WO2021109233A1 - 背光模组和显示装置 - Google Patents

背光模组和显示装置 Download PDF

Info

Publication number
WO2021109233A1
WO2021109233A1 PCT/CN2019/125845 CN2019125845W WO2021109233A1 WO 2021109233 A1 WO2021109233 A1 WO 2021109233A1 CN 2019125845 W CN2019125845 W CN 2019125845W WO 2021109233 A1 WO2021109233 A1 WO 2021109233A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
blue
blue laser
light
radiation film
Prior art date
Application number
PCT/CN2019/125845
Other languages
English (en)
French (fr)
Inventor
赵金阳
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/627,346 priority Critical patent/US11435515B2/en
Publication of WO2021109233A1 publication Critical patent/WO2021109233A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • This application relates to the technical field of display devices, in particular to the technical field of backlight modules, and in particular to a backlight module and a display device.
  • Laser display refers to the technology that uses laser as the light source to realize the information display function. Because the laser has the characteristics of narrow spectral line width, very pure spectrum and high brightness, the laser display technology has the advantages of wide color gamut, high saturation, and many colors. In addition, the laser has a very high electro-optical conversion efficiency. As a display light source, it has extremely high spectral utilization rate and no stray light, so it has low power consumption and is more energy-saving and environmentally friendly.
  • laser display is mainly used in the field of laser projection
  • laser projection display technology is mainly used in large-screen display devices such as public information large screens, laser TVs and digital cinemas, and for portable and miniaturized devices such as mobile phones, laptops and tablets
  • the size of the laser projection equipment is relatively large, and the structure is not suitable. Therefore, the development of full-color laser panels is very important for flat panel display devices such as mobile phones and computers.
  • a display light source composed of red, green, and blue lasers emitted by a red laser diode, a green laser diode, and a blue laser diode respectively has a relatively high cost and a complicated manufacturing process.
  • the present application provides a backlight module and a display device.
  • a blue laser emitted by a blue laser diode excites a laser radiation film to radiate a red laser and a green laser with a narrower half-width of the spectrum, so that the blue laser and the red laser and the green laser Lasers are mixed to form white light for display light sources, which can solve the technical problems of high cost of display light sources composed of lasers and complex preparation processes.
  • the embodiment of the application provides a backlight module, which includes a blue laser diode and a laser radiation film; the light-emitting surface of the blue laser diode is arranged close to the laser radiation film;
  • the blue laser emitted by the blue laser diode excites the laser radiation film to emit a red laser and a green laser, and the blue laser, the red laser and the green laser are mixed to form white light.
  • the material of the laser radiation film includes at least one of laser dyes, inorganic group III and V semiconductor materials, laser crystals, and laser materials;
  • the laser dye includes at least one of coumarins, rhodamines, cyanines and azines;
  • the laser crystal includes Nd: YAG crystal, Nd: YLF crystal, Nd: YV04 crystal, Yb: YAG At least one of crystals and Nd:YAG polycrystalline ceramics;
  • the laser material includes at least one of quantum dots, all-inorganic perovskites, and organic-inorganic hybrid perovskites.
  • the laser radiation film includes multiple layers of laser radiation film units stacked; the materials of the multiple layers of the laser radiation film units are different from each other, and each layer of the laser radiation film unit is different from each other.
  • the radiation film unit emits the red laser and the green laser after being excited by the blue laser.
  • the backlight module has an edge-type backlight structure; the backlight module further includes a light guide plate and a reflective layer;
  • the angle between the light-emitting surface of the blue laser diode and the reflective surface of the reflective layer is an acute angle, so that the emitted light is reflected by the reflective surface; and the reflective surface of the reflective layer is between the reflective surface of the reflective layer and the light guide plate.
  • the included angle between is an acute angle, so that the light reflected by the reflective surface enters the light guide plate.
  • the laser radiation film is located on the side of the light guide plate close to the reflective layer;
  • the blue laser light emitted by the blue laser diode is reflected to the laser radiation film through the reflective surface of the reflective layer, and excites the laser radiation film to emit the red laser light and the green laser light;
  • the white light formed by mixing the color laser, the red laser and the green laser is uniformly emitted through the light guide plate.
  • the laser radiation film covers the light-emitting surface of the blue laser diode
  • the blue laser emitted by the blue laser diode excites the laser radiation film to emit the red laser and the green laser; the blue laser, the red laser and the green laser are mixed to form the
  • the white light is reflected to the light guide plate through the reflective surface of the reflective layer, and is uniformly emitted through the light guide plate.
  • the backlight module is a direct type backlight structure; the backlight module further includes an optical film group and a reflective layer disposed oppositely;
  • the blue laser diode is arranged on the reflective layer, and the light-emitting surface of the blue laser diode and the reflective surface of the reflective layer are both arranged toward the optical film set; The blue laser is emitted in the direction of the optical film group.
  • the laser radiation film is located on the side of the optical film set close to the reflective layer;
  • the blue laser diode emits the blue laser in the direction of the laser radiation film, the blue laser excites the laser radiation film to emit the red laser and the green laser; the blue laser, the The white light formed by mixing the red laser and the green laser is uniformly emitted through the optical film set.
  • the laser radiation film covers the light-emitting surface of the blue laser diode
  • the blue laser diode emits the blue laser in the direction of the optical film group, and the blue laser excites the laser radiation film to emit the red laser and the green laser; the blue laser,
  • the white light formed by mixing the red laser and the green laser is directed toward the optical film set, and is uniformly emitted through the optical film set.
  • the optical film set includes a diffuser sheet disposed close to the reflective layer and a prism sheet located on a side of the diffuser sheet away from the reflective layer.
  • the wavelength range of the blue laser light emitted by the blue laser diode is 400 nanometers to 450 nanometers.
  • An embodiment of the present application also provides a display device including the above-mentioned backlight module and a display panel corresponding to the backlight module.
  • the laser radiation film includes multiple layers of laser radiation film units stacked; the materials of the multiple layers of the laser radiation film units are different from each other, and each layer of the laser radiation film unit
  • the thin film unit emits the red laser and the green laser after being excited by the blue laser.
  • the backlight module has an edge-type backlight structure; the backlight module further includes a light guide plate and a reflective layer;
  • the angle between the light-emitting surface of the blue laser diode and the reflective surface of the reflective layer is an acute angle, so that the emitted light is reflected by the reflective surface; and the reflective surface of the reflective layer is between the reflective surface of the reflective layer and the light guide plate.
  • the included angle between is an acute angle, so that the light reflected by the reflective surface enters the light guide plate.
  • the laser radiation film is located on a side of the light guide plate close to the reflective layer;
