113 and the convex arc surface of the plano-convex lenticular array 112 are complementary to each other.
  • the plano-convex lenticular array 112 can be regarded as a combination of a plurality of plano-convex lenticular lenses 1121 arranged side by side, each plano-convex lenticular lens 1121 has a longitudinal axis, and the longitudinal axes of the plano-convex lenticular lenses 1121 are parallel to each other.
  • the plano-concave cylindrical lens array 113 can be regarded as a combination of a plurality of plano-concave cylindrical lenses 1131 arranged side by side, and the longitudinal axes of these plano-concave cylindrical lenses 1131 are parallel to each other.
  • plano-convex cylindrical lens array 112 composed of five plano-convex cylindrical lenses 1211 and a plano-concave cylindrical lens array 113 composed of five plano-concave cylindrical lenses 1311, but the specific number can be increased or decreased according to the situation.
  • the plano-convex lenticular array 112 and the plan-concave lenticular array 113 have a difference in refractive index. This difference can be smaller than the refractive index difference between a conventional lens and air.
  • the refractive index n1 of the plano-convex lenticular array 112 is higher than the refractive index n2 of the plano-concave lenticular array 113.
  • the refractive index difference n ⁇ between the plano-convex lenticular array 112 and the plano-concave lenticular array 113 may be about 0.1 to 0.3, for example, may be about 0.15 to 0.25, or, for example, about 0.2.
  • the refractive index n1 of the plano-convex lenticular lens array 112 may be about 1.56 to 1.66, for example, about 1.61.
  • the refractive index n2 of the plano-concave cylindrical lens array 113 is about 1.36 to 1.46, for example, about 1.41.
  • the plano-convex lenticular array 112 and the plano-concave lenticular array 113 are concave-convex complementary. There is no air between them, which prevents the light from the lenticular grating due to the large refractive index difference between the air and the lenticular arrays. The output is adversely affected.
  • the small refractive index difference between the two lenticular arrays that are complementarily joined together can reduce the crosstalk of light output, and can reduce the dependence of the user on the viewing angle when viewing 3D images, thereby resulting in greater freedom of use degree.
  • This kind of cylindrical lens array also has a smaller reflectance, so that the observed image has less interference.
  • the lenticular pitch P is the width of the plano-convex lenticular lens 1121 measured in the direction of curvature, which is obtained by measuring along the longitudinal axis perpendicular to the plano-convex lenticular lens 1121.
  • one plano-convex lenticular lens 1121 can cover multiple (composite) pixels or sub-pixels.
  • viewpoints such as 4, 5, or 6 viewpoints, are formed by combining (composite) pixels or sub-pixels with plano-convex lenticular lenses.
  • the lenticular pitch P may range from 123.000 to 125.000 ⁇ m, for example, 123.500 to 124.500 ⁇ m, or for example, 124.432 ⁇ m.
  • the plano-convex lenticular array 112 in the lenticular grating 11 can be oriented relative to the rows or columns of pixels (sub-pixels).
  • the longitudinal axis of any plano-convex lenticular lens 1121 in the plano-convex lenticular array 112 can be relative to the pixel column.
  • the direction is inclined at an angle.
  • the inclination angle is about 5° to 45°, for example, about 10° to 40°, or for example, about 15° to 35°, or for example, about 20° to 30°, or, for example, may be 25°. This tilt helps to reduce moiré.
  • the plano-convex lenticular array 112 and the plan-concave lenticular array 113 can be made of the same or different materials.
  • the selected material can be one of the following materials or any combination of them: acrylic resin material, polymer material such as polycarbonate material or Polyurethane material, organic silicone material, unsaturated polyester material, epoxy resin material or other suitable transparent materials. 4 shows that the outer surface of the prism-free lens array is attached with liner layers 111 and 114, and an adhesive layer such as a pressure-sensitive adhesive is applied to the liner layer 114 away from the plano-convex lenticular lens array 112 with high refractive index. 115 to join the polarizer 12.
  • the lining layers 111 and 114 may be made of thermoplastic polyester material, such as polyester resin (PET) material.
  • PET polyester resin
  • the thickness of the lining layers 111 and 114 is about 0.1 mm to minimize the overall thickness of the lenticular optical composite film.
  • at least one of the lining layers 111 and 114 can be omitted.
  • plano-convex lenticular array 112 and the plan-concave lenticular array 113 involved in the embodiments of the present disclosure may be non-switchable lenticulars, that is, they each have fixed optical properties. In this way, in any case, the plano-convex lenticular array 112 and the plano-concave lenticular array 113 are always in the lens mode.
  • FIG. 5 shows a schematic structural diagram of a polarizer provided according to an embodiment of the present disclosure in the form of a cross-sectional view.
  • the polarizer 12 has a laminated structure, and includes a polarizing film 122 and two supporting films 121 and 123 attached to two opposite surfaces of the polarizing film 122, respectively.
  • the polarizing film 122 can be made of polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the film can absorb iodine molecules with two-way absorption function, and the iodine molecules are arranged in an orderly manner on the PVA film through extended alignment, thereby forming a polarized light with two-way absorption properties. membrane.
  • the two supporting films 121 and 123 can be selected from triacetate cellulose (TAC) film to ensure that the extended PVA film does not shrink, and also to ensure that the PVA film is not damaged by external substances such as water vapor and ultraviolet rays.
  • An adhesive layer 124 such as a pressure-sensitive adhesive can be applied to the support film of the polarizer 12 away from the lenticular lens 11 (the support film 123 shown in FIG. 4) to bond the release film 13 or the display panel layer 2.
  • the specific chemical composition of the two supporting films 121 and 123 may be slightly different, for example, they may be a TAC film and an O-TAC film, respectively.
  • the length X of the polarizer 12 may range from about 230.000 to 250.000 mm, for example, about 235.000 to 245.000 mm, or, for example, about 242.968 ⁇ 0.100 mm.
  • the width Y of the polarizer 12 may range from about 120.000 to 150.000 mm, for example, about 130.000 to 140.000 mm, or for example, about 137.432 ⁇ 0.100 mm.
  • the thickness of the polarizer 12 may range from about 0.13 to 0.15 mm, or, for example, about 0.14 mm.
  • the included angle ⁇ between the absorption axis A of the polarizer 12 and the X direction may range from about 9° to 11°, for example, about 10° ⁇ 0.8°.
  • the embodiments of the present disclosure also provide a method for assembling a 3D display, including:
  • the polarizer 12 of the lenticular optical composite film 1 is attached to the surface of the glass substrate 21 of the display panel layer 2 facing away from the glass substrate 22.
  • the method of assembling a 3D display further includes removing the release film from the polarizer.
  • FIG. 7 shows a schematic structural diagram of another lenticular grating 11 provided according to an embodiment of the present disclosure in the form of a cross-sectional view.
  • the difference between the lenticular lens 11 in FIG. 7 and the lenticular lens 11 in FIG. 4 is that, in the lenticular lens of FIG. 7, the polarizer 12 is bonded (for example, bonded) to the lenticular lens 11 and compared to the plano-concave lens.
  • the lenticular array 113 is closer to the plano-convex lenticular array 112.
  • the respective refractive indexes of the plano-convex cylindrical lens array 112 and the plan-concave cylindrical lens array 113 and the refractive index difference between them can refer to the embodiment shown in FIG. 4.
  • the plano-convex cylindrical lens of the plano-convex cylindrical lens array and the plano-concave cylindrical lens of the plano-concave cylindrical lens array are all cylindrical lenses with one axis.
  • a lenticular lens having two intersecting axes (for example, two perpendicularly intersecting axes) can also be used to form the lenticular grating of the embodiment of the present disclosure.
  • a plano-concave cylindrical lens array is composed of a plurality of plano-concave cylindrical lenses each having two intersecting axes
  • a plano-convex cylindrical lens array is composed of a plurality of plano-convex cylindrical lenses each having two intersecting axes.
  • the cylindrical lens array and the plano-convex cylindrical lens array are joined together in a concave-convex complementary manner to form a prism-free lens array, and the refractive index of the plano-convex cylindrical lens array is higher than that of the plano-concave cylindrical lens array.
  • the polarizer is attached to the lenticular grating to form a lenticular optical composite film.
  • the grating may include a spherical lens and a concave lens complementary to the concave and convex of the spherical lens.
  • the refractive index of the spherical lens is different from the refractive index of the concave lens.
  • the ball lens can also be replaced with a ball intercepting lens.
  • the embodiment of the present disclosure provides a method for preparing a lenticular optical composite film. As shown in FIG. 8, the method includes:
  • S1 forming a lenticular grating; including forming a first lenticular array, forming a second lenticular array, making the surfaces of the first lenticular array and the second lenticular array complementary to each other, and making the first lenticular array and The opposite surfaces of the second lenticular lens array are formed as flat surfaces; and
  • the method for preparing the lenticular optical composite film includes:
  • FIG. 10 to 15 show an exemplary manufacturing method of the lenticular grating
  • FIG. 16 shows the corresponding flow chart.
  • the first lining layer 111 is spread out, and the first liquid lenticular lens forming material 41 is coated on the surface of the first lining layer 111, so that the first liquid lenticular lens forming material 41 is on the first lining layer 111.
  • the surface of a liner layer 111 is accumulated.
  • the approach speed can be a constant speed, a variable speed, or a combination of a constant speed and a variable speed.
  • the first mold 31 is a pressing plate, one side of which is configured as a first molding surface 311 with a plurality of concave arc surfaces 312.
  • the multiple concave arc surfaces 312 here are designed according to the principle consistent with the required configuration of the multiple convex arc surfaces of the plano-convex lenticular lens array 112.
  • the first liquid lenticular lens forming material 41 is extruded with the first molding surface 311 of the first mold 31. Forced by the shape of the first molding surface 311 of the first mold 31, the surface of the first liquid lenticular lens forming material 41 facing away from the first lining layer 111 presents a configuration in which a plurality of convex arc surfaces are arranged side by side.
  • the extruded first liquid lenticular lens forming material 41 is solidified.
  • the curing treatment may be an ultraviolet curing treatment.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • S107 use the second mold 32 to approach the second liquid lenticular lens forming material 42 on the side of the second liquid lenticular lens forming material 42 that faces away from the plano-convex lenticular lens array.
  • the approach speed can be a constant speed, a variable speed, or a combination of a constant speed and a variable speed.
  • the second mold 32 is a pressing plate, one side of which is configured as a second molding surface 321 in a flat configuration.
  • the second liquid lenticular lens forming material 42 is pressed by the second molding surface 321. Forced by the shape of the second molding surface 321 of the second mold 32, the surface of the second liquid lenticular lens forming material 42 facing away from the plano-convex lenticular lens array presents a planar configuration.
  • the extruded second liquid lenticular lens forming material 42 is solidified.
  • the curing treatment may be an ultraviolet curing treatment.
  • the cured second liquid lenticular lens forming material 42 is formed into a plano-concave lenticular array, and the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner.
  • the first liner layer 111 can be removed after the step S109, and the step S110 is omitted.
  • step S107 a pressing roller may be used instead of a pressing plate as the second mold to form the plane of the plano-concave lenticular array.
  • a pressing roller may be used instead of a pressing plate as the second mold to form the plane of the plano-concave lenticular array.
  • FIG. 16 an alternative step S107' of step S107 is shown: pressing the second mold 32 against the surface of the second liquid lenticular lens forming material 42 facing away from the plano-convex lenticular array and rolling the second mold 32 on the horizontal axis . You can scroll in one direction, or you can scroll back and forth.
  • the second mold 32 is a pressure roller, the outer peripheral surface of which is configured as a second molding surface in a flat configuration. During the rolling process of the second mold 32, the second liquid lenticular lens forming material 42 is squeezed and flattened, so that the surface of the second liquid lenticular lens forming material 42 facing away from the first lining layer 111 is flat.
  • Figures 18 to 20 show an exemplary manufacturing method of the lenticular grating
  • Figure 23 shows the corresponding flow chart.
