WO2021109534A1 - 一种控制器的时钟配置方法、系统及超声设备 - Google Patents

一种控制器的时钟配置方法、系统及超声设备 Download PDF

Info

Publication number
WO2021109534A1
WO2021109534A1 PCT/CN2020/096264 CN2020096264W WO2021109534A1 WO 2021109534 A1 WO2021109534 A1 WO 2021109534A1 CN 2020096264 W CN2020096264 W CN 2020096264W WO 2021109534 A1 WO2021109534 A1 WO 2021109534A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
module
working
controller
task
Prior art date
Application number
PCT/CN2020/096264
Other languages
English (en)
French (fr)
Inventor
朱曦
刘辉
Original Assignee
深圳开立生物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳开立生物医疗科技股份有限公司 filed Critical 深圳开立生物医疗科技股份有限公司
Publication of WO2021109534A1 publication Critical patent/WO2021109534A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device

Definitions

  • the present invention relates to the field of ultrasound diagnosis, in particular to a method and system for configuring a controller clock, and ultrasound equipment.
  • FIG. 1 is a schematic structural diagram of an ultrasonic device in the prior art.
  • Ultrasonic equipment includes: host computer, keyboard, display, and front-end hardware.
  • the front-end hardware includes: controller, transmitter chip, receiver chip and ultrasonic transducer.
  • a controller that is the core control of the front-end hardware is indispensable.
  • the design requirements of the controller continue to increase and the integration level becomes higher and higher, the power consumption problem is becoming more and more serious.
  • the technical means adopted is: when the ultrasound device freezes the ultrasound image, the clock of the controller is turned off to reduce the dynamic power consumption of the controller.
  • the ultrasound equipment is in a normal working state most of the time, and only a small part of the time is in a frozen state, which leads to a small reduction in the power consumption of the controller and a poor power reduction effect.
  • the purpose of the present invention is to provide a controller clock configuration method, system and ultrasound equipment, which avoids the waste of computation and power consumption caused by the controller in the working process when the ultrasound business has not too high demand for the controller's computation. , Can play a good effect of reducing power consumption.
  • the present invention provides a controller clock configuration method, which is applied to ultrasound equipment, including:
  • each working module of the controller divides each said working module into a fixed clock module and a dynamic clock module in advance;
  • each working module of the dynamic clock module with a clock frequency corresponding to the target clock gear, and set the clock frequency for the fixed
  • Each working module of the clock module is configured with a preset fixed clock frequency.
  • each of the working modules includes a bus decoding module for receiving and parsing instructions from the host computer to correspondingly issue the instructions from the host computer to the remaining working modules, a system main control module, a signal processing module for processing ultrasonic signals, and Used to upload the processed ultrasonic signal to the data upload module of the host computer;
  • the process of dividing each of the working modules into a fixed clock module and a dynamic clock module includes:
  • the signal processing module and/or the data upload module are divided into dynamic clock modules, and the remaining working modules of the controller are all divided into fixed clock modules.
  • the process of obtaining the computing demand of the current ultrasound task for the controller according to the working mode and working parameters includes:
  • the working mode and working parameters of the current ultrasound task are input to the computing demand calculation model to obtain the computing demand of the current ultrasound task on the controller .
  • the working parameters of the ultrasound task include frame rate, scanning depth, and number of beams.
  • the preset process of calculating the corresponding relationship between the gear positions includes:
  • the computing capability of the controller is divided into N computing levels; wherein the computing capacity of the controller corresponding to the higher computing level is greater than the computing capacity of the controller corresponding to the lower computing level; N is an integer greater than 1;
  • the present invention also provides a controller clock configuration system, which is applied to ultrasound equipment, including:
  • the clock dividing module is used to divide each working module into a fixed clock module and a dynamic clock module according to the working nature of each working module of the controller in advance;
  • a demand acquisition module configured to acquire the working mode and working parameters of the current ultrasound task, and obtain the computing demand of the current ultrasound task for the controller according to the working mode and working parameters;
  • the clock configuration module is used to determine the target clock gear corresponding to the operation demand according to the preset operation gear correspondence relationship, and configure the clock frequency corresponding to the target clock gear for each working module of the dynamic clock module , And configure a preset fixed clock frequency for each working module of the fixed clock module.
  • each of the working modules includes a bus decoding module for receiving and parsing instructions from the host computer to correspondingly issue the instructions from the host computer to the remaining working modules, a system main control module, a signal processing module for processing ultrasonic signals, and Used to upload the processed ultrasonic signal to the data upload module of the host computer;
  • the clock division module is specifically configured to divide the signal processing module and/or the data upload module into dynamic clock modules, and divide the remaining working modules of the controller into fixed clock modules.
  • the demand acquisition module includes:
  • the model establishment sub-module is used to pre-establish and train a calculation model for calculating the calculation requirements of the controller for the ultrasonic task according to the working mode and working parameters of the ultrasonic task;
  • the demand calculation sub-module is used to obtain the working mode and working parameters of the current ultrasound task, and input the working mode and working parameters of the current ultrasound task into the calculation demand calculation model to obtain the current ultrasound task's response to the The computing demand of the controller.
  • the working parameters of the ultrasound task include frame rate, scanning depth, and number of beams.
  • the present invention also provides an ultrasonic device, including:
  • the upper computer connected to the controller is used to implement the steps of any of the above-mentioned clock configuration methods of the controller when the stored computer program is executed.
  • the invention provides a clock configuration method of the controller, which can divide the working modules of the controller into a fixed clock module and a dynamic clock module in advance.
  • the ultrasound equipment performs an ultrasound task, first calculate the current ultrasound task’s computing demand for the controller based on the current ultrasound task, and then determine the target clock gear suitable for the current computing demand.
  • the purpose is to perform the tasks of the dynamic clock module.
  • the module is configured with the clock frequency corresponding to the target clock gear, so as to avoid the waste of calculation and power consumption caused by the controller in the working process when the ultrasonic business has not too high demand for the controller's operation, which can achieve a good reduction. Power consumption effect.
  • the present invention also provides a controller clock configuration system and ultrasound equipment, which have the same beneficial effects as the above clock configuration method.
  • Figure 1 is a schematic structural diagram of an ultrasonic device in the prior art
  • FIG. 2 is a flowchart of a method for configuring a clock of a controller according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of component modules of a controller provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a clock configuration system of a controller provided by an embodiment of the present invention.
  • the core of the present invention is to provide a controller clock configuration method, system and ultrasound equipment, which avoids the waste of computation and power consumption caused by the controller in the working process when the ultrasound business has not too high demand for the computation of the controller. , Can play a good effect of reducing power consumption.
