WO2021108967A1 - 模斑转换器及其制备方法、硅光器件和光通信设备 - Google Patents

模斑转换器及其制备方法、硅光器件和光通信设备 Download PDF

Info

Publication number
WO2021108967A1
WO2021108967A1 PCT/CN2019/122487 CN2019122487W WO2021108967A1 WO 2021108967 A1 WO2021108967 A1 WO 2021108967A1 CN 2019122487 W CN2019122487 W CN 2019122487W WO 2021108967 A1 WO2021108967 A1 WO 2021108967A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide core
mode
layer
refractive index
optical signal
Prior art date
Application number
PCT/CN2019/122487
Other languages
English (en)
French (fr)
Inventor
张艳武
马庆艳
丁琪超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/122487 priority Critical patent/WO2021108967A1/zh
Priority to CN201980102176.9A priority patent/CN114730047A/zh
Publication of WO2021108967A1 publication Critical patent/WO2021108967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters

Definitions

  • This application relates to the field of optical fiber communication technology, and in particular to a mode spot converter and a preparation method thereof, a silicon optical device and an optical communication device.
  • silicon photonics technology has been widely used because of its high transmission rate, low delay, low crosstalk, and low cost.
  • Silicon photonics technology is suitable for preparing small-size, high-density, low-cost silicon-based optical modules, such as silicon photonic chips.
  • its cross-sectional size is usually less than 0.5 ⁇ m (micrometer)
  • the mode spot of a standard single-mode fiber is directly about 8-10 ⁇ m.
  • the size difference between the two is large, resulting in the silicon photonic chip and the standard The mode field mismatch of the single-mode fiber leads to a large coupling loss.
  • the mode spot converter is usually used to eliminate the mode field adaptation between the silicon photonic chip and the standard single-mode fiber, and to improve the coupling efficiency between the two.
  • the packaging process of the mode-spot converter is relatively difficult, and the coupling efficiency of the mode-spot converter is low.
  • the embodiments of the present application provide a mode spot converter and a preparation method thereof, a silicon optical device, and an optical communication device, which are used to improve the coupling efficiency between a silicon photonic chip and a standard single-mode fiber while reducing the mode spot converter
  • the packaging process is difficult.
  • an embodiment of the present application provides a mode spot converter, which includes a lower cladding layer, a first waveguide core, a gap layer, a second waveguide core, and an upper cladding layer, wherein the first waveguide core Is disposed on the lower cladding layer, the gap layer is disposed on the first waveguide core and covers the first waveguide core, the second waveguide core is disposed on the gap layer, and the upper cladding layer is disposed on the second waveguide core; the first waveguide core
  • the refractive index of is greater than the refractive index of the second waveguide core, and the refractive index of the second waveguide core is greater than the refractive index of the gap layer, the refractive index of the lower cladding layer, and the refractive index of the upper cladding layer;
  • the first waveguide core is used to receive an optical signal input from the outside and couple the optical signal to the second waveguide core;
  • the second waveguide core is used for outputting an optical signal coupled from the first waveguide core into the second waveguide core;
  • the gap layer is a corrosion-resistant transparent layer, which is used to block the etching solution from etching the first waveguide core when the second waveguide core is formed by etching.
  • the mode spot converter provided by the embodiment of the present application has the following advantages:
  • the optical signal When the optical signal enters the mode spot converter, the optical signal is gradually coupled from the first waveguide core to the second waveguide core.
  • the mode field of the second waveguide core matches the mode field of the standard single-mode fiber, thereby improving the silicon photonics
  • the optical signal coupling efficiency between the chip and the standard single-mode fiber reduces the coupling loss.
  • the gap layer since the gap layer is provided in the mode spot converter, when the second waveguide core is formed by etching, the gap layer can prevent the etching liquid from being etched on the first waveguide core and prevent the first waveguide core from being etched. Avoid repeatedly repairing the first waveguide core, reduce the process difficulty, simplify the process flow, and save the cost, thereby reducing the packaging process difficulty of the mode spot converter.
  • the refractive index of the gap layer is smaller than the refractive index of the second waveguide core, such a design can prevent the optical signal in the second waveguide core from leaking toward the first waveguide core and reduce leakage loss.
  • the thickness of the gap layer is greater than or equal to 0.2 ⁇ m.
  • the material of the gap layer is silicon oxynitride, polymer, silicon dioxide, or silicon dioxide doped with metal oxide or non-metal oxide.
  • the shape of the first waveguide core is tapered.
  • the loss of the optical signal can be reduced.
  • the mode field formed by the optical signal gradually increases. Large, improve the coupling efficiency between the first waveguide core and the second waveguide core, and reduce the coupling loss of the optical signal.
  • the width of the first waveguide core gradually decreases, and/or the thickness of the first waveguide core gradually decreases.
  • the width and/or thickness of the first waveguide core is gradually reduced, which can reduce the loss of the optical signal.
  • the first waveguide core along the light guiding direction of the first waveguide core, includes at least two tapered sections that are coaxially and sequentially connected, and the taper of at least one tapered section is The taper is different from the other tapered sections.
  • the taper of the first waveguide core along the light guide direction of the first waveguide core is reduced, thereby reducing the loss of the optical signal.
  • the first waveguide core includes at least two tapered layers arranged in a stack, and the thickness of each tapered layer is unchanged along the light guide direction of the first waveguide core; each The large ends of the tapered layers are aligned, and in the two adjacent tapered layers, the length of the tapered layer in the upper layer is smaller than the length of the tapered layer in the lower layer.
  • the width of the second waveguide core is greater than its own thickness, and the width of the output end of the second waveguide core is greater than one third of the spot diameter of a standard single-mode fiber.
  • the mode field of the second waveguide core can be matched with the mode field of the standard single-mode fiber, thereby improving the optical signal coupling efficiency between the silicon photonic chip and the standard single-mode fiber and reducing the coupling loss.
  • the thickness of the second waveguide core is less than 1 ⁇ m, and the width of the output end of the second waveguide core is 3 ⁇ m-7 ⁇ m.
  • the optical signal can be constrained to propagate in the second waveguide core in the width direction, and the constraint on the optical signal can be weakened in the thickness direction, so that all the optical signals can be coupled to the second waveguide core; on the other hand, it can be Make the width of the output end of the second waveguide core larger than 1/3 of the mode spot diameter of the standard single-mode fiber, so that the mode field of the output end of the second waveguide core matches the mode field of the standard single-mode fiber, thereby improving the difference between the two Coupling efficiency, reducing coupling loss.
  • the second waveguide core includes at least two waveguide segments that are coaxially connected in sequence.
  • the other end of the second waveguide core can be flexibly designed to reduce the process difficulty and thereby reduce Difficulty in packaging the mode spot converter.
  • the material of the first waveguide core is silicon nitride, silicon oxynitride, silicon, germanium or a silicon-germanium alloy
  • the material of the second waveguide core is silicon oxynitride, polymer It is silicon dioxide, silicon dioxide, or silicon dioxide doped with metal oxide or non-metal oxide.
  • embodiments of the present application provide a silicon optical device, which includes a silicon photonic chip, a standard single-mode optical fiber, and the mode spot converter described in the first aspect, and the mode spot converter is respectively connected to the silicon photonics
  • the chip is connected to the standard single-mode optical fiber for coupling the optical signal output by the silicon photonic chip to the standard single-mode optical fiber.
  • the silicon optical device provided by the embodiments of the present application, after the optical signal output by the silicon photonic chip enters the first waveguide core, it can travel from the first waveguide core while propagating in the light guiding direction of the first waveguide core.
  • the waveguide core is coupled to the second waveguide core, and when the optical signal enters the mode spot converter from the silicon photonic chip, the width of the mode spot can be increased so that the width of the mode spot is equivalent to that in a standard single-mode fiber.
  • the mode field of the silicon photonic chip and the standard single-mode fiber is matched, the coupling efficiency between the silicon photonic chip and the standard single-mode fiber is improved, and the coupling loss is reduced.
  • an embodiment of the present application provides an optical communication device, which includes a communication device and the silicon optical device described in the second aspect that is communicatively connected with the communication device.
  • the optical communication equipment provided by the embodiments of the present application utilizes silicon optical devices to reduce optical loss during communication and improve the channel uniformity and stability of the optical communication equipment.
  • an embodiment of the present application provides a method for preparing a mode spot converter, which includes:
  • a gap layer covering the first waveguide core is formed on the first waveguide core, and the gap layer is a corrosion-resistant transparent layer for blocking the etching of the etching solution when the second waveguide core is formed by etching.
  • An upper cladding layer is formed on the second waveguide core; the refractive index of the first waveguide core is greater than the refractive index of the second waveguide core, and the refractive index of the second waveguide core is greater than the refractive index of the gap layer.
  • the refractive index of the lower cladding layer and the refractive index of the upper cladding layer are described.
  • the manufacturing method of the mode spot converter provided by the embodiments of the present application has the following advantages: before forming the second waveguide core, a gap layer covering the first waveguide core is formed on the first waveguide core, and When the second waveguide core is formed by etching, the gap layer can block the etching liquid from flowing to the first waveguide core, preventing the first waveguide core from being etched, thereby avoiding repeated repairs of the first waveguide core, simplifying the process flow, saving cost, and reducing The packaging process of the mode spot converter is difficult.
  • the requirements for etching accuracy can be appropriately reduced, thereby reducing the process difficulty; in addition, since the refractive index of the gap layer is smaller than the refractive index of the second waveguide core, the optical signal in the second waveguide core can be prevented. Leak to the direction of the first waveguide core to reduce leakage loss.
  • the thickness of the gap layer is greater than or equal to 0.2 ⁇ m.
  • the width of the second waveguide core is greater than its own thickness, and the width of the output end of the second waveguide core is greater than one third of the spot diameter of the standard single-mode fiber.
  • Fig. 1 is a side view of a mode spot converter provided by an embodiment of the application
  • FIG. 2 is a top view of a mode spot converter provided by an embodiment of the application
  • Figure 3 is a side view of a mode spot converter with a substrate
  • Fig. 4 is a mode field change diagram of an optical signal in TE mode
  • Figure 5 is a mode field change diagram of an optical signal in TM mode
  • Figure 6 is a top view of a first waveguide core
  • Figure 7 is a top view of another first waveguide core
  • Figure 8 is a top view of yet another first waveguide core
  • Fig. 9 is a side view of the first waveguide core shown in Fig. 8.
  • Figure 10 is a top view of a second waveguide core
  • Figure 11 is a top view of another second waveguide core
  • Figure 12 is a top view of yet another second waveguide core
  • FIG. 13 is a schematic structural diagram of a silicon optical device provided by an embodiment of the application.
  • FIG. 14 is a structural block diagram of an optical communication device provided by an embodiment of the application.
  • 90 silicon photonic chip
  • 100 silicon optical device
  • Silicon photonic chip a dielectric device made of silicon materials used to guide the propagation of optical signals, also called silicon-based optical waveguides.
  • Standard single-mode fiber It is a kind of fiber that can only transmit one mode.
  • the mode spot diameter of the fiber is generally between 8 ⁇ m and 10 ⁇ m, which is suitable for long-distance communication.
  • the silicon photonic chip When the silicon photonic chip is connected to a standard single-mode fiber, it is generally connected through a mode spot converter to reduce the coupling loss between the silicon photonic chip and the standard single-mode fiber.
