WO2022246815A1 - 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法 - Google Patents

滤除光纤中杂散光的盘绕装置及杂散光的滤除方法 Download PDF

Info

Publication number
WO2022246815A1
WO2022246815A1 PCT/CN2021/096843 CN2021096843W WO2022246815A1 WO 2022246815 A1 WO2022246815 A1 WO 2022246815A1 CN 2021096843 W CN2021096843 W CN 2021096843W WO 2022246815 A1 WO2022246815 A1 WO 2022246815A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
winding position
stray light
arc
coiling
Prior art date
Application number
PCT/CN2021/096843
Other languages
English (en)
French (fr)
Inventor
蒲慧慧
金梦
马修泉
Original Assignee
广东省智能机器人研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省智能机器人研究院 filed Critical 广东省智能机器人研究院
Priority to PCT/CN2021/096843 priority Critical patent/WO2022246815A1/zh
Publication of WO2022246815A1 publication Critical patent/WO2022246815A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/54Arrangements for supporting cores or formers at winding stations; Securing cores or formers to driving members
    • B65H54/553Both-ends supporting arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the invention belongs to the field of optical fiber technology, and in particular relates to a coiling device for filtering stray light in an optical fiber and a method for filtering stray light.
  • the superior beam quality of fiber lasers not only benefits from the superior waveguide structure of the fiber itself, but also depends on the diameter of the fiber coil. Within a certain range, there is a minimum coil diameter, which can not only avoid bending loss, but also effectively filter out high-order modes, and optimize the beam quality to the greatest extent. At the same time, the minimum fiber coil diameter can effectively improve the pump utilization of the fiber, thereby improving the efficiency of the fiber laser and reducing power consumption.
  • the traditional optical fiber coiling method is planar coiling, that is, all the optical fibers are in the same plane.
  • the direction of stray light in the high-order mode is limited to a single direction, so that the filtering effect of stray light is not good.
  • the purpose of the embodiments of the present application is to provide a coiling device for filtering stray light in an optical fiber and a method for filtering stray light, aiming at solving the problem of high-order modes in the optical fiber.
  • the technical solution adopted by this application is to provide a coiling device for filtering out stray light in optical fibers, which is used for coiling optical fibers, including:
  • the main structure the main structure is provided with the optical fiber coiling position structure arranged in a non-uniform plane, and the optical fiber coiling position structure includes the first winding position arranged vertically on the main structure and the first winding position arranged laterally on the
  • the second winding position on the main structure, the second winding position is perpendicular to the first winding position; and the main structure has an arc-shaped surface, and the arc-shaped surface transitions between the second winding position and the first winding position between the first winding positions.
  • the main structure includes a vertical plate, an arc-shaped plate, and a horizontal plate; the vertical plate, the arc-shaped plate, and the horizontal plate are spliced in sequence; the first winding position is located on the vertical plate above; the arc-shaped surface is located on the arc-shaped plate; the second winding position is located on the horizontal plate.
  • the main structure includes a vertical part, an arc part and a transverse part which are sequentially integrally formed and connected; the first winding position is located on the vertical part; the arc surface is located on the arc on the shape portion; the second winding position is located on the transverse portion.
  • the first winding position and the second winding position include a plurality of winding posts, and a plurality of the winding posts are plugged on the main structure, and a plurality of the winding posts are concentric in several turns Arranged, and each round of the column is semicircular.
  • the first winding position and the second winding position include several circles of grooves arranged concentrically, and each circle of the grooves is in a semicircular shape.
  • multiple optical fiber coiling position structures there are multiple optical fiber coiling position structures, and multiple optical fiber coiling position structures are arranged at intervals on the main structure;
  • the main structure has a lead-in end and a lead-out end, the lead-in end is provided with a first mounting bracket, and the first mounting frame is slidably and adjustablely connected to the lead-in end, and the optical fiber armored cable Installed on the first mounting frame; the lead-out end is provided with a second mounting frame, the second mounting frame is slidably and adjustablely connected to the lead-out end, and the optical fiber end is provided on the second mounting frame Insert the FBG sensor.
  • the main structure is provided with a lead-out structure close to the lead-out end to guide the end of the optical fiber out of the main structure, and one end of the lead-out structure is connected to the first winding position or the second winding position, The other end is connected to the lead-out end, and is opposite to the insertion end of the fiber grating sensor.
  • a method for filtering stray light comprising the following steps:
  • S2 Repeat the action of S1 until the first winding and the second winding of the same level are completed;
  • the X1 axis is defined by the length direction of the vertical plate or the vertical portion, and the Y1 axis is defined by the height direction of the vertical plate or the vertical portion;
  • the X2 axis is defined by the length direction of the transverse plate or the transverse portion, and the Y2 axis is defined by the width direction of the transverse plate or the transverse portion;
  • the stray light in the high-order mode of the optical fiber is thrown out along the X1, Y1 axis directions;
  • the stray light throwing direction in the high-order mode changes, and the stray light is thrown out along the X1 and Y1 axis directions, and the stray light is also thrown out along the transmission direction of the Y1 axis;