  • FIG. 2 is a flowchart of a method for configuring a clock of a controller according to an embodiment of the present invention.
  • the clock configuration method of the controller is applied to ultrasound equipment and includes:
  • Step S1 According to the working nature of the working modules of the controller in advance, each working module is divided into a fixed clock module and a dynamic clock module.
  • the controller of the front-end hardware of the ultrasound equipment is constructed by hardware circuits, and these hardware circuits are classified according to their functions to obtain multiple working modules. For the controller, when the ultrasound equipment performs different ultrasound tasks, the workload of the controller is different.
  • this embodiment considers that if the same working module works under the same frequency of the clock signal when the workload is heavy and when the workload is light, although the work undertaken by itself can be completed in both cases However, this will result in the waste of power consumption of the working module when the workload is lighter. This is because: when the controller processes ultrasonic tasks with different workloads at the same clock frequency, the heavier workload is The task processing time is greater than the task processing time under the lighter workload, but the controller will reserve a certain length of task processing time for the ultrasound task when processing the ultrasound task. If the ultrasound is completed within the reserved task processing time Task, the controller will still work at the given clock frequency in the remaining idle time, resulting in waste of power consumption.
  • the working module does not need to be configured when the workload is lighter.
  • the clock signal with the equivalent frequency when the workload is heavier it can reduce the frequency of the clock signal appropriately on the premise of completing the workload undertaken by itself, so that it can not only complete its own task within the reserved task processing time. It can reduce the power consumption of the working module and avoid the waste of power consumption caused by the working module in the working process.
  • the frequency of the clock signal cannot be dynamically configured, that is, a fixed clock is required. This is because of these The function of the working module provides a communication link for the upper computer and the controller. If the clock frequency of these working modules is reduced, the communication speed between the upper computer and the controller will be limited, which will affect the smooth progress of the front-end hardware.
  • the present embodiment divides each working module into a fixed clock module and a dynamic clock module according to the working nature of each working module of the controller in advance, so as to configure the clock of the subsequent controller.
  • Step S2 Obtain the working mode and working parameters of the current ultrasound task, and obtain the calculation requirements of the current ultrasound task for the controller according to the working mode and working parameters.
  • the ultrasound equipment is provided with an operating device for the user to operate, such as a keyboard or a touch screen or a display panel.
  • an operating device for the user to operate, such as a keyboard or a touch screen or a display panel.
  • the operator needs to set the ultrasound task for the ultrasound device through the operating device, specifically the working mode and working parameters of the ultrasound task.
  • the working mode and working parameters of the ultrasound task determine the amount of operation of the controller in the ultrasound equipment, that is, the amount of operation required by the controller for the ultrasound task, so in the process of setting the working mode and working parameters of the ultrasound task, this In the embodiment, the working mode and working parameters of the current ultrasound task can be obtained through the operating device, so as to obtain the computing demand of the current ultrasound task on the controller.
  • the current ultrasound task's computing demand on the controller may specifically refer to the amount of data that the controller needs to process in a unit time.
  • Step S3 Determine the target clock gear corresponding to the operation demand according to the preset operation gear correspondence relationship.
  • the frequency of the clock signal configured by the dynamic clock module is related to the computing demand of the ultrasonic task on the controller.
  • the corresponding relationship between the operation requirements of the ultrasound task on the controller and the clock signal configured by the dynamic clock module is set in advance in this embodiment, referred to as the operation gear correspondence relationship. It can be understood that different clock gears correspond to each other.
  • the process of determining the frequency of the clock signal currently required to be configured by the dynamic clock module of this embodiment is: the current ultrasound task’s calculation requirements for the controller ⁇ the clock file of the clock signal currently required to be configured by the dynamic clock module Bit ⁇ The frequency of the clock signal that the dynamic clock module currently needs to configure.
  • this embodiment will determine the target clock gear corresponding to the current operation demand according to the preset operation gear correspondence relationship after obtaining the operation demand of the current ultrasound task on the controller, and the target clock gear is based on the target clock gear.
  • the dynamic clock module configures the clock frequency.
  • Step S4 Configure a clock frequency corresponding to the target clock gear for each working module of the dynamic clock module, and configure a preset fixed clock frequency for each working module of the fixed clock module.
  • each working module of the dynamic clock module can be configured with a clock frequency corresponding to the target clock gear, thereby avoiding the need for ultrasound services.
  • the dynamic clock module causes waste of power consumption in the working process.
  • this embodiment configures a preset fixed clock frequency for each working module of the fixed clock module, so that the controller cooperates with the upper computer to enter the normal working mode, which can not only complete the current ultrasound task, but also reduce power consumption. effect.
  • controller in this embodiment can be selected but not limited to FPGA (Field Programmable Gate Array), which is not specifically limited in this embodiment.
  • FPGA Field Programmable Gate Array
  • This embodiment provides a clock configuration method of the controller, which can divide the working modules of the controller into a fixed clock module and a dynamic clock module in advance.
  • the ultrasound equipment performs an ultrasound task, first calculate the current ultrasound task’s computing demand for the controller based on the current ultrasound task, and then determine the target clock gear suitable for the current computing demand.
  • the purpose is to perform the tasks of the dynamic clock module.
  • the module is configured with a clock frequency corresponding to the target clock gear, so as to avoid the waste of calculation and power consumption caused by the controller in the working process when the ultrasonic business has not too high demand for the controller's operation, which can achieve a good reduction. Power consumption effect.
  • FIG. 3 is a schematic diagram of component modules of a controller provided by an embodiment of the present invention.
  • each working module includes a bus decoding module for receiving and parsing instructions from the upper computer to issue the instructions from the upper computer to the other working modules, a system main control module, and an ultrasonic signal processing module.
  • Signal processing module and data upload module for uploading the processed ultrasonic signal to the host computer;
  • each working module into a fixed clock module and a dynamic clock module includes:
  • this embodiment divides the controller into four major working modules: system control module, bus decoding module, signal processing module, and data uploading module.
  • the bus decoding module is connected to the host computer for receiving The host computer instructions issued by the host computer, and the host computer instructions are parsed to send the host computer instructions to the system control module, signal processing module and data upload module accordingly.
  • the system control module, signal processing module and data upload module are in Perform the corresponding operation after receiving the host computer instruction.