  • the mode spot converter includes a lower cladding layer, a first waveguide core, a second waveguide core, and an upper cladding layer which are sequentially stacked.
  • the mode spot converter with this structure can reduce the coupling loss between the silicon photonic chip and the standard single-mode fiber
  • the first waveguide core is generally formed first, and then A second waveguide blank is formed on the first waveguide core, and then the second waveguide blank is etched to form a second waveguide core.
  • the second waveguide core is formed by etching
  • hydrofluoric acid is generally used for wet etching.
  • the accuracy of the wet etching is difficult to control.
  • the first waveguide core is also easy to be etched. Corrosion leads to damage to the first waveguide core. Therefore, it is necessary to strictly control the etching accuracy, which makes the packaging process of the mode spot converter more difficult.
  • an embodiment of the present application provides a mode spot converter.
  • the first waveguide core and the second waveguide core can form an adiabatic coupler, so that the optical signal can be transmitted from the first waveguide core. It is coupled to the second waveguide core, and when the optical signal enters the mode spot converter from the silicon photonic chip, the width of the mode spot can be increased, so that the width of the mode spot is equivalent to that in a standard single-mode fiber, so that The mode field matching of the silicon photonic chip and the standard single-mode fiber improves the coupling efficiency between the silicon photonic chip and the standard single-mode fiber and reduces the coupling loss.
  • a gap layer is provided between the first waveguide core and the second waveguide core.
  • the gap layer can protect the first waveguide core.
  • the gap layer can block the etching liquid from flowing to the first waveguide core.
  • the first waveguide core is prevented from being etched, thereby avoiding repeated repairs of the first waveguide core, reducing the process difficulty and simplifying the process flow, thereby reducing the packaging process difficulty of the mode spot converter.
  • the mode spot converter includes a lower cladding layer 10, a first waveguide core 20, a gap layer 30, a second waveguide core 40, and an upper cladding layer 50, wherein the lower cladding layer 10 and the upper cladding layer 50 are disposed opposite to each other to form an accommodation space for accommodating the first waveguide core 20, the gap layer 30, and the second waveguide core 40.
  • the first waveguide core 20, the gap layer 30, and the second waveguide core 40 are arranged between the lower cladding layer 10 and the upper cladding layer 50, the first waveguide core 20 is in contact with the lower cladding layer 10, and the second waveguide core 40 is in contact with the upper cladding layer 50.
  • the gap layer 30 is located between the first waveguide core 20 and the second waveguide core 50.
  • the under-cladding layer 10 is usually made of a transparent material, and the refractive index of the under-cladding layer 10 is smaller than the refractive index of the first waveguide core 20 so that the optical signal is confined to propagate in the first waveguide core 20.
  • the material of the lower cladding layer 10 may be silicon oxynitride (SiON), polymer, organic-inorganic composite material or silicon dioxide (SiO 2 ), or dioxide doped with metal oxide or non-metal oxide. Silicon (SiO 2 ), where the polymer can be a transparent polymer compound that is resistant to etching liquids, such as polymethyl methacrylate (PMMA) and polyamide (PA), etc. .
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the lower cladding layer 10 is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the lower cladding.
  • the refractive index of layer 10 reduces leakage loss.
  • the under-cladding layer 10 may have a single-layer structure, a double-layer structure or a multi-layer structure, which is not limited in this embodiment.
  • a substrate 70 may be provided under the lower cladding layer 10, and the substrate 70 is used to support the lower cladding layer 10.
  • the material of the substrate 70 is generally the same as that of the under-cladding layer 10.
  • the material of the substrate may be silicon oxynitride (SiON), polymer, or silicon dioxide (SiO 2 ), or doped with metal oxide or non-metal.
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the first waveguide core 20 is disposed on the upper surface of the lower cladding layer 10, and is used to receive an optical signal input from the outside and couple the optical signal to the second waveguide core.
  • the first waveguide core 20 is made of a transparent material, and the material of the first waveguide core 20 can be silicon nitride (SiN), silicon oxynitride (SiON), silicon (Si), germanium (Ge) or a silicon-germanium alloy ( Si x Ge y ).
  • the refractive index of the first waveguide core 20 is greater than the refractive index of the lower cladding layer 10, so that the optical signal is restricted by the lower cladding layer 10 to propagate in the first waveguide core 20, preventing the optical signal from leaking to the lower cladding layer 10 area, and reducing the optical signal The loss.
  • the shape of the first waveguide core 20 is tapered or wedge-shaped. The closer it is to the standard single-mode optical fiber, the smaller the width and/or thickness of the first waveguide core 20 is, and a tip is formed at the end close to the standard single-mode optical fiber. Exemplarily, please refer to FIG. 2, where the right end of the first waveguide core 20 may be used as the first end of the first waveguide core 20, and the left end of the first waveguide core 20 may be used as the second end of the first waveguide core 20, wherein, The first end of the first waveguide core 20 is a tip.
  • the width of the first waveguide core 20 and/ Or the thickness can be reduced linearly, that is, the width and/or thickness of the first waveguide core 20 gradually decreases.
  • the first waveguide core 20 with this shape when the optical signal propagates in the first waveguide core 20, on the one hand, the loss of the optical signal can be reduced, and on the other hand, as the optical signal travels along the second waveguide core 20 Propagating from the end to the first end, the mode field formed by the optical signal gradually increases, which improves the coupling efficiency between the first waveguide core 20 and the second waveguide core 40, and reduces the coupling loss of the optical signal.
  • the width and/or thickness of the first waveguide core 20 can also be reduced non-linearly, for example, stepped.
  • the gap layer 30 covers the first waveguide core 20.
  • the gap layer 30 is also called Gap layer, which is made of transparent material.
  • the material of the gap layer 30 can be silicon oxynitride (SiON), polymer, silicon dioxide (SiO 2 ) Organic-inorganic composite materials, or silicon dioxide (SiO 2 ) doped with metal oxides or non-metal oxides, where the polymer can be a transparent polymer compound that is resistant to corrosion by the etching solution, such as: poly Polymethyl methacrylate (PMMA for short) and Polyamide (PA for short), etc.
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the gap layer 30 is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the gap layer 30.
  • the refractive index is used to reduce the gap layer 30.
  • the material of the gap layer 30 can be the same as or different from the material of the under-cladding layer 10 and the material of the over-cladding layer 50. In this embodiment, the material of the gap layer 30 is the same as the material of the under-cladding layer 10. This embodiment does not limit this.
  • the refractive index of the gap layer 30 is smaller than the refractive index of the first waveguide core 20 and the refractive index of the second waveguide core 40 to limit the propagation of optical signals in the first waveguide core 20 and the second waveguide core 40 and prevent the second waveguide
  • the optical signal in the core 40 leaks toward the first waveguide core 20, reducing the loss of the optical signal.
  • the gap layer 30 is provided between the first waveguide core 20 and the second waveguide core 40, which can increase the distance between the first waveguide core 20 and the second waveguide core 40, and reduce the difference in the preparation of the second waveguide core 40.
  • the influence of the first waveguide core 20 reduces the process complexity of packaging the spot converter.
  • the thickness of the gap layer may be greater than or equal to 0.2 ⁇ m.
  • the thickness of the gap layer 30 is 0.5 ⁇ m, 1 ⁇ m, or 3 ⁇ m.
  • the introduction of the gap layer 30 can effectively protect the first waveguide core 20 when the second waveguide core 40 is formed by etching. , Reduce the difficulty of the process; and the thicker the thickness of the gap layer 30, the simpler the process.
  • the thickness of the gap layer 30 in the embodiment of the present application can tolerate 3 ⁇ m.
  • the second waveguide core 40 is disposed on the gap layer 30, and the second waveguide core 40 is also made of a transparent material.
  • the material of the second waveguide core 40 may be silicon oxynitride (SiON), silicon dioxide (SiO 2 ), polymers, organic-inorganic composite materials, or silicon dioxide (SiO 2 ) doped with metal oxides or non-metal oxides, where the polymer can be a transparent polymer compound that is resistant to corrosion by the etching solution, such as : Polymethyl methacrylate (PMMA for short) and Polyamide (PA for short), etc.
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the refractive index of the second waveguide core 40 is greater than the refractive index of the gap layer 30, the refractive index of the lower cladding layer 10, and the refractive index of the upper cladding layer 50, and the refractive index of the second waveguide core 40 is smaller than the refractive index of the first waveguide core 20 That is, according to the size of the refractive index, the second waveguide core 40 is a low refractive index waveguide core, and its refractive index n 2 is generally less than 1.7 (n 2 ⁇ 1.7), and the first waveguide core 20 is a high refractive index waveguide.
  • the refractive index n 1 is generally greater than 1.8 (n 1 >1.8).
  • the right end of the second waveguide core 40 can be used as the first end of the second waveguide core 40
  • the left end of the second waveguide core 40 can be used as the second end of the second waveguide core 40
  • the first end of the second waveguide core 40 is the same as the standard
  • the coupling end of the single-mode fiber coupling is the output end of the second waveguide core 40.
  • the orthographic projection of the second waveguide core 40 on the lower cladding layer 10 partially overlaps with the orthographic projection of the first waveguide core 20 on the lower cladding layer 10.
  • a partial area from the second end to the first end of the second waveguide core 40 is overlapped with The first end to the second end of the first waveguide core 20 are opposed to each other, and the opposing portions of the first waveguide core 20 and the second waveguide core 40 form an adiabatic coupler, so that the first waveguide core 20 and the second waveguide core 40 can be realized.
  • the wide-spectrum low-loss coupling between, for example, the wide-spectrum range can be less than 0.5dB/facet.
  • the width W of the second waveguide core 40 is greater than its own thickness T, and the width of the first end of the second waveguide core 40 is greater than one third of the spot diameter of a standard single-mode optical fiber.
  • the mode field of the second waveguide core 40 can be matched with the mode field of the standard single-mode fiber, thereby improving the optical signal coupling efficiency between the silicon photonic chip and the standard single-mode fiber and reducing the coupling loss.
  • the width W of the second waveguide core 40 refers to the width of the second waveguide core in the horizontal direction
  • the thickness T refers to the height of the second waveguide core in the vertical direction.
  • the second waveguide core 40 constitutes a quantum well inside, which has a strong limiting effect on the optical signal in the width direction, so that the optical signal is confined in the second waveguide core 40.
  • the restraint of the optical signal is weak, so that the optical signal can be coupled into a mode spot. The smaller the thickness, the weaker the restraint of the optical signal and the larger the mode spot.
  • the width W of the second waveguide core 40 may be 3 ⁇ m-7 ⁇ m, and the thickness T is less than 1 ⁇ m.
  • the mode spot height of the second waveguide core 40 is larger than the standard.
  • the single-mode optical fiber has a half of the mode spot height, or the thickness of the second waveguide core 40 is smaller than the wavelength of the optical signal transmitted by it.
  • the mode spot shape of the second waveguide core 40 is an ellipse, wherein the transverse direction (width direction) is the long axis of the ellipse, and the longitudinal direction (thickness direction or height direction) is the short axis, so that the second waveguide core 40 The longitudinal mode spot is slightly smaller, and the optical signal is unlikely to leak to the first waveguide core 20.
  • the upper cladding layer 50 is disposed on the second waveguide core 40, and the upper cladding layer 50 may have a single-layer structure, a double-layer structure, or a multilayer structure.
  • the upper cladding layer 50 is generally made of a transparent material, and the refractive index of the upper cladding layer 50 is smaller than the refractive index of the second waveguide core 40, so that the optical signal is restricted to propagate in the second waveguide core 40.
