WO2021107097A1 - Nucleic acid molecule for hepatitis b treatment use - Google Patents

Nucleic acid molecule for hepatitis b treatment use Download PDF

Info

Publication number
WO2021107097A1
WO2021107097A1 PCT/JP2020/044231 JP2020044231W WO2021107097A1 WO 2021107097 A1 WO2021107097 A1 WO 2021107097A1 JP 2020044231 W JP2020044231 W JP 2020044231W WO 2021107097 A1 WO2021107097 A1 WO 2021107097A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
acid molecule
sequence
nucleotide sequence
Prior art date
Application number
PCT/JP2020/044231
Other languages
French (fr)
Japanese (ja)
Inventor
豊 惠口
順一 安岡
智佐登 江村
Original Assignee
株式会社ボナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ボナック filed Critical 株式会社ボナック
Publication of WO2021107097A1 publication Critical patent/WO2021107097A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention comprises a nucleic acid molecule that effectively suppresses the amplification of hepatitis B virus (HBV) DNA, and a nucleic acid molecule for suppressing the growth of hepatitis B virus, for treating hepatitis B, liver cirrhosis and liver cancer.
  • HBV hepatitis B virus
  • Hepatitis B virus is said to infect 1.3 million to 1.5 million people in Japan and about 350 million people worldwide, and is a major cause of chronic hepatitis along with hepatitis C virus. ing.
  • the current treatment can be expected to completely eliminate the HCV virus at a fairly high rate, but the current treatment for chronic hepatitis B cannot completely eliminate the HBV virus.
  • Current treatments for chronic hepatitis B include interferon (IFN) therapy and nucleic acid analog drug therapy.
  • IFN interferon
  • nucleic acid analog preparation calms hepatitis and improves liver function, but it is obliged to take it for a long period of time, and hepatitis relapses in most cases when the drug is discontinued.
  • Non-Patent Documents 1 and 2 transcription from cccDNA (covalenty closed circular DNA, closed circular DNA or completely closed double-stranded DNA), which is present in a trace amount in the nucleus of hepatocytes even after treatment, occurs after the end of treatment. Therefore, the development of a new innovative therapeutic agent having a different mechanism of action from the above-mentioned therapeutic method is required (Non-Patent Documents 1 and 2).
  • Non-Patent Document 3 The mechanism of action of the candidate for the treatment of chronic hepatitis B is summarized in Non-Patent Document 3. Above all, suppression of translation of all viral proteins by siRNA can be expected to completely block the function of HBV as a virus.
  • Nucleic acid drugs can target molecules such as mRNA and miRNA, which cannot be targeted by conventional small molecule drugs and antibody drugs, and are highly expected as next-generation drugs. As a result, it is expected to create medicines for diseases that have been difficult to treat, and the current situation is that research is being actively conducted all over the world.
  • RNA interference is known as a technique for suppressing gene expression in nucleic acid drugs. Suppression of gene expression by RNA interference is generally carried out, for example, by administering a short double-stranded RNA molecule to cells or the like.
  • the double-stranded RNA molecule is usually called siRNA (small interfering RNA).
  • siRNA small interfering RNA
  • Patent Documents 1 and 2 more effective single-stranded nucleic acid molecules have been newly found to replace siRNA.
  • Patent Document 3 the single-stranded nucleic acid molecule for the treatment of hepatitis B has also been produced.
  • the present invention comprises a nucleic acid molecule that effectively suppresses the amplification of hepatitis B virus DNA, and a medicament for suppressing the growth of hepatitis B virus containing the nucleic acid molecule, and for treating hepatitis B, liver cirrhosis, and liver cancer. It is an object of the present invention to provide a composition.
  • the present inventors include a region containing a nucleotide sequence targeting a specific partial sequence in the hepatitis B virus genomic DNA, a human NCAPH gene, a human Sp1 gene, and a human SOCS7 gene, and a region containing the complementary strand sequence thereof.
  • a single-stranded nucleic acid molecule linked using a specific linker has been found to remarkably suppress the amplification of hepatitis B virus DNA, and has completed the present invention.
  • [1] A single-stranded nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA. Consists of region (X), linker region (Lx) and region (Xc) only The linker region (Lx) has a non-nucleotide structure containing at least one of a pyrrolidine skeleton and a piperidine skeleton.
  • One of the region (X) and the region (Xc) has the following SEQ ID NOs: 1 and 2: (SEQ ID NO: 1) 5'-GAAGAUGAGAAGGCACAGACG -3' (SEQ ID NO: 2) 5'-UCCUGAACUGGAGCCACCAGC -3' A sequence complementary to a part of the hepatitis B virus gene represented by, and SEQ ID NOs: 3 to 5: (SEQ ID NO: 3) 5'-GUUUUCUGAUUGGGAAGGAGC -3' (SEQ ID NO: 4) 5'-CUAAUCCUUGGGCUUCUGGAG -3' (SEQ ID NO: 5) 5'-UAUACUUCACUGCUUCUGGCC -3' A sequence complementary to a part of the human NCAPH gene represented by, and SEQ ID NOs: 6 and 7: (SEQ ID NO: 6) 5'-CCUGUGUGUGUACGUUUGUGC -3' (SEQ ID NO: 7) 5'-UGUACGUUUGUGC
  • nucleic acid molecule containing a nucleotide sequence complementary to the expression-suppressing sequence.
  • the region (X), the linker region (Lx) and the region (Xc) are arranged in this order from the 3'side to the 5'side, and the number of bases (X) in the region (X) and the region (Xc).
  • the nucleic acid molecule according to [1], wherein the number of bases (Xc) in) satisfies the condition of the following formula (1) or formula (2).
  • X 1 and X 2 are independently H 2 , O, S or NH; Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S; R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A; L 1 is an alkylene chain consisting of n atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a. It may or may not be replaced, or L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with oxygen atoms.
