WO2021109145A1 - 一种达林顿管驱动电路、方法以及恒流开关电源 - Google Patents

一种达林顿管驱动电路、方法以及恒流开关电源 Download PDF

Info

Publication number
WO2021109145A1
WO2021109145A1 PCT/CN2019/123764 CN2019123764W WO2021109145A1 WO 2021109145 A1 WO2021109145 A1 WO 2021109145A1 CN 2019123764 W CN2019123764 W CN 2019123764W WO 2021109145 A1 WO2021109145 A1 WO 2021109145A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
period
stage
switch
darlington
Prior art date
Application number
PCT/CN2019/123764
Other languages
English (en)
French (fr)
Inventor
许如柏
黄冲
黄裕泉
Original Assignee
辉芒微电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辉芒微电子(深圳)有限公司 filed Critical 辉芒微电子(深圳)有限公司
Priority to US17/270,430 priority Critical patent/US11424683B2/en
Priority to PCT/CN2019/123764 priority patent/WO2021109145A1/zh
Publication of WO2021109145A1 publication Critical patent/WO2021109145A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of power supplies, in particular to a Darlington tube driving circuit, a method and a constant current switching power supply.
  • the existing Darlington tube driving circuit is shown in FIG. 1, and includes a driving control circuit, a control switch K1, a switch tube K2, and a driving current source.
  • the drive control circuit controls the on and off of the Darlington transistor by controlling the on and off of K1 and K2.
  • Vs represents the voltage of resistor Rs
  • Vc represents the voltage of terminal C
  • R2 represents the equivalent resistance of switch K2
  • Ib represents the drive current output by the drive current source.
  • the current problem is that when the Darlington transistor is turned off, because the Darlington NPN has a turn-off delay characteristic, only the base collector charge is discharged from the B1 terminal, and the charge from B2 to the collector still exists, so the current There is a turn-off scheme.
  • the Darlington NPN delay is too long, so the Darlington NPN has a larger switching loss when it is turned off.
  • the current gain of the Darlington transistor is large when the Darlington transistor is turned on, the Darlington transistor turns on quickly, so when the Darlington transistor is turned on, it will cause greater EMI interference, which is reflected in the large initial stage of the Rs voltage. Rush.
  • the technical problem to be solved by the present invention is to provide a Darlington tube driving circuit, method and constant current switching power supply in view of the above-mentioned defects of the prior art.
  • the technical scheme adopted by the present invention to solve its technical problems is: constructing a Darlington tube driving circuit, including:
  • a driving current circuit connected to the driving pin of the Darlington tube, for outputting current to the driving pin of the Darlington tube during the on period of the Darlington tube;
  • Two switch units the two switch units are respectively connected between the driving ends of the two transistors of the Darlington tube and the ground;
  • a drive control circuit connected to the two switch units, is used to control the two switch units to turn off during the on period of the Darlington tube, and to control the two switch units during the off period of the Darlington tube
  • the two switching units are turned on, and the equivalent resistances of the two switching units are set to be changed in stages during the off period, wherein: each switch unit is equal to the first stage of the off period
  • the effective resistance is less than the equivalent resistance of the second stage and greater than the equivalent resistance of the third stage.
  • the two switch units are respectively composed of a plurality of switch tubes connected in parallel, and the drive control circuit can control the state of each switch tube, and control the conduction of each switch unit.
  • the number of switch tubes is used to set the equivalent resistance of each switch unit.
  • the switch tube is an NPN type MOS tube.
  • the drive current circuit is connected to the drive control circuit for controlling the output current to gradually increase to a stable value required by the Darlington tube during the on period, and then maintain the stable value.
  • the output current of the driving current circuit in the first stage of the on-period increases from current I0 to current I1, and enters the second stage after reaching current I1, increasing from current I1 to current I2.
  • the current I2 enters the third stage, it stabilizes at the current I2, where: the current increase rate in the first stage is less than the current increase rate in the second stage.
  • a constant current switching power supply including an input circuit, an output circuit, and a transformer.
  • the primary input end of the transformer is connected to the input circuit, and the Darlington tube is arranged on the primary side of the transformer.
  • the output circuit is connected to the secondary side of the transformer, and is characterized in that it further includes the Darlington drive circuit as described above.
  • the present invention also constructs a Darlington tube driving method, based on the foregoing circuit implementation, the method includes repeating the following steps:
  • the drive control circuit controls the two switch units to be turned off during the on period of the Darlington tube
  • the drive control circuit controls the two switch units to be turned on during the off period of the Darlington tube, and sets the equivalent resistance of the two switch units to change in stages during the off period, where: The equivalent resistance of each of the switching units in the first phase of the off period is smaller than the equivalent resistance of the second phase and greater than the equivalent resistance of the third phase.
  • the two switch units are respectively composed of a plurality of switch tubes connected in parallel, and the method further includes: the drive control circuit is configured by controlling the number of conductive switch tubes in each switch unit. Determine the equivalent resistance of each switch unit.
  • the method further includes: the drive current circuit controls the output current to gradually increase to a stable value required by the Darlington tube during the on period, and then maintains the stable value, which specifically includes:
  • the output current of the first stage in the on period increases from the current I0 to the current I1;