  • the material of the upper cladding layer 50 can be silicon oxynitride (SiON), polymer, silicon dioxide (SiO 2 ), organic-inorganic composite material, or silicon dioxide doped with metal oxide or non-metal oxide (SiO 2 ), where the polymer can be a transparent polymer compound that is resistant to corrosion by the etching solution, such as polymethyl methacrylate (PMMA) and polyamide (PA).
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the upper cladding layer 50 is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the upper cladding.
  • the refractive index of layer 50 is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the upper cladding.
  • the refractive index of layer 50 is composed of silicon dioxide (SiO 2
  • the second end of the first waveguide core 20 in the mode spot converter (for example, the left end of the first waveguide core 20 shown in FIG. 2) and The silicon photonic chip is connected, and the first end of the second waveguide core 40 (for example, the right end of the second waveguide core 40 shown in FIG. 2) is connected to a standard single-mode optical fiber.
  • the light output from the silicon photonic chip and entering the first waveguide core 20 will be coupled to the second waveguide core 40.
  • the mode spot converter provided in the above embodiments can be used to transmit optical signals in TE mode and TM mode, where TE mode is also called transverse electric mode, and TM mode is also called transverse magnetic mode.
  • TE mode is also called transverse electric mode
  • TM mode is also called transverse magnetic mode.
  • the mode field distributions of the optical signals of different modes in the mode spot converter are different, and the optical signal of the TE mode and the optical signal of the TM mode will be respectively described below as examples.
  • the optical signal of TE mode When the optical signal of TE mode is used, as shown in Fig. 4, when the optical signal of TE mode enters the area A in the mode spot converter from the silicon photonic chip, there is no second waveguide core 40 in this area, and the mode field is completely constrained. In the first waveguide core 20; when the optical signal propagates to the B area, the first waveguide core 20 and the second waveguide core 40 in this area begin to have an overlapping part.
  • the first waveguide core 20 in this area is wider, so the mode The confinement of the field is very good, so that the optical signal will not be coupled to the second waveguide core 40; then when the optical signal propagates to the C area, the first waveguide core 20 in this area becomes narrower, so the mode spot becomes larger, and the optical signal starts to move toward The second waveguide core 40 is coupled and diffused, and the mode field has an elliptical shape; when the optical signal propagates to point D, the optical signal is all coupled from the first waveguide core 20 to the second waveguide core 40, and the mode field has an elliptical shape ; When the optical signal is in the E zone of the second waveguide core 40, it will propagate in the direction of the standard single-mode fiber 60 in the form of an elliptical mode field; when the optical signal propagates to the first end of the second waveguide core 40 (in Figure 4 When the end face of the right end), the mode field matches the mode field of the standard single-mode optical fiber 60 at this time, and almost all the optical signals are
  • the mode spot converter provided by the embodiment of the present application is used to connect the silicon photonic chip and the standard single-mode fiber, the optical signal coupling efficiency between the silicon photonic chip and the standard single-mode fiber can be improved, the coupling loss can be reduced, and a wide spectrum can be realized. Low-loss coupling less than 1dB/facet.
  • the optical signal of TM mode When the optical signal of TM mode is used, as shown in Fig. 5, when the optical signal of TM mode enters the area A in the mode spot converter from the silicon photonic chip, there is no second waveguide core 40 in this area, and the mode field is completely restricted. In the first waveguide core 20; when the optical signal propagates to the B area, the first waveguide core 20 and the second waveguide core 40 in this area begin to have an overlapping part.
  • the first waveguide core 20 in this area is wider, so the mode The confinement of the field is better, so that the optical signal will not be coupled to the second waveguide core 40; then when the optical signal propagates to the C area, the width of the first waveguide core 20 in the area becomes narrower at this time, so the mode spot becomes larger and the light
  • the signal begins to couple and diffuse to the second waveguide core 40, and the mode field shape is elliptical; when the optical signal propagates to point D, the optical signal is all coupled from the first waveguide core 20 to the second waveguide core 40, and the mode field shape It is elliptical; when the optical signal is in the E zone of the second waveguide core 40, it will propagate in the direction of the standard single-mode fiber 60 in an elliptical mode field shape; when the optical signal propagates to the first end of the second waveguide core 40 ( Figure At this time, the mode field matches the mode field of the standard single-mode optical fiber 60, and the optical signals are basically transmitted to the standard single-mode optical fiber 60.
  • the mode spot converter provided by the embodiment of the present application is used to connect the silicon photonic chip and the standard single-mode fiber, the coupling efficiency of the optical signal between the silicon photonic chip and the standard single-mode fiber can be improved, and the coupling loss can be reduced.
  • the mode spot converter provided by the embodiment of the present application is used to connect the silicon photonic chip and the standard single-mode fiber
  • the optical signal when the optical signal enters the mode spot converter, the optical signal will gradually couple from the first waveguide core 20 to the first waveguide core 20.
  • Two waveguide cores 40 and since the width of the first end of the second waveguide core 40 is greater than one third of the mode spot diameter of the standard single-mode fiber 60, the mode field of the second waveguide core 40 is the same as that of the standard single-mode fiber 60
  • the mode field matching improves the optical signal coupling efficiency between the silicon photonic chip and the standard single-mode fiber, and reduces the coupling loss.
  • the gap layer 30 since the gap layer 30 is provided in the mode spot converter, when the second waveguide core 40 is formed by etching, the gap layer 30 can block the etching liquid from flowing to the first waveguide core 20, and prevent the first waveguide core 10 from being damaged. Etching, thereby avoiding repeated repairs of the first waveguide core 20, simplifying the process flow and saving costs.
  • the requirements for etching accuracy can be appropriately reduced, thereby reducing the process difficulty; in addition, since the refractive index of the gap layer 30 is smaller than the refractive index of the second waveguide core 40, the second waveguide can be prevented The optical signal in the core 40 leaks toward the first waveguide core 20, reducing leakage loss.
  • the shape of the first waveguide core 20 is tapered or wedge-shaped, wherein the first end of the first waveguide core 20 (the right end of the first waveguide core in FIG. 2) is a tip.
  • the width change process and/or thickness change process of the first waveguide core 20 has a greater impact on the length of the mode spot converter.
  • the width and/or thickness of the first waveguide core 20 can be a single-stage gradual change, a multi-stage gradual change, and a stepwise jump in thickness. Such a design can reduce the length of the mode spot converter and reduce the difficulty of packaging. In addition, by widening the width of the tip of the first waveguide core 20, the packaging difficulty can be further reduced.
  • the width and/or thickness of the first waveguide core is gradually gradual; from the second end of the first waveguide core 20 to the first end, the thickness of the first waveguide core 20 Keeping unchanged, the width of the first waveguide core 20 gradually decreases. For another example, from the second end of the first waveguide core 20 to the first end, the width of the first waveguide core 20 remains unchanged, and the thickness of the first waveguide core 20 gradually decreases; and for another example, from the second end of the first waveguide core 20 From the second end to the first end, the width and thickness of the first waveguide core 20 are gradually reduced.
  • the width and/or thickness of the first waveguide core 20 is linearly reduced, but it is not limited to this, and the width and/or thickness of the first waveguide core 20 can also be nonlinearly reduced.
  • the width and/or thickness of the first waveguide core 20 are gradually graded; the first waveguide core 20 includes three tapered sections: a tapered section 21 and a middle section.
  • the first waveguide core 20 includes at least two tapered sections coaxially and sequentially connected, and the taper of at least one tapered section is the same as the one described above.
  • the taper of the remaining tapered sections of the at least two tapered sections is different.
  • the tapered sections included in the first waveguide core 20 may also be coaxially and spaced apart, and the distance between any two adjacent tapered sections is smaller than the distance between the optical signals entering the first waveguide core 20.
  • the wavelength prevents the optical signal from being reflected at the optical input end of the next tapered section when it propagates from the previous tapered section to the next tapered section, and reduces the loss of the optical signal.
  • the thickness of the first waveguide core 20 changes step by step;
  • the first waveguide core 20 includes two tapered layers: a lower tapered layer 24 and the upper cone layer 25, the shape and size of the large ends of the lower cone layer 24 and the upper cone layer 25 are the same, and the large ends of the lower cone layer 24 and the upper cone layer 25 are aligned;
  • the tip and the tip of the upper tapered layer 25 are not aligned, wherein the length of the lower tapered layer 24 is longer, the length of the upper tapered layer 24 is shorter, and the tip of the lower tapered layer 24 and the tip of the upper tapered layer 25 are formed Steps.
  • the first waveguide core 20 includes at least two tapered layers arranged in a stack, and the thickness of each tapered layer is constant along the direction from the end away from the tip to the tip of the first waveguide core 20.
  • the large ends of the tapered layers are aligned, and in the two adjacent tapered layers, the length of the tapered layer located on the upper layer is smaller than the length of the tapered layer located on the lower layer, so that the tip of the tapered layer located on the upper layer is The tip of the tapered layer of the lower layer forms a step. It can be understood that from the bottom surface to the top surface of the first waveguide core 20, the length of each tapered layer decreases in order.
  • the width of the first end of the second waveguide core 40 (the right end of the second waveguide core in FIG. 2) has a greater impact on the coupling efficiency of the second waveguide core 40 and the standard single-mode fiber, and it is necessary to ensure that the first end
  • the width of the first end of the second waveguide core 40 is greater than one third of the spot diameter of the standard single-mode fiber. Therefore, it is necessary to finely design the width of the first end of the second waveguide core 40 to be the second waveguide core.
  • the mode spot size of 40 matches the mode spot size of the standard single-mode fiber; for example, the mode spot of the standard single-mode fiber is directly 8 ⁇ m, and the width of the first end of the second waveguide core 40 can be selected as 3 ⁇ m.
  • the width of the second end of the second waveguide core 40 has little effect on the coupling loss, and different widths and shapes can be selected. For example, as shown in FIG. 10, from the second end to the first end of the second waveguide core 40, the width of the second waveguide core 40 is constant, the width of the second waveguide core 40 is greater than its own thickness, and the second waveguide core 40 The width of the first end of 40 is greater than 1/3 of the spot diameter of a standard single-mode fiber.
  • the second waveguide core 40 is divided into three waveguide sections that are coaxially and sequentially connected: a fixed-width section 41, an intermediate transition section 42 and a width-variable section 43, wherein the right end of the fixed-width section 41 Connect with the large end of the intermediate transition section 42, the small end of the intermediate transition section 42 and the large end of the width change section 43, the width of the small end of the width change section 43 (the rightmost end in Figure 11) needs to be greater than the standard single-mode One third of the diameter of the optical fiber's mode spot; and along the direction from the second end to the first end of the second waveguide core 40, the width of the fixed-width section 41 remains unchanged, and the width of the intermediate transition section 42 and the width-variable section 43 are both Gradually decrease, the degree of width change of the intermediate transition section 42 and the width change section 43 is different, or in other words, the taper of the intermediate transition section 42 and the width change section 43 are different.
  • the second waveguide core 40 is coaxially and sequentially connected with three width changing sections 43, in which the large end of the width changing section 43 located on the leftmost side and the width changing section 43 located in the middle are The small end is connected, the large end of the width changing section 43 located in the middle is connected to the small end of the width changing section 43 located on the far right, and the large end of the width changing section 43 located on the far right (the far right end in FIG. 12)