  • the system control module plays the role of front-end main control, such as connecting with the transmitter chip to control the transmitter chip to transmit ultrasonic signals to the ultrasonic transducer; adjust the clock frequency of the dynamic clock module according to the instructions of the host computer.
  • the signal processing module is connected with the receiving chip, and is used to receive the ultrasonic signal sent by the receiving chip, and process and transmit the ultrasonic signal to the data uploading module, which is uploaded to the upper computer by the data uploading module.
  • the system control module and the bus decoding module provide the communication link for the host computer and the controller.
  • the frequency of the clock signal of the two is not suitable for dynamic configuration; the frequency of the clock signal of the other working modules, namely the signal processing module and the data upload module, can be dynamically configured Therefore, in this embodiment, the system control module and the bus decoding module are divided into fixed clock modules, and the signal processing module and the data upload module can be alternatively or all divided into dynamic clock modules. This embodiment is not specifically limited here.
  • this embodiment only divides the working modules whose clock frequency is not dynamically configurable, that is, the system control module and the bus decoding module, into fixed clock modules, and divides the working modules whose clock frequency can be dynamically configured, namely the signal processing module and the data uploading module. All are divided into dynamic clock modules to minimize the power consumption of the controller.
  • the process of obtaining the calculation requirements of the current ultrasound task on the controller according to the working mode and working parameters includes:
  • the working mode and working parameters of the current ultrasound task are input to the computing demand calculation model to obtain the computing demand of the current ultrasound task on the controller.
  • this embodiment can establish in advance a computing demand calculation model for obtaining the computing demand of the ultrasound task for the controller according to the operating mode and operating parameters of the ultrasound task, that is, the input of the computing demand computing model is the operating mode and the operating mode of the ultrasound task.
  • the output is the computing demand of the controller for the ultrasound task.
  • this embodiment also needs to train the calculation demand calculation model in advance, so that the calculation demand calculation model can more accurately obtain the calculation demand of the ultrasonic task for the controller according to the working mode and working parameters of the ultrasonic task. Based on this, in this embodiment, after acquiring the working mode and working parameters of the current ultrasound task, they can be input into the trained computing demand calculation model, so as to obtain the computing demand of the current ultrasound task on the controller.
  • the working parameters of the ultrasound task include frame rate, scanning depth, and number of beams.
  • the working parameters of the ultrasound task in this embodiment include frame rate, that is, the number of uploaded frames per second; scanning depth; and the number of beams.
  • frame rate that is, the number of uploaded frames per second
  • scanning depth the number of beams.
  • the working modes of ultrasound tasks include B (black and white ultrasound), B+Color (black and white ultrasound + color ultrasound), B+Color+PW (black and white ultrasound + color ultrasound + pulse Doppler) and so on.
  • B black and white ultrasound
  • B+Color+PW black and white ultrasound + color ultrasound + pulse Doppler
  • the preset process of calculating the corresponding relationship between gears includes:
  • the computing power of the controller is divided into N computing levels; among them, the computing capacity of the controller corresponding to the higher computing level is greater than the computing capacity of the controller corresponding to the lower computing level; N is an integer greater than 1;
  • the computing capability of the controller can be divided into multiple computing levels, and each computing level corresponds to a computing volume range. It can be understood that the computing capacity of the controller corresponding to a higher computing level is greater than that of a lower computing level. The calculation amount of the controller corresponding to the calculation level.
  • this embodiment divides the dynamic clock of the controller into multiple clock gears, and each clock gear corresponds to a clock frequency. It can be understood that the clock frequency corresponding to a higher clock gear is greater than that of a lower clock gear. The corresponding clock frequency.
  • the number of operation levels divided by the computing power of the controller is equal to the number of clock gears divided by the dynamic clock of the controller.
  • This embodiment can establish a one-to-one correspondence between multiple operation levels and multiple clock gears, which is understandable However, a higher operation level corresponds to a higher clock gear, so that the corresponding relationship of the operation gear is obtained.
  • the controller after obtaining the computing demand of the current ultrasound task for the controller, it first determines in which computing range the current computing demand is, that is, determines the target computing level to which the current computing demand belongs, and then according to the computing The gear correspondence relationship determines the target clock gear corresponding to the target operation level.
  • this embodiment can divide the computing power of the controller into three levels: high, medium, and low, or two levels, high and low, or five levels, seven levels, etc. This embodiment does not make special distinctions here. The limit depends on the actual situation.
  • FIG. 4 is a schematic structural diagram of a clock configuration system of a controller according to an embodiment of the present invention.
  • the clock configuration system of the controller is applied to ultrasound equipment, including:
  • the clock dividing module 1 is used to divide each working module into a fixed clock module and a dynamic clock module according to the working nature of each working module of the controller in advance;
  • the demand acquisition module 2 is used to acquire the working mode and working parameters of the current ultrasound task, and obtain the computing demand of the current ultrasound task on the controller according to the working mode and working parameters;
  • the clock configuration module 3 is used to determine the target clock gear corresponding to the operation demand according to the preset operation gear correspondence relationship, and configure the clock frequency corresponding to the target clock gear for each working module of the dynamic clock module, and it is a fixed clock
  • Each working module of the module is configured with a preset fixed clock frequency.
  • each working module includes a bus decoding module for receiving and parsing instructions from the upper computer to issue the instructions from the upper computer to the other working modules, a system main control module, and an ultrasonic signal processing module.
  • Signal processing module and data upload module for uploading the processed ultrasonic signal to the host computer;
  • the clock division module 1 is specifically configured to divide the signal processing module and/or the data upload module into dynamic clock modules, and divide the remaining working modules of the controller into fixed clock modules.
  • the requirement acquisition module 2 includes:
  • the model establishment sub-module is used to pre-establish and train a calculation model for calculating the calculation requirements of the controller for the ultrasonic task according to the working mode and working parameters of the ultrasonic task;
  • the demand calculation sub-module is used to obtain the working mode and working parameters of the current ultrasound task, and input the working mode and working parameters of the current ultrasound task into the computing demand calculation model to obtain the computing demand of the current ultrasound task on the controller.
  • the working parameters of the ultrasound task include frame rate, scanning depth, and number of beams.
  • This application also provides an ultrasound device, including:
  • the upper computer connected to the controller is used to implement the steps of any of the above-mentioned clock configuration methods of the controller when the stored computer program is executed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Power Sources (AREA)