  • the Darlington tube driving circuit, method and constant current switching power supply of the present invention have the following beneficial effects: when the Darlington tube is turned off, the present invention sets the equivalent resistances of the two switching units at different stages, and during the off period The equivalent resistance of the first stage is less than the equivalent resistance of the second stage and greater than the equivalent resistance of the third stage, so that the delay can be reduced in the first stage before entering the final third stage.
  • the switching loss is reduced, and EMI can be improved in the second stage; further, the present invention controls the output current to gradually increase to the stable value required by the Darlington tube during the on period, and then maintains the stable value In this way, the EMI when the Darlington tube is turned on can be improved.
  • the present invention greatly reduces the turn-off delay of the Darlington on the basis of optimizing the EMI, and the Darlington tube has a smaller turn-off time. The switching loss increases the efficiency.
  • Figure 1 is a circuit diagram of an existing Darlington tube drive circuit
  • Figure 2 is a key waveform diagram of the existing Darlington drive operation
  • Figure 3 is a circuit diagram of the Darlington tube drive circuit of the present invention.
  • Fig. 4 is a key waveform diagram of the Darlington drive of the present invention.
  • first and second used in this specification can be used to describe various constituent elements, but these constituent elements are not limited by these terms. The purpose of using these terms is only to distinguish one element from other elements.
  • first constituent element may be named as the second constituent element, and similarly, the second constituent element may also be named as the first constituent element.
  • the term “connected” or “connected” as used herein includes not only the direct connection of two entities, but also the indirect connection through other entities with beneficial improvement effects.
  • the general idea of the present invention is to set up two switch units connected between the drive ends of the two transistors of the Darlington tube and the ground, and control the on and off of the Darlington tube by controlling the states of the two switch units.
  • the equivalent resistances of the two switching units are set to be changed in stages during the off period, the equivalent resistance in the first stage of the off period is smaller than the equivalent resistance of the second stage and greater than the third stage.
  • the drive current circuit can be replaced with a dynamic variable current source to make it open During the period, the output current is controlled to gradually increase to the stable value required by the Darlington tube, and then the stable value is maintained, so that EMI can be improved when the Darlington tube is turned on.
  • the Darlington tube is composed of two NPN transistors.
  • B1 and B2 are the driving ends or bases of the two transistors
  • B1 is the driving pin of the entire Darlington tube.
  • C represents the input pin of the entire Darlington tube
  • E represents the output pin of the entire Darlington tube.
  • the Darlington tube driving circuit of the present invention mainly drives the Darlington tube to be turned on and off periodically, thereby realizing a constant current. Specifically, when the Darlington tube is turned on, the primary side of the transformer T stores energy. When the Darlington tube is turned off, the energy of the primary side is transferred to the secondary side and converted to output.
  • the Darlington tube drive circuit of the present invention includes: a drive current circuit, two switch units, and a drive control circuit.
  • the drive current circuit and the two switch units are respectively connected to the drive control circuit.
  • the two switch units are respectively connected between the drive ends of the two transistors of the Darlington tube and the ground, and the two switch units are respectively composed of a plurality of switch tubes connected in parallel. Multiple refers to two or more.
  • the switch tube is preferably an NPN type MOS tube.
  • the parallel connection of the switching tubes means that the control ends of the switching tubes are connected together, the input ends are connected together, and the output ends are connected together.
  • the switch unit between B1 and ground is composed of N switch tubes, where N ⁇ 2.
  • K1[1:N] represents all N switch tubes in the switch unit between B1 and ground.
  • the figure shows only one switch tube, and the connection relationship of the other switch tubes is the same as the switch in the figure, so it is omitted Not indicated.
  • K2[1:N] in the figure represents all N switch tubes in the switch unit between B2 and ground. Only one switch tube is shown in the figure, and the connection relationship of the other switch tubes is the same as the switch in the figure. , So omitted not shown.
  • the drive control circuit is connected to each switch tube of the two switch units.
  • the drive control circuit is in the on period of the Darlington tube (that is, the period when the Darlington tube is turned on) Control the disconnection of the two switch units (because one switch unit includes multiple switch tubes in parallel, in a switch unit, only when all the switch tubes are disconnected, the entire switch unit is disconnected);
  • the off period of the Darlington tube that is, the period when the Darlington tube is turned off
  • the two switching units are controlled to be turned on (because a switching unit includes multiple parallel switching tubes, so long as there are One switch tube is turned on, then the whole switch unit is turned on).
  • the equivalent resistances of the two switch units are set to be changed in stages during the off period. Specifically, the entire off period is divided into three stages, as shown in t4, Shown at t5 and t6.
  • the equivalent resistance of each of the switching units in the first phase (ie t4 phase) of the off cycle is smaller than the equivalent resistance of the second phase (ie t5 phase) and greater than the third phase (ie t6 phase)
  • the equivalent resistance is Obviously, because each switch tube has an on-resistance when it is turned on, the equivalent resistance of the entire switch unit is the parallel equivalent resistance of the on-resistances of all the switch tubes that are turned on.
  • the drive control circuit can individually control the state of each switch tube, the drive control circuit can set the level of each switch unit by controlling the number of conductive switch tubes in each switch unit. Obviously, the larger the number of switch tubes that are turned on in the switch unit, the smaller the equivalent resistance of the switch unit. Conversely, the smaller the number of switch tubes that are turned on in the switch unit, the smaller the number of switch tubes in the switch unit. The greater the effective resistance. In the present invention, the equivalent resistance of the switch unit is the smallest at the t6 stage, and at this time, the drive control circuit controls all the switch tubes in each switch unit to be turned on.