  • the stray light in the high-order mode of the optical fiber is thrown out along the X2 and Y2 axis directions; when the optical fiber enters the arc surface from the second winding position, The stray light throwing direction in the high-order mode changes, and the stray light is thrown out along the X2 and Y2 axis directions, and the stray light is also thrown out along the Y2 axis transmission direction, so that most of the stray light is thrown out out of the optical fiber, and then filter out the high-order modes to obtain low-order modes.
  • S3 The optical fiber enters the lower-level optical fiber coiling position structure along the guiding structure, then repeats the actions of S1 and S2, and coils a plurality of the optical fiber coiling position structures in turn, and finally, the end of the optical fiber is wound along the optical fiber coiling position structure.
  • the derived structure protrudes out of the main structure.
  • the beneficial effects of the present application are: by coiling the optical fiber sequentially along the first winding position, the arc surface and the second winding position, or sequentially coiling along the second winding position, the arc surface and the first winding position, when the optical fiber is wound from the first winding position
  • the stray light throwing direction in the high-order mode changes, and the stray light is thrown out along the X1 and Y1 axis directions, and the stray light will also be thrown out along the Y1 axis transmission direction
  • the optical fiber is thrown from the second When entering the curved surface around the position, the direction of stray light in the high-order mode also changes.
  • the stray light is thrown out along the X2 and Y2 axes, and the stray light is also thrown out along the transmission direction of the Y2 axis. Most of the stray light is thrown out of the fiber, and then the high-order modes are filtered out to obtain low-order modes.
  • Fig. 1 is a perspective view of the first embodiment provided by the embodiment of the present application.
  • Fig. 2 is a partial enlarged view of place A in Fig. 1;
  • Fig. 3 is another perspective view of the first embodiment provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of optical fiber coiling in the first embodiment provided by the embodiment of the present application.
  • Fig. 5 is a perspective view of the second embodiment provided by the embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the first embodiment of the present application provides a coiling device for filtering out stray light in an optical fiber, which is used for coiling an optical fiber 1.
  • the optical fiber 1 is composed of three layers of materials, and the inner layer is a central high-refractive index glass
  • the core layer, the middle layer is a low refractive index silica glass cladding, and the outer layer is a resin coating.
  • the low refractive index silica glass cladding material is generally pure silicon dioxide, and there is also a very small amount of diboron trioxide doped. The effect of doping is to reduce the optical refractive index of the material.
  • the resin coating is used to protect the optical fiber from external damage and increase the mechanical strength of the optical fiber.
  • the coiling device for filtering stray light in the optical fiber includes: a main structure 10, on which the optical fiber coiling position structure 20 arranged in a non-uniform plane is arranged, and the optical fiber coiling position structure 20 includes vertically arranged on the main structure 10
  • the first winding 21 and the second winding 22 arranged laterally on the main structure 10 , the second winding 22 and the first winding 21 are perpendicular to each other.
  • the main structure 10 has an arc surface 101 , and the arc surface 101 transitions between the second winding position 22 and the first winding position 21 .
  • the optical fiber coiling position structure 20 is not limited to the second winding position 22 and the first winding position 21 , and a space can also be provided on the arc surface 101 .
  • the stray light of the high-order mode in the optical fiber 1 is leaked on different planes, thereby improving the quality of the light beam in the optical fiber 1 .
  • the main structure 10 is a split splicing structure, and the main structure 10 includes a vertical plate 11, an arc-shaped plate 12 and a horizontal plate 13; the vertical plate 11, the arc-shaped plate 12 and the horizontal plate
  • the plates 13 are spliced sequentially, and the splicing structure includes screw locks, snap connections, etc.; the first winding position 21 is located on the vertical plate 11; the arc surface 101 is located on the arc plate 12; the second winding position 22 is located on the horizontal plate 13 . It is more convenient to use the split splicing structure and reduce the processing cost.
  • the first winding position 21 and the second winding position 22 include a plurality of winding posts 201, and the plurality of winding posts 201 are plugged on the main structure 10, and the plurality of winding posts 201 are concentrically arranged in several circles, and Each round of the column 201 is in the shape of a semicircle.
  • optical fiber coiling position structures 20 there are multiple optical fiber coiling position structures 20 , and in the example of the present application, there are four optical fiber coiling position structures 20 .
  • a plurality of optical fiber coiled position structures 20 are arranged at intervals on the main structure 10 .
  • the main structure 10 is provided with a guiding structure 30 for the adjacent optical fiber coiling position structure 20 for the transition of the optical fiber 1 from the upper-level optical fiber coiling position structure 20 to the lower-level optical fiber coiling position structure 20, and one end of the guiding structure 30 is connected to the upper-level first winding position 21 , and the other end is connected to the second winding position 22 of the lower level, or, one end of the guiding structure 30 is connected to the second winding position 22 of the upper level, and the other end is connected to the first winding position 21 of the lower level.
  • the guide structure 30 is a guide groove 30. After the optical fiber 1 is coiled around one fiber coil position structure 20, it enters the next fiber coil position structure 20 along the guide groove 30, so that the optical fiber 1 enters the next fiber coil position structure 20 at a predetermined angle and position. With one optical fiber coiling position structure 20, the entire optical fiber 1 is coiled more orderly. And the guide groove passes through the arc surface 101, so that the optical fiber 1 fits the arc surface well.
  • the guide structure 30 is not limited to the form of the guide groove 30 , for example, it may also be in the form of a snap wire buckle.