  • the blue laser light emitted by the blue laser diode is reflected to the laser radiation film through the reflective surface of the reflective layer, and excites the laser radiation film to emit the red laser light and the green laser light;
  • the white light formed by mixing the color laser, the red laser and the green laser is uniformly emitted through the light guide plate.
  • the laser radiation film covers the light-emitting surface of the blue laser diode
  • the blue laser emitted by the blue laser diode excites the laser radiation film to emit the red laser and the green laser; the blue laser, the red laser and the green laser are mixed to form the
  • the white light is reflected to the light guide plate through the reflective surface of the reflective layer, and is uniformly emitted through the light guide plate.
  • the backlight module is a direct type backlight structure; the backlight module further includes an optical film group and a reflective layer disposed oppositely;
  • the blue laser diode is arranged on the reflective layer, and the light-emitting surface of the blue laser diode and the reflective surface of the reflective layer are both arranged toward the optical film set; The blue laser is emitted in the direction of the optical film group.
  • the laser radiation film is located on a side of the optical film set close to the reflective layer;
  • the blue laser diode emits the blue laser in the direction of the laser radiation film, the blue laser excites the laser radiation film to emit the red laser and the green laser; the blue laser, the The white light formed by mixing the red laser and the green laser is uniformly emitted through the optical film set.
  • the laser radiation film covers the light-emitting surface of the blue laser diode
  • the blue laser diode emits the blue laser in the direction of the optical film group, and the blue laser excites the laser radiation film to emit the red laser and the green laser; the blue laser,
  • the white light formed by mixing the red laser and the green laser is directed toward the optical film set, and is uniformly emitted through the optical film set.
  • the display panel includes a liquid crystal display panel.
  • the blue laser emitted by the blue laser diode excites the laser radiation film to radiate a red laser and a green laser with a narrow half-width of the spectrum, so that the blue laser is mixed with the red laser and the green laser Forming white light for the display light source, the obtained white light has better spectral purity and a larger color gamut range, which is conducive to high color gamut display; and is different from the exemplary use of red laser diodes, green laser diodes, and blue laser diodes.
  • the backlight module of the present application has a simple preparation process, can be better combined with existing processes, and can effectively reduce production costs.
  • FIG. 1 is a schematic diagram of a part of the structure of an edge-type backlight module provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of a part of the structure of another edge-type backlight module provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the structure of a laser radiation film provided by an embodiment of the application.
  • FIG. 4 is a partial structural diagram of another edge-type backlight module provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a partial structure of a direct type backlight module provided by an embodiment of the application.
  • FIG. 6 is a partial structural diagram of another direct type backlight module provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a part of the structure of a display device provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relationship.
  • connection should be understood according to specific circumstances.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the luminescence process of laser materials is spontaneous emission under low excitation power, so the half-width of the fluorescence spectrum is relatively wide, and when the laser power increases beyond the threshold of the material, the luminescence process is Stimulated radiation, so its spectrum will be narrowed.
  • This application is based on the spectral narrowing characteristics of the laser material above the threshold, using blue laser to excite the red and green luminescent laser material to obtain red and green light sources with a narrow spectral half-width, so that red, green and blue are mixed to form white light as a display
  • the backlight of the panel has good spectral purity and a large color gamut range, and is very suitable for high color gamut display, and the process is simple, and can be well combined with the existing backlight process and display panel process.
  • an embodiment of the present application provides an edge-type backlight module 1.
  • the backlight module 1 includes a blue laser diode 2 and a laser radiation film 3; the light-emitting surface of the blue laser diode 2 4 Set close to the laser radiation film 3; the blue laser emitted by the blue laser diode 2 excites the laser radiation film 3 to emit red laser and green laser, and the blue laser, red laser and green laser are mixed to form white light.
  • the backlight module 1 further includes a back plate 5, a reflective layer 6 disposed on the back plate 5, a light guide plate 7 located above the reflective layer 6, and an optical film set on the side of the light guide plate 7 away from the reflective layer 6 8;
  • the laser radiation film 3 is located on the side of the light guide plate 7 close to the reflective layer 6;
  • a light source cavity 9 is formed between the laser radiation film 3 and the reflective layer 6, and the blue laser diode 2 is located on the side of the light source cavity 9; and blue
  • the included angle between the light-emitting surface 4 of the laser diode 2 and the reflective surface 10 of the reflective layer 6 is an acute angle, so that the emitted light is reflected by the reflective surface 10; and the included angle between the reflective surface 10 of the reflective layer 6 and the light guide plate 7 It is an acute angle, so that the light reflected by the reflective surface 10 enters the light guide plate 7.
  • the multiple blue laser diodes 2 are arranged in an array on the side of the light source cavity 9.
  • the multiple blue laser diodes 2 can be arranged on only one side of the light source cavity 9 or can be arranged in the light source cavity 9 There are no restrictions here on the multiple sides of 9.
  • the shape of the reflective layer 6 is determined by the number of sides where the blue laser diode 2 is provided. When the number of sides where the blue laser diode 2 is provided is greater than 1, the reflective surface 10 of the reflective layer 6 is multi-segmented or non-smooth. Curved surface, as shown in Fig. 2, the blue laser diode 2 is arranged on both sides of the light source cavity 9.
  • the reflective surface 10 of the reflective layer 6 is two sections of folds, and each fold is connected to the corresponding blue laser diode.
  • the included angle between the light emitting surface 4 of 2 is an acute angle, and the included angle with the light guide plate 7 is an acute angle.
  • the blue laser emitted by the blue laser diode 2 is reflected to the laser radiation film 3 through the reflective surface 10 of the reflective layer 6, and excites the laser radiation film 3 to emit red laser and green laser; blue laser, red laser and green laser
  • the mixed white light is uniformly emitted through the light guide plate 7.
  • the light guide plate 7 includes a light entrance surface and a light exit surface 4, wherein the light entrance surface is located close to the reflective layer 6, and the light exit surface 4 is located away from the reflective layer 6.
  • the optical film set 8 includes a diffusion sheet 14 and a prism sheet 15 which are sequentially arranged on the light guide plate 7.
  • the optical film set 8 can also be a combination structure of multiple diffusion sheets and multiple prism sheets.
  • the reflective layer 6 includes a reflective film or a reflective coating.
  • the wavelength range of the blue laser emitted by the blue laser diode 2 is 400 nm to 450 nm; in one embodiment, the wavelength of the blue laser emitted by the blue laser diode 2 is 430 nm.
  • the material of the laser radiation film 3 includes at least one of laser dyes, inorganic III-V semiconductor materials, laser crystals, and laser materials; wherein, the laser dyes include coumarins, rhodamines, cyanines, and azines.
  • Laser crystals include at least one of Nd: YAG crystals, Nd: YLF crystals, Nd: YV04 crystals, Yb: YAG crystals, and Nd: YAG polycrystalline ceramics; laser materials include quantum dots, all-inorganic calcium At least one of titanium ore and organic-inorganic hybrid perovskite.