  • a driving current circuit is connected to the driving pin of the Darlington tube, and is used to output a current to the driving pin of the Darlington tube during the on period of the Darlington tube.
  • the drive current circuit controls the output current to gradually increase to a stable value required by the Darlington during the on period, and then maintains the Stable value.
  • the output current of the driving current circuit in the first phase increases from the current I0 to the current I1, and enters the second phase after reaching the current I1.
  • I.e. t2 stage increases from current I1 to current I2, and enters the third stage (i.e. t3 stage) after reaching current I2 and stabilizes at current I2.
  • the current increase rate of the first stage is less than the current increase rate of the second stage.
  • R(on)_K1 represents the equivalent resistance of the switch unit between B1 and ground
  • R(on)_K2 represents the equivalent resistance of the switch unit between B2 and ground
  • Vs represents the voltage on the resistance Rs
  • Vc represents The input terminal voltage of the Darlington transistor is the C terminal voltage
  • Ib represents the drive current
  • the switch tube sequence K1[1:N], K2[1:N] changes from on to off, (where N ⁇ 2); the dynamic drive current module generates Ib(adj), The flow reaches the driving input terminal B1 of the Linton transistor; the base-collector junction of the Darlington transistor is forward biased, the base-emitter junction is forward biased, the Darlington transistor is turned on, and the initial driving current is I0 when it is turned on, after t1 time After the drive current I0 rises to I1, the drive current rises from I1 to I2 after t2; when the Darlington transistor is turned on, the current drive circuit module generates a variable current to drive Ib (adj); the smooth change of the drive current drives Darling
  • the purpose of improving the EMI during the turn-on process is achieved by setting the current rise speed and magnitude of the dynamic drive current in different time periods; it is reflected in the small overshoot on Rs when the Darlington transistor is turned on; when it is turned on,
  • the drive current circuit closes Ib(adj), that is, Ib(adj) is 0, and the switch tube sequence at different stages is controlled by the switch signal
  • the number of switch tubes that are turned on in K1[1:N] and K2[1:N] is used to adjust the equivalent resistances of the switch units between B1 and ground and between B2 and ground at different stages.
  • the effective resistance R(on)_K2 is set to R1(on)_1 and R2(on)_1 respectively.
  • the Darlington transistor has a Miller effect when it is turned off.
  • the present invention also requires protection of a constant current switching power supply, including an input circuit, an output circuit, a transformer, and the Darlington drive circuit as described above.
  • the primary input of the transformer is connected to the input circuit
  • the Darlington tube is arranged between the primary output terminal of the transformer and the ground, and the output circuit is connected to the secondary side of the transformer.
  • the Darlington tube When the Darlington tube is turned on, the primary side of the transformer T stores energy.
  • the Darlington tube is turned off, the energy of the primary side is transferred to the secondary side, which is converted to output power.
  • the present invention also claims a Darlington tube driving method, which is implemented based on the aforementioned Darlington tube driving circuit, and the method includes repeating the following steps:
  • S1 the drive control circuit controls the two switch units to be turned off during the on period of the Darlington tube;
  • the drive control circuit controls the two switching units to be turned on during the off period of the Darlington tube, and sets the equivalent resistances of the two switching units to change in stages during the off period, where : The equivalent resistance of each switch unit in the first stage of the off period is smaller than the equivalent resistance of the second stage and greater than the equivalent resistance of the third stage.
  • the two switch units are respectively composed of a plurality of switch tubes connected in parallel
  • the method further includes: the drive control circuit controls the number of conductive switch tubes in each switch unit to set The size of the equivalent resistance of each switch unit.
  • the method further includes: the drive current circuit controls the output current to gradually increase to the stable value required by the Darlington tube during the on period, and then maintains the stable value, specifically, The output current in the first phase of the on-cycle increases from current I0 to current I1; after reaching current I1, it enters the second phase and increases from current I1 to current I2, where: the current increase rate in the first phase is less than The rate of current increase in the second stage; after reaching the current I2, it enters the third stage and stabilizes at the current I2.
  • the Darlington tube driving circuit, method, and constant current switching power supply of the present invention have the following beneficial effects: when the Darlington tube is turned off, the present invention sets the equivalent resistances of the two switching units at different stages.
  • the equivalent resistance in the first phase of the off cycle is less than the equivalent resistance of the second phase and greater than the equivalent resistance of the third phase, so that before entering the final third phase, in the first phase
  • the delay can be reduced, the switching loss can be reduced, and the EMI can be improved in the second stage;
  • the present invention controls the output current to gradually increase to the stable value required by the Darlington tube during the on-period, and then Maintaining the stable value can improve the EMI when the Darlington is turned on.
  • the present invention greatly reduces the turn-off delay of the Darlington on the basis of optimizing the EMI, and the Darlington is turning off. There is less switching loss when off, which improves efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electronic Switches (AREA)