  • the main structure 10 has a lead-in end 102 and a lead-out end 103, the lead-in end 102 is provided with a first mounting frame 40, the first mounting frame 40 is slidably and adjustablely connected to the lead-in end 103, and the optical fiber armored cable 2 Installed on the first installation frame 40 , the optical fiber 1 passes through the end of the optical fiber armored cable 2 .
  • the introduction of the optical fiber 1 into the device is more stable, and at the same time, the random placement of the end of the optical fiber armored cable 2 is effectively avoided.
  • the lead-out end 103 is provided with a second mounting frame 50 , the second mounting frame 50 is slidably and adjustablely connected to the lead-out end 103 , and the fiber grating sensor 3 inserted into the end of the optical fiber 1 is mounted on the second mounting frame 50 .
  • the second mounting frame 50 and the first mounting frame 40 are slidably adjusted through bar-shaped holes and screw holes.
  • the structure of the sliding adjustment is not limited to the way of bar-shaped holes and screw holes, and can also be , the way the slider and the slide rail cooperate, etc.
  • the second installation frame 50 and the first installation frame 40 are arranged on the main structure 10 in an adjustable manner, effectively avoiding the problem that the optical fiber 1 is coiled too short or too long.
  • the fiber grating sensor 3 may be a fiber grating strain sensor, a temperature sensor, an acceleration sensor, a displacement sensor, a pressure sensor, a flow sensor, a liquid level sensor, and the like.
  • the main structure 10 is provided with a lead-out structure 60 for leading the end of the optical fiber 1 out of the main structure 10 near the lead-out end 103.
  • One end of the lead-out structure 60 is connected to the first winding 21 or the second winding 22, and the other end is connected to the lead-out end 103, and is opposite to the insertion end of the fiber grating sensor 3, so that the end of the optical fiber 1 can be inserted into the fiber grating sensor 3 accurately and quickly.
  • the lead-out structure 60 is a lead-out groove 60, and the lead-out groove 60 includes a connected arc segment 61 and a straight line segment 62, one end of the arc segment 61 is located in the first winding position 21 or the second winding position 22, and the straight line segment 62 The end is opposite to the fiber grating sensor 3.
  • the lead-out structure 60 is not limited to the form of a groove, for example, it may also be in the form of a buckle.
  • the main structure 10 is an integrally formed structure.
  • the main structure 10 includes a vertical part 14, an arc part 15 and a transverse part 16 which are sequentially integrally formed and connected; the first winding position 21 is located on the vertical part 14; the arc surface 101 is located on the arc Shaped portion 15 ; the second winding position 22 is located on the transverse portion 16 .
  • the first winding position 21 and the second winding position 22 include several circles of engraved grooves 202 arranged concentrically, and each circle of engraved grooves 202 is in the shape of a semicircle.
  • the structures of the first winding position 21 and the second winding position 22 are not limited to the way of the winding post 201 and the notch 202 , for example, they may also be snap wires provided on the main structure 10 .
  • the present invention also proposes a method for filtering stray light, comprising the following steps:
  • Optical fiber 1 coils half a turn along the first winding position 21 of the inner circle or the second winding position 22 of the inner circle; then the optical fiber 1 enters the arc-shaped surface 101 and clings to the arc-shaped surface 101, and the optical fiber 1 passes through the arc-shaped surface 101 Finally, enter the first winding position 21 of the inner ring of the same level or the second winding position 22 of the inner ring and perform a half-circle; then, the optical fiber 1 enters the arc surface 101 and is close to the arc surface 101, and the optical fiber 1 passes through the arc surface. After the shape surface 101, enter the first winding position 21 of the outer ring of the same level or the second winding position 22 of the outer ring, and complete the coiling of the optical fiber 1;
  • S2 Repeat the action of S1 until the first winding 21 and the second winding 22 of the same level are completed; and the first winding 21 and the second winding 22 of the inner ring and the outer ring can be wound multiple times.
  • the X1 axis is defined by the length direction of the vertical plate 11 or the vertical portion 14, and the Y1 axis is defined by the height direction of the vertical plate 11 or the vertical portion 14;
  • the X2 axis is defined by the length direction of the transverse plate 13 or the transverse portion 16, and the Y2 axis is defined by the width direction of the transverse plate 13 or the transverse portion 16;
  • the stray light in the high-order mode of the optical fiber 1 is thrown out along the X1 and Y1 axis directions, where the X1 and Y1 axes can refer to any area between the X1 and Y1 axes.
  • the direction of stray light in the high-order mode changes, and the stray light is thrown out along the X1 and Y1 axis directions, and the stray light will also be thrown along the transmission direction of the Y1 axis
  • the transmission direction of the Y1 axis is defined here as Y1 ' , as shown in FIG. 1 and FIG. 2 .
  • the stray light in the high-order mode of the optical fiber 1 is thrown out along the X2 and Y2 axes, where the X2 and Y2 axes can refer to any area between the X2 and Y2 axes.
  • the optical fiber 1 enters the arc surface 101 from the second winding position 22 the direction of the stray light in the high-order mode changes, and the stray light is thrown out along the X2 and Y2 axes, and the stray light will also be thrown along the Y2 axis transmission direction.
  • the transmission direction of the Y2 axis is defined as Y2 ' here, as shown in Figure 1 and Figure 2, so that most of the stray light is thrown out of the fiber 1, and then the high-order modes are filtered out to obtain low-order modes.
  • the optical fiber 1 enters the lower-level optical fiber coiling position structure 20 along the guiding structure 30, then repeats the actions of S1 and S2, and coils a plurality of optical fiber coiling position structures 20 in turn, and finally, the end of the optical fiber 1 extends along the leading-out structure 60 Out of the main structure 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