  • the blue laser emitted by the blue laser diode 2 excites the laser radiation film 3 to radiate a red laser and a green laser with a narrow half-width of the spectrum, so that the blue laser is mixed with the red laser and the green laser to form a white light.
  • the white light obtained has good spectral purity and a larger color gamut range, which is conducive to high color gamut display.
  • the laser radiation film 3 can obtain a uniform surface light source, and then pass through the light guide plate. 7 and the optical film set 8 can further improve the uniformity of the backlight.
  • the backlight module 1 of the present application has a simple preparation process, can be better combined with existing processes, and can effectively reduce production costs.
  • the laser radiation film 3 includes multiple layers of laser radiation film units 11 stacked; the materials of the multilayer laser radiation film units 11 are different from each other, and each layer of the laser radiation film unit 11 A red laser and a green laser are emitted after being excited by the blue laser; taking the first laser radiation film unit 16 and the second laser radiation unit 17 arranged in two layers as an example, the first laser radiation film unit 16 and the second laser radiation unit 17 The materials are different from each other, and the first laser radiation film unit 16 and the second laser radiation unit 17 can both emit red laser and green laser after being excited by the blue laser.
  • the laser radiation film unit of multiple layers of different materials The laser radiation film 3 composed of 11 can be applied to blue laser diodes 2 of different powers, and has a wide range of applications, and is beneficial to ensure that the laser radiation film 3 is excited to emit a sufficient amount of red laser and green laser, thereby ensuring the white light formed the amount.
  • the embodiment of the present application also provides an edge-type backlight module 1.
  • the laser radiation film 3 covers the light-emitting surface 4 of the blue laser diode 2;
  • the blue laser emitted by the color laser diode 2 excites the laser radiation film 3 to emit a red laser and a green laser;
  • the white light formed by the mixture of the blue laser, the red laser and the green laser is reflected to the light guide plate 7 through the reflective surface 10 of the reflective layer 6 and passed through The light guide plate 7 and the optical film group 8 emit uniformly.
  • the laser radiation film 3 can also cover the entire exterior of the blue laser diode 2 to avoid light leakage.
  • the structure of the laser radiation film 3 arranged on the light-emitting surface 4 of the blue laser diode 2 is equivalent to that of a white light diode, and it can directly obtain a better spectral purity and larger color on the light-emitting side of the blue laser diode 2.
  • the white light in the range is conducive to saving the amount of laser radiation film 3 used, thereby helping to reduce the production cost.
  • the embodiment of the present application also provides a direct type backlight module 1.
  • the backlight module 1 includes a back plate 5, and a reflective layer 6 disposed on the back plate 5 ,
  • the blue laser diode 2 arranged on the reflective layer 6, the optical film group 8 arranged opposite to the reflective layer 6 and located above the blue laser diode 2, and the one arranged on the optical film group 8 close to the reflective layer 6 Laser radiation film 3 on the side.
  • the light-emitting surface 4 of the blue laser diode 2 and the reflective surface 10 of the reflective layer 6 are both set toward the optical film set 8, that is, toward the laser radiation film 3; the blue laser diode 2 is set toward the optical film set 8. (The direction of the laser radiation film 3) emits blue laser light.
  • the blue laser diode 2 emits a blue laser in the direction of the laser radiation film 3, and the blue laser excites the laser radiation film 3 to emit a red laser and a green laser; the white light formed by the mixture of the blue laser, the red laser and the green laser passes through the optics.
  • the diaphragm group 8 is ejected uniformly.
  • the number of blue laser diodes 2 is multiple, which can be arranged on the reflective layer 6 in an array, and the specific number is not limited.
  • the optical film set 8 includes a diffusion sheet 14 and a prism sheet 15 which are sequentially arranged on the laser radiation film 3.
  • the optical film set 8 can also be a combination of multiple diffusion sheets and multiple prism sheets. , There is no restriction here.
  • the blue laser emitted by the blue laser diode 2 excites the laser radiation film 3 to radiate a red laser and a green laser with a narrow half-width of the spectrum, so that the blue laser is mixed with the red laser and the green laser to form a white light.
  • the white light obtained has good spectral purity and a larger color gamut range, which is conducive to high color gamut display.
  • the laser radiation film 3 can obtain a uniform surface light source, and then pass through the light guide plate. 7 and the optical film set 8 can further improve the uniformity of the backlight.
  • the backlight module 1 of the present application has a simple manufacturing process, can be better combined with existing processes, and can reduce production costs.
  • the embodiment of the present application also provides a direct type backlight module 1.
  • the laser radiation film 3 covers the light-emitting surface 4 of the blue laser diode 2; blue
  • the laser diode 2 emits a blue laser in the direction of the optical film group 8, and the blue laser excites the laser radiation film 3 to emit a red laser and a green laser; the white light formed by the mixture of the blue laser, the red laser and the green laser is directed to the optical film group 8, and uniformly ejected through the optical film group 8.
  • the structure of the laser radiation film 3 arranged on the light-emitting surface 4 of the blue laser diode 2 is equivalent to that of a white light diode, and it can directly obtain a better spectral purity and larger color on the light-emitting side of the blue laser diode 2.
  • the white light in the range is conducive to saving the amount of laser radiation film 3 used, thereby helping to reduce the production cost.
  • an embodiment of the present application also provides a display device 12, which includes the backlight module 1 in the above-mentioned embodiment, and a display panel 13 corresponding to the backlight module 1.
  • the display panel 13 includes a liquid crystal display panel, that is, a TFT array substrate and a color filter substrate that are arranged oppositely, and a liquid crystal layer disposed between the TFT array substrate and the color filter substrate; of course, the display panel 13 may also be of other types.
  • the display panel is not restricted here.
  • the provided backlight module 1 excites the laser radiation film 3 by the blue laser emitted by the blue laser diode 2 to radiate the red laser and the green laser with a narrower half-width of the spectrum, so that the blue laser and the red laser are combined with each other.
  • the green laser is mixed to form white light for the backlight of the display panel 13, and the obtained white light has better spectral purity and a larger color gamut, which is beneficial to the display of the display panel 13 with high color gamut, and is different from the exemplary use of red light.
  • the preparation process of the backlight module 1 of the present application is simple and can be compared with the existing backlight process and the display panel 13 process. A good combination can effectively reduce production costs.
  • a backlight module and a display device provided by the embodiments of the application are described in detail above. Specific examples are used in this article to illustrate the principles and implementations of the application. The descriptions of the above embodiments are only used to help understand the present application.
  • the applied technical solutions and their core ideas; those of ordinary skill in the art should understand that they can still modify the technical solutions described in the foregoing embodiments, or equivalently replace some of the technical features; and these modifications or replacements, The essence of the corresponding technical solutions does not deviate from the scope of the technical solutions of the embodiments of the present application.