Abstract

本发明公开了一种达林顿管驱动电路、方法以及恒流开关电源,电路包括:驱动电流电路;两个开关单元,分别连接于所述达林顿管的两个三极管的驱动端和地之间;驱动控制电路,用于在所述达林顿管的开周期内控制所述两个开关单元断开,在所述达林顿管的关周期内控制所述两个开关单元导通,并在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,其中:每个所述开关单元在所述关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻,本发明在优化EMI基础上, 极大的减小了达林顿的关断延时, 达林顿管在关断时有较小的开关损耗,提高了效率。

Description

一种达林顿管驱动电路、方法以及恒流开关电源 技术领域
本发明涉及电源领域,尤其涉及一种达林顿管驱动电路、方法以及恒流开关电源。
背景技术
现有达林顿管驱动电路如图1所示,包括驱动控制电路、控制开关K1、开关管K2以及驱动电流源。驱动控制电路通过控制K1、K2的打开和关闭来控制达林顿晶体管的导通和关断。结合图2,图中Vs代表电阻Rs的电压,Vc代表C端电压,R2代表开关K2的等效电阻,Ib代表驱动电流源输出的驱动电流,当需要导通达林顿晶体管时, 驱动控制电路控制K2断开、K1闭合, 驱动电流输入到达林顿晶体管的驱动脚,达林顿晶体管驱动电流为Ib0,此时,集电结正偏, 发射结正偏, 达林顿晶体管导通;当需要关断达林顿晶体管时, 驱动电流为0,驱动控制电路控制K1断开、K2闭合。
目前存在的问题是,当达林顿晶体管关断时, 由于达林顿NPN存在关断延时特性,仅从B1端泄放基极集电极电荷,B2到集电极的电荷仍存在,因此现有关闭方案达林顿NPN延时太长,因此达林顿NPN在关断时有较大的开关损耗。另外,就是由于达林顿晶体管导通时电流增益很大,达林顿晶体管迅速打开,因此达林顿晶体管开通时,会引起较大EMI干扰,体现在Rs电压上初始阶段有较大的过冲。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种达林顿管驱动电路、方法以及恒流开关电源。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种达林顿管驱动电路,包括:
驱动电流电路,连接于所述达林顿管的驱动脚,用于在所述达林顿管的开周期内输出电流至所述达林顿管的驱动脚;
两个开关单元,所述两个开关单元分别连接于所述达林顿管的两个三极管的驱动端和地之间;
驱动控制电路,连接所述两个开关单元中,用于在所述达林顿管的开周期内控制所述两个开关单元断开,在所述达林顿管的关周期内控制所述两个开关单元导通,并在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,其中:每个所述开关单元在所述关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻。
优选地,所述两个开关单元分别是由多个并联的开关管构成,所述驱动控制电路可控制每一所述开关管的状态,并通过控制每一所述开关单元中的导通的开关管的数量来设定每一所述开关单元的等效电阻的大小。
优选地,所述开关管为NPN型MOS管。
优选地,所述驱动电流电路连接所述驱动控制电路,用于在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值。
优选地,所述驱动电流电路在所述开周期内的第一个阶段的输出电流从电流I0增加到电流I1,在到达电流I1后进入第二个阶段从电流I1增加到电流I2,在到达电流I2后进入第三个阶段稳定在电流I2,其中:第一个阶段的电流增加速率小于第二个阶段的电流增加速率。
本发明另一方面还构造了一种恒流开关电源,包括输入电路、输出电路以及变压器,所述变压器的原边输入端连接输入电路,所述达林顿管设置在所述变压器的原边输出端与地之间,所述输出电路于所述变压器的副边连接,其特征在于,还包括如前所述的达林顿管驱动电路。
本发明另一方面还构造了一种达林顿管驱动方法,基于前述的电路实现,所述方法包括,反复执行如下步骤:
驱动控制电路在所述达林顿管的开周期内控制所述两个开关单元断开;
驱动控制电路在所述达林顿管的关周期内控制所述两个开关单元导通,并在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,其中:每个所述开关单元在关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻。
优选地,所述两个开关单元分别是由多个并联的开关管构成,所述方法还包括:所述驱动控制电路通过控制每一所述开关单元中的导通的开关管的数量来设定每一所述开关单元的等效电阻的大小。
优选地,所述方法还包括:所述驱动电流电路在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值,具体包括:
在所述开周期内的第一个阶段的输出电流从电流I0增加到电流I1;
在到达电流I1后进入第二个阶段从电流I1增加到电流I2,其中:第一个阶段的电流增加速率小于第二个阶段的电流增加速率;
在到达电流I2后进入第三个阶段稳定在电流I2。
有益效果