  • L 2 is an alkylene chain consisting of m atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c. It does not have to be replaced, or L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
  • Y 2 is NH, O or S
  • the atom of L 2 bonded to Y 2 is carbon
  • the atom of L 2 bonded to OR 2 is carbon
  • the oxygen atoms are not adjacent to each other
  • R a , R b , R c and R d are independent substituents or protecting groups
  • l is 1 or 2
  • m is an integer in the range 0-30
  • n is an integer in the range 0-30
  • one carbon atom other than C-2 on the ring A may be replaced with nitrogen, oxygen or sulfur.
  • a carbon-carbon double bond or a carbon-nitrogen double bond may be contained in the ring A, and the region (Xc) and the region (X) are via -OR 1- or -OR 2-, respectively.
  • R 1 and R 2 may or may not be present, and if present, R 1 and R 2 are independently nucleotide residues or the structure (I), respectively.
  • [6] The nucleic acid molecule according to any one of [1] to [5], wherein the linker region (Lx) is represented by the following formula (I-4a) or (I-6a).
  • nucleic acid molecule according to any one of [1] to [10] wherein the total number of bases is 38 bases or more.
  • nucleic acid molecule according to any one of [1] to [11], which comprises any of the base sequences represented by the following SEQ ID NOs: 19 to 27, 29, 36, 49, 53, 54.
  • SEQ ID NO: 19 5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3'
  • SEQ ID NO: 20 5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3'
  • SEQ ID NO: 21 5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3'
  • SEQ ID NO: 22 5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3'
  • SEQ ID NO: 23 5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUA
  • a therapeutic agent for hepatitis B which comprises the nucleic acid molecule according to any one of [1] to [12].
  • a therapeutic agent for liver cirrhosis or liver cancer which comprises the nucleic acid molecule according to any one of [1] to [12].
  • a nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences in the target genomic DNA sequence is included as an expression-suppressing sequence of the hepatitis B virus gene. Consecutive containing the nucleotide sequence represented by nucleotide number: (3) 1427-1445 (4) 1878-1896 or (5) 3467-3485 of the nucleotide sequence encoding the mRNA of the human NCAPH gene represented by SEQ ID NO: 68.
  • a nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences in a target DNA sequence of 25 nucleotides or less is included as an expression-suppressing sequence of the human NCAPH gene.
  • the nucleotide number of the nucleotide sequence of the mRNA-encoding nucleotide sequence of the human SOCS7 gene represented by SEQ ID NO: 70 which contains a nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences as an expression-suppressing sequence of the human Sp1 gene.
  • nucleic acid molecule according to any one of [17] to [19], further comprising a nucleotide sequence complementary to the expression-suppressing sequence.
  • the complementary nucleotide sequence is (C) In the nucleotide sequence represented by SEQ ID NO: n + 9 (n is an integer selected from 71 to 79), the nucleotide sequence completely complementary to the nucleotide sequence of (a) above (provided that G and U are used). The pairing is considered to be complementary), or (d) a nucleotide sequence that is completely complementary to the nucleotide sequence of (b) above in the nucleotide sequence represented by SEQ ID NO: p (p is an integer selected from 1 to 9).
  • nucleic acid molecule according to [19].
  • nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) and the nucleotide sequence represented by SEQ ID NO: n + 9 are included, or SEQ ID NO: p (p is 1 to 1 to 1).
  • nucleic acid molecule according to any one of [20] to [22], which is siRNA against a hepatitis B virus gene, a human NCAPH gene, a human Sp1 gene, or a human SOCS7 gene.
  • siRNA against a hepatitis B virus gene, a human NCAPH gene, a human Sp1 gene, or a human SOCS7 gene.
  • Described in [24] which comprises a nucleotide sequence represented by SEQ ID NO: m (m is an integer selected from 89 to 98) and a nucleotide sequence represented by SEQ ID NO: m + 9, which is annealed to the sequence. Nucleic acid molecule.
  • the nucleic acid molecule of the present invention can effectively suppress the amplification of hepatitis B virus DNA.
  • the pharmaceutical composition containing the nucleic acid molecule of the present invention is useful for suppressing the growth of hepatitis B virus, for treating hepatitis B, cirrhosis, and liver cancer by effectively suppressing the amplification of hepatitis B virus DNA. Is.
  • FIG. 1 is a schematic diagram showing an example of the nucleic acid molecule of the present invention.
  • FIG. 2 is a graph showing a relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 3 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention.
  • FIG. 4 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 5 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention.
  • FIG. 6 is a graph showing the relative value of the amount of hepatitis B virus HBs antigen in the culture supernatant in the examples of the present invention.
  • FIG. 7 is a graph showing a relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 8 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention.
  • FIG. 9 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 10 is a graph showing a relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 11 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention.
  • FIG. 12 is a graph showing the relative value of the amount of hepatitis B virus HBs antigen in the culture supernatant in the examples of the present invention.
  • FIG. 13 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 14 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention.
  • FIG. 15 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • FIG. 12 is a graph showing the relative value of the amount of hepatitis B virus HBs antigen in the culture supernatant in the examples of the present invention.
  • FIG. 13 is a graph showing the relative value of the amount of
  • FIG. 16 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention.
  • FIG. 17 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
  • Nucleic acid molecule for suppressing amplification of hepatitis B virus DNA The present invention provides a nucleic acid molecule having an amplification suppressing activity of hepatitis B virus DNA.
  • Hepatitis B virus invades hepatocytes due to infection and proliferates.
  • the immune function works to eliminate it, but it is impossible to selectively attack only the virus in hepatocytes, and the hepatocytes themselves attack. It is received and destroyed, leading to the development of hepatitis.
  • hepatitis B becomes severe, cirrhosis and liver cancer are caused.
  • Hepatitis B virus has incomplete double-stranded DNA that stores genetic information, DNA polymerase located in the center, which are the core (HBc antigen), outer shell (HBe antigen), and outer membrane (HBs antigen). ) Has a structure surrounded by.