Abstract

一种控制器的时钟配置方法,可提前将控制器的各工作模块划分为固定时钟模块和动态时钟模块。在超声设备执行超声任务时,首先根据当前超声任务计算出当前超声任务对控制器的运算需求量,然后确定适合于当前的运算需求量的目标时钟档位,目的是为动态时钟模块的各工作模块配置与目标时钟档位对应的时钟频率,从而避免在超声业务对控制器的运算需求不太高时,控制器在工作过程中造成的运算量和功耗浪费,可起到良好的降功耗效果。还包括一种控制器的时钟配置系统及超声设备。

Description

一种控制器的时钟配置方法、系统及超声设备
本申请要求于2019年12月03日提交至中国专利局、申请号为201911223326.X、发明名称为“一种控制器的时钟配置方法、系统及超声设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超声诊断领域,特别是涉及一种控制器的时钟配置方法、系统及超声设备。
背景技术
目前,超声设备广泛应用于疾病诊断领域。请参照图1,图1为现有技术中的一种超声设备的结构示意图。超声设备包括:上位机、键盘、显示器及前端硬件,其中,前端硬件包括:控制器、发射芯片、接收芯片及超声换能器。对于超声设备来说,作为前端硬件核心控制的控制器必不可少,但随着控制器的设计需求不断增加以及集成度越来越高,其功耗问题越来越严重。
现有技术中,为了降低控制器的功耗,采用的技术手段是:在超声设备冻结超声图像时,关断控制器的时钟,以降低控制器的动态功耗。但是,超声设备大部分时间都处于正常工作状态,只有少部分时间才处于冻结状态,从而导致控制器的功耗降低量较少,功耗降低效果不佳。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种控制器的时钟配置方法、系统及超声设备,避免了在超声业务对控制器的运算需求不太高时,控制器在工作过程中造成的运算量和功耗浪费,可起到良好的降功耗效果。
为解决上述技术问题,本发明提供了一种控制器的时钟配置方法,应用于超声设备,包括:
预先按照控制器的各工作模块的工作性质,将各所述工作模块划分为固定时钟模块和动态时钟模块;
获取当前超声任务的工作模式与工作参数,并根据所述工作模式与工作参数得到所述当前超声任务对所述控制器的运算需求量;
根据预设运算档位对应关系确定与所述运算需求量对应的目标时钟档位,为所述动态时钟模块的各工作模块配置与所述目标时钟档位对应的时钟频率,并为所述固定时钟模块的各工作模块配置预设固定时钟频率。
优选地,各所述工作模块包括用于接收并解析上位机指令以将上位机指令相应下发至其余工作模块的总线译码模块、系统主控模块、用于处理超声信号的信号处理模块及用于将处理后的超声信号上传至上位机的数据上传模块;
相应的,所述将各所述工作模块划分为固定时钟模块和动态时钟模块的过程,包括:
将所述信号处理模块和/或所述数据上传模块划分为动态时钟模块,将所述控制器的其余工作模块均划分为固定时钟模块。
优选地,所述根据所述工作模式与工作参数得到所述当前超声任务对所述控制器的运算需求量的过程,包括:
预先建立并训练好用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型;
在获取当前超声任务的工作模式与工作参数后,将所述当前超声任务的工作模式与工作参数输入至所述运算需求计算模型,以得到所述当前超声任务对所述控制器的运算需求量。
优选地,所述超声任务的工作参数包括帧频、扫描深度及波束数量。
优选地,所述运算档位对应关系的预设过程,包括:
将所述控制器的运算能力划分为N个运算等级;其中,较高运算等级对应的控制器的运算量大于较低运算等级对应的控制器的运算量;N为大于1的整数;
将所述控制器的动态时钟划分为N个时钟档位;其中,较高时钟档位对应的时钟频率大于较低时钟档位对应的时钟频率;
将N个所述运算等级与N个所述时钟档位建立一一对应关系,以得到运算档位对应关系;其中,较高运算等级对应于较高时钟档位。
为解决上述技术问题,本发明还提供了一种控制器的时钟配置系统,应用于超声设备,包括:
时钟划分模块,用于预先按照控制器的各工作模块的工作性质,将各所述工作模块划分为固定时钟模块和动态时钟模块;
需求获取模块,用于获取当前超声任务的工作模式与工作参数,并根据所述工作模式与工作参数得到所述当前超声任务对所述控制器的运算需求量;
时钟配置模块,用于根据预设运算档位对应关系确定与所述运算需求量对应的目标时钟档位,为所述动态时钟模块的各工作模块配置与所述目标时钟档位对应的时钟频率,并为所述固定时钟模块的各工作模块配置预设固定时钟频率。
优选地,各所述工作模块包括用于接收并解析上位机指令以将上位机指令相应下发至其余工作模块的总线译码模块、系统主控模块、用于处理超声信号的信号处理模块及用于将处理后的超声信号上传至上位机的数据上传模块;
相应的,所述时钟划分模块具体用于将所述信号处理模块和/或所述数据上传模块划分为动态时钟模块,将所述控制器的其余工作模块均划分为固定时钟模块。
优选地,所述需求获取模块包括:
模型建立子模块,用于预先建立并训练好用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型;
需求计算子模块,用于获取当前超声任务的工作模式与工作参数,并将所述当前超声任务的工作模式与工作参数输入至所述运算需求计算模型,以得到所述当前超声任务对所述控制器的运算需求量。
优选地,所述超声任务的工作参数包括帧频、扫描深度及波束数量。
为解决上述技术问题,本发明还提供了一种超声设备,包括:
控制器;
与所述控制器连接的上位机,用于在执行所存储的计算机程序时实现上述任一种控制器的时钟配置方法的步骤。
本发明提供了一种控制器的时钟配置方法,可提前将控制器的各工作模块划分为固定时钟模块和动态时钟模块。在超声设备执行超声任务时,首先根据当前超声任务计算出当前超声任务对控制器的运算需求量,然后确定适合于当前的运算需求量的目标时钟档位,目的是为动态时钟模块的各工作模块配置与目标时钟档位对应的时钟频率,从而避免了在超声业务对控制器的运算需求不太高时,控制器在工作过程中造成的运算量和功耗浪费,可起到良好的降功耗效果。