Abstract

一种背光模组(1)和显示装置(12),背光模组(1)包括蓝色激光二极管(2)和激光辐射薄膜(3);蓝色激光二极管(2)的出光面(4)靠近激光辐射薄膜(3)设置;蓝色激光二极管(2)发射的蓝色激光激发激光辐射薄膜(3)发出红色激光和绿色激光,蓝色激光、红色激光和绿色激光混合形成白光。

Description

背光模组和显示装置
本申请要求于2019年12月06日提交中国专利局、申请号为201911241882.X、发明名称为“背光模组和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示设备技术领域,尤其涉及背光模组技术领域,具体涉及一种背光模组和显示装置。
背景技术
激光显示,是指以激光作为光源来实现信息显示功能的技术。由于激光具有光谱线宽窄、光谱非常纯和光亮度高等特点,使得激光显示技术具有色域范围广、饱和度高、颜色数多等优点。并且激光具有非常高的电光转换效率,其作为显示光源,光谱利用率极高,没有杂散光,因此功耗低,更加节能环保。
目前,激光显示主要应用于激光投影领域,而激光投影显示技术主要应用于公共信息大屏幕、激光电视和数码影院等大屏幕显示设备中,而对于手机、笔记本电脑及平板电脑等便携式小型化设备来说,该激光投影设备尺寸较大,结构也并不合适。因此,开发全色激光面板对于手机,电脑等平板显示设备来说非常重要。但是,以红色激光二极管、绿色激光二极管和蓝色激光二极管分别发出的红绿蓝三色激光组成的显示光源成本较高,且制备工艺很复杂。
技术问题
本申请提供一种背光模组和显示装置,通过蓝色激光二极管发出的蓝色激光激发激光辐射薄膜辐射出光谱半峰宽较窄的红色激光和绿色激光,使得蓝色激光与红色激光和绿色激光混合形成白光用于显示光源,可以解决激光组成的显示光源成本高以及制备工艺复杂的技术问题。
技术解决方案
本申请实施例提供一种背光模组,包括蓝色激光二极管和激光辐射薄膜;所述蓝色激光二极管的出光面靠近所述激光辐射薄膜设置;
所述蓝色激光二极管发射的蓝色激光激发所述激光辐射薄膜发出红色激光和绿色激光,所述蓝色激光、所述红色激光和所述绿色激光混合形成白光。
在本申请实施例所提供的背光模组中,所述激光辐射薄膜的材料包括激光染料、无机三五族半导体材料、激光晶体和激光材料中的至少一种;
其中,所述激光染料包括香豆素类、罗丹明类、菁类和嗪类中的至少一种;所述激光晶体包括Nd:YAG晶体、Nd:YLF晶体、Nd:YV04晶体、Yb:YAG晶体和Nd:YAG多晶陶瓷中的至少一种;激光材料包括量子点、全无机钙钛矿和有机无机杂化钙钛矿中的至少一种。
在本申请实施例所提供的背光模组中,所述激光辐射薄膜包括多层叠加设置的激光辐射薄膜单元;多层所述激光辐射薄膜单元的材料互不相同,且每一层所述激光辐射薄膜单元受所述蓝色激光激发后发出所述红色激光和所述绿色激光。
在本申请实施例所提供的背光模组中,所述背光模组为侧入式背光结构;所述背光模组还包括导光板和反射层;
所述蓝色激光二极管的出光面与所述反射层的反射面之间的夹角为锐角,使发射的光通过所述反射面反射;且所述反射层的反射面与所述导光板之间的夹角为锐角,使所述反射面反射的光进入所述导光板。
在本申请实施例所提供的背光模组中,所述激光辐射薄膜位于所述导光板靠近所述反射层的一侧;
所述蓝色激光二极管发射的所述蓝色激光通过所述反射层的反射面反射至所述激光辐射薄膜,并激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述导光板均匀射出。
在本申请实施例所提供的背光模组中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
所述蓝色激光二极管发射的所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光通过所述反射层的反射面反射至所述导光板,并经所述导光板均匀射出。
在本申请实施例所提供的背光模组中,所述背光模组为直下式背光结构;所述背光模组还包括相对设置的光学膜片组和反射层;
所述蓝色激光二极管设置在所述反射层上,且所述蓝色激光二极管的出光面和所述反射层的反射面均朝向所述光学膜片组设置;所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光。
在本申请实施例所提供的背光模组中,所述激光辐射薄膜位于所述光学膜片组靠近所述反射层的一侧;
所述蓝色激光二极管向所述激光辐射薄膜的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述光学膜片组均匀射出。
在本申请实施例所提供的背光模组中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光射向所述光学膜片组,并经所述光学膜片组均匀射出。
在本申请实施例所提供的背光模组中,所述光学膜片组包括靠近所述反射层设置的扩散片以及位于所述扩散片远离所述反射层一侧的棱镜片。
在本申请实施例所提供的背光模组中,所述蓝色激光二极管发射的蓝色激光的波长范围为400纳米至450纳米。
本申请实施例还提供一种显示装置,包括上述的背光模组,以及与所述背光模组对应设置的显示面板。
在本申请实施例所提供的显示装置中,所述激光辐射薄膜包括多层叠加设置的激光辐射薄膜单元;多层所述激光辐射薄膜单元的材料互不相同,且每一层所述激光辐射薄膜单元受所述蓝色激光激发后发出所述红色激光和所述绿色激光。
在本申请实施例所提供的显示装置中,所述背光模组为侧入式背光结构;所述背光模组还包括导光板和反射层;
所述蓝色激光二极管的出光面与所述反射层的反射面之间的夹角为锐角,使发射的光通过所述反射面反射;且所述反射层的反射面与所述导光板之间的夹角为锐角,使所述反射面反射的光进入所述导光板。
在本申请实施例所提供的显示装置中,所述激光辐射薄膜位于所述导光板靠近所述反射层的一侧;
所述蓝色激光二极管发射的所述蓝色激光通过所述反射层的反射面反射至所述激光辐射薄膜,并激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述导光板均匀射出。