  • the first lining layer 111 can be removed after the step S208, and the step S209 is omitted.
  • the first mold 31 in the shape of a pressing plate is close to the first liquid lenticular lens forming material 41 on the side of the first liquid lenticular lens forming material 41 facing away from the first lining layer 111.
  • the extruded first liquid lenticular lens forming material 41 is solidified.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • S307 Cover the convex arc surfaces of the plano-convex lenticular array with the second liquid lenticular lens forming material 42 together with the second lining layer 114, and the second liquid lenticular lens forming material 42 is attached to and conforms to the convex arc surfaces.
  • the second lining layer 114 is pressed against the surface of the first lining layer 111 with the second die 32 in the shape of a pressing plate, and then the second liquid lenticular lens forming material 42 is pressed. Forced by the shape of the second molding surface 321 of the second mold 32, the surface of the second liquid lenticular lens forming material 42 facing away from the first liner 111 presents a planar configuration.
  • the first liner 111 and the second liner 114 can be removed after step S310.
  • FIG. 25 An exemplary manufacturing method of the lenticular grating is described with reference to FIG. 25.
  • the reference numerals involved in this example can refer to Examples 1 and 2.
  • the first mold 31 in the shape of a pressing plate is close to the first liquid lenticular lens forming material 41 on the side of the first liquid lenticular lens forming material 41 facing away from the first lining layer 111.
  • the extruded first liquid lenticular lens forming material 41 is solidified.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • S407 Fill the gap 322 with the second liquid lenticular lens forming material 42 so that the second liquid lenticular lens forming material 42 is accumulated in the gap 322.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the cured second liquid lenticular lens forming material 42 is formed into a plano-concave lenticular array.
  • the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner and are forced by the second mold 32.
  • the flat surface shape of the two molding surfaces 321, and the surface of the plano-concave cylindrical lens array facing away from the plano-convex cylindrical lens array is a flat surface.
  • the first liner layer 111 can be removed after step S409, and step S410 is omitted.
  • FIG. 26 An exemplary manufacturing method of the lenticular grating is described with reference to FIG. 26.
  • the reference numerals involved in this example can refer to Examples 1 and 2.
  • S502 Fill the gap 313 with the first liquid lenticular lens forming material 41, so that the first liquid lenticular lens forming material 41 is accumulated in the gap 313.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • the first mold 31 is removed to expose the plano-convex lenticular lens array.
  • S505 Apply the second liquid lenticular lens forming material 42 to the convex arc surface of the plano-convex lenticular lens array, and the second liquid lenticular lens forming material 42 is deposited on the convex arc surface of the plano-convex lenticular lens array and conforms to the convex arc surfaces of the plano-convex lenticular lens array. Arcuate.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the cured second liquid lenticular lens forming material 42 is shaped into a plano-concave lenticular array, and the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner.
  • the first liner layer 111 can be removed after step S508, and step S509 is omitted.
  • S602 Fill the gap 313 with the first liquid lenticular lens forming material 41, so that the first liquid lenticular lens forming material 41 is accumulated in the gap 313.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • S606 Cover the convex arc surfaces of the plano-convex lenticular array with the second liquid lenticular lens forming material 42 together with the second lining layer 114, and the second liquid lenticular lens forming material 42 is attached to and conforms to the convex arc surfaces.
  • the second lining layer 114 is pressed against the surface of the first lining layer 111 with the second die 32 in the shape of a pressing plate, and then the second liquid lenticular lens forming material 42 is pressed. Forced by the shape of the second molding surface 321 of the second mold 32, the surface of the second liquid lenticular lens forming material 42 facing away from the first liner 111 presents a planar configuration.
  • the cured second liquid lenticular lens forming material 42 is shaped into a plano-concave lenticular array, and the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner.
  • the first lining layer 111 and the second lining layer 114 can be removed after step S609.
  • the pressing plate-shaped first mold 31 is close to the first liquid lenticular lens forming material 41 on the side of the first liquid lenticular lens forming material 41 facing away from the first liner 111.
  • the extruded first liquid lenticular lens forming material 41 is solidified.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • the second lining layer 114 is fixedly laid on the second molding surface 321 of the second mold 32 having a platen shape.
  • S708 Fill the gap 322 with the second liquid lenticular lens forming material 42 so that the second liquid lenticular lens forming material 42 is accumulated in the gap 322.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the cured second liquid lenticular lens forming material 42 is formed into a plano-concave lenticular array.
  • the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner and are forced by the second mold 32.
  • the shape of the two molding surfaces, the surface of the plano-concave cylindrical lens array facing away from the plano-convex cylindrical lens array presents a planar configuration.
  • the first liner 111 and the second liner 114 can be removed after step S710.
  • FIG. 29 An exemplary manufacturing method of the lenticular lens is described with reference to FIG. 29.
  • the reference numerals involved in this example can refer to Examples 1 and 2.
  • S802 Fill the gap 313 with the first liquid lenticular lens forming material 41, so that the first liquid lenticular lens forming material 41 is accumulated in the gap 313.
  • the cured first liquid lenticular lens forming material 41 is formed into a plano-convex lenticular array.
  • the second lining layer 114 is fixedly laid on the second molding surface 321 of the second mold 32 in the shape of a pressing plate.
  • S807 Fill the gap 322 with the second liquid lenticular lens forming material 42 so that the second liquid lenticular lens forming material 42 is accumulated in the gap 322.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the cured second liquid lenticular lens forming material 42 is formed into a plano-concave lenticular array.
  • the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner and are forced by the second mold 32.
  • the shape of the two molding surfaces, the surface of the plano-concave cylindrical lens array facing away from the plano-convex cylindrical lens array presents a planar configuration.
  • the first liner 111 and the second liner 114 can be removed after step S809.
  • FIG. 30 shows an exemplary manufacturing method of the lenticular grating
  • FIG. 31 shows the corresponding flow chart.
  • the material rolls 70 and 75 are used to store the coils of the first liner layer 111 and the second liner layer 114, respectively.
  • the first mold 31 is configured as a pressing roller, and a plurality of concave arc surfaces 312 arranged side by side in the circumferential direction are formed on the outer circumferential surface of the pressing roller to define a first molding surface 311.
  • the first mold 31 is disposed adjacent to the holding roller 71, and a nip is formed between the first molding surface 311 of the first mold 31 and the outer circumferential surface of the holding roller 71.
  • the second mold 32 is configured as a pressing roller whose outer circumferential surface is a flat surface to constitute a second molding surface.
  • the second mold 32 is disposed adjacent to the holding roller 76, and a nip is formed between the second molding surface of the second mold 32 and the outer circumferential surface of the holding roller 76.
  • the device also includes two sets of curing devices 61, 62.
  • the first curing device 61 is downstream of the holding roller 71 and close to the first mold 31, and includes a first light source 612, a first reflection cover 611 and a first collimating light modulator 613.
  • the second curing device 62 is located downstream of the holding roller 76 and close to the second mold 32, and includes a second light source 622, a second reflection cover 621 and a second collimating light modulator 623.
  • the process of preparing a lenticular grating according to this example includes the following steps:
  • the material roller 70 rotates in the arrow direction to release the first lining layer 111, and the first lining layer 111 is sent to the holding roller 71.
  • the first glue outlet 51 at the position a applies the first liquid lenticular lens forming material 41 to the outer circumferential surface of the first mold 31.
  • the first liquid lenticular lens forming material 41 fills the gap between the first lining layer 111 and the first molding surface 311.
  • the first liquid lenticular lens forming material 41 starts to be bonded to the first liner 111.
  • the first liner 111 to which the first liquid lenticular lens forming material 41 is bonded is advanced to the first curing device 61. Under the action of the first curing device 61, the first liquid lenticular lens forming material 41 is cured and formed into a plano-convex lenticular array.
  • the first liner 111 joined with the plano-convex lenticular array is sent to the holding roller 76 after passing through the holding roller 72 and the supporting roller 73.
  • the material roller 75 rotates in the arrow direction to release the second lining layer 114, and the second lining layer 114 is sent to the flat outer peripheral surface of the second mold 32 via the supporting roller 78.
  • the second glue nozzle 52 at the position b applies the second liquid lenticular lens forming material 42 to the surface of the second liner 114.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the second liquid lenticular lens forming material 42 fills the gaps between the plurality of convex arc surfaces of the plano-convex lenticular array and the second liner 114. Under the action of the holding roller 76, the second liquid lenticular lens forming material 42 begins to engage with the convex curved surfaces of the plano-convex lenticular array and conform to these convex curved surfaces.
  • the first lining layer 111 and the second lining layer 114 carry the plano-convex lenticular lens array and the second liquid lenticular lens forming material 42 and travel to the second curing device 62.
  • the second liquid lenticular lens forming material 42 is cured and formed into a plano-concave lenticular array.
  • the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner.
  • the surface of the plano-concave lenticular array facing away from the plano-convex lenticular array presents a planar configuration. So far, the lenticular grating is made.
  • the lenticular lens can be sent to the winding roller 74 via the holding roller 77.
  • FIG. 32 shows an exemplary manufacturing method of the lenticular grating
  • FIG. 33 shows the corresponding flow chart.
  • the difference between the device used in this method and the device in Figure 29 is that the first glue nozzle 51 is not located at position a, but between the material roller 70 and the holding roller 71, for example at position c, and the second The glue outlet 52 is not provided at the position b, but is provided between the holding roller 72 and the holding roller 76, for example, at the position d.
  • the process of preparing a lenticular grating according to this example includes the following steps:
  • the material roller 70 rotates in the arrow direction to release the first lining layer 111, and the first glue outlet 51 at the position c coats the first liquid lenticular lens forming material 41 on the surface of the first lining layer 111.
  • the first liner 111 carries the first liquid lenticular lens forming material 41 to the holding roller 71.
  • the first mold 31 rotates in the direction of the arrow. Starting from the holding roller 71, the first mold 31 squeezes the first liquid lenticular lens forming material 41 with its first molding surface 311, so that the surface of the first liquid lenticular lens forming material 41 facing away from the first liner 111 appears side by side Layout of multiple convex arcs.
  • the first lining layer 111 carries the squeezed first liquid lenticular lens forming material 41 to the first curing device 61. Under the action of the first curing device 61, the first liquid lenticular lens forming material 41 is cured and formed into a plano-convex lenticular array.
  • the first liner 111 joined with the plano-convex lenticular array passes through the holding roller 72 and the supporting roller 73 and then travels toward the holding roller 76.
  • the second glue outlet 52 at the position d coats the second liquid lenticular lens forming material 42 to the multiple convex arc surfaces of the plano-convex lenticular array.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the second liquid lenticular lens forming material 42 is accumulated on the convex arc surface of the plano-convex lenticular array and conforms to the convex arc surface of the plano-convex lenticular array.
  • the first lining layer 111 carries the plano-convex lenticular lens array and the second liquid lenticular lens forming material 42 to the holding roller 76.
  • the material roller 75 rotates in the arrow direction to release the second lining layer 114, and the second lining layer 114 is sent to the outer peripheral surface of the second mold 32 via the supporting roller 78.
  • the second lining layer 114 starts to join the second liquid lenticular lens forming material 42, and the second mold 32 squeezes the surface of the second lining layer 114 by means of its second molding surface 321, thereby extruding The second liquid lenticular lens forming material 42 is pressed.
  • the first lining layer 111 and the second lining layer 114 entrain the plano-convex lenticular array and the extruded second liquid lenticular lens forming material 42 and travel to the second curing device 62.
  • the second liquid lenticular lens forming material 42 is cured and formed into a plano-concave lenticular array, and the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner.
  • the surface of the plano-concave lenticular array facing away from the plano-convex lenticular array presents a planar configuration. So far, the lenticular grating is made.
  • the lenticular lens is sent to the winding roller 74 via the holding roller 77.
  • FIG. 34 shows an exemplary manufacturing method of the lenticular grating
  • FIG. 35 shows the corresponding flow chart.
