WO2021109161A1 - 一种一体化光纤激光引擎 - Google Patents

一种一体化光纤激光引擎 Download PDF

Info

Publication number
WO2021109161A1
WO2021109161A1 PCT/CN2019/123924 CN2019123924W WO2021109161A1 WO 2021109161 A1 WO2021109161 A1 WO 2021109161A1 CN 2019123924 W CN2019123924 W CN 2019123924W WO 2021109161 A1 WO2021109161 A1 WO 2021109161A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fixing groove
grating
laser
fiber grating
Prior art date
Application number
PCT/CN2019/123924
Other languages
English (en)
French (fr)
Inventor
袁哲
刘腾
薛波新
刘明
沈文浩
贾占奎
刘普霞
杨超
Original Assignee
瑞尔通(苏州)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞尔通(苏州)医疗科技有限公司 filed Critical 瑞尔通(苏州)医疗科技有限公司
Publication of WO2021109161A1 publication Critical patent/WO2021109161A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode

Definitions

  • the invention relates to the field of laser technology, in particular to an integrated fiber laser engine.
  • fiber lasers As a new generation of solid-state lasers, fiber lasers have the advantages of high efficiency, high stability, and high beam quality. With the rapid development in recent years, they have been widely used in many fields such as industry, medical treatment, and scientific research. Fiber lasers usually have an all-fiber structure, and the integration of the core optical engine part requires sophisticated process equipment and strict control of environmental conditions. Therefore, the maintenance of fiber laser engines is usually impossible to perform on the job site, that is, the fiber laser has the advantages of The maintenance is not strong, which reduces the convenience of its application.
  • the light source part of the existing fiber laser integrator is usually integrated by the LD pump source, active fiber and various fiber devices. Each part is manufactured independently.
  • the fiber fusion integration process forms a melting point, thereby forming a complete optical component.
  • Each part needs to be installed on the main board of the light source to provide sufficient heat dissipation and structural fixation.
  • This typical structure has four obvious shortcomings:
  • connection process between the optical fiber and the optical fiber is complicated and requires high precision, and it is extremely expensive to implement component replacement or fiber fusion splicing in an on-site environment;
  • each melting point may cause efficiency reduction and leakage of light energy to become a risk point of damage
  • heat dissipation needs to be filled with a thermally conductive medium, which has a poorer heat dissipation effect than direct installation and the motherboard;
  • the purpose of the present invention is to provide an integrated fiber laser engine with a reasonable structure and easy maintenance. It adopts the following technical solutions:
  • An integrated fiber laser engine which includes a fiber main board, an LD pump source, a first fiber grating, an active fiber, a second fiber grating, and a laser output end;
  • the optical fiber main board is provided with a pigtail fixing groove, a first fiber grating fixing groove, an optical fiber coiling groove, a second fiber grating fixing groove and a laser output end fixing groove;
  • the pigtail of the LD pump source is fixed to the pigtail fixing groove, the pigtail of the LD pump source is provided with a fusion cone area, and the first fiber grating is fixed to the first fiber grating fixing groove, The first end of the quartz waveguide portion of the first fiber grating is fused to the fusion cone, the active optical fiber is fixed to the optical fiber winding groove, and the first end of the active optical fiber is connected to the first optical fiber.
  • the second end of the quartz waveguide part of the grating is welded, the second fiber grating is fixed to the second fiber grating fixing groove, and the second end of the active fiber is connected to the second end of the quartz waveguide part of the second fiber grating.
  • One end is welded, the laser output end is fixed to the laser output end fixing groove, and the second end of the quartz waveguide part of the second fiber grating is welded to the laser output end.
  • a cladding light stripping structure is prepared at the welding point between the second end of the quartz waveguide part of the second fiber grating and the laser output end by erosion or high refractive index gluing.
  • the fusion joint between the first end of the active optical fiber and the second end of the quartz waveguide portion of the first fiber grating, and at the second end of the active optical fiber and the first end is filled with a thermally conductive filling medium after recoating.
  • an optical fiber coiling post is arranged in the optical fiber coiling groove, and the active optical fiber is coiled on the optical fiber coiling post.
  • the gaps between the first fiber grating fixing groove and the second fiber grating fixing groove are filled with matched low-refractive-index ultraviolet glue.