在本申请实施例所提供的显示装置中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
所述蓝色激光二极管发射的所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光通过所述反射层的反射面反射至所述导光板,并经所述导光板均匀射出。
在本申请实施例所提供的显示装置中,所述背光模组为直下式背光结构;所述背光模组还包括相对设置的光学膜片组和反射层;
所述蓝色激光二极管设置在所述反射层上,且所述蓝色激光二极管的出光面和所述反射层的反射面均朝向所述光学膜片组设置;所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光。
在本申请实施例所提供的显示装置中,所述激光辐射薄膜位于所述光学膜片组靠近所述反射层的一侧;
所述蓝色激光二极管向所述激光辐射薄膜的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述光学膜片组均匀射出。
在本申请实施例所提供的显示装置中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光射向所述光学膜片组,并经所述光学膜片组均匀射出。
在本申请实施例所提供的显示装置中,所述显示面板包括液晶显示面板。
有益效果
本申请实施例提供的背光模组,通过蓝色激光二极管发出的蓝色激光激发激光辐射薄膜辐射出光谱半峰宽较窄的红色激光和绿色激光,使得蓝色激光与红色激光和绿色激光混合形成白光用于显示光源,获得的白光具有较好的光谱纯度以及较大的色域范围,有利于高色域显示;且与示例性的采用红色激光二极管、绿色激光二极管和蓝色激光二极管分别发射红绿蓝三色激光混合形成白光光源相比,本申请的背光模组制备工艺简单,可以与现有的工艺较好的结合,可以有效的降低生产成本。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的一种侧入式的背光模组的部分结构示意图。
图2为本申请实施例提供的另一种侧入式的背光模组的部分结构示意图。
图3为本申请实施例提供的一种激光辐射薄膜的结构示意图。
图4为本申请实施例提供的另一种侧入式的背光模组的部分结构示意图。
图5为本申请实施例提供的一种直下式的背光模组的部分结构示意图。
图6为本申请实施例提供的另一种直下式的背光模组的部分结构示意图。
图7为本申请实施例提供的一种显示装置的部分结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
基于激光材料的受激辐射特性,激光材料在低的激发功率下其发光过程为自发辐射,故其荧光光谱的半峰宽较宽,而当激光功率提高超过材料的阈值后,其发光过程为受激辐射,故其光谱会发生窄化现象。本申请基于激光材料在阈值以上的光谱窄化特性,利用蓝色激光激发红绿色发光的激光材料,获得光谱半峰宽很窄的红绿光源,从而红绿蓝三色混合形成白光,作为显示面板的背光源。该背光源具有较好的光谱纯度,较大的色域范围,非常适合于高色域显示,且工艺简单,与现有的背光工艺和显示面板工艺可以很好的结合。
具体的,如图1所示,本申请实施例提供了一种侧入式的背光模组1,背光模组1包括蓝色激光二极管2和激光辐射薄膜3;蓝色激光二极管2的出光面4靠近激光辐射薄膜3设置;蓝色激光二极管2发射的蓝色激光激发激光辐射薄膜3发出红色激光和绿色激光,蓝色激光、红色激光和绿色激光混合形成白光。
具体的,背光模组1还包括背板5,设置在背板5上的反射层6,位于反射层6上方的导光板7,以及位于导光板7远离反射层6一侧的光学膜片组8;激光辐射薄膜3位于导光板7靠近反射层6的一侧;激光辐射薄膜3与反射层6之间形成光源内腔9,蓝色激光二极管2位于光源内腔9的侧面;且蓝色激光二极管2的出光面4与反射层6的反射面10之间的夹角为锐角,使发射的光通过反射面10反射;且反射层6的反射面10与导光板7之间的夹角为锐角,使反射面10反射的光进入导光板7。
需要说明的是,多个蓝色激光二极管2呈阵列式设置在光源内腔9的侧面,多个蓝色激光二极管2可以只设置在光源内腔9的一侧,也可以设置在光源内腔9的多侧,此处不做限制。反射层6的形状由设置有蓝色激光二极管2的侧面的数量决定,当设置有蓝色激光二极管2的侧面的数量大于1时,反射层6的反射面10为多段折面或者非光滑过度曲面,如图2所示,蓝色激光二极管2设置在光源内腔9的两侧,对应的,反射层6的反射面10为两段折面,每个折面与对应的蓝色激光二极管2的出光面4之间的夹角为锐角,且与导光板7之间的夹角为锐角。
具体的,蓝色激光二极管2发射的蓝色激光通过反射层6的反射面10反射至激光辐射薄膜3,并激发激光辐射薄膜3发出红色激光和绿色激光;蓝色激光、红色激光和绿色激光混合形成的白光经导光板7均匀射出。
具体的,导光板7包括入光面和出光面4,其中,入光面靠近反射层6设置,出光面4远离反射层6设置。
具体的,光学膜片组8包括依次设置在导光板7上的扩散片14和棱镜片15,当然,光学膜片组8还可以是多个扩散片和多个棱镜片之间的组合结构,此处不做限制;反射层6包括反光膜或反光涂片。
具体的,蓝色激光二极管2发射的蓝色激光的波长范围为400纳米至450纳米;在一实施例中,蓝色激光二极管2发射的蓝色激光的波长为430nm。
具体的,激光辐射薄膜3的材料包括激光染料、无机三五族半导体材料、激光晶体和激光材料中的至少一种;其中,激光染料包括香豆素类、罗丹明类、菁类和嗪类中的至少一种;激光晶体包括Nd:YAG晶体、Nd:YLF晶体、Nd:YV04晶体、Yb:YAG晶体和Nd:YAG多晶陶瓷中的至少一种;激光材料包括量子点、全无机钙钛矿和有机无机杂化钙钛矿中的至少一种。
本实施例中,通过蓝色激光二极管2发出的蓝色激光激发激光辐射薄膜3辐射出光谱半峰宽较窄的红色激光和绿色激光,使得蓝色激光与红色激光和绿色激光混合形成白光用于显示光源,一方面,获得的白光具有较好的光谱纯度以及较大的色域范围,有利于高色域显示,另一方面,激光辐射薄膜3能够获得均匀的面光源,再通过导光板7和光学膜片组8可以进一步提高背光均匀性,除此之外,与示例性的采用红色激光二极管、绿色激光二极管和蓝色激光二极管分别发射红绿蓝三色激光混合形成白光光源相比,本申请的背光模组1制备工艺简单,可以与现有的工艺较好的结合,可以有效的降低生产成本。