  • the difference between the device used in this method and the device in FIG. 29 is that the second liner 114 sent from the material roll 75 is not sent to the second mold 32, but is sent to the holding roller 81 located downstream of the second mold 32.
  • the process of preparing a lenticular grating according to this example includes the following steps:
  • the material roller 70 rotates in the arrow direction to release the first lining layer 111, and the first lining layer 111 is sent to the holding roller 71.
  • the first glue outlet 51 at the position a coats the first liquid lenticular lens forming material 41 on the outer circumferential surface of the first mold 31.
  • the first liquid lenticular lens forming material 41 fills the gap between the first lining layer 111 and the first molding surface 311.
  • the first liquid lenticular lens forming material 41 starts to be bonded to the first liner 111.
  • the first liner 111 to which the first liquid lenticular lens forming material 41 is bonded is advanced to the first curing device 61. Under the action of the first curing device 61, the first liquid lenticular lens forming material 41 is cured and formed into a plano-convex lenticular array.
  • the first liner 111 joined with the plano-convex lenticular array is sent to the holding roller 76 after passing through the holding roller 72 and the supporting roller 73.
  • the second glue nozzle 52 at the position b applies the second liquid lenticular lens forming material 42 to the outer peripheral surface of the second mold 32.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the second liquid lenticular lens forming material 42 fills the gaps between the plurality of convex arc surfaces of the plano-convex lenticular array and the second mold 32.
  • the second liquid lenticular lens forming material 42 starts to engage with the convex arc surface of the plano-convex lenticular array.
  • the first liner 111 carries the plano-convex lenticular lens array and the second liquid lenticular lens forming material 42 to the second curing device 62.
  • the second liquid lenticular lens forming material 42 is cured and formed into a plano-concave lenticular array, and the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner. Due to the shape of the second molding surface of the second mold 32, the surface of the plano-concave lenticular array facing away from the plano-convex lenticular array presents a planar configuration.
  • the first liner 111 brings the plano-convex lenticular array and the flat-concave lenticular array to the holding roller 80 after passing through the holding roller 77 and the supporting roller 79.
  • the material roller 75 rotates in the arrow direction to release the second lining layer 114, and the second lining layer 114 is sent to the holding roller 81 adjacent to the holding roller 80.
  • the lenticular lens is sent to the winding roller 74.
  • FIG. 36 shows an exemplary manufacturing method of a lenticular grating
  • FIG. 37 shows a corresponding flow chart.
  • the difference between the device used in this method and the device in Figure 33 is that the first glue nozzle 51 is not set at position a, but is set at position c like Figure 21, and the second glue nozzle 52 is not located at position a. At position b, it is set at position d as shown in Figure 21.
  • the process of preparing a lenticular grating according to this example includes the following steps:
  • the material roller 70 rotates in the arrow direction to release the first lining layer 111, and the first glue outlet 51 at the position c coats the first liquid lenticular lens forming material 41 on the surface of the first lining layer 111.
  • the first liner 111 carries the first liquid lenticular lens forming material 41 to the holding roller 71.
  • the first mold 31 rotates in the direction of the arrow. Starting from the holding roller 71, the first mold 31 squeezes the first liquid lenticular lens forming material 41 with its first molding surface 311, so that the surface of the first liquid lenticular lens forming material 41 facing away from the first liner 111 appears side by side Layout of multiple convex arcs.
  • the first lining layer 111 carries the squeezed first liquid lenticular lens forming material 41 to the first curing device 61. Under the action of the first curing device 61, the first liquid lenticular lens forming material 41 is cured and formed into a plano-convex lenticular array.
  • the first liner 111 joined with the plano-convex lenticular array passes through the holding roller 72 and the supporting roller 73 and then travels toward the holding roller 76.
  • the second glue nozzle 52 at the position d applies the second liquid lenticular lens forming material 42 to the plurality of convex arc surfaces of the plano-convex lenticular array.
  • the refractive index of the second liquid lenticular lens forming material 42 is different from the refractive index of the first liquid lenticular lens forming material 41.
  • the second liquid lenticular lens forming material 42 is accumulated on the convex arc surface of the plano-convex lenticular array and conforms to the convex arc surface of the plano-convex lenticular array.
  • the first liner 111 carries the plano-convex lenticular lens array and the second liquid lenticular lens forming material 42 to the holding roller 76.
  • the second mold 32 squeezes the surface of the second liquid lenticular lens forming material 42 by means of its second molding surface 321.
  • the first liner 111 carries the plano-convex lenticular array and the squeezed second liquid lenticular lens forming material 42 to the second curing device 62.
  • the second liquid lenticular lens forming material 42 is cured and formed into a plano-concave lenticular array, and the plano-concave lenticular array and the plano-convex lenticular array are joined together in a concave-convex complementary manner. Due to the shape of the second molding surface of the second mold 32, the surface of the plano-concave lenticular array facing away from the plano-convex lenticular array presents a planar configuration.
  • the first liner 111 takes the plano-convex lenticular array and the flat-concave lenticular array to the holding roller 80 after passing through the holding roller 77 and the supporting roller 79.