本发明的达林顿管驱动电路、方法以及恒流开关电源,具有以下有益效果:本发明在关闭达林顿管时,设定不同阶段两个开关单元的等效电阻,在所述关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻,这样在进入最终的第三个阶段之前,在第一个阶段可以降低延时,降低开关损耗,在第二个阶段可以改善EMI;进一步地,本发明在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值,如此可以对达林顿管开通时EMI进行改善,总而言之,本发明在优化EMI基础上, 极大的减小了达林顿的关断延时, 达林顿管在关断时有较小的开关损耗,提高了效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图:
图1是现有达林顿管驱动电路的电路图;
图2是现有达林顿驱动工作时关键波形图;
图3是本发明达林顿管驱动电路的电路图;
图4是本发明达林顿驱动工作时关键波形图。
本发明的实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的典型实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本说明书中使用的“第一”、“第二”等包含序数的术语可用于说明各种构成要素,但是这些构成要素不受这些术语的限定。使用这些术语的目的仅在于将一个构成要素区别于其他构成要素。例如,在不脱离本发明的权利范围的前提下,第一构成要素可被命名为第二构成要素,类似地,第二构成要素也可以被命名为第一构成要素。本文中所述“相连”或“连接”,不仅仅包括将两个实体直接相连,也包括通过具有有益改善效果的其他实体间接相连。
本发明总的思路是:设置分别连接于达林顿管的两个三极管的驱动端和地之间的两个开关单元,通过控制两个开关单元的状态控制达林顿管的导通和关断,而且在关周期内设定所述两个开关单元的等效电阻分阶段改变,在关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻,如此可以实现在达林顿管关断时,降低延时,降低开关损耗,而且改善EMI;进一步地,还可以将驱动电流电路替换为动态可变电流源,使其在开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值,如此可以在达林顿管开通时改善EMI。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明,应当理解本发明实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本发明实施例以及实施例中的技术特征可以相互组合。
参考图3,达林顿管是由两个NPN三极管构成,图中B1、B2是两个三极管的驱动端也即基极,B1是作为整个达林顿管的驱动脚。图中C代表整个达林顿管的输入脚,E代表整个达林顿管的输出脚。本发明的达林顿管驱动电路,主要是驱动达林顿管周期性的导通和关断,从而实现恒流。具体来说,达林顿管导通时,变压器T的原边蓄能,当达林顿管关断时,原边的能量摆渡到副边,从而转换到输出。
其中,本发明的达林顿管驱动电路包括:驱动电流电路、两个开关单元以及驱动控制电路。所述驱动电流电路、两个开关单元分别连接所述驱动控制电路。
具体的,所述两个开关单元分别连接于所述达林顿管的两个三极管的驱动端和地之间,所述两个开关单元分别是由多个并联的开关管构成,此处所谓多个是指的两个及以上。所述开关管优选为NPN型MOS管。
开关管并联,是指的开关管的控制端共接、输入端共接且输出端共接。如图中B1和地之间的开关单元是由N个开关管组成,其中N≥2。图中K1[1:N]表示中B1和地之间的开关单元中的全部N 个开关管,图中仅示意了一个开关管,其他开关管的连接关系与图中的开关相同,因此省略未示意。同理,图中K2[1:N]表示中B2和地之间的开关单元中的全部N 个开关管,图中仅示意了一个开关管,其他开关管的连接关系与图中的开关相同,因此省略未示意。
具体的,驱动控制电路,连接所述两个开关单元中的每一个开关管,参考图4,驱动控制电路在所述达林顿管的开周期(即达林顿管导通的周期 )内控制所述两个开关单元断开(因为一个开关单元包括多个并联的开关管,所以一个开关单元中,只有全部的开关管都断开时,整个开关单元才是断开的);在所述达林顿管的关周期(即达林顿管关断的周期 )内控制所述两个开关单元导通(因为一个开关单元包括多个并联的开关管,所以一个开关单元中,只要有一个开关管导通,则整个开关单元就是导通的)。
继续参考图4,本发明中,在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,具体来说整个关周期分为三个阶段,如图4中的t4、t5、t6所示。每个所述开关单元在所述关周期的第一个阶段(即t4阶段)的等效电阻小于第二个阶段(即t5阶段)的等效电阻且大于第三个阶段(即t6阶段)的等效电阻。显然,因为每个开关管导通时都有导通电阻,所以整个开关单元的等效电阻就是所有导通的开关管的导通电阻的并联等效电阻。因为驱动控制电路可单独控制每一所述开关管的状态,所以,驱动控制电路可以通过控制每一所述开关单元中的导通的开关管的数量来设定每一所述开关单元的等效电阻的大小,显然,开关单元中导通的开关管的数量越多,则开关单元的等效电阻越小,反之,开关单元中导通的开关管的数量越少,则开关单元的等效电阻越大。本发明中,t6阶段时开关单元的等效电阻最小,此时驱动控制电路是控制各个开关单元中的全部开关管都导通的。