在一实施例中,如图3所示,激光辐射薄膜3包括多层叠加设置的激光辐射薄膜单元11;多层激光辐射薄膜单元11的材料互不相同,且每一层激光辐射薄膜单元11受蓝色激光激发后发出红色激光和绿色激光;以两层叠加设置的第一激光辐射薄膜单元16和第二激光辐射单元17为例,第一激光辐射薄膜单元16和第二激光辐射单元17的材料互不相同,且第一激光辐射薄膜单元16和第二激光辐射单元17受蓝色激光激发后均可以发出红色激光和绿色激光。
本实施例中,由于不同的激光染料、无机三五族半导体材料、激光晶体或激光材料的阈值不同,且材料的配比不同发出的光的颜色不同,故多层不同材料的激光辐射薄膜单元11构成的激光辐射薄膜3可以适用于不同功率的蓝色激光二极管2,应用范围广,且有利于保证激光辐射薄膜3受激发发出足够量的红色激光和绿色激光,从而保证了形成的白光的量。
如图4所示,本申请实施例还提供了一种侧入式的背光模组1,与上述实施例不同的在于,激光辐射薄膜3覆盖在蓝色激光二极管2的出光面4上;蓝色激光二极管2发射的蓝色激光激发激光辐射薄膜3发出红色激光和绿色激光;蓝色激光、红色激光和绿色激光混合形成的白光通过反射层6的反射面10反射至导光板7,并经导光板7和光学膜片组8均匀射出。
具体的,激光辐射薄膜3还可以覆盖在蓝色激光二极管2的整个外部,以避免漏光。
本实施例中,激光辐射薄膜3设置在蓝色激光二极管2的出光面4的结构等同于白光二极管,可以直接在蓝色激光二极管2的出光侧获得具有较好的光谱纯度以及较大的色域范围的白光,有利于节约激光辐射薄膜3的使用量,从而有利于降低生产成本。
如图5所示,本申请实施例还提供了一种直下式的背光模组1,与上述实施例不同的在于,背光模组1包括背板5,设置在背板5上的反射层6,设置在反射层6上的蓝色激光二极管2,与反射层6相对设置且位于蓝色激光二极管2上方的光学膜片组8,以及设置在光学膜片组8靠近靠近反射层6的一侧的激光辐射薄膜3。
具体的,蓝色激光二极管2的出光面4和反射层6的反射面10均朝向光学膜片组8设置,即朝向激光辐射薄膜3设置;蓝色激光二极管2向光学膜片组8的方向(激光辐射薄膜3的方向)发射蓝色激光。
具体的,蓝色激光二极管2向激光辐射薄膜3的方向发射蓝色激光,蓝色激光激发激光辐射薄膜3发出红色激光和绿色激光;蓝色激光、红色激光和绿色激光混合形成的白光经光学膜片组8均匀射出。
具体的,蓝色激光二极管2的数量为多个,可以呈阵列式排布在反射层6上,具体数量不作限制。
具体的,光学膜片组8包括依次设置在激光辐射薄膜3上的扩散片14和棱镜片15,当然,光学膜片组8还可以是多个扩散片和多个棱镜片之间的组合结构,此处不做限制。
本实施例中,通过蓝色激光二极管2发出的蓝色激光激发激光辐射薄膜3辐射出光谱半峰宽较窄的红色激光和绿色激光,使得蓝色激光与红色激光和绿色激光混合形成白光用于显示光源,一方面,获得的白光具有较好的光谱纯度以及较大的色域范围,有利于高色域显示,另一方面,激光辐射薄膜3能够获得均匀的面光源,再通过导光板7和光学膜片组8可以进一步提高背光均匀性,除此之外,本申请的背光模组1制备工艺简单,可以与现有的工艺较好的结合,可以降低生产成本。
如图6所示,本申请实施例还提供了一种直下式的背光模组1,与上述实施例不同的在于,激光辐射薄膜3覆盖在蓝色激光二极管2的出光面4上;蓝色激光二极管2向光学膜片组8的方向发射蓝色激光,蓝色激光激发激光辐射薄膜3发出红色激光和绿色激光;蓝色激光、红色激光和绿色激光混合形成的白光射向光学膜片组8,并经光学膜片组8均匀射出。
本实施例中,激光辐射薄膜3设置在蓝色激光二极管2的出光面4的结构等同于白光二极管,可以直接在蓝色激光二极管2的出光侧获得具有较好的光谱纯度以及较大的色域范围的白光,有利于节约激光辐射薄膜3的使用量,从而有利于降低生产成本。
如图7所示,本申请实施例还提供了一种显示装置12,包括上述实施例中的背光模组1,以及与背光模组1对应设置的显示面板13。
具体的,背光模组1的具体结构此处不再赘述。
具体的,显示面板13包括液晶显示面板,即包括相对设置的TFT阵列基板和彩膜基板,以及设置在TFT阵列基板和彩膜基板之间的液晶层;当然,显示面板13还可以是其他类型的显示面板,此处不做限制。
本实施例中,提供的背光模组1通过蓝色激光二极管2发出的蓝色激光激发激光辐射薄膜3辐射出光谱半峰宽较窄的红色激光和绿色激光,使得蓝色激光与红色激光和绿色激光混合形成白光用于显示面板13的背光源,且获得的白光具有较好的光谱纯度以及较大的色域范围,有利于高色域的显示面板13显示,且与示例性的采用红色激光二极管、绿色激光二极管和蓝色激光二极管分别发射红绿蓝三色激光混合形成白光光源相比,本申请的背光模组1制备工艺简单,可以与现有的背光工艺和显示面板13工艺较好的结合,可以有效的降低生产成本。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种背光模组和显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种背光模组,包括蓝色激光二极管和激光辐射薄膜;所述蓝色激光二极管的出光面靠近所述激光辐射薄膜设置;
    所述蓝色激光二极管发射的蓝色激光激发所述激光辐射薄膜发出红色激光和绿色激光,所述蓝色激光、所述红色激光和所述绿色激光混合形成白光。
  2. 如权利要求1所述的背光模组,其中,所述激光辐射薄膜的材料包括激光染料、无机三五族半导体材料、激光晶体和激光材料中的至少一种;
    其中,所述激光染料包括香豆素类、罗丹明类、菁类和嗪类中的至少一种;所述激光晶体包括Nd:YAG晶体、Nd:YLF晶体、Nd:YV04晶体、Yb:YAG晶体和Nd:YAG多晶陶瓷中的至少一种;激光材料包括量子点、全无机钙钛矿和有机无机杂化钙钛矿中的至少一种。
  3. 如权利要求1所述的背光模组,其中,所述激光辐射薄膜包括多层叠加设置的激光辐射薄膜单元;多层所述激光辐射薄膜单元的材料互不相同,且每一层所述激光辐射薄膜单元受所述蓝色激光激发后发出所述红色激光和所述绿色激光。