  • cccDNA covalenty closed circular DNA
  • mRNA 3.5 kb, 2.4 kb, 2.1 kb, 0.7 kb
  • structural proteins HBs antigen, HBc antigen, HBe antigen, and reverse transcriptase-active polymerase are transcribed from them.
  • X protein is translated (Molecular Therapy 2013; 21 (5) 973-985, Figure 3a).
  • the viral genome and the above four types of mRNA contain some or all of the four ORFs (open reading frames) (S ORFs, core ORFs, X ORFs, and polymerase ORFs) that can be translated as proteins (Molecular Therapy 2013; 21 (5) 973-985, Figure 3a).
  • SORF consists of three proteins that make up HBsAg, large S protein (including pre-S1, pre-S2 and S regions), Middle S protein (including pre-S2 and S regions), and Small S protein (including pre-S2 and S regions). (Consists of only the S region) is coded.
  • the core ORF encodes a core protein and a pre-core protein.
  • the core protein forms core particles, and the pre-core protein becomes the HBe antigen after cleaving 19 hydrophobic signal peptides and 34 amino acid residues at the C-terminal.
  • the X ORF encodes an X protein that is thought to be involved in viral growth and the development of hepatocellular carcinoma.
  • the polymerase ORF also encodes a DNA polymerase protein with reverse transcriptase activity.
  • a certain type of mRNA is incorporated into core particles as pregenomic RNA, minus-strand DNA is synthesized by the action of reverse transcriptase, and then plus-strand DNA is synthesized to become incomplete circular double-stranded DNA. Furthermore, it is wrapped in an envelope formed from HBs antigen and becomes virus particles (Dane particles), which are released into the blood.
  • HBs antigen translated by mRNA, hollow particles containing HBc antigen and p22cr antigen (particles without DNA nuclei), HBe antigen passing through the hepatocellular membrane, etc. are Dane particle blood. It is released and secreted in large quantities into the blood as a route different from the medium release.
  • Diagnosis of hepatitis B is made by detecting the HBsAg and / or HBeAg in the blood.
  • a positive HBsAg in the blood indicates that HBV is present in the liver, that HBV components are synthesized, and that hepatitis B is infected at the time of examination.
  • HBsAg in the blood grasps the viral growth in the liver and provides an index for judging the completion of treatment.
  • the HBe antigen is a protein that is overproduced when HBV proliferates, and indicates that it is highly infectious when HBV is actively proliferating in the liver.
  • the activity of the nucleic acid molecule to suppress the expression of the hepatitis B virus gene is, for example, in cells in which the nucleic acid molecule to be evaluated is infected with hepatitis B virus or cells into which the hepatitis B virus genome has been introduced (preferably human cells).
  • the amount of hepatitis B virus HBs antigen or hepatitis B virus HBe antigen that was introduced and released (transferred) to the outside of the cell was determined by whether the nucleic acid molecule to be evaluated was introduced or a negative control nucleic acid molecule.
  • the amount of hepatitis B virus HBsAg or HBeAg can be evaluated by detecting the antigen by a known immunological method using an antibody that specifically recognizes hepatitis B virus HBsAg or HBeg. it can. Immunological methods include flow cytometry analysis, radioimmunoassay immunoassay (RIA method), ELISA method (Methods in Enzymol. 70: 419-439 (1980)), Western blotting, immunohistochemical staining, etc. Can be done.
  • Nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA The present invention is complementary to the nucleotide sequence in the mRNA of the hepatitis B virus gene, the mRNA of the human NCAPH gene, the mRNA of the human Sp1 gene or the mRNA of the human SOCS7 gene.
  • a nucleic acid molecule (hereinafter, may be referred to as “nucleic acid molecule of the present invention”) that suppresses the amplification of hepatitis B virus DNA, which contains such a sequence.
  • the nucleic acid molecule of the present invention can be used as a sequence that suppresses the amplification of hepatitis B virus DNA with a specific site of mRNA of hepatitis B virus gene, mRNA of human NCAPH gene, mRNA of human Sp1 gene or mRNA of human SOCS7 gene. Contains complementary sequences.
  • the nucleotide sequence of the genomic DNA of hepatitis B virus the nucleotide sequence of Hepatitis B virus isolate 31388 represented by SEQ ID NO: 67 (registered as GenBank Accession No. MG571368 in the NCBI database) or a variant thereof. An array can be mentioned.
  • the nucleotide sequence of the mRNA of the human NCAPH gene is the nucleotide sequence of Homo sapiens non-SMC condensin I complex subunit H (NCAPH), transcript variant 1, mRNA represented by SEQ ID NO: 68 (GenBank Accession No. NM_015341 in the NCBI database). However, in the nucleotide sequence, "t” shall be read as “u”) or the nucleotide sequence of a variant thereof.
  • nucleotide sequence of the mRNA of the human Sp1 gene As the nucleotide sequence of the mRNA of the human Sp1 gene, the nucleotide sequence of Homo sapiens Sp1 transcription factor (SP1), transcript variant 1, mRNA represented by SEQ ID NO: 69 (registered as GenBank Accession No. NM_138473 XM_028606 in the NCBI database). However, in the nucleotide sequence, “t” shall be read as "u”) or a variant of the nucleotide sequence thereof.
  • SP1 Homo sapiens Sp1 transcription factor
  • nucleotide sequence of the mRNA of the human SOCS7 gene As the nucleotide sequence of the mRNA of the human SOCS7 gene, the nucleotide sequence of Homo sapiens suppressor of cytokine signaling 7 (SOCS7) and mRNA represented by SEQ ID NO: 70 is registered as GenBank Accession No. NM_014598 XM_371052 in the NCBI database. However, in the nucleotide sequence, "t” shall be read as "u”) or a variant of the nucleotide sequence thereof.
  • genomic nucleotide sequence of the hepatitis B virus strain represented by SEQ ID NO: 67 the nucleotide sequence of the human NCAPH gene mRNA represented by SEQ ID NO: 68, and SEQ ID NO: 69.