  • each device is fixed on the optical fiber main board by potting.
  • a sealing cover is also provided on the optical fiber main board.
  • the laser output end is an optical fiber end cap.
  • the LD pump source is provided with an output fiber pluggable structure.
  • the integrated fiber laser engine of the present invention realizes the modularization of the core components of the fiber laser to the greatest extent, isolates the production and manufacturing process from the installation process of external structure, circuit, waterway, and optical path, and improves the rationality of the fiber laser machine manufacturing; Improve the protection of the fragile optical fiber waveguide part; by replacing the engine as a whole, the fast maintenance of the fiber laser at the job site is feasible, and the economic and time cost of maintenance is reduced.
  • FIG. 1 is a schematic diagram of the structure of an optical fiber main board in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an integrated fiber laser engine without a fiber main board in an embodiment of the present invention.
  • Marking description 10. Fiber optic main board; 11. Pigtail fixing slot; 12. First fiber grating fixing slot; 13. Optical fiber coiling slot; 131. Optical fiber coiling post; 14. Second fiber grating fixing slot; 15. Laser output end Fixed groove; 20, LD pump source; 30, first fiber grating; 40, active fiber; 50, second fiber grating; 60, laser output end.
  • FIG. 1-2 it is the integrated fiber laser engine in the embodiment of the present invention, which includes a fiber main board 10, an LD pump source 20, a first fiber grating 30, an active fiber 40, a second fiber grating 50, The laser output terminal 60.
  • the fiber mainboard 10 is provided with a pigtail fixing groove 11, a first fiber grating fixing groove 12, a fiber winding groove 13, a second fiber grating fixing groove 14 and a laser output end fixing groove 15.
  • the pigtail of the LD pump source 20 is fixed to the pigtail fixing groove 11
  • the pigtail of the LD pump source 20 is provided with a fusion cone
  • the first fiber grating 30 is fixed to the first fiber grating fixing groove 12
  • the first end of the quartz waveguide part of the first fiber grating 30 is fused with the fusion cone to form a laser input end
  • the active fiber 40 is fixed to the fiber winding groove 13
  • the first end of the active fiber 40 is connected to the first fiber grating 30
  • the second end of the quartz waveguide part is welded
  • the second fiber grating 50 is fixed to the second fiber grating fixing groove 14
  • the second end of the active fiber 40 is welded to the first end of the quartz waveguide part of the second fiber grating 50
  • the laser The output end 60 is fixed to the laser output end fixing groove 15, and the second end of the quartz waveguide portion of the second fiber grating 50 is welded to the laser output end 60.
  • the LD pump source 20 is provided
  • a cladding light stripping structure is prepared by etching or high-refractive index gluing.
  • the cladding light stripping structure adopting the erosion method uses an overhead installation method
  • the cladding light filtering structure adopting a high refractive index coating adopts a filling and curing installation method.
  • necessary light absorption performance enhancement is performed on the surrounding materials of the cladding light stripping structure.
  • the welded area is filled with a thermally conductive filler after re-coating.
  • an optical fiber coiling post 131 is provided in the optical fiber coiling groove 13, and the active optical fiber 40 is coiled on the optical fiber coiling post 131.
  • the gaps between the first fiber grating fixing groove 12 and the second fiber grating fixing groove 14 are filled with matched low-refractive-index ultraviolet glue.
  • each device is fixed on the optical fiber main board 10 by potting.
  • the optical fiber main board 10 is also provided with a sealing cover.
  • the laser output end 60 is a fiber end cap or other forms.
  • the integrated fiber laser engine of the present invention realizes the modularization of the core components of the fiber laser to the greatest extent, isolates the production and manufacturing process from the installation process of external structure, circuit, waterway, and optical path, and improves the rationality of the fiber laser machine manufacturing; Improve the protection of the fragile optical fiber waveguide part; by replacing the engine as a whole, the fast maintenance of the fiber laser at the job site is feasible, and the economic and time cost of maintenance is reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种一体化光纤激光引擎,其包括光纤主板、LD泵浦源、第一光纤光栅、有源光纤、第二光纤光栅、激光输出端;光纤主板上设有尾纤固定槽、第一光纤光栅固定槽、光纤盘绕槽、第二光纤光栅固定槽和激光输出端固定槽。本发明的一体化光纤激光引擎最大限度实现了光纤激光器核心部件的模块化,使其生产制造过程隔离于外部结构、电路、水路、光路的安装过程,提高了光纤激光器整机制造的合理性;提高了对脆弱的光纤波导部分的保护性;通过整体更换引擎,使得光纤激光器在作业现场的快速维修可行,并降低了维修的经济与时间成本。