  4. 如权利要求1所述的背光模组,其中,所述背光模组为侧入式背光结构;所述背光模组还包括导光板和反射层;
    所述蓝色激光二极管的出光面与所述反射层的反射面之间的夹角为锐角,使发射的光通过所述反射面反射;且所述反射层的反射面与所述导光板之间的夹角为锐角,使所述反射面反射的光进入所述导光板。
  5. 如权利要求4所述的背光模组,其中,所述激光辐射薄膜位于所述导光板靠近所述反射层的一侧;
    所述蓝色激光二极管发射的所述蓝色激光通过所述反射层的反射面反射至所述激光辐射薄膜,并激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述导光板均匀射出。
  6. 如权利要求4所述的背光模组,其中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
    所述蓝色激光二极管发射的所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光通过所述反射层的反射面反射至所述导光板,并经所述导光板均匀射出。
  7. 如权利要求1所述的背光模组,其中,所述背光模组为直下式背光结构;所述背光模组还包括相对设置的光学膜片组和反射层;
    所述蓝色激光二极管设置在所述反射层上,且所述蓝色激光二极管的出光面和所述反射层的反射面均朝向所述光学膜片组设置;所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光。
  8. 如权利要求7所述的背光模组,其中,所述激光辐射薄膜位于所述光学膜片组靠近所述反射层的一侧;
    所述蓝色激光二极管向所述激光辐射薄膜的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述光学膜片组均匀射出。
  9. 如权利要求7所述的背光模组,其中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
    所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光射向所述光学膜片组,并经所述光学膜片组均匀射出。
  10. 如权利要求7所述的背光模组,其中,所述光学膜片组包括靠近所述反射层设置的扩散片以及位于所述扩散片远离所述反射层一侧的棱镜片。
  11. 如权利要求1所述的背光模组,其中,所述蓝色激光二极管发射的蓝色激光的波长范围为400纳米至450纳米。
  12. 一种显示装置,包括如权利要求1所述的背光模组,以及与所述背光模组对应设置的显示面板。
  13. 如权利要求12所述的显示装置,其中,所述激光辐射薄膜包括多层叠加设置的激光辐射薄膜单元;多层所述激光辐射薄膜单元的材料互不相同,且每一层所述激光辐射薄膜单元受所述蓝色激光激发后发出所述红色激光和所述绿色激光。
  14. 如权利要求12所述的显示装置,其中,所述背光模组为侧入式背光结构;所述背光模组还包括导光板和反射层;
    所述蓝色激光二极管的出光面与所述反射层的反射面之间的夹角为锐角,使发射的光通过所述反射面反射;且所述反射层的反射面与所述导光板之间的夹角为锐角,使所述反射面反射的光进入所述导光板。
  15. 如权利要求14所述的显示装置,其中,所述激光辐射薄膜位于所述导光板靠近所述反射层的一侧;
    所述蓝色激光二极管发射的所述蓝色激光通过所述反射层的反射面反射至所述激光辐射薄膜,并激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述导光板均匀射出。
  16. 如权利要求14所述的显示装置,其中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
    所述蓝色激光二极管发射的所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光通过所述反射层的反射面反射至所述导光板,并经所述导光板均匀射出。
  17. 如权利要求12所述的显示装置,其中,所述背光模组为直下式背光结构;所述背光模组还包括相对设置的光学膜片组和反射层;
    所述蓝色激光二极管设置在所述反射层上,且所述蓝色激光二极管的出光面和所述反射层的反射面均朝向所述光学膜片组设置;所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光。
  18. 如权利要求17所述的显示装置,其中,所述激光辐射薄膜位于所述光学膜片组靠近所述反射层的一侧;
    所述蓝色激光二极管向所述激光辐射薄膜的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光经所述光学膜片组均匀射出。
  19. 如权利要求17所述的显示装置,其中,所述激光辐射薄膜覆盖在所述蓝色激光二极管的出光面上;
    所述蓝色激光二极管向所述光学膜片组的方向发射所述蓝色激光,所述蓝色激光激发所述激光辐射薄膜发出所述红色激光和所述绿色激光;所述蓝色激光、所述红色激光和所述绿色激光混合形成的所述白光射向所述光学膜片组,并经所述光学膜片组均匀射出。
  20. 如权利要求12所述的显示装置,其中,所述显示面板包括液晶显示面板。
PCT/CN2019/125845 2019-12-06 2019-12-17 背光模组和显示装置 WO2021109233A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,346 US11435515B2 (en) 2019-12-06 2019-12-17 Backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911241882.X 2019-12-06
CN201911241882.XA CN110989242A (zh) 2019-12-06 2019-12-06 背光模组和显示装置