具体的,驱动电流电路,连接于所述达林顿管的驱动脚,用于在所述达林顿管的开周期内输出电流至所述达林顿管的驱动脚。优选地,为了改善达林顿管导通时的EMI,所述驱动电流电路在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值。具体来说,参考图4,所述驱动电流电路在所述开周期内的第一个阶段(即t1阶段)的输出电流从电流I0增加到电流I1,在到达电流I1后进入第二个阶段(即t2阶段)从电流I1增加到电流I2,在到达电流I2后进入第三个阶段(即t3阶段)稳定在电流I2。其中:第一个阶段的电流增加速率小于第二个阶段的电流增加速率。
下面结合图4,对本发明的工作原理进行详细说明。图中R(on)_K1代表B1与地之间的开关单元的等效电阻,R(on)_K2代表B2与地之间的开关单元的等效电阻,Vs代表电阻Rs上的电压,Vc代表达林顿晶体管的输入端电压即C端电压,Ib代表驱动电流。
1)达林顿晶体管导通时:开关管序列K1[1:N],K2[1:N]由导通变为截止,(其中N≥2); 动态驱动电流模块产生Ib(adj), 流入到达林顿晶体管驱动输入端B1; 达林顿晶体管基极-集电结正偏, 基极-发射结正偏, 达林顿晶体管导通,导通时初始驱动电流为I0,经过t1时间后驱动电流I0上升到I1, 经过t2时间后驱动电流从I1上升到I2; 达林顿晶体管导通时,电流驱动电路模块产生可变电流驱动Ib(adj); 驱动电流的平滑变化驱动达林顿晶体管; 通过设定动态驱动电流不同时间段的电流上升速度和大小达到改善导通过程中的EMI目的; 体现在开通达林顿晶体管时Rs上有较小的过冲;导通时,基极集电结反偏, 基极发射结正偏,通过达林顿晶体管的倍增放大,集电极有电流流过Rs;
2)关断达林顿晶体管时:驱动电流电路关闭Ib(adj),即Ib(adj)为0,通过开关信号控制不同阶段时开关管序列 K1[1:N]和K2[1:N]中的导通的开关管的数量,进而调节不同阶段时B1与地之间、B2与地之间的开关单元的等效电阻。具体来说,在t4阶段, B1与地之间的开关管序列 K1[1:N] 的等效电阻R(on)_K1和B2与地之间的开关管序列K2[1:N] 的等效电阻R(on)_K2分别设置为R1(on)_1和R2(on)_1,由于林顿晶体管存在基极集电极结电容,在关断时达林顿晶体管存在米勒效应,在t5阶段设置通过开关管序列 K1[1:N]和K2[1:N]的等效电阻R(on)_K1和R(on)_K2分别设置为R1(on)_2和R2(on)_2,其中R2(on)_2≥ R2(on)_1, R1(on)_2>≥ R1(on)_1,如此在t4阶段可以降低延时,降低开关损耗,在t5阶段可以改善EMI;达林顿晶体管关断阶段米勒效应结束后处于t6阶段, 设置通过开关管序列 K1[1:N]和K2[1:N]的等效电阻R(on)_K1和R(on)_K2分别设置为R1(on)_3和R2(on)_3,其中R2(on)_1> R2(on)_3, R1(on)_1≥ R1(on)_3,如此,通过设定不同阶段的B1、B2端下拉电阻的大小,实现较好的关断延时以及EMI特性,如此,本发明达林顿晶体管驱动电路具有较好的EMI特性,并且减小了开关延时,优化了效率;因此具有广泛的适用性。
基于同一发明构思,本发明还要求保护一种恒流开关电源,包括输入电路、输出电路、变压器以及如前所述的达林顿管驱动电路,所述变压器的原边输入端连接输入电路,所述达林顿管设置在所述变压器的原边输出端与地之间,所述输出电路于所述变压器的副边连接。达林顿管导通时,变压器T的原边蓄能,当达林顿管关断时,原边的能量摆渡到副边,从而转换到输出电。
基于同一发明构思,本发明还要求保护一种达林顿管驱动方法,基于前述的所述的达林顿管驱动电路实现,所述方法包括,反复执行如下步骤:
S1:驱动控制电路在所述达林顿管的开周期内控制所述两个开关单元断开;
S2:驱动控制电路在所述达林顿管的关周期内控制所述两个开关单元导通,并在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,其中:每个所述开关单元在关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻。
其中,所述两个开关单元分别是由多个并联的开关管构成,所述方法还包括:所述驱动控制电路通过控制每一所述开关单元中的导通的开关管的数量来设定每一所述开关单元的等效电阻的大小。优选的,方法还包括:所述驱动电流电路在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值,具体来说,在所述开周期内的第一个阶段的输出电流从电流I0增加到电流I1;在到达电流I1后进入第二个阶段从电流I1增加到电流I2,其中:第一个阶段的电流增加速率小于第二个阶段的电流增加速率;在到达电流I2后进入第三个阶段稳定在电流I2。
更多内容可以参考上述的电路实施例部分,此处不再赘述。