本发明还提供了一种控制器的时钟配置系统及超声设备,与上述时钟配置方法具有相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种超声设备的结构示意图;
图2为本发明实施例提供的一种控制器的时钟配置方法的流程图;
图3为本发明实施例提供的一种控制器的组成模块示意图;
图4为本发明实施例提供的一种控制器的时钟配置系统的结构示意图。
具体实施方式
本发明的核心是提供一种控制器的时钟配置方法、系统及超声设备,避免了在超声业务对控制器的运算需求不太高时,控制器在工作过程中造成的运算量和功耗浪费,可起到良好的降功耗效果。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图2,图2为本发明实施例提供的一种控制器的时钟配置方法的流程图。
该控制器的时钟配置方法应用于超声设备,包括:
步骤S1:预先按照控制器的各工作模块的工作性质,将各工作模块划分为固定时钟模块和动态时钟模块。
具体地,超声设备前端硬件的控制器是由硬件电路搭建而成,将这些硬件电路按照功能进行分类,得到多个工作模块。对于控制器来说,当超声设备执行不同超声任务时,控制器所承担的工作运算量有所不同。
基于此,本实施例考虑到若同一工作模块,在工作运算量较重时和工作运算量较轻时均在同一频率的时钟信号下工作,虽然两种情况下都能完成自身所承担的工作运算量,但这会造成工作模块在工作运算量较轻的情况下功耗的浪费,这是因为:控制器在同一时钟频率下处理不同工作运算量的超声任务时,较重工作运算量下的任务处理时间大于较轻工作运算量下的任务处理时间,但控制器在处理超声任务时,会为超声任务预留一定时长的任务处理时间,若在所预留的任务处理时间内完成超声任务,则剩余空闲时间下控制器仍按照给定的时钟频率工作,造成功耗浪费,所以为了减小剩余空闲时间下的功耗浪费,工作模块在工作运算量较轻的情况下没必要配置与工作运算量较重时等效频率的时钟信号,其可在完成自身所承担的工作运算量的前提下适量降低时钟信号的频率,从而在所预留的任务处理时间内不仅能够完成自身所承担的工作运算量,而且能够降低工作模块的功耗,避免工作模块在工作过程中造成的功耗浪费。
但需要说明的是,控制器中并非所有的工作模块都可配置动态时钟,对于作为控制器的核心控制部分的工作模块,其时钟信号的频率不可动态配置,即需固定时钟,这是因为这些工作模块的作用为上位机和控制器提 供通讯链路,若这些工作模块的时钟频率降低,则会导致上位机和控制器通信速度受限,会影响前端硬件工作的顺利进行。
基于此,本实施例提前按照控制器的各工作模块的工作性质,将各工作模块划分为固定时钟模块和动态时钟模块,以为后续控制器的时钟配置。
步骤S2:获取当前超声任务的工作模式与工作参数,并根据工作模式与工作参数得到当前超声任务对控制器的运算需求量。
具体地,超声设备上设有供用户操作的操作装置,如键盘或触摸屏或显示面板,操作人员需通过操作装置为超声设备设置超声任务,具体是设置超声任务的工作模式与工作参数。
考虑到超声任务的工作模式与工作参数决定了超声设备内控制器的工作运算量,即决定了超声任务对控制器的运算需求量,所以在超声任务的工作模式与工作参数设置过程中,本实施例可通过操作装置获取当前超声任务的工作模式与工作参数,以求取当前超声任务对控制器的运算需求量。
更具体地,当前超声任务对控制器的运算需求量可具体指控制器在单位时间内所需要处理的数据量。
步骤S3:根据预设运算档位对应关系确定与运算需求量对应的目标时钟档位。
需要说明的是,本实施例的预设运算档位对应关系是提前设置好的,只需要设置一次,除非根据实际情况需要修改,否则不需要重新设置。
具体地,动态时钟模块所配置的时钟信号的频率与超声任务对控制器的运算需求量相关联,超声任务对控制器的运算需求量越大,动态时钟模块所配置的时钟信号的频率越大。本实施例提前设置超声任务对控制器的运算需求量与动态时钟模块所配置的时钟信号的时钟档位之间的对应关系,简称运算档位对应关系,可以理解的是,不同时钟档位对应不同时钟频率,则本实施例的动态时钟模块当前所需配置的时钟信号的频率的确定过程为:当前超声任务对控制器的运算需求量→动态时钟模块当前所需配置的时钟信号的时钟档位→动态时钟模块当前所需配置的时钟信号的频率。
基于此,本实施例在得到当前超声任务对控制器的运算需求量之后,会根据预设运算档位对应关系确定与当前的运算需求量对应的目标时钟档位,以基于目标时钟档位为动态时钟模块配置时钟频率。
步骤S4:为动态时钟模块的各工作模块配置与目标时钟档位对应的时钟频率,并为固定时钟模块的各工作模块配置预设固定时钟频率。
具体地,本实施例在确定与当前的运算需求量对应的目标时钟档位后,便可为动态时钟模块的各工作模块配置与目标时钟档位对应的时钟频率,从而避免了在超声业务对控制器的运算需求不太高时,动态时钟模块在工作过程中造成的功耗浪费。与此同时,本实施例为固定时钟模块的各工作模块配置预设固定时钟频率,从而使控制器配合上位机进入正常工作模式,不仅可完成当前超声任务,还可起到良好的降功耗效果。
更具体地,本实施例控制器可选用但不仅限于FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列),本实施例在此不做特别的限定。
本实施例提供了一种控制器的时钟配置方法,可提前将控制器的各工作模块划分为固定时钟模块和动态时钟模块。在超声设备执行超声任务时,首先根据当前超声任务计算出当前超声任务对控制器的运算需求量,然后确定适合于当前的运算需求量的目标时钟档位,目的是为动态时钟模块的各工作模块配置与目标时钟档位对应的时钟频率,从而避免了在超声业务对控制器的运算需求不太高时,控制器在工作过程中造成的运算量和功耗浪费,可起到良好的降功耗效果。
在上述实施例的基础上:
请参照图3,图3为本发明实施例提供的一种控制器的组成模块示意图。