  • the material roller 75 rotates in the arrow direction to release the second lining layer 114, and the second lining layer 114 is sent to the holding roller 81 adjacent to the holding roller 80.
  • the lenticular lens is sent to the winding roller 74.
  • step S905 in Example 9 can be implemented simultaneously with any of steps S901 to S904, or can be implemented before step S901.
  • the first element can be called the second element, and similarly, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a”, “an” and “the” are intended to also include plural forms.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种柱镜光学复合膜(1),包括:第一偏光片(12);和与第一偏光片(12)接合的柱镜光栅(11),包括第一柱镜阵列和第二柱镜阵列;其中,第一柱镜阵列和第二柱镜阵列的彼此相背的表面为平面,且第一柱镜阵列和第二柱镜阵列的彼此相对的表面凹凸互补,第一偏光片(12)贴附于柱镜光栅(11)。柱镜光学复合膜(1)易于清理和贴合,并具有良好的光学效果。以及一种3D显示器和柱镜光学复合膜(1)的制备方法。

Description

柱镜光学复合膜及其制备方法、3D显示器
本申请要求在2019年12月05日提交中国知识产权局、申请号为201911231195.X、发明名称为“柱镜光学复合膜及其制备方法、裸眼3D显示器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D显示技术领域,例如涉及柱镜光学复合膜及其制备方法、3D显示器。
背景技术
通常,人们在传统显示器上覆盖光栅来实现3D显示效果,在实施过程中至少存在如下问题:因工艺不良率造成的显示器损耗、贴合精度不够、柱镜光栅表面易受损和堆积污垢、不易借助工具安装贴合、影响光学效果或光输出等。
本背景技术仅为了便于了解本领域的相关技术,并不视作对现有技术的承认。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种柱镜光学复合膜及其制备方法、3D显示器,以解决相关技术在贴合、清洁、光学效果等方面存在的至少一些问题。
根据本公开的实施例提供了一种柱镜光学复合膜,包括:第一偏光片;和与第一偏光片接合的柱镜光栅,包括第一柱镜阵列和第二柱镜阵列;其中,第一柱镜阵列和第二柱镜阵列的彼此相背的表面为平面,且第一柱镜阵列和第二柱镜阵列的彼此相对的表面凹凸互补,第一偏光片贴附于柱镜光栅。
本发明人以3D显示为基础出发重构了显示器及其部件,简化了整体工艺制造,大幅降低工序成本。原有的3D显示器中,偏光片和光栅各自在不同的工序中实现与显示部件的对位贴合,且光栅通常制成软体的,增加了对位贴合的难度。本申请将偏光片与柱镜光栅结合,且独立于显示面板组合加工,偏光片无需与柱镜光栅对位,可一次性将偏光片连同柱镜光栅贴合在显示面板上,节省了工序。此外,偏光片与柱镜光栅的结合会增加柱镜光栅的硬度,有利于对准贴合。利用本申请的柱镜光学复合膜,无需借助对位标记、基板 等额外的辅助对位工具,降低了工艺难度。柱镜光栅中两个柱镜阵列朝外的表面为平面,易于清理和借助例如为吸盘的辅助安装工具进行安装贴合。
在一些实施例中,第一柱镜阵列和第二柱镜阵列中的一个柱镜阵列为平凸柱镜阵列,另一个柱镜阵列为平凹柱镜阵列;其中,平凸柱镜阵列的一个表面为平面,相对的另一个表面形成有并排布置的多个凸弧面;或平凹柱镜阵列的一个表面为平面,相对的另一个表面形成有与平凸柱镜阵列的多个凸弧面互补的多个凹弧面;平凸柱镜阵列的折射率高于平凹柱镜阵列的折射率。
在一些实施例中,平凸柱镜阵列的折射率与平凹柱镜阵列的折射率的差值n△为0.1≤n△≤0.3。
在一些实施例中,平凸柱镜阵列的折射率n1为1.56≤n1≤1.66;或平凹柱镜阵列的折射率n2为1.36≤n2≤1.46。
在一些实施例中,柱镜光栅包括间隔开的一对衬层;其中,一对衬层中的第一衬层的背向第二衬层的表面与第一偏光片接合,第一柱镜阵列和第二柱镜阵列被夹在一对衬层之间,且第一柱镜阵列和第二柱镜阵列的平面各自与一对衬层中的一个衬层接合。
在一些实施例中,第一偏光片包括:间隔开的一对支撑膜;和被夹在一对支撑膜之间并具有吸收轴的偏振膜;其中,柱镜光栅与一对支撑膜中的一个支撑膜相接合。
在一些实施例中,柱镜光学复合膜还包括:贴附于柱镜光栅的背向第一偏光片的表面的保护膜。
在一些实施例中,柱镜光学复合膜还包括:贴附于第一偏光片的背向柱镜光栅的表面的离型膜。
根据本公开的实施例提供了一种3D显示器,包括:显示面板层;和如上所述的柱镜光学复合膜;其中,显示面板层与柱镜光学复合膜的第一偏光片接合。
在一些实施例中,显示面板层包括:间隔开的一对玻璃衬底;贴附于一对玻璃衬底中的第一玻璃衬底的面向第二玻璃衬底的表面的彩色滤光片;贴附于第二玻璃衬底的面向第一玻璃衬底的表面的薄膜晶体管;贴附于第二玻璃衬底的背向第一玻璃衬底的表面的第二偏光片;和设置在一对玻璃衬底之间的液晶层;其中,柱镜光学复合膜的第一偏光片贴附于第一玻璃衬底的背向第二玻璃衬底的表面。
根据本公开的实施例提供了一种柱镜光学复合膜的制备方法,包括:形成柱镜光栅;包括形成第一柱镜阵列、形成第二柱镜阵列、使第一柱镜阵列和第二柱镜阵列的彼此相对的表面凹凸互补,且使第一柱镜阵列和第二柱镜阵列的彼此相背的表面形成为平面;将偏光片贴附于柱镜光栅,以得到柱镜光学复合膜。
在一些实施例中,形成第一柱镜阵列、形成第二柱镜阵列包括:将第一柱镜阵列和第二柱镜阵列中的一个形成为一个表面为平面且相对的另一个表面形成有并排布置的多个凸弧面的平凸柱镜阵列;和将第一柱镜阵列和第二柱镜阵列中的另一个形成为一个表面为平面且相对的另一个表面形成有与平凸柱镜阵列的多个凸弧面互补的多个凹弧面的平凹柱镜阵列;其中,平凸柱镜阵列的折射率高于平凹柱镜阵列的折射率。
在一些实施例中,制备方法还包括:将保护膜贴附于柱镜光栅的背向偏光片的表面;或将离型膜贴附于偏光片的背向柱镜光栅的表面。
在一些实施例中,形成柱镜光栅包括:提供第一衬层、第二衬层、第一液态柱镜形成材料和第二液态柱镜形成材料;提供具有第一成型面的第一模具,第一成型面被构造成并排布置的多个弧面;提供具有第二成型面的第二模具,第二成型面被构造成平坦表面;借助第一模具的第一成型面使第一液态柱镜形成材料在第一衬层上形成为第一柱镜阵列;和借助第二模具的第二成型面使第二液态柱镜形成材料形成为在第一柱镜阵列与第二衬层之间且与第一柱镜阵列凹凸互补的第二柱镜阵列。
在一些实施例中,借助第一模具的第一成型面使第一液态柱镜形成材料在第一衬层上形成为第一柱镜阵列包括:将第一液态柱镜形成材料涂覆于第一衬层;用第一模具的第一成型面挤压第一液态柱镜形成材料的背向第一衬层的表面;和对被挤压的第一液态柱镜形成材料进行固化处理,以形成第一柱镜阵列。
在一些实施例中,借助第一模具的第一成型面使第一液态柱镜形成材料在第一衬层上形成为第一柱镜阵列包括:将第一模具相对于第一衬层定位,使得第一模具的第一成型面与第一衬层之间存在空隙;用第一液态柱镜形成材料填满空隙;和对空隙中的第一液态柱镜形成材料进行固化处理,以形成第一柱镜阵列。
在一些实施例中,借助第二模具的第二成型面使第二液态柱镜形成材料形成为在第一柱镜阵列与第二衬层材料之间且与第一柱镜阵列凹凸互补的第二柱镜阵列包括:将第二液态柱镜形成材料涂覆于第一柱镜阵列的背向第一衬层的表面;用第二模具的第二成型面挤压第二液态柱镜形成材料的背向第一柱镜阵列的表面;对被挤压的第二液态柱镜形成材料进行固化处理,以形成与第一柱镜阵列凹凸互补的第二柱镜阵列;使第二模具离开第二柱镜阵列;和将第二衬层贴附于第二柱镜阵列的背向第一柱镜阵列的表面。
在一些实施例中,借助第二模具的第二成型面使第二液态柱镜形成材料形成为在第一柱镜阵列与第二衬层之间且与第一柱镜阵列凹凸互补的第二柱镜阵列包括:将第二液态柱镜形成材料涂覆于第二衬层;使第二液态柱镜形成材料的背向第二衬层的表面贴附于第一柱镜阵列的背向第一衬层的表面;用第二模具的第二成型面挤压第二衬层的背向第二液态 柱镜形成材料的表面;和对被挤压的第二液态柱镜形成材料进行固化处理,以形成与第一柱镜阵列凹凸互补的第二柱镜阵列。
在一些实施例中,借助第二模具的第二成型面使第二液态柱镜形成材料形成为在第一柱镜阵列与第二衬层之间且与第一柱镜阵列凹凸互补的第二柱镜阵列包括:将第二模具相对于第一柱镜阵列定位,使得第二模具的第二成型面与第一柱镜阵列的背向第一衬层的表面之间存在空隙;用第二液态柱镜形成材料填满空隙;对空隙中的第二液态柱镜形成材料进行固化处理,以形成与第一柱镜阵列凹凸互补的第二柱镜阵列;使第二模具离开第二柱镜阵列;和将第二衬层贴附于第二柱镜阵列的背向第一柱镜阵列的表面。
在一些实施例中,借助第二模具的第二成型面使第二液态柱镜形成材料形成为在第一柱镜阵列与第二衬层之间且与第一柱镜阵列凹凸互补的第二柱镜阵列包括:将第二衬层置于第二模具的第二成型面上;将第二模具相对于第一柱镜阵列定位,使得第二衬层与第一柱镜阵列的背向第一衬层的表面之间存在空隙;用第二液态柱镜形成材料填满空隙;和对空隙中的第二液态柱镜形成材料进行固化处理,以形成与第一柱镜阵列凹凸互补的第二柱镜阵列。
本公开实施例提供的柱镜光学复合膜及其制备方法、3D显示器,可以实现易贴合、清理且不影响光学输出的效果。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的3D显示器的结构示意图;
图2是本公开实施例提供的3D显示器的侧视图;
图3是本公开实施例提供的柱镜光学复合膜的结构示意图;
图4是本公开实施例提供的柱镜光栅的结构示意图;
图5是本公开实施例提供的偏光片的结构示意图;
图6是本公开实施例提供的偏光片的示意图;
图7是本公开实施例提供的柱镜光栅的结构示意图;
图8是本公开实施例提供的柱镜光学复合膜的制备流程图;
图9是本公开实施例提供的柱镜光学复合膜的制备流程图;
图10至图15是本公开实施例提供的柱镜光栅的制备过程;
图16是图10至图15所示制备过程的对应流程图;
图17是图10至图15所示制备过程的替代步骤;
图18至图22是本公开实施例提供的柱镜光栅的制备过程;
图23是图18至图22所示制备过程的对应流程图;
图24是本公开实施例提供的柱镜光栅的制备流程图;
图25是本公开实施例提供的柱镜光栅的制备流程图;
图26是本公开实施例提供的柱镜光栅的制备流程图;
图27是本公开实施例提供的柱镜光栅的制备流程图;
图28是本公开实施例提供的柱镜光栅的制备流程图;
图29是本公开实施例提供的柱镜光栅的制备流程图;
图30是本公开实施例提供的柱镜光栅的制备过程;
图31是图29所示制备过程的对应流程图;
图32是本公开实施例提供的柱镜光栅的制备过程;
图33是图31所示制备过程的对应流程图;
图34是本公开实施例提供的柱镜光栅的制备过程;
图35是图33所示制备过程的对应流程图;
图36是本公开实施例提供的柱镜光栅的制备过程;以及
图37是图35所示制备过程的对应流程图。
附图标记:
1:柱镜光学复合膜;10:保护膜;11:柱镜光栅;111:第一衬层;112:平凸柱镜阵列;1121:平凸柱镜;113:平凹柱镜阵列;1131:平凹柱镜;114:第二衬层;115:粘合剂层;12:偏光片;121:支撑膜;122:偏振膜;123:支撑膜;124:粘合剂层;A:吸收轴;X:偏光片长度;Y:偏光片宽度;13:离型膜;2:显示面板层;21:衬底;22:衬底;23:薄膜晶体管;24:彩色滤光片;25:液晶层;26:偏光片;31:第一模具;311:第一成型面;312:凹弧面;313:空隙;32:第二模具;321:第二成型面;322:空隙;41:第一液态柱镜形成材料;42:第二液态柱镜形成材料;51:第一出胶嘴;52:第二出胶嘴;61:第一固化装置;611:第一反射罩;612:第一光源;613:第一准直光调制件;62:第二固化装置;621:第二反射罩;622:第二光源;623:第二准直光调制件;70:材料辊;71:抱紧辊;72:抱紧辊;73:支撑辊;74:收卷辊;75:材料辊;76:抱紧辊;77:抱紧辊;78:支撑辊;79:支撑辊;80:抱紧辊;81:抱紧辊。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
在本公开实施例中,“并排布置”可以是指一组元件中,最邻近的两元件之间无交叠或轻微交叠顺次排开的布置方式。“并排布置”的多个元件既可以是在平面上顺次排开的,也可以是在周向(例如圆周方向)等方向上顺次排开的。
参考图1和图2,本公开实施例提供了一种3D显示器(例如:裸眼3D显示器),其中图1是以截面图的形式提供了3D显示器的结构示意图,而图2是以侧视图的形式提供了3D显示器的结构示意图。在所示出的实施例中,3D显示器包括显示面板层2和贴附至显示面板层2的柱镜光学复合膜1。显示面板层2包括一对间隔开的衬底21、22,在这两个衬底21、22之间的间隔中设置有液晶层25。衬底21、22例如可以是玻璃衬底。液晶材料可直接填充在一对衬底21、22之间以形成液晶层25。可以在衬底21、22之间设置止挡件来防止液晶层25从衬底21、22四周溢出。或者,液晶材料可预先填充在包覆材料中以形成液晶包,然后将液晶包填装在衬底21、22之间以形成液晶层25。衬底21的朝向衬底22的表面贴附有彩色滤光片24和电极(包括公共电极和像素电极,未示出),而柱镜光学复合膜1贴附至该衬底21的背向衬底22的表面。衬底22的朝向衬底21的表面贴附有薄膜晶体管(TFT)23,而衬底22的背向衬底21的表面贴附有另一偏光片26。当电流通过薄膜晶体管23产生电场变化时,会造成液晶层25中的液晶分子偏转,借以改变光线的偏极性。衬底22的背向衬底21的一侧还可以设置背光源,用以为显示面板层2提供均匀明亮的光线。