综上所述,本发明的达林顿管驱动电路、方法以及恒流开关电源,具有以下有益效果:本发明在关闭达林顿管时,设定不同阶段两个开关单元的等效电阻,在所述关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻,这样在进入最终的第三个阶段之前,在第一个阶段可以降低延时,降低开关损耗,在第二个阶段可以改善EMI;进一步地,本发明在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值,如此可以对达林顿管开通时EMI进行改善,总而言之,本发明在优化EMI基础上, 极大的减小了达林顿的关断延时, 达林顿管在关断时有较小的开关损耗,提高了效率。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 一种达林顿管驱动电路,其特征在于,包括:
    驱动电流电路,连接于所述达林顿管的驱动脚,用于在所述达林顿管的开周期内输出电流至所述达林顿管的驱动脚;
    两个开关单元,所述两个开关单元分别连接于所述达林顿管的两个三极管的驱动端和地之间;
    驱动控制电路,连接所述两个开关单元中,用于在所述达林顿管的开周期内控制所述两个开关单元断开,在所述达林顿管的关周期内控制所述两个开关单元导通,并在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,其中:每个所述开关单元在所述关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻。
  2. 根据权利要求1所述的达林顿管驱动电路,其特征在于,所述两个开关单元分别是由多个并联的开关管构成,所述驱动控制电路可控制每一所述开关管的状态,并通过控制每一所述开关单元中的导通的开关管的数量来设定每一所述开关单元的等效电阻的大小。
  3. 根据权利要求2所述的达林顿管驱动电路,其特征在于,所述开关管为NPN型MOS管。
  4. 根据权利要求1所述的达林顿管驱动电路,其特征在于,所述驱动电流电路连接所述驱动控制电路,用于在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值。
  5. 根据权利要求4所述的达林顿管驱动电路,其特征在于, 所述驱动电流电路在所述开周期内的第一个阶段的输出电流从电流I0增加到电流I1,在到达电流I1后进入第二个阶段从电流I1增加到电流I2,在到达电流I2后进入第三个阶段稳定在电流I2,其中:第一个阶段的电流增加速率小于第二个阶段的电流增加速率。
  6. 一种恒流开关电源,包括输入电路、输出电路以及变压器,所述变压器的原边输入端连接输入电路,所述达林顿管设置在所述变压器的原边输出端与地之间,所述输出电路于所述变压器的副边连接,其特征在于,还包括如权利要求1-5任一项所述的达林顿管驱动电路。
  7. 一种达林顿管驱动方法,基于权利要求1所述的电路实现,其特征在于,所述方法包括反复执行如下步骤:
    驱动控制电路在所述达林顿管的开周期内控制所述两个开关单元断开;
    驱动控制电路在所述达林顿管的关周期内控制所述两个开关单元导通,并在所述关周期内设定所述两个开关单元的等效电阻分阶段改变,其中:每个所述开关单元在关周期的第一个阶段的等效电阻小于第二个阶段的等效电阻且大于第三个阶段的等效电阻。
  8. 根据权利要求7所述的方法,其特征在于,所述两个开关单元分别是由多个并联的开关管构成,所述方法还包括:所述驱动控制电路通过控制每一所述开关单元中的导通的开关管的数量来设定每一所述开关单元的等效电阻的大小。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:所述驱动电流电路在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值。
  10. 根据权利要求9所述的方法,其特征在于,所述的在所述开周期内控制输出电流先逐步增加至所述达林顿管所需的稳定值,之后再维持所述稳定值,包括:
    在所述开周期内的第一个阶段的输出电流从电流I0增加到电流I1;
    在到达电流I1后进入第二个阶段从电流I1增加到电流I2,其中:第一个阶段的电流增加速率小于第二个阶段的电流增加速率;
    在到达电流I2后进入第三个阶段稳定在电流I2。
PCT/CN2019/123764 2019-12-06 2019-12-06 一种达林顿管驱动电路、方法以及恒流开关电源 WO2021109145A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/270,430 US11424683B2 (en) 2019-12-06 2019-12-06 Darlington transistor drive circuit, method and constant current switching power supply
PCT/CN2019/123764 WO2021109145A1 (zh) 2019-12-06 2019-12-06 一种达林顿管驱动电路、方法以及恒流开关电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123764 WO2021109145A1 (zh) 2019-12-06 2019-12-06 一种达林顿管驱动电路、方法以及恒流开关电源