作为一种可选的实施例,各工作模块包括用于接收并解析上位机指令以将上位机指令相应下发至其余工作模块的总线译码模块、系统主控模块、用于处理超声信号的信号处理模块及用于将处理后的超声信号上传至上位机的数据上传模块;
相应的,将各工作模块划分为固定时钟模块和动态时钟模块的过程,包括:
将信号处理模块和/或数据上传模块划分为动态时钟模块,将控制器的其余工作模块均划分为固定时钟模块。
具体地,本实施例将控制器划分成四大工作模块:系统控制模块、总线译码模块、信号处理模块及数据上传模块,其工作原理为:总线译码模块与上位机连接,用于接收上位机下发的上位机指令,并对上位机指令进行解析,以将上位机指令相应下发至系统控制模块、信号处理模块及数据上传模块,系统控制模块、信号处理模块及数据上传模块在接收到上位机指令后执行相应操作。系统控制模块作为控制器的管理控制核心,起到前端主控制作用,如与发射芯片连接,控制发射芯片发射超声信号至超声换能器;根据上位机指令来调整动态时钟模块的时钟频率。信号处理模块与接收芯片连接,用于接收接收芯片发送过来的超声信号,并将超声信号进行处理并传输至数据上传模块,由数据上传模块上传至上位机。
系统控制模块和总线译码模块为上位机和控制器提供通讯链路,二者的时钟信号的频率不宜动态配置;其余工作模块,即信号处理模块和数据上传模块的时钟信号的频率可动态配置,所以本实施例将系统控制模块和总线译码模块划分为固定时钟模块,信号处理模块和数据上传模块可择一或全部划分为动态时钟模块,本实施例在此不做特别的限定。
进一步地,本实施例只将时钟频率不可动态配置的工作模块,即系统控制模块和总线译码模块划分为固定时钟模块,将时钟频率可动态配置的工作模块,即信号处理模块和数据上传模块全部划分为动态时钟模块,从而最大化降低控制器的功耗。
作为一种可选的实施例,根据工作模式与工作参数得到当前超声任务对控制器的运算需求量的过程,包括:
预先建立并训练好用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型;
在获取当前超声任务的工作模式与工作参数后,将当前超声任务的工作模式与工作参数输入至运算需求计算模型,以得到当前超声任务对控制器的运算需求量。
具体地,本实施例可提前建立用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型,即运算需求计算模型的输入为超声任务的工作模式与工作参数,输出为超声任务对控制器的运算需求量。
而且,本实施例还需提前训练好运算需求计算模型,使运算需求计算模型能够较为准确地根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量。基于此,本实施例在获取当前超声任务的工作模式与工作参数后,可将其输入至已训练好的运算需求计算模型,从而得到当前超声任务对控制器的运算需求量。
作为一种可选的实施例,超声任务的工作参数包括帧频、扫描深度及波束数量。
具体地,本实施例的超声任务的工作参数包括帧频,即每秒上传帧数量;扫描深度;波束数量。当超声任务的工作模式固定且帧频、扫描深度和波束数量中任两种工作参数固定时,其余一种工作参数值越大,单位时间内的数据量越大,所对应的控制器的运算量越大。
如,超声1帧由1024条线组成,1条线的数据为512 Byte,若帧频为30帧/秒,则单位时间内对应的数据量为:30(帧频)x 1024(条线)x 512(Byte)/1(秒)=15728640 Byte=15GB;若帧频为40帧/秒,则单位时间内对应的数据量为:40(帧频)x 1024(条线)x 512(Byte)/1(秒)=20971520 Byte=20GB。
此外,超声任务的工作模式包括B(黑白超)、B+Color(黑白超+彩超)、B+Color+PW(黑白超+彩超+脉冲多普勒)等。当超声任务的工作参数固定时,不同工作模式下控制器的运算量不同。
作为一种可选的实施例,运算档位对应关系的预设过程,包括:
将控制器的运算能力划分为N个运算等级;其中,较高运算等级对应的控制器的运算量大于较低运算等级对应的控制器的运算量;N为大于1的整数;
将控制器的动态时钟划分为N个时钟档位;其中,较高时钟档位对应的时钟频率大于较低时钟档位对应的时钟频率;
将N个运算等级与N个时钟档位建立一一对应关系,以得到运算档位对应关系;其中,较高运算等级对应于较高时钟档位。
具体地,本实施例可将控制器的运算能力划分为多个运算等级,每个运算等级均对应一个运算量范围,可以理解的是,较高运算等级对应的控制器的运算量大于较低运算等级对应的控制器的运算量。
同时,本实施例将控制器的动态时钟划分为多个时钟档位,每个时钟档位均对应一个时钟频率,可以理解的是,较高时钟档位对应的时钟频率大于较低时钟档位对应的时钟频率。
而且,控制器的运算能力划分的运算等级数量等于控制器的动态时钟划分的时钟档位数量,本实施例可建立多个运算等级与多个时钟档位之间的一一对应关系,可以理解的是,较高运算等级对应于较高时钟档位,从而得到运算档位对应关系。
基于此,本实施例在得到当前超声任务对控制器的运算需求量之后,首先确定当前的运算需求量在哪个运算量范围内,即确定当前的运算需求量所属的目标运算等级,然后根据运算档位对应关系确定与目标运算等级对应的目标时钟档位。
更具体地,本实施例可将控制器的运算能力划分高、中、低三个等级,或高、低两个等级,或五个等级、七个等级等,本实施例在此不做特别的限定,根据实际情况而定。
请参照图4,图4为本发明实施例提供的一种控制器的时钟配置系统的结构示意图。
该控制器的时钟配置系统应用于超声设备,包括:
时钟划分模块1,用于预先按照控制器的各工作模块的工作性质,将各工作模块划分为固定时钟模块和动态时钟模块;
需求获取模块2,用于获取当前超声任务的工作模式与工作参数,并根据工作模式与工作参数得到当前超声任务对控制器的运算需求量;
时钟配置模块3,用于根据预设运算档位对应关系确定与运算需求量对应的目标时钟档位,为动态时钟模块的各工作模块配置与目标时钟档位对应的时钟频率,并为固定时钟模块的各工作模块配置预设固定时钟频率。