Description

一种一体化光纤激光引擎 技术领域
本发明涉及激光技术领域,具体涉及一种一体化光纤激光引擎。
背景技术
光纤激光器作为新一代固体激光器,具有高效率、高稳定性、高光束质量等优势,随着近几年的飞速发展,已经在工业、医疗、科研等众多领域得到广泛的应用。光纤激光器通常具有全光纤结构,核心光学引擎部分的集成需要依赖精密的工艺设备与控制严格的环境条件,因此,光纤激光引擎的维修通常是无法在作业现场进行的,即光纤激光器所具备的可维修性不强,降低了其应用便利性。
现有光纤激光器集成厂商的光源部分通常由LD泵浦源、有源光纤与各种光纤器件集成而成,每个零件为独立制造,光纤熔接集成工艺形成熔点,进而形成完整的光学部件。每个零件需要安装在光源主板上,以提供足够的散热与结构固定。该典型结构具有四个明显缺点:
其一,光纤与光纤之间的连接过程复杂且精度要求高,实现器件替换或光纤熔接在现场环境下耗费极高;
其二,光纤熔点数量较多,每个熔点都有可能造成效率降低、泄露光能量以成为损坏风险点;
其三,光纤器件与主板之间,需要通过导热介质填充实现散热,与直接安装与主板相比散热效果较差;
其四,由于光纤器件为独立制造,在进行集成工艺时必须留有两端足够的工艺长度,限制了光纤总长度,在部分高能光纤激光器中,可能导致降低非线性效应阈值。
发明内容
针对现有技术的不足,本发明目的在于提供一种结构合理,便于维修的一体化光纤激光引擎。其采用如下技术方案:
一种一体化光纤激光引擎,其包括光纤主板、LD泵浦源、第一光纤光栅、有源光纤、第二光纤光栅、激光输出端;
所述光纤主板上设有尾纤固定槽、第一光纤光栅固定槽、光纤盘绕槽、第二光纤光栅固定槽和激光输出端固定槽;
所述LD泵浦源的尾纤固定于所述尾纤固定槽,所述LD泵浦源的尾纤设有熔融锥区,所述第一光纤光栅固定于所述第一光纤光栅固定槽,所述第一光纤光栅的石英波导部分的第一端与所述熔融锥区熔接,所述有源光纤固定于所述光纤盘绕槽,所述有源光纤的第一端与所述第一光纤光栅的石英波导部分的第二端熔接,所述第二光纤光栅固定于所述第二光纤光栅固定槽,所述有源光纤的第二端与所述第二光纤光栅的石英波导部分的第一端熔接,所述激光输出端固定于激光输出端固定槽,所述第二光纤光栅的石英波导部分的第二端熔接所述激光输出端。
作为本发明的进一步改进,在所述第二光纤光栅的石英波导部分的第二端和所述激光输出端的熔接处,通过侵蚀或高折射率涂胶的方式制备有包层光剥除结构。
作为本发明的进一步改进,在所述有源光纤的第一端与所述第一光纤光栅的石英波导部分的第二端的熔接处,以及在所述有源光纤的第二端与所述第二光纤光栅的石英波导部分的第一端的熔接处,进行再涂敷后使用导热填充介质填充。
作为本发明的进一步改进,所述光纤盘绕槽内设有光纤盘绕柱,所述有源光纤盘绕于所述光纤盘绕柱上。
作为本发明的进一步改进,在所述第一光纤光栅固定槽、第二光纤光栅固定槽的缝隙内,均填充有匹配的低折射率紫外胶。
作为本发明的进一步改进,所述光纤主板上通过灌封将各个器件固定。
作为本发明的进一步改进,所述光纤主板上还设有密封盖。
作为本发明的进一步改进,所述激光输出端为光纤端帽。
作为本发明的进一步改进,所述LD泵浦源上设有输出光纤可插拔结构。
本发明的有益效果:
本发明的一体化光纤激光引擎最大限度实现了光纤激光器核心部件的模块化,使其生产制造过程隔离于外部结构、电路、水路、光路的安装过程,提高了光纤激光器整机制造的合理性;提高了对脆弱的光纤波导部分的保护性;通过整体更换引擎,使得光纤激光器在作业现场的快速维修可行,并降低了维修的经济与时间成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明实施例中光纤主板的结构示意图;
图2是本发明实施例中省去光纤主板的一体化光纤激光引擎的结构示意图。
标记说明:10、光纤主板;11、尾纤固定槽;12、第一光纤光栅固定槽;13、光纤盘绕槽;131、光纤盘绕柱;14、第二光纤光栅固定槽;15、激光输出端固定槽;20、LD泵浦源;30、第一光纤光栅;40、有源光纤;50、第二光纤光栅;60、激光输出端。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1-2所示,为本发明实施例中的一体化光纤激光引擎,其包括光纤主板10、LD泵浦源20、第一光纤光栅30、有源光纤40、第二光纤光栅50、激光输出端60。
如图1所示,光纤主板10上设有尾纤固定槽11、第一光纤光栅固定槽12、光纤盘绕槽13、第二光纤光栅固定槽14和激光输出端固定槽15。
如图2所示,LD泵浦源20的尾纤固定于尾纤固定槽11,LD泵浦源20的尾纤设有熔融锥区,第一光纤光栅30固定于第一光纤光栅固定槽12,第一光纤光栅30的石英波导部分的第一端与熔融锥区熔接,形成激光输入端,有源光纤40固定于光纤盘绕槽13,有源光纤40的第一端与第一光纤光栅30的石英波导部分的第二端熔接,第二光纤光栅50固定于第二光纤光栅固定槽14,有源光纤40的第二端与第二光纤光栅50的石英波导部分的第一端熔接,激光输出端60固定于激光输出端固定槽15,第二光纤光栅50的石英波导部分的第二端熔接激光输出端60。在本实施例中,LD泵浦源20上设有输出光纤可插拔结构。拆装便利。
在本实施例中,在第二光纤光栅50的石英波导部分的第二端和激光输出端60的熔接处,通过侵蚀或高折射率涂胶的方式制备有包层光剥除结构。具体的,采用侵蚀方式的包层光剥除结构使用架空的安装方式,采用高折射率涂胶的包层光滤除结构采用填充固化的安装方式。优选的,对包层光剥除结构周围材料进行必要的吸光性能加强。
在有源光纤40的第一端与第一光纤光栅30的石英波导部分的第二端的熔接处,以及在有源光纤40的第二端与第二光纤光栅50的石英波导部分的第一端的熔接处,进行再涂敷后使用导热填充介质填充。
优选的,光纤盘绕槽13内设有光纤盘绕柱131,有源光纤40盘绕于光纤盘绕柱131上。
其中,在第一光纤光栅固定槽12、第二光纤光栅固定槽14的缝隙内,均填充有匹配的低折射率紫外胶。
在本实施例中,光纤主板10上通过灌封将各个器件固定。光纤主板10上还设有密封盖。激光输出端60为光纤端帽或其他形式。
本发明的一体化光纤激光引擎最大限度实现了光纤激光器核心部件的模块化,使其生产制造过程隔离于外部结构、电路、水路、光路的安装过程,提高了光纤激光器整机制造的合理性;提高了对脆弱的光纤波导部分的保护性;通过整体更换引擎,使得光纤激光器在作业 现场的快速维修可行,并降低了维修的经济与时间成本。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