  • the width needs to be larger than one-third of the spot diameter of a standard single-mode fiber.
  • the widths of the three width varying sections 43 gradually increase, and the widths of the three width varying sections 43 vary in different degrees.
  • the above-mentioned second waveguide core 40 may be composed of at least two waveguide segments, and these waveguide segments are coaxially connected in sequence, that is, these waveguide segments are coaxially connected in sequence to form an integrated structure.
  • these waveguide sections are also arranged coaxially and sequentially spaced apart. When these waveguide sections are arranged at intervals, the distance between two adjacent waveguide sections is smaller than the wavelength of the optical signal in the second waveguide core 40, which prevents the optical signal Reflection occurs between two adjacent waveguide segments, reducing the loss of optical signals.
  • the embodiment of the present application also provides a method for preparing the mode spot converter, which is used to prepare the above-mentioned mode spot converter, and the preparation method includes:
  • the lower cladding layer can be formed by deposition.
  • the under-cladding layer may be formed on the substrate or on the process substrate by deposition methods such as physical vapor deposition, chemical vapor deposition, atomic layer deposition, evaporation, and sputtering.
  • the material of the under-cladding layer may be the same as the material of the substrate or the material of the process substrate.
  • the process substrate is generally a process substrate used in the preparation process of the spot converter, and generally needs to be removed after the preparation of the spot converter is completed.
  • the lower cladding layer is made of transparent material.
  • the material of the lower cladding layer can be silicon oxynitride (SiON), polymer, silicon dioxide (SiO 2 ), organic-inorganic composite material, or doped with metal oxide or non-metal oxide Silicon dioxide (SiO 2 ), where the polymer can be a transparent polymer compound that is resistant to corrosion by the etching solution, such as polymethyl methacrylate (PMMA) and polyamide (Polyamide, abbreviated as PMMA). For PA) and so on.
  • Organic-inorganic composite materials are resin-based composite materials that are resistant to etching liquids and are transparent, such as epoxy resin-based composite materials.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the lower cladding layer is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the Refractive index.
  • Step two forming a first waveguide core on the under-cladding layer, the shape of the first waveguide core is tapered, and the tip of the first waveguide core points to the coupling end of the standard single-mode optical fiber.
  • the first waveguide embryonic layer can be formed on the undercladding layer by deposition methods such as physical vapor deposition, chemical vapor deposition, atomic layer deposition, vapor deposition, sputtering, etc., and then part of the first waveguide embryonic layer can be removed by an etching process, and the remainder
  • the first waveguide blank is the first waveguide core formed on the lower cladding layer.
  • the refractive index of the first waveguide core is greater than the refractive index of the lower cladding layer, so that the optical signal is restricted to propagate in the first waveguide core, preventing the optical signal from leaking to the lower cladding layer, and reducing the loss of the optical signal.
  • the width and/or thickness of the first waveguide core is reduced from the second end to the first end of the first waveguide core, the loss of the optical signal in the first waveguide core is reduced.
  • the first waveguide core is generally made of transparent material.
  • the material of the first waveguide core can be silicon nitride (SiN), silicon oxynitride (SiON), silicon (Si), germanium (Ge) or silicon-germanium alloy (Si) x Ge y ).
  • Step three forming a gap layer covering the first waveguide core on the first waveguide core.
  • a gap layer covering the first waveguide core is formed on the first waveguide core and on the lower cladding layer by deposition methods such as physical vapor deposition, chemical vapor deposition, atomic layer deposition, evaporation, and sputtering.
  • the gap layer is generally slightly larger than the first waveguide core in order to cover the first waveguide core.
  • the gap layer can be used to block the etching liquid (such as hydrofluoric acid) from flowing onto the first waveguide core.
  • the first waveguide core is prevented from being etched, which prevents the first waveguide core from being damaged when the second waveguide core is formed by etching, avoids repeated repairs of the first waveguide core, simplifies the process flow, and saves costs.
  • the etching accuracy can be appropriately relaxed and the process difficulty can be reduced.
  • the thickness of the gap layer is greater than or equal to 0.2 ⁇ m, for example, the thickness of the gap layer is 0.5 ⁇ m, 1 ⁇ m, or 3 ⁇ m.
  • the introduction of the gap layer can effectively protect the first waveguide core when the second waveguide core is formed by etching. Process difficulty.
  • the thicker the thickness of the gap layer the simpler the process; the thickness of the gap layer in the embodiment of the present application can tolerate 3 ⁇ m.
  • the gap layer is generally made of a transparent material, and the refractive index of the gap layer is smaller than the refractive index of the first waveguide core and the refractive index of the second waveguide core to limit the propagation of optical signals in the first waveguide core and the second waveguide core. Prevent the optical signal in the second waveguide core from leaking to the direction of the first waveguide core, and reduce the loss of the optical signal.
  • the material of the gap layer can be silicon oxynitride (SiON), polymer, silicon dioxide, organic-inorganic composite material, or silicon dioxide (SiO 2 ) doped with metal oxide or non-metal oxide.
  • polymer It can be a transparent polymer compound that is resistant to corrosion by the etching solution, such as polymethyl methacrylate (PMMA for short) and polyamide (PA for short).
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the gap layer is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the refraction of the gap layer. rate.
  • the material of the gap layer may be the same as or different from the material of the under-cladding layer or the material of the over-cladding layer. In this embodiment, the material of the gap layer is the same as the material of the under-cladding layer.
  • Step four forming a second waveguide core on the gap layer, the width of the second waveguide core is greater than its own thickness, and the width of the first end of the second waveguide core is greater than one third of the spot diameter of the standard single-mode fiber,
  • the first end of the second waveguide core is a coupling end coupled with a standard single-mode optical fiber.
  • the second waveguide embryonic layer is formed on the gap layer by deposition methods such as physical vapor deposition, chemical vapor deposition, atomic layer deposition, vapor deposition, sputtering, etc., and then part of the second waveguide embryonic layer is removed through an etching process.
  • the remaining second waveguide blank is the second waveguide core, and the orthographic projection of the second waveguide core on the lower cladding layer partially overlaps the orthographic projection of the first waveguide core on the lower cladding layer, so that the second waveguide core and the first waveguide core
  • the opposite part forms an adiabatic coupler, so that a wide-spectrum low-loss coupling between the second waveguide core and the first waveguide core can be realized.
  • the second waveguide core is generally made of a transparent material, the refractive index of the second waveguide core is greater than the refractive index of the gap layer, the refractive index of the lower cladding layer, and the refractive index of the upper cladding layer, and the refractive index of the second waveguide core is smaller than that of the first waveguide core.
  • the refractive index of the waveguide core causes the optical signal to be restricted from propagating in the second waveguide core, preventing optical signal leakage.
  • the material of the second waveguide core can be silicon oxynitride (SiON), polymer, silicon dioxide (SiO 2 ), organic-inorganic composite material, or silicon dioxide doped with metal oxide or non-metal oxide (SiO 2) 2 ), where the polymer may be a transparent polymer compound that is resistant to corrosion by the etching solution, such as polymethyl methacrylate (PMMA for short) and polyamide (PA for short).
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • Step 5 forming an upper cladding layer on the second waveguide core; the refractive index of the upper cladding layer is smaller than the refractive index of the second waveguide core.
  • the upper cladding layer can be formed on the second waveguide core by deposition methods such as physical vapor deposition, chemical vapor deposition, atomic layer deposition, evaporation, sputtering, etc., and the upper cladding layer and the lower cladding layer enclose a containing cavity, The first waveguide core, the gap layer and the second waveguide core are located in the accommodating cavity.
  • the material of the upper cladding layer can be silicon oxynitride (SiON), polymer, silicon dioxide, organic-inorganic composite material, or silicon dioxide (SiO 2 ) doped with metal oxides or non-metal oxides.
  • the substance may be a transparent polymer compound that is resistant to corrosion by the etching solution, such as polymethyl methacrylate (PMMA) and polyamide (PA).
  • Organic-inorganic composite material is a resin-based composite material that is resistant to corrosion by an etching solution and is transparent, such as an epoxy resin-based composite material.
  • the doped metal oxide can be aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 3 ), germanium dioxide (GeO 2 ) or titanium dioxide (TiO 2 ), and the doped non-metal oxide can be Diboron trioxide (B 2 O 3 ), phosphorus pentoxide (P 2 O 5 ), or sulfur dioxide (SO 2 ).
  • the upper cladding layer is composed of silicon dioxide (SiO 2 ) doped with a small amount of boron trioxide (B 2 O 3 ), and the silicon dioxide is doped with a small amount of boron trioxide to reduce the upper cladding layer.
  • the refractive index of the upper cladding layer is smaller than the refractive index of the second waveguide core, so that the optical signal is confined to propagate in the second waveguide core.
  • a gap layer covering the first waveguide core is formed on the first waveguide core, and when the second waveguide core is formed by etching, The gap layer can block the etching liquid from flowing to the first waveguide core, prevent the first waveguide core from being etched, thereby avoiding repeated repairs of the first waveguide core, simplifying the process flow, and saving costs.
  • the requirements for etching accuracy can be appropriately reduced, and the process difficulty can be reduced; in addition, the optical signal is coupled from the first waveguide core at a low position to the second waveguide core at a high position, which increases the height of the light spot. , Increase the distance between the spot and the substrate, which can reduce the leakage of the spot to the substrate, thereby reducing the leakage loss.
  • an embodiment of the present application also provides a silicon optical device 100.
  • the silicon optical device 100 includes a silicon photonic chip 90, a standard single-mode optical fiber 60, and the mode spot converter 80 described in the foregoing embodiment.
  • the spot converter 80 is respectively connected to the silicon photonic chip 90 and the standard single-mode optical fiber 60 for coupling the optical signal output by the silicon photonic chip 90 to the standard single-mode optical fiber 60.
  • the silicon photonic chip 90 usually includes silicon-based light-emitting devices, modulators, detectors, and optical waveguide devices. These devices can realize the emission, transmission, detection and processing of optical signals, and then realize applications such as optical communication, optical interconnection, and optical computing.
  • the silicon optical device 100 After the optical signal output by the silicon photonic chip 90 enters the first waveguide core, it can be coupled from the first waveguide core to the second waveguide core while propagating in the light guiding direction of the first waveguide core.
  • the mode field matching of the photonic chip 90 and the standard single-mode optical fiber 60 improves the coupling efficiency between the silicon photonic chip 90 and the standard single-mode optical fiber 60 and reduces the coupling loss.
  • an embodiment of the present application also provides an optical communication device.
  • the optical communication device includes a communication device 200 and the aforementioned silicon optical device 100 in communication with the communication device 200.
  • the structure and function of the silicon optical device 100 are the same as those of the above-mentioned embodiment, so please refer to the description of the above-mentioned embodiment.
  • the communication device 200 may be a router or a server.
  • the optical communication equipment provided by the embodiments of the present application utilizes the silicon optical device 100 to reduce optical loss during communication and improve the channel uniformity and stability of the optical communication equipment.