  • the nucleotide sequence of the mRNA of the human Sp1 gene represented by, and the nucleotide sequence of the mRNA of the human SOCS7 gene represented by SEQ ID NO: 70 (however, "t” may be read as "u” in the nucleotide sequence).
  • the position of nucleotide, the range of the nucleotide sequence, and the like are described based on the above, and in that case, the corresponding nucleotide and nucleotide sequence in any variant are also included in the description.
  • a sequence that suppresses the amplification of hepatitis B virus DNA (an expression-suppressing sequence of the mRNA of the hepatitis B virus gene, the mRNA of the human NCAPH gene, the mRNA of the human Sp1 gene or the mRNA of the human SOCS7 gene, hereinafter also referred to as "expression-suppressing sequence" Is a sequence complementary to the nucleotide sequence of a specific site of the mRNA of the hepatitis B virus gene, the mRNA of the human NCAPH gene, the mRNA of the human Sp1 gene or the mRNA of the human SOCS7 gene.
  • the "complementary sequence” is not only a sequence that is completely complementary to the target sequence (that is, hybridizes without mismatch), but can also be hubridized with the above-mentioned mRNA under physiological conditions of mammalian cells.
  • a sequence containing a mismatch of 1 to several nucleotides preferably 1 or 2 nucleotides.
  • a sequence having 90% or more, preferably 95% or more, 97% or more, 98% or more, 99% or more identity with respect to the complementary strand sequence of the target nucleotide sequence in the mRNA can be mentioned.
  • complementarity in individual bases is not limited to forming Watson-Crick base pairs with target bases, but forms Hoogsteen base pairs and Wobble base pairs. Including to do.
  • the "complementary nucleotide sequence” is a nucleotide sequence that hybridizes with the target sequence under stringent conditions.
  • the “stringent condition” is, for example, the condition described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, for example, 6 ⁇ SSC (sodium chloride / sodium citrate). ) / Hybridization at 45 ° C, followed by 0.2 ⁇ SSC / 0.1% SDS / one or more washings at 50-65 ° C. Hybridization conditions can be appropriately selected.
  • Nucleotide sequence of the above-mentioned mRNA targeted by the expression-suppressing sequence Nucleotide sequence of the hepatitis B virus genomic DNA represented by SEQ ID NO: 67 Nucleotide number: (1) 1550-1568 or (2) Nucleotide sequence represented by 59-77 The human NCAPH gene represented by SEQ ID NO: 68.
  • Nucleotide encoding nucleotide sequence Nucleotide number: (3) 1427-1445 (4) 1878-1896 or (5) Nucleotide sequence represented by 3467-3485 Nucleotide encoding human Sp1 gene represented by SEQ ID NO: 69 Nucleotide number: (6) Nucleotide number of the nucleotide sequence shown by (6) 2141-2159 or (7) 2133-2151, or the mRNA-encoding nucleotide sequence of the human SOCS7 gene represented by SEQ ID NO: 70: (8) The nucleotide sequence shown in 2707-2725 or (9) 1621-1639 can be mentioned.
  • the expression-suppressing sequence may be complementary to all of each of these target sequences, or may be complementary to a part of the target sequence, but the specificity for the mRNA should be taken into consideration. For example, it is preferably complementary to 15 or more contiguous sequences in each target sequence.
  • the expression-suppressing sequence can further contain a sequence complementary to the nucleotide sequence of the mRNA adjacent to the target sequence, in addition to the sequence of 15 consecutive nucleotides or more in each of the target sequences.
  • the upper limit of the length of the nucleotide sequence targeted by the expression-suppressing sequence is not particularly limited, but considering the ease of synthesis and the like, for example, 100 nucleotides or less, preferably 50 nucleotides or less, more preferably 30 nucleotides or less, and further. It is a contiguous partial nucleotide sequence of the above mRNA, preferably 25 nucleotides or less. Therefore, the length of the nucleotide sequence targeted by the expression-suppressing sequence can be preferably a continuous 15 to 30 nucleotides, more preferably a continuous 15 to 25 nucleotide partial nucleotide sequence in the nucleotide sequence of the mRNA. ..
  • the nucleic acid molecule of the present invention may be RNA, DNA, or DNA / RNA chimera as long as it can suppress the amplification of hepatitis B virus DNA. Further, the nucleic acid molecule of the present invention may be a double-stranded nucleic acid or a single-stranded nucleic acid as long as it can suppress the amplification of hepatitis B virus DNA. In the case of a double-stranded nucleic acid, it may be any of double-stranded DNA, double-stranded RNA, DNA: RNA hybrid, and a hybrid of DNA / RNA chimera and DNA, RNA or DNA / RNA chimera.
  • one strand is an expression-suppressing sequence of the above-mentioned mRNA, that is, a target sequence containing any one of the above-mentioned mRNAs (1) to (9) (preferably of the above-mentioned mRNA).
  • a chain containing a sequence complementary to a sequence of 15 or more consecutive nucleotides in a continuous subsequence of 25 nucleotides or less (hereinafter, a sequence that binds to a target RNA and suppresses gene expression) is also referred to as a "guide strand".
  • the other strand contains at least a sequence complementary to the expression-suppressing sequence (hereinafter, a chain containing a sequence complementary to the expression-suppressing sequence is also referred to as a "passenger chain").
  • a chain containing a sequence complementary to the expression-suppressing sequence is also referred to as a "passenger chain”
  • the "complementary sequence” is synonymous with the complementarity of the expression-suppressing sequence to the nucleotide sequence of the mRNA.
  • the nucleic acid molecule of the present invention is a single-stranded nucleic acid
  • it has only the above-mentioned guide strand, and a sequence in which the guide strand and the passenger strand are linked via an arbitrary linker to suppress gene expression in the molecule.
  • a sequence complementary thereto may hybridize to form a double strand.