Publications (1)

Publication Number Publication Date
WO2021109145A1 true WO2021109145A1 (zh) 2021-06-10

Family

ID=76220860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123764 WO2021109145A1 (zh) 2019-12-06 2019-12-06 一种达林顿管驱动电路、方法以及恒流开关电源

Country Status (2)

Country Link
US (1) US11424683B2 (zh)
WO (1) WO2021109145A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116805836A (zh) * 2022-03-16 2023-09-26 辉芒微电子(深圳)股份有限公司 一种自供电电源驱动电路及芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398004A (en) * 1994-02-09 1995-03-14 Trw Inc. HBT direct-coupled low noise wideband microwave amplifier
CN201741691U (zh) * 2010-05-27 2011-02-09 无锡固电半导体股份有限公司 带箝位功能的达林顿晶体管
CN103618440A (zh) * 2013-11-27 2014-03-05 苏州贝克微电子有限公司 一种高功率的边缘控制输出缓冲器
US9124222B2 (en) * 2013-03-14 2015-09-01 Hittite Microwave Corporation Internally, resistively, sensed darlington amplifier
CN105539283A (zh) * 2016-01-26 2016-05-04 吴圣铎 轿车停车开门手触式声光提醒器
CN106787767A (zh) * 2017-02-17 2017-05-31 辉芒微电子(深圳)有限公司 一种具有多级达林顿管的开关电源
CN206524334U (zh) * 2017-02-22 2017-09-26 辉芒微电子(深圳)有限公司 一种多级高压大电流达林顿晶体管
CN207543377U (zh) * 2017-11-28 2018-06-26 北京合众铭科技有限公司 一种可调光led恒流驱动电路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2297455A1 (fr) * 1975-01-10 1976-08-06 Aquitaine Petrole Source de tension continue elevee regulee en courant
DE2533046C3 (de) * 1975-07-24 1978-11-30 Robert Bosch Gmbh, 7000 Stuttgart Zündeinrichtung für Brennkraftmaschinen
IT1076507B (it) * 1976-01-14 1985-04-27 Plessey Handel Investment Ag Convertitore cc/cc
US4329725A (en) * 1979-10-09 1982-05-11 Square D Company Control circuitry for multistage fans
US4315303A (en) * 1979-12-13 1982-02-09 Real Gas & Electric Company, Inc. DC Converter
US4318168A (en) * 1980-06-27 1982-03-02 Raytheon Company Over stress sense circuit for flyback power supply
JPS6055712B2 (ja) * 1981-02-27 1985-12-06 株式会社デンソー 内燃機関用点火装置
GB2108786B (en) * 1981-11-05 1985-12-11 Sanyo Electric Co Induction heating apparatus
US4456856A (en) * 1983-07-07 1984-06-26 The Bendix Corporation Resonant flyback boost circuit
US4654544A (en) * 1985-11-12 1987-03-31 Combustion Engineering, Inc. Darlington transistor driver with reverse base drive current
EP1162736A2 (en) * 2000-06-05 2001-12-12 Teac Corporation Single-ended push-pull amplifier circuit
US6979933B2 (en) * 2002-09-05 2005-12-27 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor
CN102403902B (zh) * 2011-11-16 2014-02-05 无锡华润上华科技有限公司 一种应用于功率因数校正器中的高压大电流驱动电路
US8981819B2 (en) * 2011-12-23 2015-03-17 Fairchild Semiconductor Corporation Proportional bias switch driver circuit with current transformer
CN103199715A (zh) * 2012-11-27 2013-07-10 科域半导体有限公司 开关变换器
DE102017208187A1 (de) * 2017-05-16 2018-11-22 Continental Automotive Gmbh Elektronisches Modul sowie Kraftfahrzeug und Verfahren zum Begrenzen eines Eingangsstroms während eines Einschaltvorgangs des Moduls
CN109936349B (zh) * 2019-03-29 2024-06-28 吕建华 一种提高电力电子开关芯片开关速度的方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398004A (en) * 1994-02-09 1995-03-14 Trw Inc. HBT direct-coupled low noise wideband microwave amplifier
CN201741691U (zh) * 2010-05-27 2011-02-09 无锡固电半导体股份有限公司 带箝位功能的达林顿晶体管
US9124222B2 (en) * 2013-03-14 2015-09-01 Hittite Microwave Corporation Internally, resistively, sensed darlington amplifier
CN103618440A (zh) * 2013-11-27 2014-03-05 苏州贝克微电子有限公司 一种高功率的边缘控制输出缓冲器
CN105539283A (zh) * 2016-01-26 2016-05-04 吴圣铎 轿车停车开门手触式声光提醒器
CN106787767A (zh) * 2017-02-17 2017-05-31 辉芒微电子(深圳)有限公司 一种具有多级达林顿管的开关电源
CN206524334U (zh) * 2017-02-22 2017-09-26 辉芒微电子(深圳)有限公司 一种多级高压大电流达林顿晶体管
CN207543377U (zh) * 2017-11-28 2018-06-26 北京合众铭科技有限公司 一种可调光led恒流驱动电路

Also Published As

Publication number Publication date
US11424683B2 (en) 2022-08-23
US20220123657A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JPH06509913A (ja) 交差導通電流を減少させる電力用mosfet駆動回路
WO2013170808A1 (zh) 电源及电源调压方法
JPH05276070A (ja) 終端回路
JPH07209346A (ja) ヒステリシスを持つコンパレータ
WO2023124276A1 (zh) 缓冲电路和延时电路
WO2021109145A1 (zh) 一种达林顿管驱动电路、方法以及恒流开关电源
WO2023125978A1 (zh) 逻辑电路、反相器、跟随器及复合逻辑电路
CN108075755B (zh) 功率模块与其控制方法
CN201398183Y (zh) 功率开关驱动电路
US7489189B2 (en) Power amplifier circuit reducing electromagnetic interference
JP2015119481A (ja) 貫通電流制御のためのインバータチェーン回路
WO2023116094A1 (zh) 可调电容电路和延时调节电路
WO2020134134A1 (zh) 开关电路和开关电源
WO2021179769A1 (zh) 驱动电路、功率电路以及投影设备
WO2018014877A1 (zh) 一种双电容正回输交互加速器、驱动电路及多级加速器
US6510168B1 (en) Laser diode drive circuit
KR20160027570A (ko) 인버터 형태의 전력 증폭기
WO2022160166A1 (zh) 移位寄存器单元、驱动方法、驱动电路和显示装置
CN116827094A (zh) 一种达林顿管驱动电路、方法以及开关电源管理芯片
WO2015090050A1 (zh) 一种放大器系统及设备
CN203933551U (zh) 一种d类功率放大器的输出级电路
WO2019205104A1 (zh) 一种电源电路及装置
CN110504824B (zh) 一种双开关管驱动的均流电路
TWI580171B (zh) 可調速之交流馬達驅動電路與使用其之交流馬達系統
CN209806128U (zh) 一种led照明装置的电路结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19955352

Country of ref document: EP

Kind code of ref document: A1