Abstract

本申请提供了一种模斑转换器及其制备方法、硅光器件和光通信设备,涉及光纤通信技术领域,用于在提高硅光子芯片和标准单模光纤之间的耦合效率的同时,降低模斑转换器的封装工艺难度。该模斑转换器包括下包层,设置于下包层上的第一波导芯、覆盖第一波导芯的间隙层、设置于间隙层上的第二波导芯,以及设置于第二波导芯上的上包层;第一波导芯的折射率大于第二波导芯的折射率,第二波导芯的折射率大于间隙层的折射率、下包层的折射率和上包层的折射率;所述第一波导芯用于接收光信号并使光信号耦合到第二波导芯;所述第二波导芯用于将从第一波导芯耦合到其内的光信号输出;所述间隙层为耐腐蚀的透明层,用于阻挡刻蚀液刻蚀第一波导芯。

Description

模斑转换器及其制备方法、硅光器件和光通信设备 技术领域
本申请涉及光纤通信技术领域,尤其涉及一种模斑转换器及其制备方法、硅光器件和光通信设备。
背景技术
随着通信技术的快速发展,数据流量急剧增长,硅光子技术因具有高传输速率以及低延迟、低串扰、低成本等优点而得到了广泛使用。硅光子技术适合制备小尺寸、高密度、低成本的硅基光模块,如硅光子芯片。不过,由于硅光子芯片的尺寸较小,其截面尺寸通常小于0.5μm(微米),而标准单模光纤的模斑直接约为8-10μm,两者尺寸相差较大,导致硅光子芯片与标准单模光纤的模场失配,导致耦合损耗较大。
在相关技术中,通常采用模斑转换器来消除硅光子芯片和标准单模光纤之间的模场适配,提高两者之间的耦合效率。不过,该模斑转换器的封装工艺难度较大,而且模斑转换器的耦合效率较低。
发明内容
本申请实施例提供了一种模斑转换器及其制备方法、硅光器件和光通信设备,用于在提高硅光子芯片和标准单模光纤之间的耦合效率的同时,降低模斑转换器的封装工艺难度。
第一方面,本申请实施例提供了一种模斑转换器,该模斑转换器包括下包层、第一波导芯、间隙层、第二波导芯和上包层,其中,第一波导芯设置于下包层上,间隙层设置在第一波导芯上且覆盖所述第一波导芯,第二波导芯设置于间隙层上,上包层设置于第二波导芯上;第一波导芯的折射率大于第二波导芯的折射率,第二波导芯的折射率大于间隙层的折射率、下包层的折射率和上包层的折射率;
所述第一波导芯用于接收外界输入的光信号,并使所述光信号耦合到所述第二波导芯;
所述第二波导芯用于将从所述第一波导芯耦合到所述第二波导芯内的光信号输出;
所述间隙层为耐腐蚀的透明层,用于当刻蚀形成第二波导芯时,阻挡刻蚀液刻蚀所述第一波导芯。
与现有技术相比,本申请实施例提供的模斑转换器具有如下优点:
当光信号进入到模斑转换器中后,光信号会从第一波导芯逐渐耦合到第二波导芯,第二波导芯的模场与标准单模光纤的模场匹配,从而提高了硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗。同时,由于在模斑转换器中设置了间隙层,当刻蚀形成第二波导芯时,间隙层可以阻挡刻蚀液刻蚀到第一波导芯上,防止第一波导芯被刻蚀,从而避免反复修复第一波导芯,降低工艺难度以及简化工艺流程,节约 成本,进而降低模斑转换器的封装工艺难度。此外,由于间隙层的折射率小于第二波导芯的折射率,如此设计,能够防止第二波导芯中的光信号向第一波导芯方向泄露,减少泄露损耗。
在一种可能的实现方式中,所述间隙层的厚度大于或等于0.2μm。如此设计,可以增大第一波导芯和第二波导芯之间的距离,而且第一波导芯和第二波导芯之间的距离越大,模斑转换器的封装工艺越简单。
在一种可能的实现方式中,所述间隙层的材质为氮氧化硅、聚合物、二氧化硅、或掺杂有金属氧化物或非金属氧化物的二氧化硅。
在一种可能的实现方式中,所述第一波导芯的形状为锥形。如此设计,当光信号在第一波导芯内传播时,一方面可以减少光信号的损耗,另一方面,随着光信号沿第一波导芯导光方向传播,光信号形成的模场逐渐增大,提高第一波导芯与第二波导芯之间的耦合效率,减少光信号的耦合损耗。
在一种可能的实现方式中,沿所述第一波导芯的导光方向,所述第一波导芯的宽度逐渐减小,和/或,所述第一波导芯的厚度逐渐减小。
采用这种设计方式时,第一波导芯的宽度和/或厚度逐渐减小,能够减少光信号的损耗。
在另一种可能的实现方式中,沿所述第一波导芯的导光方向,所述第一波导芯包括同轴且依次连接的至少两个锥形段,且至少一个锥形段的锥度与其余所述锥形段的锥度不同。
采用如上设计,使得沿第一波导芯的导光方向第一波导芯的锥度减小,进而能够减少光信号的损耗。
在一种可能的实现方式中,所述第一波导芯包括堆叠设置的至少两个锥形层,沿所述第一波导芯的导光方向,各所述锥形层的厚度不变;各所述锥形层的大端对齐,且在相邻的两层锥形层中,位于上层的锥形层的长度小于位于下层的锥形层的长度。
采用如上设计,能够在减少光信号的损耗的同时,降低制备第一波导芯的工艺难度。
在一种可能的实现方式中,所述第二波导芯的宽度大于自身的厚度,且所述第二波导芯的输出端的宽度大于标准单模光纤的模斑直径的三分之一。
如此设计,可以使第二波导芯的模场与标准单模光纤的模场匹配,从而提高了硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗。
在一种可能的实现方式中,所述第二波导芯的厚度小于1μm,所述第二波导芯的输出端的宽度为3μm~7μm。
采用如上设计,一方面,可以使光信号在宽度方向被束缚在第二波导芯内传播,在厚度方向减弱对光信号的束缚,使光信号全部耦合到第二波导芯;另一方面,可以使第二波导芯的输出端的宽度大于标准单模光纤的模斑直径的1/3,使得第二波导芯的输出端的模场与标准单模光纤的模场匹配,从而提高两者之间的耦合效率,减少耦合损耗。
在一种可能的实现方式中,所述第二波导芯包括同轴且依次连接的至少两个波导段。
采用如上设计,在保证第二波导芯的第一端的宽度大于标准单模光纤的模斑直径的1/3的情况下,第二波导芯的另一端可以灵活设计,降低工艺难度,进而降低模斑转换器的封装难度。
在一种可能的实现方式中,所述第一波导芯的材质为氮化硅、氮氧化硅、硅、锗或硅-锗系合金;所述第二波导芯的材质为氮氧化硅、聚合物、二氧化硅、或为掺杂有金属氧化物或非金属氧化物的二氧化硅。
第二方面,本申请实施例提供了一种硅光器件,其包括硅光子芯片、标准单模光纤以及第一方面所述的模斑转换器,所述模斑转换器分别与所述硅光子芯片和所述标准单模光纤连接,用于将所述硅光子芯片输出的光信号耦合至所述标准单模光纤中。
与现有技术相比,本申请实施例提供的硅光器件,硅光子芯片输出的光信号进入到第一波导芯内后,沿第一波导芯的导光方向传播的同时,可以从第一波导芯耦合到第二波导芯,而且当光信号从硅光子芯片进入到模斑转换器中后能够增大模斑的宽度,使得该模斑宽度与标准单模光纤中的模斑宽度相当,从而使得硅光子芯片和标准单模光纤的模场匹配,提高硅光子芯片和标准单模光纤之间的耦合效率,降低耦合损耗。
第三方面,本申请实施例提供了一种光通信设备,其包括通信装置以及与所述通信装置通信连接的第二方面所述的硅光器件。
与现有技术相比,本申请实施例提供的光通信设备,利用硅光器件可以降低通信时的光损耗,提高光通信设备的通道均匀性和稳定性。
第四方面,本申请实施例提供了一种模斑转换器的制备方法,该制备方法包括:
形成下包层;
在所述下包层上形成第一波导芯,所述第一波导芯用于接收外界输入的光信号,并使所述光信号耦合到第二波导芯;
在所述第一波导芯上形成覆盖所述第一波导芯的间隙层,所述间隙层为耐腐蚀的透明层,用于当刻蚀形成第二波导芯时,阻挡刻蚀液刻蚀所述第一波导芯;
在所述间隙层上形成第二波导芯,所述第二波导芯用于将从所述第一波导芯耦合到所述第二波导芯内的光信号输出;
在所述第二波导芯上形成上包层;所述第一波导芯的折射率大于第二波导芯的折射率,所述第二波导芯的折射率大于所述间隙层的折射率、所述下包层的折射率和所述上包层的折射率。
与现有技术相比,本申请实施例提供的模斑转换器的制备方法具有如下优点:在形成第二波导芯之前,在第一波导芯上形成覆盖第一波导芯的间隙层,当刻蚀形成第二波导芯时,间隙层可以阻挡刻蚀液流到第一波导芯上,防止第一波导芯被刻蚀,从而避免反复修复第一波导芯,简化工艺流程,节约成本,进而降低模斑转换器的封装工艺难度。此外,由于间隙层的存在,可以适当地降低对刻蚀精度的要求,从而降低工艺难度;另外,由于间隙层的折射率小于第二波导芯的折射率,防止第二波导芯中的光信号向第一波导芯方向泄露,减少泄露损耗。
在一种可能的实现方式中,所述间隙层的厚度大于或等于0.2μm。如此设计,可以增大第一波导芯和第二波导芯之间的距离,而且第一波导芯和第二波导芯之间的距离越大,模斑转换器的封装工艺越简单。
在另一种可能的实现方式中,所述第二波导芯的宽度大于自身的厚度,且所述第二波导芯的输出端的宽度大于标准单模光纤的模斑直径的三分之一。如此设计,可以使第二波导芯的模场与标准单模光纤的模场匹配,从而提高了硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗。
附图说明
图1为本申请实施例提供的模斑转换器的侧视图;
图2为本申请实施例提供的模斑转换器的俯视图;
图3为具有衬底的模斑转换器的侧视图;
图4为TE模式的光信号的模场变化图;
图5为TM模式的光信号的模场变化图;
图6为一种第一波导芯的俯视图;
图7为另一种第一波导芯的俯视图;
图8为再一种第一波导芯的俯视图;
图9为图8所示第一波导芯的侧视图;
图10为一种第二波导芯的俯视图;
图11为另一种第二波导芯的俯视图;
图12为再一种第二波导芯的俯视图;
图13为本申请实施例提供的硅光器件的结构示意图;
图14为本申请实施例提供的光通信设备的结构框图。
附图标记说明:
10:下包层;                           20:第一波导芯;
21:锥头段;                           22:中间段;
23:锥尖段;                           24:下锥形层;
25:上锥形层;                         30:间隙层;
40:第二波导芯;                       41:固定宽度段;
42:中间过渡段;                       43:宽度变化段;
50:上包层;                           60:标准单模光纤;
70:衬底;                             80:模斑转换器;
90:硅光子芯片;                       100:硅光器件;
200:通信装置。
具体实施方式
为了使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
硅光子芯片:采用硅类材料制成的用于引导光信号在其中传播的介质装置,也称 为硅基光波导。标准单模光纤:是一种只能传输一种模式的光纤,光纤的模斑直径一般在8μm~10μm之间,适用于远程通讯。
硅光子芯片和标准单模光纤连接时,一般通过模斑转换器进行连接,以降低硅光子芯片和标准单模光纤之间的耦合损耗。在相关技术中,模斑转换器包括依次堆叠设置的下包层、第一波导芯、第二波导芯和上包层。采用这种结构的模斑转换器虽然可以降低硅光子芯片和标准单模光纤之间的耦合损耗,但封装制备这种结构的模斑转换器过程中,一般先形成第一波导芯,然后再在第一波导芯上形成第二波导胚层,之后对第二波导胚层进行刻蚀形成第二波导芯。在刻蚀形成第二波导芯时,一般采用氢氟酸进行湿法刻蚀,湿法刻蚀的精度较难控制,导致在刻蚀形成第二波导芯时,第一波导芯也容易被刻蚀,导致第一波导芯损伤,因此,需要严格控制刻蚀精度,导致模斑转换器的封装工艺难度较大,此外,还可能需要反复修复第一波导芯,导致工艺流程增加,进而导致模斑转换器的封装工艺难度进一步增大。
有鉴于此,本申请实施例提供了一种模斑转换器,在该模斑转换器中,第一波导芯和第二波导芯可以形成绝热耦合器,使得光信号可以从第一波导芯全部耦合到第二波导芯,而且当光信号从硅光子芯片进入到模斑转换器中后能够增大模斑的宽度,使得该模斑宽度与标准单模光纤中的模斑宽度相当,从而使得硅光子芯片和标准单模光纤的模场匹配,提高硅光子芯片和标准单模光纤之间的耦合效率,降低耦合损耗。此外,在第一波导芯和第二波导芯之间设置了间隙层,利用间隙层可以保护第一波导芯,当刻蚀形成第二波导芯时,间隙层可以阻挡刻蚀液流到第一波导芯上,防止第一波导芯被刻蚀,从而避免反复修复第一波导芯,降低工艺难度以及简化工艺流程,进而降低模斑转换器的封装工艺难度。
请参阅图1,在一种可能的实施方式中,模斑转换器包括下包层10、第一波导芯20、间隙层30、第二波导芯40和上包层50,其中,下包层10和上包层50相对设置,以形成用于容置第一波导芯20、间隙层30和第二波导芯40的容纳空间。第一波导芯20、间隙层30和第二波导芯40设置在下包层10和上包层50之间,第一波导芯20与下包层10接触,第二波导芯40与上包层50接触,间隙层30位于第一波导芯20和第二波导芯50之间。
下包层10通常由透明材料制成,下包层10的折射率小于第一波导芯20的折射率,以使光信号被限制在第一波导芯20内传播。示例性地,下包层10的材质可以为氮氧化硅(SiON)、聚合物、有机无机复合材料或二氧化硅(SiO 2),或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。例如,下包层10由掺杂有微量三氧化二硼(B 2O 3)的二氧化硅(SiO 2)组成,在二氧化硅中掺杂有微量的三氧化二硼,可以降低下包层10的折射率,减少泄露损耗。
值得一提的是,下包层10可以为单层结构、双层结构或多层结构,在本实施例中 不作限定。此外,如图3所示,下包层10的下方可以设置有衬底70,衬底70用于支撑下包层10。衬底70的材质一般与下包层10的材质相同,例如衬底的材料可以为氮氧化硅(SiON)、聚合物或二氧化硅(SiO 2),或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。