作为一种可选的实施例,各工作模块包括用于接收并解析上位机指令以将上位机指令相应下发至其余工作模块的总线译码模块、系统主控模块、用于处理超声信号的信号处理模块及用于将处理后的超声信号上传至上位机的数据上传模块;
相应的,时钟划分模块1具体用于将信号处理模块和/或数据上传模块划分为动态时钟模块,将控制器的其余工作模块均划分为固定时钟模块。
作为一种可选的实施例,需求获取模块2包括:
模型建立子模块,用于预先建立并训练好用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型;
需求计算子模块,用于获取当前超声任务的工作模式与工作参数,并将当前超声任务的工作模式与工作参数输入至运算需求计算模型,以得到当前超声任务对控制器的运算需求量。
作为一种可选的实施例,超声任务的工作参数包括帧频、扫描深度及波束数量。
本申请提供的时钟配置系统的介绍请参考上述时钟配置方法的实施例,本申请在此不再赘述。
本申请还提供了一种超声设备,包括:
控制器;
与控制器连接的上位机,用于在执行所存储的计算机程序时实现上述任一种控制器的时钟配置方法的步骤。
本申请提供的超声设备的介绍请参考上述时钟配置方法的实施例,本 申请在此不再赘述。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种控制器的时钟配置方法,其特征在于,应用于超声设备,包括:
    预先按照控制器的各工作模块的工作性质,将各所述工作模块划分为固定时钟模块和动态时钟模块;
    获取当前超声任务的工作模式与工作参数,并根据所述工作模式与工作参数得到所述当前超声任务对所述控制器的运算需求量;
    根据预设运算档位对应关系确定与所述运算需求量对应的目标时钟档位,为所述动态时钟模块的各工作模块配置与所述目标时钟档位对应的时钟频率,并为所述固定时钟模块的各工作模块配置预设固定时钟频率。
  2. 如权利要求1所述的控制器的时钟配置方法,其特征在于,各所述工作模块包括用于接收并解析上位机指令以将上位机指令相应下发至其余工作模块的总线译码模块、系统主控模块、用于处理超声信号的信号处理模块及用于将处理后的超声信号上传至上位机的数据上传模块;
    相应的,所述将各所述工作模块划分为固定时钟模块和动态时钟模块的过程,包括:
    将所述信号处理模块和/或所述数据上传模块划分为动态时钟模块,将所述控制器的其余工作模块均划分为固定时钟模块。
  3. 如权利要求1所述的控制器的时钟配置方法,其特征在于,所述根据所述工作模式与工作参数得到所述当前超声任务对所述控制器的运算需求量的过程,包括:
    预先建立并训练好用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型;
    在获取当前超声任务的工作模式与工作参数后,将所述当前超声任务的工作模式与工作参数输入至所述运算需求计算模型,以得到所述当前超声任务对所述控制器的运算需求量。
  4. 如权利要求3所述的控制器的时钟配置方法,其特征在于,所述超声任务的工作参数包括帧频、扫描深度及波束数量。
  5. 如权利要求1所述的控制器的时钟配置方法,其特征在于,所述运算档位对应关系的预设过程,包括:
    将所述控制器的运算能力划分为N个运算等级;其中,较高运算等级对应的控制器的运算量大于较低运算等级对应的控制器的运算量;N为大于1的整数;
    将所述控制器的动态时钟划分为N个时钟档位;其中,较高时钟档位对应的时钟频率大于较低时钟档位对应的时钟频率;
    将N个所述运算等级与N个所述时钟档位建立一一对应关系,以得到运算档位对应关系;其中,较高运算等级对应于较高时钟档位。
  6. 一种控制器的时钟配置系统,其特征在于,应用于超声设备,包括:
    时钟划分模块,用于预先按照控制器的各工作模块的工作性质,将各所述工作模块划分为固定时钟模块和动态时钟模块;
    需求获取模块,用于获取当前超声任务的工作模式与工作参数,并根据所述工作模式与工作参数得到所述当前超声任务对所述控制器的运算需求量;
    时钟配置模块,用于根据预设运算档位对应关系确定与所述运算需求量对应的目标时钟档位,为所述动态时钟模块的各工作模块配置与所述目标时钟档位对应的时钟频率,并为所述固定时钟模块的各工作模块配置预设固定时钟频率。
  7. 如权利要求6所述的控制器的时钟配置系统,其特征在于,各所述工作模块包括用于接收并解析上位机指令以将上位机指令相应下发至其余工作模块的总线译码模块、系统主控模块、用于处理超声信号的信号处理模块及用于将处理后的超声信号上传至上位机的数据上传模块;
    相应的,所述时钟划分模块具体用于将所述信号处理模块和/或所述数据上传模块划分为动态时钟模块,将所述控制器的其余工作模块均划分为固定时钟模块。
  8. 如权利要求6所述的控制器的时钟配置系统,其特征在于,所述需求获取模块包括:
    模型建立子模块,用于预先建立并训练好用于根据超声任务的工作模式与工作参数得到超声任务对控制器的运算需求量的运算需求计算模型;
    需求计算子模块,用于获取当前超声任务的工作模式与工作参数,并将所述当前超声任务的工作模式与工作参数输入至所述运算需求计算模型,以得到所述当前超声任务对所述控制器的运算需求量。
  9. 如权利要求8所述的控制器的时钟配置系统,其特征在于,所述超声任务的工作参数包括帧频、扫描深度及波束数量。
  10. 一种超声设备,其特征在于,包括:
    控制器;
    与所述控制器连接的上位机,用于在执行所存储的计算机程序时实现如权利要求1-5任一项所述的控制器的时钟配置方法的步骤。
PCT/CN2020/096264 2019-12-03 2020-06-16 一种控制器的时钟配置方法、系统及超声设备 WO2021109534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911223326.X 2019-12-03
CN201911223326.XA CN110908310B (zh) 2019-12-03 2019-12-03 一种控制器的时钟配置方法、系统及超声设备