  1. 一种一体化光纤激光引擎,其特征在于,包括光纤主板、LD泵浦源、第一光纤光栅、有源光纤、第二光纤光栅、激光输出端;
    所述光纤主板上设有尾纤固定槽、第一光纤光栅固定槽、光纤盘绕槽、第二光纤光栅固定槽和激光输出端固定槽;
    所述LD泵浦源的尾纤固定于所述尾纤固定槽,所述LD泵浦源的尾纤设有熔融锥区,所述第一光纤光栅固定于所述第一光纤光栅固定槽,所述第一光纤光栅的石英波导部分的第一端与所述熔融锥区熔接,所述有源光纤固定于所述光纤盘绕槽,所述有源光纤的第一端与所述第一光纤光栅的石英波导部分的第二端熔接,所述第二光纤光栅固定于所述第二光纤光栅固定槽,所述有源光纤的第二端与所述第二光纤光栅的石英波导部分的第一端熔接,所述激光输出端固定于激光输出端固定槽,所述第二光纤光栅的石英波导部分的第二端熔接所述激光输出端。
  2. 如权利要求1所述的一体化光纤激光引擎,其特征在于,在所述第二光纤光栅的石英波导部分的第二端和所述激光输出端的熔接处,通过侵蚀或高折射率涂胶的方式制备有包层光剥除结构。
  3. 如权利要求1所述的一体化光纤激光引擎,其特征在于,在所述有源光纤的第一端与所述第一光纤光栅的石英波导部分的第二端的熔接处,以及在所述有源光纤的第二端与所述第二光纤光栅的石英波导部分的第一端的熔接处,进行再涂敷后使用导热填充介质填充。
  4. 如权利要求1所述的一体化光纤激光引擎,其特征在于,所述光纤盘绕槽内设有光纤盘绕柱,所述有源光纤盘绕于所述光纤盘绕柱上。
  5. 如权利要求1所述的一体化光纤激光引擎,其特征在于,在所述第一光纤光栅固定槽、第二光纤光栅固定槽的缝隙内,均填充有匹配的低折射率紫外胶。
  6. 如权利要求1所述的一体化光纤激光引擎,其特征在于,所述光纤主板上通过灌封将各个器件固定。
  7. 如权利要求1所述的一体化光纤激光引擎,其特征在于,所述光纤主板上还设有密封盖。
  8. 如权利要求1所述的一体化光纤激光引擎,其特征在于,所述激光输出端为光纤端帽。
  9. 如权利要求1所述的一体化光纤激光引擎,其特征在于,所述LD泵浦源上设有输出光纤可插拔结构。
PCT/CN2019/123924 2019-12-06 2019-12-09 一种一体化光纤激光引擎 WO2021109161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911242677.5 2019-12-06
CN201911242677.5A CN110797739A (zh) 2019-12-06 2019-12-06 一种一体化光纤激光引擎

Publications (1)

Publication Number Publication Date
WO2021109161A1 true WO2021109161A1 (zh) 2021-06-10

Family

ID=69447653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123924 WO2021109161A1 (zh) 2019-12-06 2019-12-09 一种一体化光纤激光引擎

Country Status (2)