第一波导芯20设置在下包层10的上表面上,用于接收外界输入的光信号,并使光信号耦合到第二波导芯。第一波导芯20由透明材料制成,第一波导芯20的材质可以为氮化硅(SiN)、氮氧化硅(SiON)、硅(Si)、锗(Ge)或硅-锗系合金(Si xGe y)。第一波导芯20的折射率大于下包层10的折射率,使得光信号被下包层10限制在第一波导芯20内传播,防止光信号向下包层10区域泄露,减小光信号的损耗。
第一波导芯20的形状呈锥形或楔形,距离标准单模光纤越近,第一波导芯20的宽度和/或厚度越小,在靠近标准单模光纤的一端形成一个尖端。示例性地,请参阅图2,其中第一波导芯20的右端可以作为第一波导芯20的第一端,第一波导芯20的左端可以作为第一波导芯20的第二端,其中,第一波导芯20的第一端为尖端。
沿第一波导芯20的第二端至第一端的方向(图2中从左至右的方向),或者说沿第一波导芯20的导光方向,第一波导芯20的宽度和/或厚度可以线性缩减,即第一波导芯20的宽度和/或厚度逐渐减小。具有这种形状的第一波导芯20,当光信号在第一波导芯20内传播时,一方面可以减少光信号的损耗,另一方面,随着光信号沿第一波导芯20的第二端至第一端的方向传播,光信号形成的模场逐渐增大,提高第一波导芯20与第二波导芯40之间的耦合效率,减少光信号的耦合损耗。需要说明的是,第一波导芯20的宽度和/或厚度也可以非线性缩减,例如阶梯性减小。
间隙层30覆盖在第一波导芯20上,间隙层30也称为Gap层,其由透明材料制成,间隙层30的材质可以为氮氧化硅(SiON)、聚合物、二氧化硅(SiO 2)、有机无机复合材料,或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。例如,间隙层30由掺杂有微量三氧化二硼(B 2O 3)的二氧化硅(SiO 2)组成,在二氧化硅中掺杂有微量的三氧化二硼,可以降低间隙层30的折射率。
需要说明的是,间隙层30的材质可以与下包层10的材质和上包层50的材质相同,也可以不同,在本实施例中间隙层30的材质与下包层10的材质相同,本实施例对此不作限定。
间隙层30的折射率小于第一波导芯20的折射率和第二波导芯40的折射率,以限 制光信号在第一波导芯20和第二波导芯40内传播,并可防止第二波导芯40内光信号向第一波导芯20方向泄露,减少光信号的损耗。
此外,在第一波导芯20和第二波导芯40之间设置间隙层30,可以增大第一波导芯20和第二波导芯40之间的距离,减小制备第二波导芯40时对第一波导芯20的影响,降低封装模斑转换器的工艺复杂性。间隙层的厚度可以大于或等于0.2μm,例如,间隙层30的厚度为0.5μm、1μm或3μm等,间隙层30的引入可以在刻蚀形成第二波导芯40时有效保护第一波导芯20,降低工艺难度;而且间隙层30的厚度越厚,工艺越简单。本申请实施例中间隙层30的厚度可以容忍3μm。
第二波导芯40设置在间隙层30上,第二波导芯40也由透明材料制成,示例性地,第二波导芯40的材质可以为氮氧化硅(SiON)、二氧化硅(SiO 2)、聚合物、有机无机复合材料或为掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。
第二波导芯40的折射率大于间隙层30的折射率、下包层10的折射率和上包层50的折射率,且第二波导芯40的折射率小于第一波导芯20的折射率,即,按照折射率的大小划分,第二波导芯40为低折射率波导芯,其折射率n 2一般小于1.7(n 2<1.7),第一波导芯20为高折射率的波导,其折射率n 1一般大于1.8(n 1>1.8)。
第二波导芯40的右端可以作为第二波导芯40的第一端,第二波导芯40的左端可以作为第二波导芯40的第二端,第二波导芯40的第一端为与标准单模光纤耦合的耦合端,为第二波导芯40的输出端。第二波导芯40在下包层10上的正投影与第一波导芯20在下包层10上的正投影部分重叠,具体地,第二波导芯40的第二端至第一端的部分区域与第一波导芯20的第一端至第二端的部分区域相对,第一波导芯20和第二波导芯40相对的部分形成绝热耦合器,从而可以实现第一波导芯20和第二波导芯40之间的宽谱低损耗耦合,例如宽谱的范围内可以小于0.5dB/facet。
第二波导芯40的宽度W大于自身的厚度T,第二波导芯40的第一端的宽度大于标准单模光纤的模斑直径的三分之一。如此设计,可以使第二波导芯40的模场与标准单模光纤的模场匹配,从而提高了硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗。
可以理解的是,第二波导芯40的宽度W是指第二波导芯在水平方向的宽度,厚度T是指第二波导芯在垂直方向的高度。第二波导芯40内部构成量子阱,在宽度方向对光信号有较强的限制作用,以使光信号被束缚在第二波导芯40内。在厚度方向,对光信号的束缚性弱,使得光信号可以耦合成模斑,厚度越小,对光信号的束缚越弱,模斑越大。在一可能的实施方式中,第二波导芯40的宽度W可以为3μm~7μm,厚度T小于1μm,当第二波导芯40的厚度小于1μm时,第二波导芯40的模斑高度大于标准单模光纤的模斑高度的一半,或者说,第二波导芯40的厚度小于其所传输的光信号的波长。
值得一提的是,第二波导芯40的模斑形状为椭圆形,其中,横向(宽度方向)为椭圆的长轴,纵向(厚度方向或高度方向)为短轴,使得第二波导芯40纵向的模斑稍小,光信号不易泄露到第一波导芯20。
上包层50设置在第二波导芯40上,上包层50可以为单层结构、双层结构或多层结构。上包层50一般为透明材料制成,上包层50的折射率小于第二波导芯40的折射率,使得光信号被限制在第二波导芯40内传播。上包层50的材质可以为氮氧化硅(SiON)、聚合物、二氧化硅(SiO 2)、有机无机复合材料,或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。例如,上包层50由掺杂有微量三氧化二硼(B 2O 3)的二氧化硅(SiO 2)组成,在二氧化硅中掺杂有微量的三氧化二硼,可以降低上包层50的折射率。
当采用上述模斑转换器连接硅光子芯片和标准单模光纤时,模斑转换器中的第一波导芯20的第二端(例如图2中所示的第一波导芯20的左端)与硅光子芯片连接,第二波导芯40的第一端(例如图2中所示的第二波导芯40的右端)与标准单模光纤连接。根据光的耦合理论,从硅光子芯片中输出进入到第一波导芯20中的光会耦合到第二波导芯40。
上述实施例提供的模斑转换器,可以用于传递TE模式和TM模式的光信号,其中TE模式又称为横电模,TM模式又称为横磁模。不同模式的光信号在模斑转换器中的模场分布是不同的,下面将分别以TE模式的光信号以及TM模式的光信号为例进行描述。
当采用TE模式的光信号时,如图4所示,TE模式的光信号从硅光子芯片进入到模斑转换器中的A区时,此区域无第二波导芯40,模场完全被束缚在第一波导芯20内;当光信号传播到B区时,此区域中第一波导芯20和第二波导芯40开始具有重叠部分,此区域的第一波导芯20较宽,因此对模场的束缚很好,使得光信号不会耦合到第二波导芯40;之后当光信号传播到C区时,此区域的第一波导芯20变窄,因此模斑变大,光信号开始向第二波导芯40耦合扩散,模场的形态为椭圆形;当光信号传播到D点时,光信号从第一波导芯20全部耦合到第二波导芯40中,模场的形态为椭圆形;当光信号在第二波导芯40的E区时将以椭圆形的模场形态向标准单模光纤60方向传播;当光信号传播到第二波导芯40的第一端(图4中的右端)的端面时,此时模场与标准单模光纤60的模场匹配,光信号基本全部传递到标准单模光纤60中。因此,采用本申请实施例提供的模斑转换器连接硅光子芯片和标准单模光纤时,能够提高硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗,可以实现宽谱小于1dB/facet的低损耗耦合。
当采用TM模式的光信号时,如图5所示,TM模式的光信号从硅光子芯片进入到模斑转换器中的A区时,此区域无第二波导芯40,模场完全被束缚在第一波导芯 20内;当光信号传播到B区时,此区域中第一波导芯20和第二波导芯40开始具有重叠部分,此区域的第一波导芯20较宽,因此对模场的束缚较好,使得光信号不会耦合到第二波导芯40;之后当光信号传播到C区时,此时区域的第一波导芯20的宽度变窄,因此模斑变大,光信号开始向第二波导芯40耦合扩散,模场的形态为椭圆形;当光信号传播到D点时,光信号从第一波导芯20全部耦合到第二波导芯40中,模场的形态为椭圆形;当光信号在第二波导芯40的E区时将以椭圆形的模场形态向标准单模光纤60方向传播;当光信号传播到第二波导芯40的第一端(图5中的右端)的端面时,此时模场与标准单模光纤60的模场匹配,光信号基本全部传递到标准单模光纤60中。因此,采用本申请实施例提供的模斑转换器连接硅光子芯片和标准单模光纤时,能够提供提高硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗。
综上,采用本申请实施例提供的模斑转换器连接硅光子芯片和标准单模光纤时,当光信号进入到模斑转换器中后,光信号会从第一波导芯20逐渐耦合到第二波导芯40,并且,由于第二波导芯40的第一端的宽度大于标准单模光纤60的模斑直径的三分之一,使得第二波导芯40的模场与标准单模光纤60的模场匹配,从而提高了硅光子芯片和标准单模光纤之间的光信号耦合效率,降低耦合损耗。同时,由于在模斑转换器中设置了间隙层30,当刻蚀形成第二波导芯40时,间隙层30可以阻挡刻蚀液流到第一波导芯20上,防止第一波导芯10被刻蚀,从而避免反复修复第一波导芯20,简化工艺流程,节约成本。此外,由于间隙层30的存在,可以适当地降低对刻蚀精度的要求,从而降低工艺难度;另外,由于间隙层30的折射率小于第二波导芯40的折射率,进而可以防止第二波导芯40中的光信号向第一波导芯20方向泄露,减少泄露损耗。
在本申请实施例中,第一波导芯20的形状呈锥形或楔形,其中,第一波导芯20的第一端(图2中第一波导芯的右端)为尖端。第一波导芯20的宽度变化过程和/或厚度变化过程对模斑转换器的长度影响较大,第一波导芯20的宽度和/或厚度可以为单段渐变、多段渐变以及厚度逐级跳跃变化等,如此设计,可以减小模斑转换器的长度,以及降低封装难度。此外,通过加宽第一波导芯20的尖端的宽度,可以进一步降低封装难度。
如图6所示,在一种可能实施方式中,第一波导芯的宽度和/或厚度单段渐变;从第一波导芯20的第二端至第一端,第一波导芯20的厚度保持不变,第一波导芯20的宽度逐渐减小。又如,从第一波导芯20的第二端至第一端,第一波导芯20的宽度不变,第一波导芯20的厚度逐渐减小;再如,从第一波导芯20的第二端至第一端,第一波导芯20的宽度和厚度均逐渐减小。
在上述图6所示实施例中,第一波导芯20的宽度和/或厚度是线性减小的,但并不限于此,第一波导芯20的宽度和/或厚度也可以非线性缩减。例如,如图7所示,在另一种可能的实施方式中,第一波导芯20的宽度和/或厚度多段渐变;第一波导芯20包括三个锥形段:锥头段21、中间段22和锥尖段23,其中,锥头段21的小端与中间段22的大端连接,中间段22的小端与锥尖段23的大端连接,锥尖段的小端即尖端指向标准单模光纤,且锥头段21的中心轴、中间段22的中心轴和锥尖段23的中心轴重合,锥头段21的锥度、中间段22的锥度和锥尖段23的锥度均不相同。概括地说, 从第一波导芯20的第二端至第一端,第一波导芯20包括同轴且依次连接的至少两个锥形段,且至少一个个锥形段的锥度与所述至少两个锥形段中的余下锥形段的锥度不同。可以理解的是,第一波导芯20所包括的各锥形段也可以同轴且间隔设置,任意相邻的两个锥形段之间的距离小于进入第一波导芯20中的光信号的波长,防止光信号在从上一个锥形段下一个锥形段传播时在该下一个锥形段的光输入端出现反射,降低光信号的损耗。
又如,如图8和图9所示,在另一种可能的实施方式中,第一波导芯20的厚度逐级跳跃变化;第一波导芯20包括两个锥形层:下锥形层24和上锥形层25,下锥形层24和上锥形层25的大端的形状和大小相同,且下锥形层24和上锥形层25的大端对齐;下锥形层24的尖端和上锥形层25的尖端不对齐,其中,下锥形层24的长度较长,上锥形层24的长度较短,下锥形层24的尖端和上锥形层25的尖端形成台阶。概括地说,第一波导芯20包括堆叠设置的至少两个锥形层,沿第一波导芯20包括远离尖端的一端至尖端方向,每个锥形层的厚度不变。各锥形层的大端对齐,且在相邻的两层锥形层中,位于上层的锥形层的长度小于位于下层的锥形层的长度,使得位于上层的锥形层的尖端与位于下层的锥形层的尖端形成台阶。可以理解的是,从第一波导芯20底面至顶面,各锥形层的长度依次减小。
在本申请实施例中,第二波导芯40的第一端(图2中第二波导芯的右端)的宽度对第二波导芯40与标准单模光纤的耦合效率影响较大,需要保证第二波导芯40的第一端的宽度大于标准单模光纤的模斑直径的三分之一,因此,需要对第二波导芯40的第一端的宽度进行精细设计,以是第二波导芯40的模斑尺寸与标准单模光纤的模斑尺寸匹配;例如标准单模光纤的模斑直接为8μm,第二波导芯40的第一端的宽度可以选为3μm。
第二波导芯40的第二端的宽度对耦合损耗影响较小,可以选用不同的宽度和形状。例如,如图10所示,从第二波导芯40的第二端至第一端,第二波导芯40的宽度不变,第二波导芯40的宽度大于自身的厚度,且第二波导芯40的第一端的宽度大于标准单模光纤的模斑直径的1/3。