一种滤除光纤(1)中杂散光的盘绕装置及杂散光的滤除方法。通过将光纤(1)依次沿第一绕位(21)、弧形面(101)和第二绕位(22)盘绕,或者,依次沿第二绕位(22)、弧形面(101)和第一绕位(21)盘绕,当光纤(1)从第一绕位(21)进入弧形面(101)时,高阶模中杂散光甩出方向发生转变,杂散光沿着X1、Y1轴方向甩出外,杂散光还会沿着Y1轴的透射方向甩出;当光纤(1)从第二绕位(22)进入弧形面(101)时,高阶模中杂散光甩出方向同样发生转变,杂散光沿着X2、Y2轴方向甩出外,杂散光还会沿着Y2轴的透射方向甩出,经此高阶模中的杂散光大部分甩出光纤(1)外,进而将高阶模过滤掉得到低阶模。

Description

滤除光纤中杂散光的盘绕装置及杂散光的滤除方法 技术领域
本发明属于光纤技术领域,尤其涉及一种滤除光纤中杂散光的盘绕装置及杂散光的滤除方法。
背景技术
光纤激光器优越的光束质量除了得益于光纤本身优越的波导结构之外,还取决于光纤盘绕直径。在一定范围内,存在一个最小的盘绕直径,既能避免弯曲损耗,还能有效滤除高阶模,最大程度优化光束质量。同时,最小光纤盘绕直径能有效提高光纤的泵浦利用率,进而提高光纤激光器效率,减小功耗。
目前传统的光纤盘绕方式为平面盘绕,即所有的光纤均在同一平面内,这种方式的盘绕,高阶模中的杂散光甩出方向比较局限单一,从而使杂散光的滤除效果不佳。
发明内容
本申请实施例的目的在于提供一种滤除光纤中杂散光的盘绕装置及杂散光的滤除方法,旨在解决光纤中存在高阶模的问题。
为实现上述目的,本申请采用的技术方案是:提供一种滤除光纤中杂散光的盘绕装置,用以光纤的盘绕,包括:
主体结构,所述主体结构上设有非同一平面排布的光纤盘绕位结构,所述光纤盘绕位结构包括竖向排布于所述主体结构上的第一绕位和横向排布于所述主体结构上的第二绕位,所述第二绕位和所述第一绕位相垂直;且所述主体结构上具有一弧形面,所述弧形面过渡于所述第二绕位和所述第一绕位之间。
在一个实施例中,所述主体结构包括竖板、弧形板和横板;所述竖板、所述弧形板和所述横板依次拼接;所述第一绕位位于所述竖板上;所述弧形面位于所述弧形板上;所述第二绕位位于所述横板上。
在一个实施例中,所述主体结构包括依次一体成型连接的竖向部、弧形部和横向部;所述第一绕位位于所述竖向部上;所述弧形面位于所述弧形部上;所述第二绕位位于所述横向部上。
在一个实施例中,所述第一绕位和所述第二绕位包括多个绕柱,多个所述绕柱插接于所述主体结构上,多个所述绕柱呈若干圈同心排布,且每圈所述绕柱均呈半圆状。
在一个实施例中,所述第一绕位和所述第二绕位包括若干圈刻槽,若干圈所述刻槽同心排布,且每圈所述刻槽均呈半圆状。
在一个实施例中,所述光纤盘绕位结构为多个,多个所述光纤盘绕位结构间隔排布于所述主体结构上;所述主体结构上针对相邻所述光纤盘绕位结构设有供所述光纤从上级所述光纤盘绕位结构过渡到下级所述光纤盘绕位结构的导引结构,所述导引结构一端连接上级所述第一绕位,另一端连接下级所述第二绕位,或者,所述导引结构一端连接上级所述第二绕位,另一端连接下级所述第一绕位。
在一个实施例中,所述主体结构的具有一导入端和导出端,所述导入端设有第一安装架,所述第一安装架可滑动调节地连接于所述导入端,光纤铠缆安装于所述第一安装架上;所述导出端设有第二安装架,所述第二安装架可滑动调节地连接于所述导出端,所述第二安装架上供所述光纤末端插入的光纤光栅传感器。
在一个实施例中,所述主体结构靠近导出端上设有将所述光纤末端导出所 述主体结构的导出结构,所述导出结构一端连接所述第一绕位或所述第二绕位,另一端连接所述导出端,并与所述光纤光栅传感器的插入端正对。
一种杂散光的滤除方法,包括以下步骤:
S1:所述光纤沿着内圈的所述第一绕位或内圈的所述第二绕位盘绕半圈;然后所述光纤进入所述弧形面并紧贴所述弧形面,所述光纤通过所述弧形面后,进入同级内圈的所述第一绕位或内圈的所述第二绕位并进行盘绕半圈;接着,所述光纤再进入所述弧形面并紧贴所述弧形面,所述光纤通过所述弧形面后,进入同级外圈的所述第一绕位或外圈的所述第二绕位,完成所述光纤一圈的盘绕;
S2:重复S1的动作,直至同级的所述第一绕位和所述第二绕位盘绕完成;
以所述竖板或所述竖向部的长度方向定义X1轴,以所述竖板或所述竖向部的高度方向定义Y1轴;
以所述横板或所述横向部的长度方向定义X2轴,以所述横板或所述横向部的宽度方向定义Y2轴;
在所述光纤进入所述第一绕位时,所述光纤的高阶模中杂散光沿着X1、Y1轴方向甩出;当所述光纤从所述第一绕位进入所述弧形面时,所述高阶模中杂散光甩出方向发生转变,所述杂散光沿着X1、Y1轴方向甩出外,所述杂散光还会沿着Y1轴的透射方向甩出;
在所述光纤进入所述第二绕位时,所述光纤的高阶模中杂散光沿着X2、Y2轴方向甩出;当所述光纤从所述第二绕位进入所述弧形面时,所述高阶模中杂散光甩出方向发生转变,所述杂散光沿着X2、Y2轴方向甩出外,所述杂散光还会沿着Y2轴的透射方向甩出,从而所述杂散光大部分甩出所述光纤外,进而将高阶模过滤掉得到低阶模。
在一个实施例中,还包括以下步骤:
S3:所述光纤沿着所述导引结构进入下级所述光纤盘绕位结构,然后,重复S1和S2的动作,依次将多个所述光纤盘绕位结构盘绕完,最后,光纤末端沿着所述导出结构伸出主体结构。
本申请的有益效果在于:通过将光纤依次沿第一绕位、弧形面和第二绕位盘绕,或者,依次沿第二绕位、弧形面和第一绕位盘绕,当光纤从第一绕位进入弧形面时,高阶模中杂散光甩出方向发生转变,杂散光沿着X1、Y1轴方向甩出外,杂散光还会沿着Y1轴的透射方向甩出;当光纤从第二绕位进入弧形面时,高阶模中杂散光甩出方向同样发生转变,杂散光沿着X2、Y2轴方向甩出外,杂散光还会沿着Y2轴的透射方向甩出,经此高阶模中的杂散光大部分甩出光纤外,进而将高阶模过滤掉得到低阶模。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一实施例的立体图;
图2是图1中A处的局部放大图;
图3为本申请实施例提供的第一实施例的另一角度立体图;
图4为本申请实施例提供的第一实施例中光纤盘绕的示意图;
图5为本申请实施例提供的第二实施例的立体图。
其中,图中各附图标记:
10、主体结构              101、弧形面
102、导入端                103、导出端
11、竖板                   12、弧形板
13、横板                   14、竖向部
15、弧形部                 16、横向部
20、光纤盘绕位结构         21、第一绕位
22、第二绕位               201、绕柱
202、刻槽                  30、导引结构(导出槽)
40、第一安装架             50、第二安装架
60、导出结构(导出槽)       61、弧形段
62、直线段。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1至4,本申请第一实施例提供了一种滤除光纤中杂散光的盘绕装置,用以光纤1的盘绕,光纤1由三层材料组成,里层为中心高折射率玻璃芯层,中间层为低折射率硅玻璃包层,外层为树脂涂层。低折射率硅玻璃包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,掺杂的作用是降低材料的光折射率。树脂涂层是用来保护光纤不受外来的损害,增加光纤的机械强度。
滤除光纤中杂散光的盘绕装置,包括:主体结构10,主体结构10上设有非同一平面排布的光纤盘绕位结构20,光纤盘绕位结构20包括竖向排布于主体结构10上的第一绕位21和横向排布于主体结构10上的第二绕位22,第二绕位22和第一绕位21相垂直。且主体结构10上具有一弧形面101,弧形面101过渡于第二绕位22和第一绕位21之间。当然,光纤盘绕位结构20不仅仅局限于第二绕位22和第一绕位21,还可以在弧形面101上设置饶位也可。通过将光纤1通过盘绕在不同平面上,进而将光纤1中高阶模的杂散光在不同平面上漏出,提高光纤1中光束的质量。
如图1-4所示,在一个实施例中,主体结构10为分体式拼接结构,主体结构10包括竖板11、弧形板12和横板13;竖板11、弧形板12和横板13依次拼接,拼接结构包括,螺丝锁扣、卡扣连接等;第一绕位21位于竖板11上;弧形面101位于弧形板12上;第二绕位22位于横板13上。使用分体式拼接结构加工起来更加的方便,降低加工成本。
在一个实施例中,第一绕位21和第二绕位22包括多个绕柱201,多个绕柱201插接于主体结构10上,多个绕柱201呈若干圈同心排布,且每圈绕柱201均呈半圆状。
在一个实施例中,光纤盘绕位结构20为多个,在本申请的示例中,光纤盘绕位结构20为四个。多个光纤盘绕位结构20间隔排布于主体结构10上。主体结构10上针对相邻光纤盘绕位结构20设有供光纤1从上级光纤盘绕位结构20过渡到下级光纤盘绕位结构20的导引结构30,导引结构30一端连接上级第一绕位21,另一端连接下级第二绕位22,或者,导引结构30一端连接上级第二绕位22,另一端连接下级第一绕位21。可选地,导引结构30为导引槽30,光纤1盘绕完一个光纤盘绕位结构20后沿着导引槽30进入下一个光纤盘绕位结构20,从而光纤1呈预定角度和位置进入下一个光纤盘绕位结构20,整个光纤1盘绕更佳有序。且导引槽穿过弧形面101,从而光纤1很好的贴合弧形面。当然,导引结构30不局限于导引槽30的方式,例如,也可为卡线扣的方式也可。
在一个实施例中,主体结构10的具有一导入端102和导出端103,导入端102设有第一安装架40,第一安装架40可滑动调节地连接于导入端103,光纤铠缆2安装于第一安装架40上,光纤1于光纤铠缆2的末端穿出。通过将光纤铠缆2的末端固定在第一安装架40上,使光纤1导入该装置更加的平稳,同时,有效避免光纤铠缆2末端随意摆放。导出端103设有第二安装架50,第二安装架50可滑动调节地连接于导出端103,第二安装架50上供光纤1末端插入的光纤光栅传感器3。可选地,第二安装架50和第一安装架40通过条形孔和螺丝孔的方式进行滑动调节,当然,滑动调节的结构也不局限于条形孔和螺丝孔的方式,也可以为,滑块和滑轨配合的方式等。通过第二安装架50和第一安装架40可调节的方式设于主体结构10上,有效避免光纤1盘绕过短或者过长的问 题。