Publications (1)

Publication Number Publication Date
WO2021109233A1 true WO2021109233A1 (zh) 2021-06-10

Family

ID=70090785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125845 WO2021109233A1 (zh) 2019-12-06 2019-12-17 背光模组和显示装置

Country Status (3)

Country Link
US (1) US11435515B2 (zh)
CN (1) CN110989242A (zh)
WO (1) WO2021109233A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096589A1 (ja) * 2007-02-06 2008-08-14 Panasonic Corporation 液晶表示装置
CN103278961A (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶显示装置
CN105068313A (zh) * 2015-08-06 2015-11-18 北京工业大学 一种蓝光ld背光模组及显示装置
CN205581468U (zh) * 2016-04-12 2016-09-14 东莞轩朗实业有限公司 侧入式背光模组和液晶显示装置
CN106842704A (zh) * 2017-02-20 2017-06-13 上海大学 一种超清有机激光显示器
CN107209419A (zh) * 2015-02-04 2017-09-26 默克专利股份有限公司 电光切换元件和显示器件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
EP1547212A1 (en) 2002-08-29 2005-06-29 Basf Aktiengesellschaft Laser gain medium for solid state dye lasers
US7265488B2 (en) * 2004-09-30 2007-09-04 Avago Technologies General Ip Pte. Ltd Light source with wavelength converting material
TW200804931A (en) * 2006-07-14 2008-01-16 Glory Sun Opto Electronics Corp Optical diffusing sheet and backlight module
KR100930171B1 (ko) * 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
WO2012006289A1 (en) * 2010-07-09 2012-01-12 Nitto Denko Corporation Phosphor composition and light emitting device using the same
CN102478187A (zh) * 2010-11-24 2012-05-30 宏腾光电股份有限公司 显示器背光模块与其制造方法
US9412905B2 (en) * 2011-04-01 2016-08-09 Najing Technology Corporation Limited White light emitting device
KR101580739B1 (ko) * 2014-06-05 2015-12-28 엘지전자 주식회사 발광 장치
US20150369989A1 (en) * 2014-06-20 2015-12-24 Hon Hai Precision Industry Co., Ltd. Backlight module and display device
JP5843024B1 (ja) * 2014-08-22 2016-01-13 大日本印刷株式会社 表示装置
CN205919261U (zh) * 2016-05-13 2017-02-01 中强光电股份有限公司 色彩转换膜及应用此色彩转换膜的面光源
CN107688270A (zh) * 2016-08-04 2018-02-13 青岛蓝之虹光电技术有限公司 应用波长转换原理的新型侧光式背光光源装置
CN205910485U (zh) * 2016-08-04 2017-01-25 青岛蓝之虹光电技术有限公司 应用波长转换原理的新型侧光式背光光源装置
CN207440478U (zh) * 2017-11-03 2018-06-01 广州毅昌科技股份有限公司 一种侧入式空气导光激光光源背光模组
TW202017209A (zh) * 2018-10-22 2020-05-01 隆達電子股份有限公司 具提升量子點信賴性的發光二極體封裝

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096589A1 (ja) * 2007-02-06 2008-08-14 Panasonic Corporation 液晶表示装置
CN103278961A (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶显示装置
CN107209419A (zh) * 2015-02-04 2017-09-26 默克专利股份有限公司 电光切换元件和显示器件
CN105068313A (zh) * 2015-08-06 2015-11-18 北京工业大学 一种蓝光ld背光模组及显示装置
CN205581468U (zh) * 2016-04-12 2016-09-14 东莞轩朗实业有限公司 侧入式背光模组和液晶显示装置
CN106842704A (zh) * 2017-02-20 2017-06-13 上海大学 一种超清有机激光显示器

Also Published As

Publication number Publication date
US11435515B2 (en) 2022-09-06
CN110989242A (zh) 2020-04-10
US20210356816A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US9893252B2 (en) White LED, backlight module and liquid crystal display device
US10310324B2 (en) Backlight module
TWI726611B (zh) 背光模組、顯示裝置及其驅動方法
WO2018157527A1 (zh) 一种背光模组及液晶显示器
US20060284532A1 (en) Color display unit
US20180231830A1 (en) Array substrate and method of manufacturing the same, and display device
WO2017193418A1 (zh) 量子点背光模组
WO2021135752A1 (zh) 一种背光模组、电子设备及灯条
US10797205B2 (en) Liquid crystal display device and quantum dot LED
JP2006058332A (ja) 電気光学装置及び電子機器
JP2007003825A (ja) 表示装置及び発光パネル
US20210080636A1 (en) Backlight module and a display device
CN108845448A (zh) 一种改善量子点彩膜出光纯度的基板结构
JP2007207633A (ja) 発光素子及び表示装置
US20220357618A1 (en) Backlight module and quantum dot display device
US10276756B2 (en) LED display panel
CN206400222U (zh) 一种量子点膜材结构及led背光/照明面板
WO2022001049A1 (zh) 量子层、显示屏、背光模组和显示器
TW594256B (en) Light structure for panel display
US20080170176A1 (en) Backlight Module Having Phosphor Layer and Liquid Crystal Display Device Using the Same
WO2021109233A1 (zh) 背光模组和显示装置
JP2003233070A (ja) フラットパネル型カラー画像ディスプレイ装置および情報端末
WO2020133816A1 (zh) 显示面板及其制备方法
US11112649B1 (en) Backlight module and display device
TWI740379B (zh) 發光模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955022

Country of ref document: EP

Kind code of ref document: A1