又如,如图11所示,第二波导芯40分为同轴且依次连接的三个波导段:固定宽度段41、中间过渡段42和宽度变化段43,其中,固定宽度段41的右端与中间过渡段42的大端连接,中间过渡段42的小端与宽度变化段43的大端连接,宽度变化段43的小端(图11中的最右端)的宽度需要保证大于标准单模光纤的模斑直径的三分之一;且沿第二波导芯40的第二端至第一端的方向,固定宽度段41的宽度不变,中间过渡段42和宽度变化段43的宽度均逐渐减小,中间过渡段42和宽度变化段43的宽度变化程度不同,或者说,中间过渡段42和宽度变化段43的锥度不同。
再如,如图12所示,第二波导芯40同轴且依次连接的三个宽度变化段43,其中,位于最左侧的宽度变化段43的大端与位于中间的宽度变化段43的小端连接,位于中间的宽度变化段43的大端与位于最右侧的宽度变化段43的小端连接,位于最右侧的宽度变化段43的大端(图12中的最右端)的宽度需要保证大于标准单模光纤的模斑直径的三分之一。沿第二波导芯40的第二端至第一端的方向,三个宽度变化段43的宽度均逐渐增大,且三个宽度变化段43的宽度变化程度不同。
可以理解的是,上述第二波导芯40可以由至少两个波导段组成,这些波导段同轴且依次连接,即这些依次同轴连接形成一体结构。此外,这些波导段还以同轴且依次间隔设置,当这些波导段间隔设置时,相邻的两个波导段之间的距离小于在第二波导芯40中的光信号的波长,防止光信号在相邻的两个波导段之间出现反射,降低光信号的损耗。
本申请实施例还提了一种模斑转换器的制备方法,用于制备上述模斑转换器,该制备方法包括:
步骤一,可以采用沉积的方式形成下包层。
示例性地,可以通过物理气相沉积、化学气相沉积、原子层沉积、蒸镀、溅射等沉积方式在衬底上或过程基板上形成下包层。其中,下包层的材质可以与衬底的材质或过程基板的材质相同,过程基板一般是模斑转换器制备过程中使用的制程基板,在完成模斑转换器的制备后一般需要去除。
下包层由透明材料制成,下包层的材质可以为氮氧化硅(SiON)、聚合物、二氧化硅(SiO 2)、有机无机复合材料、或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。例如,下包层由掺杂有微量三氧化二硼(B 2O 3)的二氧化硅(SiO 2)组成,在二氧化硅中掺杂有微量的三氧化二硼,以降低下包层的折射率。
步骤二,在下包层上形成第一波导芯,第一波导芯的形状为锥形,且第一波导芯的尖端指向标准单模光纤的耦合端。
示例性地,首先可以通过物理气相沉积、化学气相沉积、原子层沉积、蒸镀、溅射等沉积方式在下包层上形成第一波导胚层,然后通过刻蚀工艺去除部分第一波导胚层,余下的第一波导胚层为形成在下包层上的第一波导芯。第一波导芯的折射率大于下包层的折射率,以使光信号被限制在第一波导芯内传播,防止光信号向下包层泄露,减小光信号的损耗。此外,由于从第一波导芯的第二端至第一端,第一波导芯的宽度和/或厚度减小,从而降低光信号在第一波导芯内的损耗。
第一波导芯一般由透明材料制成,第一波导芯的材质可以为氮化硅(SiN)、氮氧化硅(SiON)、硅(Si)、锗(Ge)或硅-锗系合金(Si xGe y)。
步骤三,在第一波导芯上形成覆盖第一波导芯的间隙层。
示例性地,通过物理气相沉积、化学气相沉积、原子层沉积、蒸镀、溅射等沉积方式在第一波导芯上以及在下包层上形成覆盖第一波导芯的间隙层。间隙层一般比第一波导芯略大,以便遮盖第一波导芯,当刻蚀形成第二波导芯时,利用间隙层可以阻挡刻蚀液(如氢氟酸)流到第一波导芯上,防止第一波导芯被刻蚀,如此可以防止在刻蚀形成第二波导芯时第一波导芯被损伤,避免反复修复第一波导芯,简化工艺流程,节约成本。再者,由于间隙层的存在,可以适当地放宽刻蚀精度,降低工艺难度。
此外,间隙层的厚度大于或等于0.2μm,例如为间隙层的厚度为0.5μm、1μm或3μm 等,间隙层的引入可以在刻蚀形成第二波导芯时有效地保护第一波导芯,降低工艺难度。而且间隙层的厚度越厚,工艺越简单;本申请实施例中间隙层的厚度可以容忍3μm。
间隙层一般由透明材料制成,间隙层的折射率小于第一波导芯的折射率和第二波导芯的折射率,以限制光信号在第一波导芯和第二波导芯内传播,并可防止第二波导芯内光信号向第一波导芯方向泄露,减少光信号的损耗。
间隙层的材质可以为氮氧化硅(SiON)、聚合物、二氧化硅、有机无机复合材料、或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。例如,间隙层由掺杂有微量三氧化二硼(B 2O 3)的二氧化硅(SiO 2)组成,在二氧化硅中掺杂有微量的三氧化二硼,以降低间隙层的折射率。需要说明的是,间隙层的材质可以与下包层的材质或上包层的材质相同,也可以不同,在本实施例中间隙层的材质与下包层的材质相同。
步骤四,在间隙层上形成第二波导芯,第二波导芯的宽度大于自身的厚度,且第二波导芯的第一端的宽度大于标准单模光纤的模斑直径的三分之一,所述第二波导芯的第一端为与标准单模光纤耦合的耦合端。
示例性地,首先通过物理气相沉积、化学气相沉积、原子层沉积、蒸镀、溅射等沉积方式在间隙层上形成第二波导胚层,然后通过刻蚀工艺,将部分第二波导胚层去除,保留下来的第二波导胚层即为第二波导芯,第二波导芯在下包层上的正投影与第一波导芯在下包层上的正投影部分重叠,使得第二波导芯和第一波导芯相对的部分形成绝热耦合器,从而可以实现第二波导芯和第一波导芯之间的宽谱低损耗耦合。
第二波导芯一般由透明材料制成,第二波导芯的折射率大于间隙层的折射率、下包层的折射率和上包层的折射率,且第二波导芯的折射率小于第一波导芯的折射率,使得光信号被限制第二波导芯内传播,防止光信号泄露。
第二波导芯的材质可以为氮氧化硅(SiON)、聚合物、二氧化硅(SiO 2)、有机无机复合材料、或为掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。
步骤五,在第二波导芯上形成上包层;上包层的折射率小于第二波导芯的折射率。
示例性地,可以通过物理气相沉积、化学气相沉积、原子层沉积、蒸镀、溅射等沉积方式在第二波导芯上形成上包层,上包层和下包层围成一个容纳腔,第一波导芯、间隙层和第二波导芯位于该容纳腔内。上包层的材质可以为氮氧化硅(SiON)、聚合 物、二氧化硅、有机无机复合材料、或掺杂有金属氧化物或非金属氧化物的二氧化硅(SiO 2),其中,聚合物可以为耐刻蚀液腐蚀且透明的高分子化合物,如:聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)和聚酰胺(Polyamide,简称为PA)等。有机无机复合材料耐刻蚀液腐蚀且透明的树脂基复合材料,如环氧树脂基复合材料。掺杂的金属氧化物可以为三氧化二铝(Al 2O 3)、三氧化锆(ZrO 3)、二氧化锗(GeO 2)或二氧化钛(TiO 2),掺杂的非金属氧化物可以为三氧化二硼(B 2O 3)、五氧化二磷(P 2O 5)或二氧化硫(SO 2)。例如,上包层由掺杂有微量三氧化二硼(B 2O 3)的二氧化硅(SiO 2)组成,在二氧化硅中掺杂有微量的三氧化二硼,以降低上包层的折射率。上包层的折射率小于第二波导芯的折射率,以使光信号被限制在第二波导芯中传播。
在本申请实施例提供的模斑转换器的制备方法中,在形成第二波导芯之前,在第一波导芯上形成覆盖第一波导芯的间隙层,当刻蚀形成第二波导芯时,间隙层可以阻挡刻蚀液流到第一波导芯上,防止第一波导芯被刻蚀,从而避免反复修复第一波导芯,简化工艺流程,节约成本。此外,由于间隙层的存在,可以适当地降低刻蚀精度的要求,降低工艺难度;另外,光信号从低处的第一波导芯耦合到高处的第二波导芯,拉高了光斑的高度,增加了光斑和衬底的间距,可减少光斑向衬底方向泄露,从而减少了泄露损耗。
如图13所示,本申请实施例还提供了一种硅光器件100,该硅光器件100包括硅光子芯片90、标准单模光纤60以及上述实施例所述的模斑转换器80,模斑转换器80分别与硅光子芯片90和标准单模光纤60连接,用于将硅光子芯片90输出的光信号耦合至标准单模光纤60中。
其中,模斑转换器80的结构和功能与上述实施例相同,具体可以参考上述各实施例,在此不再赘述。硅光子芯片90通常包括硅基发光器件、调制器、探测器和光波导器件,这些器件可以实现对光信号的发射、传输、检测和处理,进而实现光通信、光互连和光计算等应用。
本申请实施例提供的硅光器件100,硅光子芯片90输出的光信号进入到第一波导芯内后,沿第一波导芯的导光方向传播的同时,可以从第一波导芯耦合到第二波导芯,而且当光信号从硅光子芯片进入到模斑转换器80中后能够增大模斑的宽度,使得该模斑宽度与标准单模光纤60中的模斑宽度相当,从而使得硅光子芯片90和标准单模光纤60的模场匹配,提高硅光子芯片90和标准单模光纤60之间的耦合效率,降低耦合损耗。
如图14所示,本申请实施例还提供了一种光通信设备,该光通信设备包括通信装置200和与该通信装置200通信连接上述硅光器件100。其中,硅光器件100的结构与功能与上述实施例相同,参见上述实施例的描述即可。通信装置200可以为路由器或服务器。
本申请实施例提供的光通信设备,利用硅光器件100可以降低通信时的光损耗,提高光通信设备的通道均匀性和稳定性。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施 方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种模斑转换器,其特征在于,包括:下包层,设置于所述下包层上的第一波导芯、覆盖所述第一波导芯的间隙层、设置于所述间隙层上的第二波导芯,以及设置于所述第二波导芯上的上包层;
    所述第一波导芯的折射率大于第二波导芯的折射率,所述第二波导芯的折射率大于所述间隙层的折射率、所述下包层的折射率和所述上包层的折射率;
    所述第一波导芯用于接收外界输入的光信号,并使所述光信号耦合到所述第二波导芯;
    所述第二波导芯用于将从所述第一波导芯耦合到所述第二波导芯内的光信号输出;
    所述间隙层为耐腐蚀的透明层,用于当刻蚀形成第二波导芯时,阻挡刻蚀液刻蚀所述第一波导芯。
  2. 根据权利要求1所述的模斑转换器,其特征在于,所述间隙层的厚度大于或等于0.2μm。
  3. 根据权利要求1或2所述的模斑转换器,其特征在于,所述间隙层的材质为氮氧化硅、聚合物、二氧化硅、或掺杂有金属氧化物或非金属氧化物的二氧化硅。
  4. 根据权利要求1所述的模斑转换器,其特征在于,所述第一波导芯的形状为锥形。
  5. 根据权利要求1或4所述的模斑转换器,其特征在于,沿所述第一波导芯的导光方向,所述第一波导芯的宽度逐渐减小,和/或,所述第一波导芯的厚度逐渐减小。
  6. 根据权利要求1或4所述的模斑转换器,其特征在于,沿所述第一波导芯的导光方向,所述第一波导芯包括同轴且依次连接的至少两个锥形段,且至少一个锥形段的锥度与其余所述锥形段的锥度不同。
  7. 根据权利要求1或4所述的模斑转换器,其特征在于,所述第一波导芯包括堆叠设置的至少两个锥形层;
    沿所述第一波导芯的导光方向,各所述锥形层的厚度不变;
    各所述锥形层的大端对齐,且在相邻的两层锥形层中,位于上层的锥形层的长度小于位于下层的锥形层的长度。
  8. 根据权利要求1所述的模斑转换器,其特征在于,所述第二波导芯的宽度大于自身的厚度,且所述第二波导芯的输出端的宽度大于标准单模光纤的模斑直径的三分之一。
  9. 根据权利要求1或8所述的模斑转换器,其特征在于,所述第二波导芯的厚度小于1μm,所述第二波导芯的输出端的宽度为3μm~7μm。
  10. 根据权利要求1或8所述的模斑转换器,其特征在于,所述第二波导芯包括同轴且依次连接的至少两个波导段。
  11. 一种硅光器件,其特征在于,包括:硅光子芯片、标准单模光纤以及如权利要求1-10任一项所述的模斑转换器,所述模斑转换器分别与所述硅光子芯片和所述标准单模光纤连接,用于将所述硅光子芯片输出的光信号耦合至所述标准单模光纤中。
  12. 一种光通信设备,其特征在于,包括:通信装置以及与所述通信装置通信连接的如权利要求11所述的硅光器件。
  13. 一种模斑转换器的制备方法,其特征在于,包括:
    形成下包层;
    在所述下包层上形成第一波导芯,所述第一波导芯用于接收外界输入的光信号,并使所述光信号耦合到第二波导芯;
    在所述第一波导芯上形成覆盖所述第一波导芯的间隙层,所述间隙层为耐腐蚀的透明层,用于当刻蚀形成第二波导芯时,阻挡刻蚀液刻蚀所述第一波导芯;
    在所述间隙层上形成第二波导芯,所述第二波导芯用于将从所述第一波导芯耦合到所述第二波导芯内的光信号输出;
    在所述第二波导芯上形成上包层;
    其中,所述第一波导芯的折射率大于第二波导芯的折射率,所述第二波导芯的折射率大于所述间隙层的折射率、所述下包层的折射率和所述上包层的折射率。
  14. 根据权利要求13所述的模斑转换器的制备方法,其特征在于,所述间隙层的厚度大于或等于0.2μm。
  15. 根据权利要求13所述的模斑转换器的制备方法,其特征在于,所述第二波导芯的宽度大于自身的厚度,且所述第二波导芯的输出端的宽度大于标准单模光纤的模斑直径的三分之一。
PCT/CN2019/122487 2019-12-02 2019-12-02 模斑转换器及其制备方法、硅光器件和光通信设备 WO2021108967A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/122487 WO2021108967A1 (zh) 2019-12-02 2019-12-02 模斑转换器及其制备方法、硅光器件和光通信设备
CN201980102176.9A CN114730047A (zh) 2019-12-02 2019-12-02 模斑转换器及其制备方法、硅光器件和光通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122487 WO2021108967A1 (zh) 2019-12-02 2019-12-02 模斑转换器及其制备方法、硅光器件和光通信设备