可选地,光纤光栅传感器3可为光纤光栅应变传感器、温度传感器、加速度传感器、位移传感器、压力传感器、流量传感器、液位传感器等。
在一个实施例中,主体结构10靠近导出端103上设有将光纤1末端导出主体结构10的导出结构60,导出结构60一端连接第一绕位21或第二绕位22,另一端连接导出端103,并与光纤光栅传感器3的插入端正对,从而使光纤1的末端能精准和快速的插接到光纤光栅传感器3内。可选地,导出结构60为导出槽60,导出槽60包括相连通的弧形段61和直线段62,弧形段61一端位于第一绕位21或第二绕位22中,直线段62末端与光纤光栅传感器3正对。当然,导出结构60不局限于凹槽的方式,例如,还可以是卡线扣的方式等。
如图5所示,是本发明的第二实施例,该实施例与第一实施例的结构基本相同,其不同之处在于:
主体结构10为一体式成型结构,主体结构10包括依次一体成型连接的竖向部14、弧形部15和横向部16;第一绕位21位于竖向部14上;弧形面101位于弧形部15上;第二绕位22位于横向部16上。
在一个实施例中,第一绕位21和第二绕位22包括若干圈刻槽202,若干圈刻槽202同心排布,且每圈刻槽202均呈半圆状。当然,第一绕位21和第二绕位22的结构不局限于绕柱201和刻槽202的方式,例如,还可以是设置在主体结构10上的卡线扣等。
本发明还提出了一种杂散光的滤除方法,包括以下步骤:
S1:光纤1沿着内圈的第一绕位21或内圈的第二绕位22盘绕半圈;然后光纤1进入弧形面101并紧贴弧形面101,光纤1通过弧形面101后,进入同级内圈的第一绕位21或内圈的第二绕位22并进行盘绕半圈;接着,光纤1再进 入弧形面101并紧贴弧形面101,光纤1通过弧形面101后,进入同级外圈的第一绕位21或外圈的第二绕位22,完成光纤1一圈的盘绕;
S2:重复S1的动作,直至同级的第一绕位21和第二绕位22盘绕完成;且内圈和外圈的第一绕位21和第二绕位22可绕多圈。
以竖板11或竖向部14的长度方向定义X1轴,以竖板11或竖向部14的高度方向定义Y1轴;
以横板13或横向部16的长度方向定义X2轴,以横板13或横向部16的宽度方向定义Y2轴;
在光纤1进入第一绕位21时,光纤1的高阶模中杂散光沿着X1、Y1轴方向甩出,此处的X1、Y1轴可以指X1、Y1轴之间的任何区域。当光纤1从第一绕位21进入弧形面101时,高阶模中杂散光甩出方向发生转变,杂散光沿着X1、Y1轴方向甩出外,杂散光还会沿着Y1轴的透射方向甩出;便于理解,此处将Y1轴的透射方向定义为Y1 ,如图1和图2所示。
在光纤1进入第二绕位22时,光纤1的高阶模中杂散光沿着X2、Y2轴方向甩出,此处的X2、Y2轴可以指X2、Y2轴之间的任何区域。当光纤1从第二绕位22进入弧形面101时,高阶模中杂散光甩出方向发生转变,杂散光沿着X2、Y2轴方向甩出外,杂散光还会沿着Y2轴的透射方向甩出,便于理解,此处将Y2轴的透射方向定义为Y2 ,如图1和图2所示,从而杂散光大部分甩出光纤1外,进而将高阶模过滤掉得到低阶模。
在一个实施例中,,还包括以下步骤:
S3:光纤1沿着导引结构30进入下级光纤盘绕位结构20,然后,重复S1和S2的动作,依次将多个光纤盘绕位结构20盘绕完,最后,光纤1末端沿着导出结构60伸出主体结构10。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种滤除光纤中杂散光的盘绕装置,用以光纤(1)的盘绕,其特征在于,包括:
    主体结构(10),所述主体结构(10)上设有非同一平面排布的光纤盘绕位结构(20),所述光纤盘绕位结构(20)包括竖向排布于所述主体结构(10)上的第一绕位(21)和横向排布于所述主体结构(10)上的第二绕位(22),所述第二绕位(22)和所述第一绕位(21)相垂直;且所述主体结构(10)上具有一弧形面(101),所述弧形面(101)过渡于所述第二绕位(22)和所述第一绕位(21)之间。
  2. 如权利要求1所述的滤除光纤中杂散光的盘绕装置,其特征在于:所述主体结构(10)包括竖板(11)、弧形板(12)和横板(13);所述竖板(11)、所述弧形板(12)和所述横板(13)依次拼接;所述第一绕位(21)位于所述竖板(11)上;所述弧形面(101)位于所述弧形板(12)上;所述第二绕位(22)位于所述横板(13)上。
  3. 如权利要求1所述的滤除光纤中杂散光的盘绕装置,其特征在于:所述主体结构(10)包括依次一体成型连接的竖向部(14)、弧形部(15)和横向部(16);所述第一绕位(21)位于所述竖向部(14)上;所述弧形面(101)位于所述弧形部(15)上;所述第二绕位(22)位于所述横向部(16)上。