柱镜光学复合膜1贴附至显示面板层2的表面,用于对从显示面板层2射出的光线进行调制,以产生明暗对比以及多视点,从而提供逼真的3D视觉效果。图3示出了根据本公开实施例提供的柱镜光学复合膜1的结构示意图,其中该柱镜光学复合膜1以尚未与显示面板层2组装的独立产品的状态存在。在所示出的实施例中,柱镜光学复合膜1的柱镜光栅11和偏光片12接合(例如贴合)在一起,接合方式可以是通过例如为压敏胶的粘合剂而粘接在一起。出于便于储存、运输柱镜光学复合膜1的目的而将保护膜10贴附至柱镜光栅11的背向偏光片12的表面。还可以将离型膜13贴附至偏光片12的背向柱镜光栅 11的表面。离型膜13可以通过例如厚度为0.10mm的粘合剂粘接至偏光片12,这样对柱镜光学复合膜的厚度几乎没有影响。粘合剂可以选用压敏胶。当向显示面板层2贴附柱镜光学复合膜1时,将离型膜13撕下以露出粘合剂,然后再将柱镜光学复合膜1粘接至显示面板层2的衬底21。
柱镜光学复合膜1中的柱镜光栅11作为光输出定向元件能够将光线折射到不同方向。图4以截面图的形式示出了根据本公开实施例提供的柱镜光栅11的结构示意图。在所示出的实施例中,柱镜光栅11的平凸柱镜阵列112和平凹柱镜阵列113相结合构成了无棱柱镜阵列。无棱柱镜阵列的外表面(即平凸柱镜阵列112和平凹柱镜阵列113的彼此相背的表面)是平坦表面。参考图4,平凸柱镜阵列112的一侧为平面,而另一侧由多个凸弧面构成,而平凹柱镜阵列113的一侧为平面,而另一侧由多个凹弧面构成。平凹柱镜阵列113的凹弧面与平凸柱镜阵列112的凸弧面彼此互补。平凸柱镜阵列112可以看做是由多个并排布置的平凸柱镜1121组合构成,每个平凸柱镜1121具有纵轴线,这些平凸柱镜1121的纵轴线彼此平行。平凹柱镜阵列113可以看做是由多个并排布置的平凹柱镜1131组合构成,这些平凹柱镜1131的纵轴线彼此平行。图4中示出了5个平凸柱镜1211组成的平凸柱镜阵列112,和5个平凹柱镜1311组成的平凹柱镜阵列113,但是具体数量可以视情况而增加或减少。
平凸柱镜阵列112和平凹柱镜阵列113存在折射率上的差异。这种差异可以小于常规透镜与空气之间的折射率差。在本公开提供的实施例中,平凸柱镜阵列112的折射率n1高于平凹柱镜阵列113的折射率n2。可选地,平凸柱镜阵列112与平凹柱镜阵列113之间的折射率差n△可以约为0.1至0.3,例如可以约为0.15至0.25,或者例如为约0.2。可选地,平凸柱镜阵列112的折射率n1可以约为1.56至1.66,例如约为1.61。可选地,平凹柱镜阵列113的折射率n2约为1.36至1.46,例如约为1.41。平凸柱镜阵列112与平凹柱镜阵列113之间是凹凸互补的,它们之间不存在空气,避免因空气与各柱镜阵列之间较大的折射率差而对柱镜光栅的光输出产生不利影响。凹凸互补接合在一起的两个柱镜阵列之间较小的折射率差可以减少光输出串扰,并且能够降低用户在观看3D图像时对观察角度的依赖性,由此产生了更大的使用自由度。这种柱镜阵列还具有更小的反射比,从而所观察到的图像具有更少的干扰。
返回参考图2,结合柱镜光栅11中平凸柱镜阵列112的柱镜间距P,上述所希望的效果还可以得到优化。如图2和图4所示,该柱镜间距P是在曲率方向上测量的平凸柱镜1121的宽度,其通过沿垂直于平凸柱镜1121的纵轴线测量而获得。在多视点的3D显示器中,一个平凸柱镜1121可覆盖多个(复合)像素或子像素。通过用平凸柱镜结合(复合) 像素或子像素来形成多视点,例如4个、5个或6个视点。柱镜间距P可以范围是123.000至125.000μm,例如是123.500至124.500μm,或者例如是124.432μm。
可以使柱镜光栅11中的平凸柱镜阵列112相对于像素(子像素)行或列取向,例如可使平凸柱镜阵列112中的任一平凸柱镜1121的纵轴线相对于像素列方向以一定角度倾斜。可选地,倾斜角度为约5°至45°,例如为约10°至40°,或者例如为约15°至35°,或者例如为约20°至30°,或者例如可以是25°。这种倾斜对于减少摩尔纹提供了帮助。
平凸柱镜阵列112和平凹柱镜阵列113可采用相同或不同材料制成,所选用的材料可以是以下材料之一或它们的任意组合:丙烯酸树脂材料、聚合物材料例如聚碳酸酯材料或聚氨酯材料、有机硅胶材料、不饱和聚酯材料、环氧树脂材料或者其它合适的透明材料。图4中示出无棱柱镜阵列的外表面贴附有衬层111、114,并在远离高折射率的平凸柱镜阵列112的衬层114上施加例如为压敏胶的粘合剂层115以接合偏光片12。衬层111、114可以是热塑性聚酯材料制成,例如由涤纶树脂(PET)材料制成。衬层111、114的厚度大约为0.1mm,以尽量减小柱镜光学复合膜的整体厚度。在平凸柱镜阵列113和平凹柱镜阵列113所组成的无棱柱镜阵列足够坚固的情况下,衬层111、114中的至少一个可以省去。
本公开实施例所涉及的平凸柱镜阵列112和平凹柱镜阵列113可以是不可切换的柱镜,即它们各自具有固定的光学性质。这样,无论在任何情况下,平凸柱镜阵列112和平凹柱镜阵列113始终处于透镜模式。
图5以截面图的形式示出了根据本公开实施例提供的偏光片的结构示意图。在所示出的实施例中,偏光片12为层压结构,包括偏振膜122和分别贴附至偏振膜122的相对两表面的两个支撑膜121、123。偏振膜122可以选用聚乙烯醇(PVA)制成,该膜可吸附具有二向吸收功能的碘分子,经过延伸配向使碘分子在PVA膜上有序排列,从而形成具有二向吸收性能的偏光膜。而两个支撑膜121、123可选用三醋酸纤维素(TAC)膜,保证延伸的PVA膜不会回缩,也保证PVA膜不受水汽、紫外线等外界物质的损害。可将例如为压敏胶的粘合剂层124涂覆至偏光片12的远离柱镜光栅11的支撑膜(图4中所示为支撑膜123),以接合离型膜13或显示面板层2。两个支撑膜121、123的具体化学构成可稍有差异,例如可分别是TAC膜和0-TAC膜。
参考图6,其示出了根据本公开实施例提供的偏光片的侧视图。可选地,偏光片12的长度X的范围可以是约230.000至250.000mm,例如是约235.000至245.000mm,或则例如是约242.968±0.100mm。可选地,偏光片12的宽度Y的范围可以是约120.000至150.000mm,例如是约130.000至140.000mm,或者例如是约137.432±0.100mm。可选地,偏光片12的厚度范围可以是约0.13至0.15mm,或者例如约0.14mm。可选地,偏光片12 的吸收轴线A与X方向的夹角α的范围可以是约9°至11°,例如约10°±0.8°。
本公开实施例还提供了组装3D显示器的方法,包括:
提供上述的柱镜光学复合膜1;
提供显示面板层2;
将所述柱镜光学复合膜1的偏光片12贴附至显示面板层2的玻璃衬底21的背向玻璃衬底22的表面。
在本公开实施例中,组装3D显示器的方法还包括将离型膜从偏光片上移除。
图7以截面图的形式示出了根据本公开实施例提供的另一种柱镜光栅11的结构示意图。图7中的柱镜光栅11与图4中的柱镜光栅11的差别在于,在图7的柱镜光栅中,偏光片12接合(例如贴合)至柱镜光栅11且相比于平凹柱镜阵列113来说更临近平凸柱镜阵列112。平凸柱镜阵列112和平凹柱镜阵列113各自的折射率以及它们之间的折射率差值可以参考图4所示实施例。
上述提及的柱镜阵列中,平凸柱镜阵列的平凸柱镜和平凹柱镜阵列的平凹柱镜都是具有一条轴线的柱镜。除此之外,具有两条相交轴线(例如两条垂直相交的轴线)的柱镜也可以用于形成本公开实施例的柱镜光栅。在这种情况下,用各自具有两条相交轴线的多个平凹柱镜组成平凹柱镜阵列,并用各自具有两条相交轴线的多个平凸柱镜组成平凸柱镜阵列,平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,构成了无棱柱镜阵列,且其中平凸柱镜阵列的折射率高于平凹柱镜阵列的折射率。偏光片贴附至柱镜光栅,以构成柱镜光学复合膜。在一些实施例中,光栅可包括球镜和与球镜凹凸互补的凹透镜。球镜的折射率不同于凹透镜的折射率。这里球镜也可替换为截球镜。
本公开实施例提供了制备柱镜光学复合膜的方法,如图8所示,该方法包括:
S1,形成柱镜光栅;包括形成第一柱镜阵列、形成第二柱镜阵列、使第一柱镜阵列和第二柱镜阵列的彼此相对的表面凹凸互补,且使第一柱镜阵列和所述第二柱镜阵列的彼此相背的表面形成为平面;和
S2,将偏光片贴附于柱镜光栅,以得到柱镜光学复合膜。
如图9所示,在一些实施例中,制备柱镜光学复合膜的方法包括:
S10,形成柱镜光栅;
S20,提供偏光片;
S30,提供保护膜;
S40,提供离型膜;
S50,将偏光片贴附至柱镜光栅;
S60,将保护膜贴附至柱镜光栅的背向偏光片的表面;
S70,将离型膜贴附至偏光片的背向柱镜光栅的表面;以及
S80,对接合后的保护膜、柱镜光栅、偏光片和离型膜所组成的整体进行统一裁切,得到本公开的柱镜光学复合膜。
下面将以具体示例的方式详细介绍柱镜光栅的制备方法。
示例1
图10至图15示出了柱镜光栅的一个示例性制备方法,图16示出了相应的流程图。
S101,如图10所示,将第一衬层111平铺开,将第一液态柱镜形成材料41涂覆至第一衬层111的表面,使该第一液态柱镜形成材料41在第一衬层111的表面堆积。
S102,仍参考图10,使第一模具31在第一液态柱镜形成材料41的背向第一衬层111的一侧靠近第一液态柱镜形成材料41。靠近速度可以是匀速、变速或匀速与变速的组合。在所示出的实施例中,第一模具31为压板,其一侧板面被构造成具有多个凹弧面312的第一成型面311。这里的多个凹弧面312按照与所需的平凸柱镜阵列112的多个凸弧面的构型相一致的原则来设计。
S103,参考图11,用第一模具31的第一成型面311挤压第一液态柱镜形成材料41。受迫于第一模具31的第一成型面311的形状,第一液态柱镜形成材料41的背向第一衬层111的表面呈现多个凸弧面并排布置的构型。
S104,得到所需的凸弧面构型后,对被挤压的第一液态柱镜形成材料41进行固化处理。该固化处理可以是紫外线固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S105,参考图12,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S106,参考图13,将第二液态柱镜形成材料42涂覆至平凸柱镜阵列的凸弧面,第二液态柱镜形成材料42在平凸柱镜阵列的凸弧面堆积且适形于这些凸弧面。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S107,参考图14,用第二模具32在第二液态柱镜形成材料42的背向平凸柱镜阵列的一侧靠近第二液态柱镜形成材料42。靠近速度可以是匀速、变速或匀速与变速的组合。在所示出的实施例中,第二模具32为压板,其一侧板面被构造成平坦构型的第二成型面321。用该第二成型面321挤压第二液态柱镜形成材料42。受迫于第二模具32的第二成型面321的形状,第二液态柱镜形成材料42的背向平凸柱镜阵列的表面呈现平面构型。
S108,得到所需的平面构型后,对被挤压的第二液态柱镜形成材料42进行固化处理。该固化处理可以是紫外线固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜 阵列,且该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起。
S109,固化处理结束后,将第二模具32移开,露出平凹柱镜阵列。
S110,参考图15,将第二衬层114贴附至平凹柱镜阵列,至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需衬层111、114的情况下,可以在步骤S109之后移除第一衬层111,并省去步骤S110。
本领域技术人员将理解,所述示例1可以产生诸多变型,例如在步骤S107中,可以用压辊替代压板来作为第二模具以形成平凹柱镜阵列的平面。参考图16,示出了步骤S107的替代步骤S107’:用第二模具32压靠第二液态柱镜形成材料42的背向平凸柱镜阵列的表面并使第二模具32在水平轴线上滚动。可以沿一个方向滚动,也可以来回滚动。该第二模具32为压辊,其外周面被构造成平坦构型的第二成型面。在第二模具32滚动过程中会挤压、碾平第二液态柱镜形成材料42,从而使第二液态柱镜形成材料42的背向第一衬层111的表面呈现平面。
示例2
图18至图20示出了柱镜光栅的一个示例性制备方法,图23示出了相应的流程图。
S201,如图18所示,将第一衬层111平铺开,并将压板状的第一模具31相对于第一衬层111定位,使得第一模具31的第一成型面311与第一衬层111之间存在空隙313。
S202,参考图19,向空隙313中填充第一液态柱镜形成材料41,使得该第一液态柱镜形成材料41在空隙313中堆积。
S203,仍参考图19,对空隙313中的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S204,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S205,参考图20,将压板状的第二模具32相对于平凸柱镜阵列的凸弧面定位,使得第二模具32的第二成型面321与这些凸弧面之间存在空隙322。
S206,参考图21,向空隙322中填充第二液态柱镜形成材料42,使得该第二液态柱镜形成材料42在空隙322中堆积。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S207,仍参考图22,对空隙322中的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,且受迫于第二模具32的第二成型面321的平坦板面形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面为平面。
S208,固化处理结束后,将第二模具32移开,露出平凹柱镜阵列。
S209,参考图23,将第二衬层114贴附至平凹柱镜阵列的平面,至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需衬层111、114的情况下,可以在步骤S208之后移除第一衬层111,并省去步骤S209。
示例3
在此参考图24描述柱镜光栅的一个示例性制备方法。该示例中涉及到的附图标记可参考示例1和2。
S301,将第一衬层111平铺开,将第一液态柱镜形成材料41涂覆至第一衬层111的表面,使得该第一液态柱镜形成材料41在第一衬层111的表面堆积。
S302,使压板状的第一模具31在第一液态柱镜形成材料41的背向第一衬层111的一侧靠近第一液态柱镜形成材料41。
S303,用第一模具31的第一成型面311挤压第一液态柱镜形成材料41。受迫于第一模具31的第一成型面311的形状,第一液态柱镜形成材料41的背向第一衬层111的表面呈现多个凸弧面并排布置的构型。