Publications (1)

Publication Number Publication Date
WO2021109534A1 true WO2021109534A1 (zh) 2021-06-10

Family

ID=69821725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096264 WO2021109534A1 (zh) 2019-12-03 2020-06-16 一种控制器的时钟配置方法、系统及超声设备

Country Status (2)

Country Link
CN (1) CN110908310B (zh)
WO (1) WO2021109534A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908310B (zh) * 2019-12-03 2021-07-23 深圳开立生物医疗科技股份有限公司 一种控制器的时钟配置方法、系统及超声设备
CN112312527A (zh) * 2020-08-07 2021-02-02 神州融安科技(北京)有限公司 降低u盾功耗的方法及装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022081A1 (en) * 2006-07-18 2008-01-24 Honeywell International Inc. Local controller for reconfigurable processing elements
CN103926996A (zh) * 2014-05-08 2014-07-16 上海航天电子通讯设备研究所 一种fpga零动态功耗设计方法
CN104382617A (zh) * 2014-12-12 2015-03-04 飞依诺科技(苏州)有限公司 自动调节超声设备功耗的方法及系统
CN105119370A (zh) * 2015-07-27 2015-12-02 国网浙江省电力公司杭州供电公司 降低芯片系统功耗的方法、装置及智能变电站调试仪
CN105487597A (zh) * 2014-10-09 2016-04-13 深圳市中兴微电子技术有限公司 一种中央微处理器时钟管理方法及装置
CN105943126A (zh) * 2016-07-08 2016-09-21 山东威瑞外科医用制品有限公司 超声刀激励装置及激励方法
CN106855838A (zh) * 2016-12-29 2017-06-16 杭州嘉楠耘智信息科技有限公司 一种工作频率调整方法、装置及系统
CN107340500A (zh) * 2017-06-30 2017-11-10 中国航空工业集团公司雷华电子技术研究所 一种雷达信号处理平台动态功耗控制方法及系统
CN108304262A (zh) * 2018-01-18 2018-07-20 福州瑞芯微电子股份有限公司 动态调整数字信号处理器性能的方法、存储介质及计算机
CN207650388U (zh) * 2017-11-23 2018-07-24 北京润科通用技术有限公司 一种时钟管理装置及雷达寻找成像目标回波模拟器
CN109918197A (zh) * 2019-02-15 2019-06-21 中科驭数(北京)科技有限公司 数据处理装置
CN109993303A (zh) * 2019-03-29 2019-07-09 河南九乾电子科技有限公司 用于神经网络与深度学习的计算机加速装置
CN110221650A (zh) * 2019-06-18 2019-09-10 中国人民解放军国防科技大学 一种适用于高性能网络处理器芯片的时钟发生器
CN110908310A (zh) * 2019-12-03 2020-03-24 深圳开立生物医疗科技股份有限公司 一种控制器的时钟配置方法、系统及超声设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090150692A1 (en) * 2004-11-22 2009-06-11 Koninklijke Philips Electronics, N.V. Portable ultrasound system with variable power consumption
CN100349098C (zh) * 2005-11-28 2007-11-14 北京中星微电子有限公司 基于任务的动态调节cpu工作频率的方法及系统
CN101751111A (zh) * 2008-12-17 2010-06-23 华为技术有限公司 调整芯片功耗的方法和装置
CN102314213B (zh) * 2010-07-09 2016-03-30 精英电脑股份有限公司 动态调整工作频率的计算机系统
CN102169357B (zh) * 2011-02-23 2013-05-08 北京大学深圳研究生院 可调工作电压和时钟频率的dsp及其调节方法
CN103376874B (zh) * 2012-04-24 2017-03-08 深圳市中兴微电子技术有限公司 一种多核处理器设备及其实现时钟控制的方法
CN102662822B (zh) * 2012-04-26 2015-02-04 华为技术有限公司 负载监控装置和方法
CN102830749A (zh) * 2012-09-04 2012-12-19 哈尔滨工业大学 动态时钟控制模块及基于该模块的面向多媒体感知网络SoC的动态时钟控制系统
CN103813218B (zh) * 2012-11-15 2017-09-19 中国电信股份有限公司 动态调整光线路终端设备工作状态的方法与装置
CN104757998B (zh) * 2015-03-23 2018-02-02 深圳市理邦精密仪器股份有限公司 一种用于超声系统的降低功耗的方法及装置
CN106598137A (zh) * 2016-11-02 2017-04-26 深圳驰芯微电子有限公司 芯片
US10241536B2 (en) * 2016-12-01 2019-03-26 Intel Corporation Method, apparatus and system for dynamic clock frequency control on a bus
CN109725700A (zh) * 2017-10-29 2019-05-07 上海寒武纪信息科技有限公司 动态调压调频装置和方法
CN109116970A (zh) * 2018-08-31 2019-01-01 中国电子科技集团公司第五十八研究所 一种动态电压频率调节系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022081A1 (en) * 2006-07-18 2008-01-24 Honeywell International Inc. Local controller for reconfigurable processing elements
CN103926996A (zh) * 2014-05-08 2014-07-16 上海航天电子通讯设备研究所 一种fpga零动态功耗设计方法
CN105487597A (zh) * 2014-10-09 2016-04-13 深圳市中兴微电子技术有限公司 一种中央微处理器时钟管理方法及装置
CN104382617A (zh) * 2014-12-12 2015-03-04 飞依诺科技(苏州)有限公司 自动调节超声设备功耗的方法及系统
CN105119370A (zh) * 2015-07-27 2015-12-02 国网浙江省电力公司杭州供电公司 降低芯片系统功耗的方法、装置及智能变电站调试仪
CN105943126A (zh) * 2016-07-08 2016-09-21 山东威瑞外科医用制品有限公司 超声刀激励装置及激励方法
CN106855838A (zh) * 2016-12-29 2017-06-16 杭州嘉楠耘智信息科技有限公司 一种工作频率调整方法、装置及系统
CN107340500A (zh) * 2017-06-30 2017-11-10 中国航空工业集团公司雷华电子技术研究所 一种雷达信号处理平台动态功耗控制方法及系统
CN207650388U (zh) * 2017-11-23 2018-07-24 北京润科通用技术有限公司 一种时钟管理装置及雷达寻找成像目标回波模拟器
CN108304262A (zh) * 2018-01-18 2018-07-20 福州瑞芯微电子股份有限公司 动态调整数字信号处理器性能的方法、存储介质及计算机
CN109918197A (zh) * 2019-02-15 2019-06-21 中科驭数(北京)科技有限公司 数据处理装置
CN109993303A (zh) * 2019-03-29 2019-07-09 河南九乾电子科技有限公司 用于神经网络与深度学习的计算机加速装置
CN110221650A (zh) * 2019-06-18 2019-09-10 中国人民解放军国防科技大学 一种适用于高性能网络处理器芯片的时钟发生器
CN110908310A (zh) * 2019-12-03 2020-03-24 深圳开立生物医疗科技股份有限公司 一种控制器的时钟配置方法、系统及超声设备

Also Published As

Publication number Publication date
CN110908310B (zh) 2021-07-23
CN110908310A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US8392739B2 (en) Multi-core processor, its frequency conversion device and a method of data communication between the cores
WO2021109534A1 (zh) 一种控制器的时钟配置方法、系统及超声设备
EP2178080B1 (en) Performance allocation method and apparatus
US9800243B2 (en) Clock circuit and clock signal transmission method thereof
TWI432950B (zh) 用於介於計算系統之多組件間的調適性電力預算配置之方法及設備
EP2760013A1 (en) Backlight adjustment method, backlight adjustment apparatus, and display screen
WO2017054681A1 (zh) 一种基于大尺寸触摸屏的扫描方法及系统
CN109581415B (zh) 一种基于gnss的同步计算和授时控制的装置与方法
US20180285292A1 (en) System and method of sending data via additional secondary data lines on a bus
CN103269425A (zh) 多功能智能图像转换系统
US11665313B2 (en) Adaptive method and system for data flow control based on variable frame structure in video image processing system
JP2010532124A (ja) 半導体デバイスのためのクロック周波数調整
CN112684994A (zh) 多通道资源调整方法和计算机可读存储介质
CN101540154B (zh) 一种动态降低液晶显示器功率的方法
EP4109439A1 (en) Display device drive method, display device, and computer readable storage medium
TW201236509A (en) LED controller asic and PWM module thereof
WO2022032989A1 (zh) 基于arm架构的cpu降频系统、方法、装置和介质
US20190041946A1 (en) Techniques For Adjusting A Clock Frequency To Change A Power State of Logic Circuits
WO2016000376A1 (zh) 一种基于pci-e接口的信号处理方法及信号处理装置
CN104112430A (zh) 一种提升显示屏一体黑效果和动态对比度的系统及方法
US10331592B2 (en) Communication apparatus with direct control and associated methods
JP2014060686A (ja) 半導体装置
CN110377539A (zh) 一种基于高速信号切换芯片的数据传输方法、装置及介质
CN102184712B (zh) 一种矩阵背光演示方法、装置及显示设备
CN115270670A (zh) 芯片的低功耗设计方法、装置、终端和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897315

Country of ref document: EP

Kind code of ref document: A1