  4. 如权利要求1或2或3所述的滤除光纤中杂散光的盘绕装置,其特征在于:所述第一绕位(21)和所述第二绕位(22)包括多个绕柱(201),多个所述绕柱(201)插接于所述主体结构(10)上,多个所述绕柱(201)呈若干圈同心排布,且每圈所述绕柱(201)均呈半圆状。
  5. 如权利要求1或2或3所述的滤除光纤中杂散光的盘绕装置,其特征在 于:所述第一绕位(21)和所述第二绕位(22)包括若干圈刻槽(202),若干圈所述刻槽(202)同心排布,且每圈所述刻槽(202)均呈半圆状。
  6. 如权利要求4所述的滤除光纤中杂散光的盘绕装置,其特征在于:所述光纤盘绕位结构(20)为多个,多个所述光纤盘绕位结构(20)间隔排布于所述主体结构(10)上;所述主体结构(10)上针对相邻所述光纤盘绕位结构(20)设有供所述光纤(1)从上级所述光纤盘绕位结构(20)过渡到下级所述光纤盘绕位结构(20)的导引结构(30),所述导引结构(30)一端连接上级所述第一绕位(21),另一端连接下级所述第二绕位(22),或者,所述导引结构(30)一端连接上级所述第二绕位(22),另一端连接下级所述第一绕位(21)。
  7. 如权利要求1或2或3所述的滤除光纤中杂散光的盘绕装置,其特征在于:所述主体结构(10)的具有一导入端(102)和导出端(103),所述导入端(102)设有第一安装架(40),所述第一安装架(40)可滑动调节地连接于所述导入端(103),光纤铠缆(2)安装于所述第一安装架(40)上;所述导出端(103)设有第二安装架(50),所述第二安装架(50)可滑动调节地连接于所述导出端(103),所述第二安装架(50)上供所述光纤(1)末端插入的光纤光栅传感器(3)。
  8. 如权利要求7所述的滤除光纤中杂散光的盘绕装置,其特征在于:所述主体结构(10)靠近导出端(103)上设有将所述光纤(1)末端导出所述主体结构(10)的导出结构(60),所述导出结构(60)一端连接所述第一绕位(21)或所述第二绕位(22),另一端连接所述导出端(103),并与所述光纤光栅传感器(3)的插入端正对。
  9. 一种杂散光的滤除方法,其特征在于,包括以下步骤:
    S1:所述光纤(1)沿着内圈的所述第一绕位(21)或内圈的所述第二绕位 (22)盘绕半圈;然后所述光纤(1)进入所述弧形面(101)并紧贴所述弧形面(101),所述光纤(1)通过所述弧形面(101)后,进入同级内圈的所述第一绕位(21)或内圈的所述第二绕位(22)并进行盘绕半圈;接着,所述光纤(1)再进入所述弧形面(101)并紧贴所述弧形面(101),所述光纤(1)通过所述弧形面(101)后,进入同级外圈的所述第一绕位(21)或外圈的所述第二绕位(22),完成所述光纤(1)一圈的盘绕;
    S2:重复S1的动作,直至同级的所述第一绕位(21)和所述第二绕位(22)盘绕完成;
    以所述竖板(11)或所述竖向部(14)的长度方向定义X1轴,以所述竖板(11)或所述竖向部(14)的高度方向定义Y1轴;
    以所述横板(13)或所述横向部(16)的长度方向定义X2轴,以所述横板(13)或所述横向部(16)的宽度方向定义Y2轴;
    在所述光纤(1)进入所述第一绕位(21)时,所述光纤(1)的高阶模中杂散光沿着X1、Y1轴方向甩出;当所述光纤(1)从所述第一绕位(21)进入所述弧形面(101)时,所述高阶模中杂散光甩出方向发生转变,所述杂散光沿着X1、Y1轴方向甩出外,所述杂散光还会沿着Y1轴的透射方向甩出;
    在所述光纤(1)进入所述第二绕位(22)时,所述光纤(1)的高阶模中杂散光沿着X2、Y2轴方向甩出;当所述光纤(1)从所述第二绕位(22)进入所述弧形面(101)时,所述高阶模中杂散光甩出方向发生转变,所述杂散光沿着X2、Y2轴方向甩出外,所述杂散光还会沿着Y2轴的透射方向甩出,从而所述杂散光大部分甩出所述光纤(1)外,进而将高阶模过滤掉得到低阶模。
  10. 根据权利要求9所述的杂散光的滤除方法,其特征在于,还包括以下步骤:
    S3:所述光纤(1)沿着所述导引结构(30)进入下级所述光纤盘绕位结构(20),然后,重复S1和S2的动作,依次将多个所述光纤盘绕位结构(20)盘绕完,最后,光纤(1)末端沿着所述导出结构(60)伸出主体结构(10)。
PCT/CN2021/096843 2021-05-28 2021-05-28 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法 WO2022246815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096843 WO2022246815A1 (zh) 2021-05-28 2021-05-28 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096843 WO2022246815A1 (zh) 2021-05-28 2021-05-28 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法