S304,得到所需的凸弧面构型后,对被挤压的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S305,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S306,将第二液态柱镜形成材料42涂覆至第二衬层114,使第二液态柱镜形成材料42在第二衬层114上堆积。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S307,用第二液态柱镜形成材料42连同第二衬层114覆盖平凸柱镜阵列的凸弧面,第二液态柱镜形成材料42贴附至并适形于这些凸弧面。
S308,用压板状的第二模具32挤压第二衬层114的背向第一衬层111的表面,进而挤压第二液态柱镜形成材料42。受迫于第二模具32的第二成型面321的形状,第二液态柱镜形成材料42的背向第一衬层111的表面呈现平面构型。
S309,得到所需的平面构型后,对被挤压的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,且该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起。
S310,固化处理结束后,将第二模具32移开。至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需第一衬层111、第二衬层114的情况下,可以在步骤S310之后移除第一衬层111、第二衬层114。
示例4
在此参考图25描述柱镜光栅的一个示例性制备方法。该示例中涉及到的附图标记可参考示例1和2。
S401,将第一衬层111平铺开,将第一液态柱镜形成材料41涂覆至第一衬层111的表面,使得该第一液态柱镜形成材料41在第一衬层111的表面上堆积。
S402,使压板状的第一模具31在第一液态柱镜形成材料41的背向第一衬层111的一侧靠近第一液态柱镜形成材料41。
S403,用第一模具31的第一成型面311挤压第一液态柱镜形成材料41。受迫于第一模具31的第一成型面311的形状,第一液态柱镜形成材料41的背向第一衬层111的表面呈现多个凸弧面并排布置的构型。
S404,得到所需的凸弧面构型后,对被挤压的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S405,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S406,将压板状的第二模具32相对于平凸柱镜阵列的凸弧面定位,使得第二模具32的第二成型面321与这些凸弧面之间存在空隙322。
S407,向空隙322中填充第二液态柱镜形成材料42,使得该第二液态柱镜形成材料42在空隙322中堆积。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S408,对空隙322中的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,且受迫于第二模具32的第二成型面321的平坦板面形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面为平面。
S409,固化处理结束后,将第二模具32移开,露出平凹柱镜阵列。
S410,将第二衬层114贴附至平凹柱镜阵列的平面。至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需衬层111、114的情况下,可以在步骤S409之后移除第一衬层111,并省去步骤S410。
示例5
在此参考图26描述柱镜光栅的一个示例性制备方法。该示例中涉及到的附图标记可参考示例1和2。
S501,将第一衬层111平铺开,并将压板状的第一模具31相对于第一衬层111定位,使得第一模具31的第一成型面311与第一衬层111之间存在空隙313。
S502,向空隙313中填充第一液态柱镜形成材料41,使得该第一液态柱镜形成材料41在空隙313中堆积。
S503,对空隙313中的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S504,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S505,将第二液态柱镜形成材料42涂覆至平凸柱镜阵列的凸弧面,第二液态柱镜形成材料42在平凸柱镜阵列的凸弧面上堆积且适形于这些凸弧面。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S506,用压板状的第二模具32在第二液态柱镜形成材料42的背向平凸柱镜阵列的一侧靠近第二液态柱镜形成材料42并用第二模具32的第二成型面321挤压第二液态柱镜形成材料42。受迫于第二模具32的第二成型面321的形状,第二液态柱镜形成材料42的背向第一衬层111的表面呈现平面构型。
S507,得到所需的平面构型后,对被挤压的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,且该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起。
S508,固化处理结束后,将第二模具32移开,露出平凹柱镜阵列。
S509,将第二衬层114贴附至平凹柱镜阵列的平面。至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需衬层111、114的情况下,可以在步骤S508之后移除第一衬层111,并省去步骤S509。
示例6
在此参考图27描述柱镜光栅材料的一个示例性制备方法。该示例中涉及到的附图标记可参考示例1和2。
S601,将第一衬层111平铺开,并将压板状的第一模具31相对于第一衬层111定位,使得第一模具31的第一成型面311与第一衬层111之间存在空隙313。
S602,向空隙313中填充第一液态柱镜形成材料41,使得该第一液态柱镜形成材料41在空隙313中堆积。
S603,对空隙313中的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S604,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S605,将第二液态柱镜形成材料42涂覆至第二衬层114,使第二液态柱镜形成材料42在第二衬层114上堆积。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材 料41的折射率。
S606,用第二液态柱镜形成材料42连同第二衬层114覆盖平凸柱镜阵列的凸弧面,第二液态柱镜形成材料42贴附至并适形于这些凸弧面。
S607,用压板状的第二模具32挤压第二衬层114的背向第一衬层111的表面,进而挤压第二液态柱镜形成材料42。受迫于第二模具32的第二成型面321的形状,第二液态柱镜形成材料42的背向第一衬层111的表面呈现平面构型。
S608,得到所需的平面构型后,对被挤压的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,且该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起。
S609,固化处理结束后,将第二模具32移开。至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需衬层111、114的情况下,可以在步骤S609之后移除第一衬层111、第二衬层114。
示例7
在此参考图28描述柱镜光栅的一个示例性制备方法。该示例中涉及到的附图标记可参考示例1和2。
S701,将第一衬层111平铺开,将第一液态柱镜形成材料41涂覆至第一衬层111的表面,使得该第一液态柱镜形成材料41在第一衬层111的表面上堆积。
S702,使压板状的第一模具31在第一液态柱镜形成材料41的背向第一衬层111的一侧靠近第一液态柱镜形成材料41。
S703,用第一模具31的第一成型面311挤压第一液态柱镜形成材料41。受迫于第一模具31的第一成型面311的形状,第一液态柱镜形成材料41的背向第一衬层111的表面呈现多个凸弧面并排布置的构型。
S704,得到所需的凸弧面构型后,对被挤压的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S705,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S706,将第二衬层114固定地铺设至压板状的第二模具32的第二成型面321。
S707,将压板状的第二模具32相对于平凸柱镜阵列的凸弧面定位,使得第二衬层114与这些凸弧面之间存在空隙322。
S708,向空隙322中填充第二液态柱镜形成材料42,使得该第二液态柱镜形成材料42在空隙322中堆积。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S709,对空隙322中的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,且受迫于第二模具32的第二成型面的形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面呈现平面构型。
S710,固化处理结束后,将第二模具32移开。至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需第一衬层111、第二衬层114的情况下,可以在步骤S710之后移除第一衬层111、第二衬层114。
示例8
在此参考图29描述柱镜光栅的一个示例性制备方法。该示例中涉及到的附图标记可参考示例1和2。
S801,将第一衬层111平铺开,并将压板状的第一模具31相对于第一衬层111定位,使得第一模具31的第一成型面311与第一衬层111之间存在空隙313。
S802,向空隙313中填充第一液态柱镜形成材料41,使得该第一液态柱镜形成材料41在空隙313中堆积。
S803,对空隙313中的第一液态柱镜形成材料41进行固化处理。固化后的第一液态柱镜形成材料41成型为平凸柱镜阵列。
S804,固化处理结束后,将第一模具31移开,露出平凸柱镜阵列。
S805,将第二衬层114固定地铺设至压板状的第二模具32的第二成型面321。
S806,将压板状的第二模具32相对于平凸柱镜阵列的凸弧面定位,使得第二衬层114与这些凸弧面之间存在空隙322。
S807,向空隙322中填充第二液态柱镜形成材料42,使得该第二液态柱镜形成材料42在空隙322中堆积。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S808,对空隙322中的第二液态柱镜形成材料42进行固化处理。固化后的第二液态柱镜形成材料42成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,且受迫于第二模具32的第二成型面的形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面呈现平面构型。
S809,固化处理结束后,将第二模具32移开。至此,制成了柱镜光栅。
在柱镜光学复合膜1中的柱镜光栅11无需第一衬层111、第二衬层114的情况下,可以在步骤S809之后移除第一衬层111、第二衬层114。
示例9
图30示出了柱镜光栅的一个示例性制备方法,图31示出了相应的流程图。在该方法所用装置中,材料辊70和75分别用于收纳第一衬层111、第二衬层114的卷材。第一模具31被构造成压辊,在压辊的外圆周面形成有沿圆周方向并排布置的多个凹弧面312以限定出第一成型面311。第一模具31临近抱紧辊71设置,且在第一模具31的第一成型面311与抱紧辊71的外圆周面之间形成辊隙。第二模具32被构造成压辊,该压辊的外圆周面为平坦表面以构成第二成型面。第二模具32临近抱紧辊76设置,且在第二模具32的第二成型面与抱紧辊76的外圆周面之间形成辊隙。该装置还包括两套固化装置61、62。第一固化装置61在抱紧辊71的下游且靠近第一模具31,包括第一光源612、第一反射罩611和第一准直光调制件613。第二固化装置62位于抱紧辊76的下游且靠近第二模具32,包括第二光源622、第二反射罩621和第二准直光调制件623。
按照本示例的制备柱镜光栅的过程包括以下步骤:
S901,材料辊70沿箭头方向旋转以放出第一衬层111,第一衬层111被送至抱紧辊71。
S902,在位置a处的第一出胶嘴51将第一液态柱镜形成材料41施加至第一模具31的外圆周面。随着第一模具31沿箭头方向旋转,第一液态柱镜形成材料41填满第一衬层111与第一成型面311之间的空隙。在抱紧辊71处,第一液态柱镜形成材料41开始与第一衬层111接合。
S903,接合了第一液态柱镜形成材料41的第一衬层111行进到第一固化装置61处。受第一固化装置61的作用,第一液态柱镜形成材料41被固化成型为平凸柱镜阵列。
S904,接合有平凸柱镜阵列的第一衬层111经抱紧辊72和支撑辊73后被送至抱紧辊76。
S905,材料辊75沿箭头方向旋转以放出第二衬层114,第二衬层114经支撑辊78被送至第二模具32的平坦外周面。
S906,在位置b处的第二出胶嘴52将第二液态柱镜形成材料42施加至第二衬层114的表面。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S907,随着第二模具32沿箭头方向旋转,第二液态柱镜形成材料42填满平凸柱镜阵列的多个凸弧面与第二衬层114之间的间隙。在抱紧辊76的作用下,第二液态柱镜形成材料42开始与平凸柱镜阵列的凸弧面接合并适形于这些凸弧面。
S908,第一衬层111、第二衬层114裹挟着平凸柱镜阵列和第二液态柱镜形成材料42行进到第二固化装置62处。受第二固化装置62的作用,第二液态柱镜形成材料42被固化成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起, 且受迫于第二模具32的第二成型面的形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面呈现平面构型。至此,制成了柱镜光栅。
之后,柱镜光栅可经抱紧辊77被送至收卷辊74。
示例10
图32示出了柱镜光栅的一个示例性制备方法,图33示出了相应的流程图。该方法所用装置与图29中装置的区别在于,第一出胶嘴51不是设在位置a处,而是设在材料辊70与抱紧辊71之间,例如在位置c处,且第二出胶嘴52不是设在位置b处,而是设在抱紧辊72与抱紧辊76之间,例如设在位置d处。