Country Link
CN (1) CN110797739A (zh)
WO (1) WO2021109161A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924635B (zh) * 2020-06-24 2022-05-27 武汉锐科光纤激光技术股份有限公司 光纤盘及泵浦源自动上料系统
WO2022246815A1 (zh) * 2021-05-28 2022-12-01 广东省智能机器人研究院 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903600A1 (en) * 1997-09-19 1999-03-24 Nec Corporation Optical device mounting board
JP2011211220A (ja) * 2011-06-06 2011-10-20 Furukawa Electric Co Ltd:The 光ファイバレーザおよびレーザ光増幅装置
CN103259166A (zh) * 2013-04-22 2013-08-21 西北大学 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器
CN105140765A (zh) * 2015-09-15 2015-12-09 深圳市创鑫激光股份有限公司 光纤激光器的谐振腔模块及其光纤激光器
CN208226285U (zh) * 2018-05-08 2018-12-11 深圳市杰普特光电股份有限公司 光纤激光输出设备
CN109103735A (zh) * 2018-09-28 2018-12-28 深圳市杰普特光电股份有限公司 连续光纤激光模块
CN109818243A (zh) * 2019-02-22 2019-05-28 深圳技术大学(筹) 一种光纤放大器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903600A1 (en) * 1997-09-19 1999-03-24 Nec Corporation Optical device mounting board
JP2011211220A (ja) * 2011-06-06 2011-10-20 Furukawa Electric Co Ltd:The 光ファイバレーザおよびレーザ光増幅装置
CN103259166A (zh) * 2013-04-22 2013-08-21 西北大学 基于射频调制长周期光栅调q脉冲和连续两用光纤激光器
CN105140765A (zh) * 2015-09-15 2015-12-09 深圳市创鑫激光股份有限公司 光纤激光器的谐振腔模块及其光纤激光器
CN208226285U (zh) * 2018-05-08 2018-12-11 深圳市杰普特光电股份有限公司 光纤激光输出设备
CN109103735A (zh) * 2018-09-28 2018-12-28 深圳市杰普特光电股份有限公司 连续光纤激光模块
CN109818243A (zh) * 2019-02-22 2019-05-28 深圳技术大学(筹) 一种光纤放大器

Also Published As

Publication number Publication date
CN110797739A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021109161A1 (zh) 一种一体化光纤激光引擎
CA2521203A1 (en) An optical fiber/waveguide polarizer and a method of fabrication
CN113064234A (zh) 一种集成化光器件、其制作方法及测试方法
CN103944048A (zh) 一种基于单包层钕光纤及环形腔的飞秒激光器及制作方法
US20200363588A1 (en) Optical connection substrates for passive fiber to waveguide coupling
CN103913802A (zh) 一种基于单模光源的多模光纤耦合器制备方法
CN103762484A (zh) 一种包层光衰减器及其制造方法
JP2005195651A (ja) 光接続基板、光伝送システム、及び製造方法
WO2018062484A1 (ja) 光接続構造、光モジュール
CN202837591U (zh) 一种膜片式光纤激光耦合器
US20180239083A1 (en) Bi-directional pump light fiber for energy transfer to a cladding pumped fiber
US10622778B2 (en) High-power fiber cladding power stripper
CN103499856B (zh) 百瓦级准直型隔离器
CN210779478U (zh) 一种一体化光纤激光引擎
CN204613441U (zh) 基于电弧放电的长周期光纤光栅的制备装置
CN113866891B (zh) 光纤耦合端
KR20180034157A (ko) 클래딩 모드스트리퍼 및 이를 이용하는 광섬유레이저
CN210572871U (zh) 模场适配器、光纤激光器以及光纤隔离器
US6209356B1 (en) Method of making polarization-maintaining optical fibers
CN105161959B (zh) 一种单向光纤包层光滤除器及光纤激光器
JP2895204B2 (ja) 光波長変換素子及びその製造方法
JP2007121503A (ja) 光ファイバの接続方法
WO2015081758A1 (zh) 大功率光纤头、准直器、隔离器及频域合束器
JPH09297235A (ja) 光導波路及びその製造方法並びにそれを用いた光導波路モジュール
CN114137654A (zh) 一种环形波导光纤的光栅制备方法及光栅制备监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954892

Country of ref document: EP

Kind code of ref document: A1