Publications (1)

Publication Number Publication Date
WO2022246815A1 true WO2022246815A1 (zh) 2022-12-01

Family

ID=84228371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096843 WO2022246815A1 (zh) 2021-05-28 2021-05-28 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法

Country Status (1)

Country Link
WO (1) WO2022246815A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798939A (zh) * 2011-05-26 2012-11-28 欧姆龙株式会社 光纤保持件及光纤激光装置
EP2991176A1 (en) * 2014-09-01 2016-03-02 Bystronic Laser AG Fiber laser cavity unit
CN106711746A (zh) * 2017-01-09 2017-05-24 山东海富光子科技股份有限公司 一种应用于大功率光纤激光器的光纤盘绕装置
CN106990494A (zh) * 2017-05-25 2017-07-28 中国兵器装备研究院 一种用于高功率光纤激光器的光纤盘绕结构
CN109038193A (zh) * 2018-09-07 2018-12-18 广东国志激光技术有限公司 一种光纤自固定盘绕装置及利用该装置盘绕光纤的方法
CN110416864A (zh) * 2019-07-05 2019-11-05 深圳联品激光技术有限公司 光纤盘绕基体、光纤盘绕组件及光纤激光器
CN110797739A (zh) * 2019-12-06 2020-02-14 瑞尔通(苏州)医疗科技有限公司 一种一体化光纤激光引擎

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798939A (zh) * 2011-05-26 2012-11-28 欧姆龙株式会社 光纤保持件及光纤激光装置
EP2991176A1 (en) * 2014-09-01 2016-03-02 Bystronic Laser AG Fiber laser cavity unit
CN106711746A (zh) * 2017-01-09 2017-05-24 山东海富光子科技股份有限公司 一种应用于大功率光纤激光器的光纤盘绕装置
CN106990494A (zh) * 2017-05-25 2017-07-28 中国兵器装备研究院 一种用于高功率光纤激光器的光纤盘绕结构
CN109038193A (zh) * 2018-09-07 2018-12-18 广东国志激光技术有限公司 一种光纤自固定盘绕装置及利用该装置盘绕光纤的方法
CN110416864A (zh) * 2019-07-05 2019-11-05 深圳联品激光技术有限公司 光纤盘绕基体、光纤盘绕组件及光纤激光器
CN110797739A (zh) * 2019-12-06 2020-02-14 瑞尔通(苏州)医疗科技有限公司 一种一体化光纤激光引擎

Similar Documents

Publication Publication Date Title
CN107017548A (zh) 采用径向不对称光纤的光学模过滤器
CN103069318B (zh) 多芯光纤以及多芯光纤的芯的配置方法
JP6287179B2 (ja) マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
JP6287164B2 (ja) マルチコア光ファイバ、及び光モジュール
US11598915B2 (en) Anti-torsion solid-core polarization-maintaining photonic crystal fiber based on anisotropy of stress distribution
US20150277032A1 (en) Optical waveguide, optical fiber cable, and optical module
US4949038A (en) Optical fiber having a helical core for sensing a magnetic field
JP6153447B2 (ja) 光ファイバ多心構造
CN102213790B (zh) 便于绕制的熊猫型保偏光纤及其制造方法
CN102213791B (zh) 细径熊猫型保偏光纤
WO2022246815A1 (zh) 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法
CN101622560A (zh) 光子带隙光纤
CN102368103B (zh) 一种大模场微结构光纤
CN102375176A (zh) 一种低弯曲损耗光纤
CN113300199B (zh) 滤除光纤中杂散光的盘绕装置及杂散光的滤除方法
US4758066A (en) Round birefraction dielectric wave-guide
CN202141828U (zh) 便于绕制的熊猫型保偏光纤
JP2013205557A (ja) 光ファイバ、及び光ファイバを製造する方法
KR101222014B1 (ko) 비대칭 코어를 구비한 광섬유 및 이의 제조방법
JP6018688B2 (ja) 光ファイバ、及び光ファイバを製造する方法
CN214335290U (zh) 一种熊猫型单偏振光纤
JP3326295B2 (ja) 光ファイバケーブル
CN109633808A (zh) 一种抗弯曲超大模场光子晶体光纤
CN212749306U (zh) 一种液晶填充单偏振输出的双芯光子晶体光纤波长分束器
TWI649283B (zh) Multi-core fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942389

Country of ref document: EP

Kind code of ref document: A1