Publications (1)

Publication Number Publication Date
WO2021108967A1 true WO2021108967A1 (zh) 2021-06-10

Family

ID=76221348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122487 WO2021108967A1 (zh) 2019-12-02 2019-12-02 模斑转换器及其制备方法、硅光器件和光通信设备

Country Status (2)

Country Link
CN (1) CN114730047A (zh)
WO (1) WO2021108967A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035269A (zh) * 2021-11-30 2022-02-11 中国科学院半导体研究所 模斑转换器及其制备方法
CN114460687A (zh) * 2022-01-19 2022-05-10 杭州芯耘光电科技有限公司 一种应用于硅光芯片的耦合结构
WO2023109854A1 (zh) * 2021-12-15 2023-06-22 中兴通讯股份有限公司 Cpo装置和交换机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120273A (zh) * 2005-02-15 2008-02-06 斯邦恩特光子学公司 多芯平面型光波导及制作和使用该光波导的方法
CN107346049A (zh) * 2017-08-08 2017-11-14 苏州易缆微光电技术有限公司 一种光波导模斑转换器及其制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764776B2 (ja) * 2010-10-08 2015-08-19 国立研究開発法人産業技術総合研究所 光学変換素子
JP2013231753A (ja) * 2012-04-27 2013-11-14 Nippon Telegr & Teleph Corp <Ntt> スポットサイズ変換器およびその製造方法
CN203241564U (zh) * 2013-05-30 2013-10-16 青岛海信宽带多媒体技术有限公司 光纤波导模斑转换器及光耦合器
CN105209947B (zh) * 2013-12-20 2018-12-25 华为技术有限公司 光波导与单模光纤的耦合方法和耦合装置
US9529154B2 (en) * 2014-03-21 2016-12-27 Imec Vzw Method for optical coupling between a photonic integrated circuit and an external optical element
JP6262597B2 (ja) * 2014-05-12 2018-01-17 日本電信電話株式会社 スポットサイズ変換器
CN104090336B (zh) * 2014-07-30 2017-07-11 华中科技大学 紧凑型高效率的模斑变换器及其设计方法
US20160306117A1 (en) * 2015-04-17 2016-10-20 Christopher Middlebrook Tapered polymer waveguide
CN110231719A (zh) * 2018-03-05 2019-09-13 中国科学院半导体研究所 一种电光调制器
CN109358395B (zh) * 2018-12-04 2024-02-27 苏州易缆微光电技术有限公司 一种新型波导面耦合模斑转换器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120273A (zh) * 2005-02-15 2008-02-06 斯邦恩特光子学公司 多芯平面型光波导及制作和使用该光波导的方法
CN107346049A (zh) * 2017-08-08 2017-11-14 苏州易缆微光电技术有限公司 一种光波导模斑转换器及其制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035269A (zh) * 2021-11-30 2022-02-11 中国科学院半导体研究所 模斑转换器及其制备方法
CN114035269B (zh) * 2021-11-30 2024-03-15 中国科学院半导体研究所 模斑转换器及其制备方法
WO2023109854A1 (zh) * 2021-12-15 2023-06-22 中兴通讯股份有限公司 Cpo装置和交换机
CN114460687A (zh) * 2022-01-19 2022-05-10 杭州芯耘光电科技有限公司 一种应用于硅光芯片的耦合结构

Also Published As

Publication number Publication date
CN114730047A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US10545288B2 (en) Integrated on-chip polarizer
WO2021108967A1 (zh) 模斑转换器及其制备方法、硅光器件和光通信设备
US7978941B2 (en) Single mode photonic circuit architecture and a new optical splitter design based on parallel waveguide mode conversion
KR101121459B1 (ko) 광섬유 및 평면 광학 도파관을 치밀하게 결합하는 방법 및장치
KR102313684B1 (ko) 광 결합기
US20070263973A1 (en) Slanted Segmented Coupler
CA2734614A1 (en) Optical mode transformer, in particular for coupling an optical fiber and a high-index contrast waveguide
US10809456B2 (en) Adiabatically coupled photonic systems with fan-out interposer
US10634846B2 (en) Optical module
CN113534342B (zh) 一种基于铌酸锂薄膜波导的高耦合效率分段均匀光栅耦合器
US20200132931A1 (en) Relaxed tolerance adiabatic coupler for optical interconnects
US10473858B1 (en) Waveguide routing configurations and methods
US7120335B2 (en) Vertically and laterally confined 3D optical coupler
JP5304209B2 (ja) スポットサイズ変換器
CN113376743B (zh) 一种基于长周期光栅的模斑转换器
CN112305671A (zh) 基于狭缝波导的锥形偏振分束器及制备方法
JP6005713B2 (ja) 光導波路素子、受光装置、光通信装置、光変調器、光共振器、及び光導波路素子の製造方法
CN112470047B (zh) 用于混合器件的二氧化硅到氮化硅plc波型变换器
JP5173925B2 (ja) 光学素子
JP4549949B2 (ja) 光学素子
JP2022535721A (ja) 非対称な光学損失性能曲線および改善された最悪ケース光学損失性能を有する可撓性導波路
US8768124B2 (en) Direct coupling of optical slot waveguide to another optical waveguide
CN219609274U (zh) 一种基于硅波导的模斑转换器
WO2023234111A1 (ja) 光学素子および光学素子の製造方法
US20240069276A1 (en) Edge coupler and method of forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954774

Country of ref document: EP

Kind code of ref document: A1