  • Examples of the constituent unit of the nucleic acid molecule of the present invention include a ribonucleotide residue and a deoxyribonucleotide residue. These nucleotide residues may be modified or unmodified, for example. By including, for example, a modified nucleotide residue, the nucleic acid molecule of the present invention can improve nuclease resistance and stability. Further, the nucleic acid molecule of the present invention may further contain a non-nucleotide residue in addition to the nucleotide residue, for example.
  • the structural unit of the region (guide chain or passenger chain) other than the linker is preferably a nucleotide residue.
  • Each region is composed of, for example, the following residues (1) to (3).
  • the nucleic acid molecule of the present invention may be labeled with, for example, a labeling substance.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, and isotopes.
  • the labeling substance include fluorescent groups such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye, and examples of the dye include Alexa dye such as Alexa488.
  • Isotopes include, for example, stable isotopes and radioactive isotopes. Stable isotopes, for example, have a low risk of exposure and do not require a dedicated facility, so that they are easy to handle and can reduce costs.
  • the stable isotope does not change the physical properties of the labeled compound, for example, and has excellent properties as a tracer.
  • Stable isotopes include, for example, 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S and 36 S.
  • Nucleotide residues include sugars, bases and phosphoric acid as components. Ribonucleotide residues have a ribose residue as a sugar and bases adenine (A), guanine (G), cytosine (C) and uracil (U) (which can also be replaced with thymine (T)). However, the deoxyribonucleotide residue has a deoxyribose residue as a sugar and can be replaced with adenine (dA), guanine (dG), cytosine (dC) and thymine (dT) (uracil (dU)) as bases. ).
  • the modified nucleotide residue may be any of the components of the nucleotide residue.
  • the "modification" can be, for example, substitution, addition and / or elimination of the component, substitution, addition and / or elimination of an atom and / or functional group in the component.
  • the modified nucleotide residue may be, for example, a naturally occurring modified nucleotide residue or an artificially modified nucleotide residue.
  • Naturally derived modified nucleotide residues for example, Limbach et al. (1994, Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183 to 2196) can be referred to.
  • ribophosphate skeleton examples include modification of the ribose-phosphate skeleton (hereinafter referred to as ribophosphate skeleton).
  • a ribose residue can be modified.
  • the ribose residue can modify, for example, the 2'-carbon, and specifically, for example, a hydroxyl group bonded to the 2'-carbon can be a hydrogen atom, a halogen atom such as fluorine, or an -O-alkyl group (eg,).
  • -O-Me group -O-acyl group (eg, -O-COMe group) and amino group selected from the group consisting of an atom or group, preferably selected from the group consisting of hydrogen atom, methoxy group and fluorine atom.
  • the ribose residue can be replaced with deoxyribose.
  • the ribose residue can be replaced with, for example, a stereoisomer, and may be replaced with, for example, an arabinose residue.
  • the ribophosphate skeleton may be replaced with, for example, a non-ribophosphate skeleton having a non-ribose residue and / or a non-phosphate.
  • examples of the non-ribophosphate skeleton include uncharged bodies of the ribophosphate skeleton.
  • Alternatives to nucleotides substituted with a non-ribophosphate skeleton include, for example, morpholino, cyclobutyl, pyrrolidine and the like.
  • Other examples of the alternative include artificial nucleic acid monomer residues. Specific examples include, for example, PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acid), and PNA is preferable.
  • the phosphate group can also be modified in the ribophosphate skeleton.
  • the phosphate group closest to the sugar residue is called the ⁇ -phosphate group.
  • the ⁇ -phosphate group is negatively charged, and the charge is uniformly distributed over the two oxygen atoms unbonded to the sugar residue.
  • the two oxygen atoms that are unbonded to the sugar residue in the phosphodiester bond between the nucleotide residues are hereinafter also referred to as “non-linking oxygen”. ..
  • linking oxygen the two oxygen atoms bound to the sugar residue are hereinafter referred to as "linking oxygen”.
  • the ⁇ -phosphate group is preferably modified to be uncharged or to have an asymmetric charge distribution in unbound oxygen, for example.
  • the phosphate group may replace, for example, unbound oxygen.
  • the unbonded oxygen is, for example, S (sulfur), Se (sulfur), B (boron), C (carbon), H (hydrogen), N (nitrogen) and OR (R is an alkyl group or an aryl group). It can be replaced with the atom, preferably with S.
  • R is an alkyl group or an aryl group.
  • Such modified phosphate groups include, for example, phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoromidate, alkyl or arylphosphonate, and phosphotriester.
  • phosphorodithioate in which both of the above two unbound oxygens are substituted with S is preferable.
  • the phosphate group may replace the bound oxygen, for example.
  • the bound oxygen can be replaced, for example, with any of the atoms S (sulfur), C (carbon) and N (nitrogen), and such modified phosphate groups include, for example, cross-linked phosphoramidates substituted with N. , S-substituted crosslinked phosphorothioate, C-substituted crosslinked methylenephosphonate, and the like.
  • Substitution of bound oxygen is preferably carried out, for example, at at least one of the 5'-terminal nucleotide residue and the 3'-terminal nucleotide residue of the nucleic acid molecule of the present invention, and in the case of the 5'side, substitution by C is preferable, and 3'is substituted. On the side, substitution by N is preferred.
  • the phosphoric acid group may be replaced with, for example, a phosphorus-free linker.
  • linker include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioform acetal, form acetal, oxime, methylene imino, methylene methyl imino, methylene hydrazo, and methylene dimethyl.
  • Examples thereof include hydrazo and methyleneoxymethylimino, and preferred examples include a methylenecarbonylamino group and a methylenemethylimino group.
  • nucleic acid molecule of the present invention for example, at least one nucleotide residue at the 3'end and the 5'end may be modified.
  • the modification is as described above, and is preferably performed on the terminal phosphate group.
  • the phosphate group may modify the whole or one or more atoms in the phosphate group. In the former case, for example, the entire phosphate group may be substituted or deleted.