按照本示例的制备柱镜光栅的过程包括以下步骤:
S1001,材料辊70沿箭头方向旋转以放出第一衬层111,位置c处的第一出胶嘴51将第一液态柱镜形成材料41涂覆至第一衬层111的表面。第一衬层111携带着第一液态柱镜形成材料41到达抱紧辊71。
S1002,第一模具31沿箭头方向旋转。从抱紧辊71开始,第一模具31借助其第一成型面311挤压第一液态柱镜形成材料41,使得第一液态柱镜形成材料41的背向第一衬层111的表面呈现并排布置的多个凸弧面。
S1003,第一衬层111携带着被挤压的第一液态柱镜形成材料41到达第一固化装置61处。受第一固化装置61的作用,第一液态柱镜形成材料41被固化成型为平凸柱镜阵列。
S1004,接合有平凸柱镜阵列的第一衬层111经过抱紧辊72和支撑辊73后向抱紧辊76行进。在位置d处的第二出胶嘴52将第二液态柱镜形成材料42涂覆至平凸柱镜阵列的多个凸弧面。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。第二液态柱镜形成材料42在平凸柱镜阵列的凸弧面上堆积且适形于平凸柱镜阵列的凸弧面。
S1005,第一衬层111携带平凸柱镜阵列和第二液态柱镜形成材料42到达抱紧辊76。
S1006,材料辊75沿箭头方向旋转以放出第二衬层114,第二衬层114经支撑辊78被送至第二模具32的外周面。
S1007,从抱紧辊76开始,第二衬层114开始接合第二液态柱镜形成材料42,且第二模具32借助于其第二成型面321挤压第二衬层114的表面,进而挤压第二液态柱镜形成材料42。
S1008,第一衬层111、第二衬层114裹挟着平凸柱镜阵列和受挤压的第二液态柱镜形成材料42行进到第二固化装置62处。受第二固化装置62的作用,第二液态柱镜形成材料42被固化成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接 合在一起,且受迫于第二模具32的第二成型面的形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面呈现平面构型。至此,制成了柱镜光栅。
之后,柱镜光栅经抱紧辊77被送至收卷辊74。
示例11
图34示出了柱镜光栅的一个示例性制备方法,图35示出了对应的流程图。该方法所用装置与图29的装置的区别在于,从材料辊75送出的第二衬层114不是被送至第二模具32,而是被送至位于第二模具32下游的抱紧辊81。
按照本示例的制备柱镜光栅的过程包括以下步骤:
S1101,材料辊70沿箭头方向旋转以放出第一衬层111,第一衬层111被送至抱紧辊71。
S1102,在位置a处的第一出胶嘴51将第一液态柱镜形成材料41涂覆至第一模具31的外圆周面。随着第一模具31沿箭头方向旋转,第一液态柱镜形成材料41填满第一衬层111与第一成型面311之间的空隙。在抱紧辊71处,第一液态柱镜形成材料41开始与第一衬层111接合。
S1103,接合了第一液态柱镜形成材料41的第一衬层111行进到第一固化装置61处。受第一固化装置61的作用,第一液态柱镜形成材料41被固化成型为平凸柱镜阵列。
S1104,接合有平凸柱镜阵列的第一衬层111经抱紧辊72和支撑辊73后被送至抱紧辊76。
S1105,在位置b处的第二出胶嘴52将第二液态柱镜形成材料42涂覆至第二模具32的外周面。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。
S1106,随着第二模具32沿箭头方向旋转,第二液态柱镜形成材料42填满平凸柱镜阵列的多个凸弧面与第二模具32之间的空隙。在抱紧辊76处,第二液态柱镜形成材料42开始与平凸柱镜阵列的凸弧面接合。
S1107,第一衬层111携带平凸柱镜阵列和第二液态柱镜形成材料42行进到第二固化装置62处。受第二固化装置62的作用,第二液态柱镜形成材料42被固化成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,且受迫于第二模具32的第二成型面的形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面呈现平面构型。
S1108,第一衬层111带着平凸柱镜阵列和平凹柱镜阵列经抱紧辊77、支撑辊79后到达抱紧辊80。
S1109,材料辊75沿箭头方向旋转以放出第二衬层114,第二衬层114被送至临近抱紧辊80的抱紧辊81。
S1110,在经过抱紧辊80与抱紧辊81之间的辊隙时,第二衬层114开始与平凹柱镜阵列的平面接合。至此,制成了柱镜光栅。
之后,柱镜光栅被送至收卷辊74。
示例12
图36示出了柱镜光栅的一个示例性制备方法,图37示出了相应的流程图。该方法所用装置与图33中的装置的区别在于,第一出胶嘴51不是设在位置a处,而是设像图21一样设在位置c处,且第二出胶嘴52不是设在位置b处,而是像图21一样设在位置d处。
按照本示例的制备柱镜光栅的过程包括以下步骤:
S1201,材料辊70沿箭头方向旋转以放出第一衬层111,位置c处的第一出胶嘴51将第一液态柱镜形成材料41涂覆至第一衬层111的表面。第一衬层111携带着第一液态柱镜形成材料41到达抱紧辊71。
S1202,第一模具31沿箭头方向旋转。从抱紧辊71开始,第一模具31借助其第一成型面311挤压第一液态柱镜形成材料41,使得第一液态柱镜形成材料41的背向第一衬层111的表面呈现并排布置的多个凸弧面。
S1203,第一衬层111携带着被挤压的第一液态柱镜形成材料41到达第一固化装置61处。受第一固化装置61的作用,第一液态柱镜形成材料41被固化成型为平凸柱镜阵列。
S1204,接合有平凸柱镜阵列的第一衬层111经过抱紧辊72和支撑辊73后向抱紧辊76行进。在位置d处的第二出胶嘴52将第二液态柱镜形成材料42施加至平凸柱镜阵列的多个凸弧面。第二液态柱镜形成材料42的折射率不同于第一液态柱镜形成材料41的折射率。第二液态柱镜形成材料42在平凸柱镜阵列的凸弧面上堆积且适形于平凸柱镜阵列的凸弧面。
S1205,第一衬层111携带平凸柱镜阵列和第二液态柱镜形成材料42到达抱紧辊76。
S1206,从抱紧辊76开始,第二模具32借助于其第二成型面321挤压第二液态柱镜形成材料42的表面。
S1207,第一衬层111带着平凸柱镜阵列和受挤压的第二液态柱镜形成材料42行进到第二固化装置62处。受第二固化装置62的作用,第二液态柱镜形成材料42被固化成型为平凹柱镜阵列,该平凹柱镜阵列与平凸柱镜阵列以凹凸互补的方式接合在一起,且受迫于第二模具32的第二成型面的形状,该平凹柱镜阵列的背向平凸柱镜阵列的表面呈现平面构型。
S1208,第一衬层111带着平凸柱镜阵列和平凹柱镜阵列经抱紧辊77和支撑辊79后到达抱紧辊80。
S1209,材料辊75沿箭头方向旋转以放出第二衬层114,第二衬层114被送至临近抱紧辊80的抱紧辊81。
S1210,在经过抱紧辊80与抱紧辊81之间的辊隙时,第二衬层114开始与平凹柱镜阵列的平面接合。至此,制成了柱镜光栅。
之后,柱镜光栅被送至收卷辊74。
上述各实施例所涉及的步骤在不违背本公开实施例目的的前提下可以与其它实施例的步骤任意组合,且上述各实施例所用加工工具及其特征,例如第一模具31及其第一成型面、第二模具32及其第二成型面等,是相互通用的。
另外,上文各示例出于便于描述的目的而对其中的工艺步骤S标以序号,例如S101、S102…S111,但并不旨在对步骤的先后顺序进行限制。在不违背本公开实施例目的的前提下,步骤间的先后顺序可以调整。例如示例9中的步骤S905可以与步骤S901至S904中的任一步骤同时实施,也可以在步骤S901之前实施。
虽然上述示例1至12都是采用带凹弧面的第一模具来先成型平凸柱镜阵列,再用带平坦表面的第二模具来进一步成型与平凸柱镜阵列适形的平凹柱镜阵列,但是本领域技术人员将理解,在其他的变型示例中,也可以先用带凸弧面的模具来成型平凹柱镜阵列,再用带平坦表面的模具来进一步成型与平凹柱镜阵列适形的平凸柱镜阵列。
以上描述和附图充分地示出了本公开的实施例,以使本领域技术人员能够实践它们。其他实施例可以包括结构的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一”、“一个”和“所述”旨在同样包括复数形式。另外,当用于本申请中时,术语“包括”及“包含”、“含有”等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要 素,并不排除在包括该要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。本领域技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不赘述。

Claims (20)

  1. 一种柱镜光学复合膜,包括:
    第一偏光片;和
    与所述第一偏光片接合的柱镜光栅,包括第一柱镜阵列和第二柱镜阵列;
    其中,所述第一柱镜阵列和所述第二柱镜阵列的彼此相背的表面为平面,且所述第一柱镜阵列和所述第二柱镜阵列的彼此相对的表面凹凸互补,所述第一偏光片贴附于所述柱镜光栅。
  2. 根据权利要求1所述的柱镜光学复合膜,其中,所述第一柱镜阵列和所述第二柱镜阵列中的一个柱镜阵列为平凸柱镜阵列,另一个柱镜阵列为平凹柱镜阵列;其中,
    所述平凸柱镜阵列的一个表面为平面,相对的另一个表面形成有并排布置的多个凸弧面;或所述平凹柱镜阵列的一个表面为平面,相对的另一个表面形成有与所述平凸柱镜阵列的所述多个凸弧面互补的多个凹弧面;
    所述平凸柱镜阵列的折射率高于所述平凹柱镜阵列的折射率。
  3. 根据权利要求2所述的柱镜光学复合膜,其中,所述平凸柱镜阵列的折射率与所述平凹柱镜阵列的折射率的差值n△为0.1≤n△≤0.3。
  4. 根据权利要求2所述的柱镜光学复合膜,其中,
    所述平凸柱镜阵列的折射率n1为1.56≤n1≤1.66;或
    所述平凹柱镜阵列的折射率n2为1.36≤n2≤1.46。
  5. 根据权利要求1至4任一项所述的柱镜光学复合膜,其中,所述柱镜光栅包括间隔开的一对衬层;其中,
    所述一对衬层中的第一衬层的背向第二衬层的表面与所述第一偏光片接合,所述第一柱镜阵列和所述第二柱镜阵列被夹在所述一对衬层之间,且所述第一柱镜阵列和所述第二柱镜阵列的平面各自与所述一对衬层中的一个衬层接合。
  6. 根据权利要求1至4任一项所述的柱镜光学复合膜,其中,所述第一偏光片包括:
    间隔开的一对支撑膜;和
    被夹在所述一对支撑膜之间并具有吸收轴的偏振膜;
    其中,所述柱镜光栅与所述一对支撑膜中的一个支撑膜相接合。
  7. 根据权利要求1至4任一项所述的柱镜光学复合膜,还包括:
    贴附于所述柱镜光栅的背向所述第一偏光片的表面的保护膜。
  8. 根据权利要求1至4任一项所述的柱镜光学复合膜,还包括:
    贴附于所述第一偏光片的背向所述柱镜光栅的表面的离型膜。
  9. 一种3D显示器,包括:
    显示面板层;和
    如权利要求1至7任一项所述的柱镜光学复合膜;
    其中,所述显示面板层与所述柱镜光学复合膜的所述第一偏光片接合。
  10. 根据权利要求9所述的3D显示器,其中,所述显示面板层包括:
    间隔开的一对玻璃衬底;
    贴附于所述一对玻璃衬底中的第一玻璃衬底的面向第二玻璃衬底的表面的彩色滤光片;
    贴附于所述第二玻璃衬底的面向所述第一玻璃衬底的表面的薄膜晶体管;
    贴附于所述第二玻璃衬底的背向所述第一玻璃衬底的表面的第二偏光片;和
    设置在所述一对玻璃衬底之间的液晶层;
    其中,所述柱镜光学复合膜的所述第一偏光片贴附于所述第一玻璃衬底的背向所述第二玻璃衬底的表面。
  11. 一种柱镜光学复合膜的制备方法,包括:
    形成柱镜光栅;包括形成第一柱镜阵列、形成第二柱镜阵列、使所述第一柱镜阵列和所述第二柱镜阵列的彼此相对的表面凹凸互补,且使所述第一柱镜阵列和所述第二柱镜阵列的彼此相背的表面形成为平面;
    将偏光片贴附于所述柱镜光栅,以得到所述柱镜光学复合膜。
  12. 根据权利要求11所述的制备方法,其中,形成第一柱镜阵列、形成第二柱镜阵列包括:
    将第一柱镜阵列和第二柱镜阵列中的一个形成为一个表面为平面且相对的另一个表面形成有并排布置的多个凸弧面的平凸柱镜阵列;和
    将第一柱镜阵列和第二柱镜阵列中的另一个形成为一个表面为平面且相对的另一个表面形成有与所述平凸柱镜阵列的所述多个凸弧面互补的多个凹弧面的平凹柱镜阵列;
    其中,所述平凸柱镜阵列的折射率高于所述平凹柱镜阵列的折射率。
  13. 根据权利要求11所述的制备方法,还包括:
    将保护膜贴附于所述柱镜光栅的背向所述偏光片的表面;或
    将离型膜贴附于所述偏光片的背向所述柱镜光栅的表面。
  14. 根据权利要求11所述的制备方法,其中,形成柱镜光栅包括:
    提供第一衬层、第二衬层、第一液态柱镜形成材料和第二液态柱镜形成材料;提供具有第一成型面的第一模具,所述第一成型面被构造成并排布置的多个弧面;提供具有第二 成型面的第二模具,所述第二成型面被构造成平坦表面;
    借助所述第一模具的所述第一成型面使所述第一液态柱镜形成材料在所述第一衬层上形成为所述第一柱镜阵列;和
    借助所述第二模具的所述第二成型面使所述第二液态柱镜形成材料形成为在所述第一柱镜阵列与所述第二衬层之间且与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列。
  15. 根据权利要求14所述的制备方法,其中,借助所述第一模具的所述第一成型面使所述第一液态柱镜形成材料在所述第一衬层上形成为所述第一柱镜阵列包括:
    将所述第一液态柱镜形成材料涂覆于所述第一衬层;
    用所述第一模具的第一成型面挤压所述第一液态柱镜形成材料的背向所述第一衬层的表面;和
    对被挤压的所述第一液态柱镜形成材料进行固化处理,以形成所述第一柱镜阵列。
  16. 根据权利要求14所述的制备方法,其中,借助所述第一模具的所述第一成型面使所述第一液态柱镜形成材料在所述第一衬层上形成为所述第一柱镜阵列包括:
    将所述第一模具相对于所述第一衬层定位,使得所述第一模具的所述第一成型面与所述第一衬层之间存在空隙;
    用所述第一液态柱镜形成材料填满所述空隙;和
    对所述空隙中的所述第一液态柱镜形成材料进行固化处理,以形成所述第一柱镜阵列。
  17. 根据权利要求14所述的制备方法,其中,借助所述第二模具的所述第二成型面使所述第二液态柱镜形成材料形成为在所述第一柱镜阵列与所述第二衬层材料之间且与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列包括:
    将所述第二液态柱镜形成材料涂覆于所述第一柱镜阵列的背向所述第一衬层的表面;
    用所述第二模具的所述第二成型面挤压所述第二液态柱镜形成材料的背向所述第一柱镜阵列的表面;
    对被挤压的所述第二液态柱镜形成材料进行固化处理,以形成与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列;
    使所述第二模具离开所述第二柱镜阵列;和
    将所述第二衬层贴附于所述第二柱镜阵列的背向所述第一柱镜阵列的表面。
  18. 根据权利要求14所述的制备方法,其中,借助所述第二模具的所述第二成型面使所述第二液态柱镜形成材料形成为在所述第一柱镜阵列与所述第二衬层之间且与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列包括:
    将所述第二液态柱镜形成材料涂覆于所述第二衬层;
    使所述第二液态柱镜形成材料的背向所述第二衬层的表面贴附于所述第一柱镜阵列的背向所述第一衬层的表面;
    用所述第二模具的所述第二成型面挤压所述第二衬层的背向所述第二液态柱镜形成材料的表面;和
    对被挤压的所述第二液态柱镜形成材料进行固化处理,以形成与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列。
  19. 根据权利要求14所述的制备方法,其中,借助所述第二模具的所述第二成型面使所述第二液态柱镜形成材料形成为在所述第一柱镜阵列与所述第二衬层之间且与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列包括:
    将所述第二模具相对于所述第一柱镜阵列定位,使得所述第二模具的所述第二成型面与所述第一柱镜阵列的背向所述第一衬层的表面之间存在空隙;
    用所述第二液态柱镜形成材料填满所述空隙;
    对所述空隙中的第二液态柱镜形成材料进行固化处理,以形成与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列;
    使所述第二模具离开所述第二柱镜阵列;和
    将所述第二衬层贴附于所述第二柱镜阵列的背向所述第一柱镜阵列的表面。
  20. 根据权利要求14所述的制备方法,其中,借助所述第二模具的所述第二成型面使所述第二液态柱镜形成材料形成为在所述第一柱镜阵列与所述第二衬层之间且与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列包括:
    将所述第二衬层置于所述第二模具的所述第二成型面上;
    将所述第二模具相对于所述第一柱镜阵列定位,使得所述第二衬层与所述第一柱镜阵列的背向所述第一衬层的表面之间存在空隙;
    用所述第二液态柱镜形成材料填满所述空隙;和
    对所述空隙中的第二液态柱镜形成材料进行固化处理,以形成与所述第一柱镜阵列凹凸互补的所述第二柱镜阵列。
PCT/CN2020/133320 2019-12-05 2020-12-02 柱镜光学复合膜及其制备方法、3d显示器 WO2021110028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/779,545 US20230019555A1 (en) 2019-12-05 2020-12-02 Lenticular optical composite film, preparation method therefor, and 3d display
EP20896110.2A EP4071524A4 (en) 2019-12-05 2020-12-02 LENTICULAR OPTICAL COMPOSITE FILM, PREPARATION METHOD THEREFOR AND 3D DISPLAY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911231195.XA CN112925049A (zh) 2019-12-05 2019-12-05 柱镜光学复合膜及其制备方法、裸眼3d显示器
CN201911231195.X 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021110028A1 true WO2021110028A1 (zh) 2021-06-10

Family

ID=76160828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133320 WO2021110028A1 (zh) 2019-12-05 2020-12-02 柱镜光学复合膜及其制备方法、3d显示器

Country Status (5)

Country Link
US (1) US20230019555A1 (zh)
EP (1) EP4071524A4 (zh)
CN (1) CN112925049A (zh)
TW (1) TWI770706B (zh)
WO (1) WO2021110028A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654108B (zh) * 2022-04-09 2023-06-23 法特迪精密科技(苏州)有限公司 Mems探针硅片切割装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120126562A (ko) * 2011-05-12 2012-11-21 엘지디스플레이 주식회사 영상 표시장치
CN104133261A (zh) * 2014-08-13 2014-11-05 郑州恒昊玻璃技术有限公司 一种光栅及其制备方法
JP2015018231A (ja) * 2013-06-14 2015-01-29 日東電工株式会社 複屈折レンチキュラーレンズフィルム、複屈折レンチキュラーレンズフィルムの製造方法、複屈折レンチキュラーレンズフィルム付き偏光板、および画像表示装置
CN104898291A (zh) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 一种视镜分离器件及其制作方法
CN106094228A (zh) * 2016-06-01 2016-11-09 武汉华星光电技术有限公司 光栅与偏光片一体化的薄膜及其制造方法、显示器
CN108061974A (zh) * 2017-12-12 2018-05-22 深圳超多维科技有限公司 透镜光栅器件、立体显示装置、透镜光栅器件的制作方法
CN211293321U (zh) * 2019-12-05 2020-08-18 北京芯海视界三维科技有限公司 柱镜光学复合膜、裸眼3d显示器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431052B1 (ko) * 2001-10-08 2004-05-12 주식회사 네오텍리서치 표면 굴곡에 의하여 형성된 다중 영역 효과를 가지는 액정표시 장치
TWI551917B (zh) * 2010-02-04 2016-10-01 群創光電股份有限公司 液晶面板模組與液晶顯示裝置
WO2012038876A1 (en) * 2010-09-22 2012-03-29 Koninklijke Philips Electronics N.V. Multi-view display device
TWI459036B (zh) * 2012-07-18 2014-11-01 Au Optronics Corp 立體顯示裝置
US20140029087A1 (en) * 2012-07-25 2014-01-30 Lg Display Co., Ltd. Switchable lens device, method of manufacturing the same, and 2-dimensional and 3-dimensional image display device using the same
CN103048842A (zh) * 2012-12-10 2013-04-17 京东方科技集团股份有限公司 一种液晶透镜及3d显示装置
US9952448B2 (en) * 2014-03-26 2018-04-24 Indizen Optical Technologies, S.L. Eyewear lens production by additive techniques
CN105137521B (zh) * 2015-09-25 2018-07-06 武汉华星光电技术有限公司 一种偏光片及其构造方法
CN105158916B (zh) * 2015-10-16 2018-03-27 宁波维真显示科技股份有限公司 手持裸眼3d显示终端的封装方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120126562A (ko) * 2011-05-12 2012-11-21 엘지디스플레이 주식회사 영상 표시장치
JP2015018231A (ja) * 2013-06-14 2015-01-29 日東電工株式会社 複屈折レンチキュラーレンズフィルム、複屈折レンチキュラーレンズフィルムの製造方法、複屈折レンチキュラーレンズフィルム付き偏光板、および画像表示装置
CN104133261A (zh) * 2014-08-13 2014-11-05 郑州恒昊玻璃技术有限公司 一种光栅及其制备方法
CN104898291A (zh) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 一种视镜分离器件及其制作方法
CN106094228A (zh) * 2016-06-01 2016-11-09 武汉华星光电技术有限公司 光栅与偏光片一体化的薄膜及其制造方法、显示器
CN108061974A (zh) * 2017-12-12 2018-05-22 深圳超多维科技有限公司 透镜光栅器件、立体显示装置、透镜光栅器件的制作方法
CN211293321U (zh) * 2019-12-05 2020-08-18 北京芯海视界三维科技有限公司 柱镜光学复合膜、裸眼3d显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071524A4

Also Published As

Publication number Publication date
EP4071524A4 (en) 2023-12-27
TWI770706B (zh) 2022-07-11
CN112925049A (zh) 2021-06-08
EP4071524A1 (en) 2022-10-12
TW202136862A (zh) 2021-10-01
US20230019555A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
TWI386683B (zh) 用於三維顯示器之微透鏡面板單元,三維顯示器裝置及其製造方法
TWI224207B (en) Substrate having parallax barrier layer, method for manufacturing the same and 3D display device
US9715121B2 (en) Switchable 3-dimensional conversion device, method for manufacturing the same and stereoscopic image display device using the same
CN101578549B (zh) 带微透镜阵列的液晶显示面板和液晶显示装置
US20120026112A1 (en) Image display apparatus and method thereof
JP5916151B2 (ja) 反射型スクリーンの製造方法
JP2005313638A (ja) 積層フィルムの製造方法、積層フィルム、および表示装置の製造方法
US9500872B2 (en) Glass encapsulated polymeric lenticular system for autostereoscopic display
JP2012521577A (ja) 液晶セルの製造
WO2021110028A1 (zh) 柱镜光学复合膜及其制备方法、3d显示器
CN204989640U (zh) 一种视景分离器件及3d显示装置
US8704987B2 (en) Graded index birefringent component and manufacturing method thereof
US20020071179A1 (en) Method for manufacturing 3D image display body
JP2007072476A (ja) 視差バリア層付き基板の製造方法
TW201316091A (zh) 背光單元用之多層片及其製造方法
KR100932298B1 (ko) 배리어엘시디를 이용한 영상표시장치의 이미지표시패널과 배리어엘시디패널 합착 방법
CN211293321U (zh) 柱镜光学复合膜、裸眼3d显示器
KR100600037B1 (ko) 편광판의 제조방법
CN109445196B (zh) 一种2d-3d显示切换光学模组及其制备方法、显示装置
TW201333534A (zh) 用於自動立體顯示裝置之透鏡器件、自動立體顯示裝置及彼等之製造方法
CN104808850A (zh) 触控装置及其制作方法
JP2008170871A (ja) 光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法
TWM505616U (zh) 3d顯示層及3d顯示結構
KR101177863B1 (ko) 3d 광학필름을 채용한 편광필름 및 이를 이용한 3d 디스플레이의 제조방법
JP2012181222A (ja) 立体画像表示用柱状レンズシートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020896110

Country of ref document: EP

Effective date: 20220705