  • Modification of the terminal nucleotide residue includes, for example, addition of another molecule.
  • other molecules include functional molecules such as labeling substances and protecting groups.
  • the protecting group include S (sulfur), Si (silicon), B (boron), and an ester-containing group.
  • Functional molecules such as the labeling substance can be used, for example, for detecting the nucleic acid molecule of the present invention.
  • Other molecules may be added to the phosphate group of the nucleotide residue, or may be added to the phosphate group or sugar residue via a spacer.
  • the terminal atom of the spacer can be added or substituted, for example, to the bound oxygen of the phosphate group or the sugar residue O, N, S or C.
  • the binding site of the sugar residue is preferably, for example, C at the 3'position or C at the 5'position, or an atom that binds to these.
  • the spacer can also be added or substituted, for example, to the terminal atom of the nucleotide substitute such as PNA.
  • the spacer is not particularly limited, for example,-(CH 2 ) n -,-(CH 2 ) n N-,-(CH 2 ) n O-,-(CH 2 ) n S-, O (CH 2 CH 2).
  • the molecules added to the ends include dyes, intercalating agents (eg, aclysine), cross-linking agents (eg, solarene, mitomycin C), porphyrin (TPPC4, texaphyrin, sapphirine), polycyclic aromatics.
  • intercalating agents eg, aclysine
  • cross-linking agents eg, solarene, mitomycin C
  • porphyrin TPPC4, texaphyrin, sapphirine
  • Group hydrocarbons eg phenazine, dihydrophenazine
  • artificial endonucleases eg EDTA
  • lipophilic carriers eg cholesterol, cholic acid, adamantanacetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis-O (Hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) col Acids, dimethoxytrityls, or phenoxazines) and peptide complexes (eg, antennapedia peptides, Tat peptides), alkylating agents, phosphates, aminos, mercaptos,
  • the nucleic acid molecule of the present invention may be modified at the 5'end with, for example, a phosphate group or a phosphate group analog.
  • Phosphate groups include, for example, 5'monophosphate ((HO) 2 (O) PO-5'), 5'diphosphate ((HO) 2 (O) POP (HO) (O) -O-5.
  • the base is not particularly limited in the nucleotide residue.
  • the base may be a natural base or a non-natural base.
  • a general base, a modified analog thereof, or the like can be used.
  • Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, uracil and thymine.
  • Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine and the like.
  • the base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyl uracil and 5-propynylcitosine; 6- Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-halogenation, amination, thiol Uracil, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N- 6, and O-6 substituted purines (including 2-
  • the modified nucleotide residue may include, for example, a residue lacking a base, that is, a base-free ribophosphate skeleton.
  • the modified nucleotide residues are, for example, US Provisional Application No. 60 / 465,665 (Filing Date: April 25, 2003) and US Provisional Application No. 60 / 465,665 (Filing Date: April 25, 2003).
  • Residues described in WO 2004/080406 International Publication No. WO2004 / 080406
  • these documents can be incorporated by the present invention.
  • the method for synthesizing the nucleic acid molecule of the present invention is not particularly limited, and a conventionally known method can be adopted.
  • Examples of the synthesis method include a synthesis method by a genetic engineering method, a chemical synthesis method, and the like.
  • Examples of the genetic engineering method include an in vitro transcription synthesis method, a method using a vector, and a method using a PCR cassette.
  • the vector is not particularly limited, and examples thereof include non-viral vectors such as plasmids and viral vectors.
  • the chemical synthesis method is not particularly limited, and examples thereof include a phosphoramidite method and an H-phosphonate method.
  • a commercially available automatic nucleic acid synthesizer can be used.
  • amidite is generally used as the chemical synthesis method.
  • the amidite is not particularly limited, and commercially available amidites include, for example, RNA Phosphoramidites (2'-O-TBDMSi, trade name, Sansenri Pharmaceutical), ACE amidite and TOM amidite, CEE amidite, CEM amidite, TEM amidite and the like. Can be given.
  • nucleic acid molecule of the present invention examples include siRNA, antisense nucleic acid and the like.
  • examples of the nucleic acid molecule of the present invention include a single-stranded nucleic acid molecule in which a guide strand and a passenger strand complementary thereto can form a double strand linked via a linker.
  • siRNA is a guide strand containing a sequence complementary to all or part of a target sequence containing any of the above (1) to (9) (preferably a continuous partial sequence of 25 nucleotides or less), and complement thereof.
  • a double-stranded oligo RNA consisting of a passenger strand containing a specific sequence, which is incorporated into a RISC complex, and the complementary sequence in the guide strand forms a duplex with the target sequence to cleave the RNA.
  • "complementary sequence” has the same meaning as described above.
  • the length of siRNA is not particularly limited as long as the guide strand contains a sequence complementary to all or part of the target sequence containing any of (1) to (9) above, but the nucleotide sequence targeted by siRNA is not particularly limited. In principle, it can be 15 to 50 nucleotides, preferably 19 to 30 nucleotides, more preferably 19 to 27 nucleotides, and particularly preferably 19 to 21 nucleotides.
  • the guide chain and the passenger chain may have an additional nucleotide at the 5'or 3'end. The length of the additional nucleotide is usually about 2 to 4 nucleotides, and the total length of the siRNA is 19 nucleotides or more.
  • the additional nucleotide may be DNA or RNA, but DNA may be used to improve the stability of the nucleic acid.
  • Such additional nucleotide sequences include, for example, ug-3', uu-3', tg-3', tt-3', ggg-3', guuu-3', gttt-3', ttttt-3. Sequences such as', uuuuuu-3'can be mentioned, but are not limited to these.
  • the siRNA contains, as a sequence that suppresses the expression of the gene, a sequence complementary to all or part of the target sequence containing any of (1) to (9) above in the guide strand, but in one preferred embodiment.
  • a guide strand containing one of the following nucleotide sequences (SEQ ID NO: n (n is an integer selected from 71 to 79; where U may be T in the sequence)).
  • SEQ ID NO: n nucleotide sequences
  • a nucleic acid molecule or the like consisting of a passenger chain complementary thereto preferably containing SEQ ID NO: n + 9 (n is an integer selected from 71 to 79; however, U may be T in the sequence)).
  • Expression-suppressing sequence complementary to the nucleotide sequence in the ORF of the above mRNA and its complementary strand sequence (SEQ ID NO: 71) 5'-AGAUGAGAAGGCACAGACG -3' (SEQ ID NO: 72) 5'-CUGAACUGGAGCCACCAGC -3' (SEQ ID NO: 73) 5'-UUUCUGAUUGGGAAGGAGC -3' (SEQ ID NO: 74) 5'-AAUCCUUGGGCUUCUGGAG -3' (SEQ ID NO: 75) 5'-UACUUCACUGCUUCUGGCC -3' (SEQ ID NO: 76) 5'-UGUGUGUGUGUACGUUUGUGC -3' (SEQ ID NO: 77) 5'-UACGUUUGUGCCUCUGUAG -3' (SEQ ID NO: 78) 5'-UUUCUCUCCUGCUCCUACA -3' (SEQ ID NO: 79) 5'-UUCAUCUCUGCAUCUUC
  • the siRNA may have a 3'-overhang on one or both strands.
  • the length of the overhang is not particularly limited, the lower limit is, for example, 1 base length, the upper limit is, for example, 4 base length, 3 base length, and the range is, for example, 1. It is up to 4 bases long, 1 to 3 bases long, and 1 to 2 bases long.
  • the arrangement of overhangs is not particularly limited and may be any of A, U, G, C and T.
  • the overhang arrangement can be exemplified by, for example, TT, UU, CU, GC, UA, AA, CC, UG, CG, AU, etc. from the 3'side.
  • TT time to RNA-degrading enzymes
  • one of the following nucleotide sequences (SEQ ID NO: SEQ ID NO: n (n is an integer selected from 71 to 79; however, in the sequence, U) Is a guide chain containing (may be T) and a passenger chain having a 3'-overhang complementary thereto (preferably SEQ ID NO: n + 9 (n is an integer selected from 71 to 79; however, said). In the sequence, U may be T), including)).
  • Expression-suppressing sequence complementary to the nucleotide sequence in the ORF of the above mRNA and its complementary strand sequence (SEQ ID NO: 89) 5'-AGAUGAGAAAGGCACAGACGtt -3' (SEQ ID NO: 90) 5'-CUGAACUGGAGCCACCAGCtt -3' (SEQ ID NO: 91) 5'-UUUCUGAUUGGGAAGGAGCtt -3' (SEQ ID NO: 92) 5'-AAUCCUUGGGCUUCUGGAGtt -3' (SEQ ID NO: 93) 5'-UACUUCACUGCUUCUGGCCtt -3' (SEQ ID NO: 94) 5'-UGUGUGUGUACGUUUGUGCtt -3' (SEQ ID NO: 95) 5'-UACGUUUGUGCCUCUGUAGtt -3' (SEQ ID NO: 96) 5'-UUUCUCUCCUGCUCCUACAtt -3' (SEQ ID NO
  • the method for synthesizing siRNA is not particularly limited, and a conventionally known method for producing nucleic acid can be adopted.
  • a synthesis method for example, a nucleic acid containing the complementary sequence and a nucleic acid having a sequence complementary thereto are synthesized by a DNA / RNA automatic synthesizer, respectively, and in an appropriate annealing buffer at about 90 to about 95 ° C. Examples thereof include a method of preparing by denaturing for about 1 minute and then annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. It can also be prepared by synthesizing shRNA, which is a precursor of siRNA, and cleaving it with a dicer.
  • Nucleotide residues constituting siRNA may also undergo the same modifications as described above in order to improve stability, specific activity and the like. However, in the case of siRNA, if all ribonucleotide residues in the native RNA are replaced with modified forms, RNAi activity may be lost, so introduction of the minimum modified nucleotide residues that can function the RISC complex is necessary. is necessary.
  • An antisense nucleic acid is all or part of a target sequence (preferably a continuous partial sequence of 25 nucleotides or less) containing any of (1) to (9), preferably the nucleotide.
  • "complementary sequence” has the same meaning as described above.
  • the length of the antisense nucleic acid is not particularly limited, but is, for example, 10 to 100 nucleotides, preferably 15 to 40 nucleotides, and more preferably 15 to 30 nucleotides. It can be a nucleotide.
  • the antisense nucleic acid has the above-mentioned SEQ ID NO: (SEQ ID NO: n (n is an integer selected from 71 to 79; where U may be T in the sequence)) as the expression-suppressing sequence.
  • SEQ ID NO: n is an integer selected from 71 to 79; where U may be T in the sequence.
  • n is an integer selected from 71 to 79; where U may be T in the sequence
  • the antisense nucleic acid may be of the gapmer type.
  • the gapmer-type antisense nucleic acid is a nucleic acid having DNA and nucleic acids having modifications or crosslinks introduced on both sides thereof.
  • RNA complementary to the main chain forms a heteroduplex nucleic acid, and the RNA is degraded by RNAase H.
  • O-methylation at the 2'position of the sugar moiety improves the stability of the antisense nucleic acid and increases its binding affinity to the target.
  • the nuclease resistance of the antisense nucleic acid is enhanced.
  • the method for synthesizing the antisense nucleic acid is not particularly limited, and a conventionally known method for producing a nucleic acid can be adopted.
  • Examples of the synthesis method include a method of preparing nucleic acids containing the complementary sequences by synthesizing them with an automatic DNA / RNA synthesizer.
  • antisense nucleic acids containing the above-mentioned various modifications can also be chemically synthesized by a conventionally known method.
  • the nucleic acid molecule of the present invention is a single-stranded nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA as described above, and has the following sequence. Sequences complementary to a part of the hepatitis B virus gene represented by numbers 1 and 2, sequences complementary to a part of the human NCAPH gene represented by SEQ ID NOs: 3 to 5 below, SEQ ID NOs: 6 and 7 below.
  • At least consecutive nucleotide sequences selected from a sequence complementary to a part of the human Sp1 gene represented by and a sequence complementary to a part of the human SOCS7 gene represented by SEQ ID NOs: 8 and 9 below. It is characterized by containing a gene expression-suppressing sequence, which comprises a nucleotide sequence consisting of 18 nucleotides (referred to as "r-nucleotide sequence").
  • the expression-suppressing sequence may be, for example, a sequence consisting of only the r-nucleotide sequence or a sequence containing the r-nucleotide sequence.
  • the expression-suppressing sequence is a sequence containing an r-nucleotide sequence, one or more nucleotides are added to the 5'end and / or 3'-end of the r-nucleotide sequence. (Here, "complementary" refers to the definition of a complementary sequence described later).
  • nucleotides (sequences) other than the expression-suppressing sequence in the region (X or Xc) containing the expression-suppressing sequence in the nucleic acid molecule of the present invention do not need to be complementary to the target gene.
  • the length of the expression-suppressing sequence is not particularly limited, and is, for example, 18 to 32 nucleotides in length, preferably 19 to 30 nucleotides in length, and more preferably 19, 20, 21 nucleotides in length.
  • the numerical range of the number of bases discloses all positive integers belonging to the range, and for example, the description of "1 to 4 bases” is "1, 2, 3, 4 bases”. Means all disclosures (the same shall apply hereinafter).
  • the single-stranded nucleic acid molecule of the present invention further has a complementary sequence that can be annealed with the expression-suppressing sequence.
  • the complementary sequence does not necessarily have to be completely complementary as long as it can be annealed with the expression-suppressing sequence under physiological conditions in the target cell. That is, the complementary sequence may be a sequence having 100% complementarity in a region overlapping the expression-suppressing sequence, for example, 90% to 100%, 93% to 100%, 95% to 100%, It may be a sequence having complementarity such as 98% to 100% and 99% to 100%.
  • the complementary sequence is the nucleotide sequence represented by SEQ ID NO: n + 9 below. Includes a sequence complementary to the r nucleotide sequence (referred to as "s nucleotide sequence").
  • the complementary sequence may be, for example, a sequence consisting of the s nucleotide sequence or a sequence containing the s nucleotide sequence.
  • the length of the complementary sequence is not particularly limited, and is, for example, 18 to 32 nucleotides in length, preferably 19 to 30 nucleotides in length, and more preferably 19, 20, 21 nucleotides in length.
  • the expression-suppressing sequence and the complementary sequence may be, for example, an RNA molecule consisting only of a ribonucleotide residue, or an RNA molecule containing a deoxyribonucleotide residue in addition to the ribonucleotide residue.
  • uracil (U) residue When the uracil (U) residue is replaced with a deoxyribonucleotide residue, it may be replaced with either dT or dU.
  • a region containing the expression-suppressing sequence and a region containing the complementary sequence are indirectly linked via a linker region.
  • the order of linking the region containing the expression-suppressing sequence and the region containing the complementary sequence is not particularly limited.
  • the 5'-terminal side of the expression-suppressing sequence and the 3'-terminal side of the complementary sequence are linker regions.
  • the 3'end side of the expression-suppressing sequence and the 5'end side of the complementary sequence may be linked via a linker region. The former is preferable.
  • the linker region may be composed of, for example, nucleotide residues or may be composed of non-nucleotide residues. Alternatively, it may be composed of both nucleotide residues and non-nucleotide residues. Preferably, the linker region is composed of non-nucleotide residues.
  • the single-stranded nucleic acid molecule of the present invention is a molecule in which the 5'side region and the 3'side region are annealed to each other to form a double-stranded structure (stem structure).
  • stem structure This can be said to be a form of shRNA (small hairpin RNA or short hairpin RNA).
  • shRNA has a hairpin structure and generally has one stem region and one loop region.
  • the nucleic acid molecule of this embodiment consists only of a region (X), a linker region (Lx) and a region (Xc), and the region (X) and the region (Xc) having a complementary structure form the linker region (X). It has a structure connected via Lx). Specifically, since one of the region (X) and the region (Xc) contains the expression-suppressing sequence and the other contains the complementary sequence, intramolecular annealing can be performed to obtain the region (X). A stem structure can be formed with the region (Xc), and the linker region (Lx) becomes a loop structure.
  • the nucleic acid molecule may have the region (Xc), the linker region (Lx) and the region (X) in this order from the 5'side to the 3'side, or from the 3'side to 5'. It may be held in this order toward the side.
  • the former is preferable.
  • the expression-suppressing sequence may be arranged in either the region (X) or the region (Xc), but it is preferably arranged on the downstream side of the complementary sequence, that is, on the 3'side of the complementary sequence. ..
  • the expression-suppressing sequence is the region ( It is preferably placed within X).
  • FIG. 1 (A) is a schematic diagram showing an outline of the order of each region
  • FIG. 1 (B) is a schematic diagram showing a state in which the nucleic acid molecule forms a duplex in the molecule. is there.
  • FIG. 1 (B) in the nucleic acid molecule, a duplex is formed between the region (Xc) and the region (X), and the Lx region loops according to its length.
  • FIG. 1 merely shows the connection order of the regions and the positional relationship of each region forming the duplex. For example, the length of each region, the shape of the linker region (Lx), and the like are included in this. Not limited.
  • the number of nucleotides in the region (Xc) and the region (X) is not particularly limited.
  • the length of each region is illustrated below, but the present invention is not limited thereto.
  • the lower limit of the number of nucleotides in the region (X) is, for example, 19 nucleotides, preferably 20 bases.
  • the upper limit is, for example, 50 nucleotides, preferably 30 nucleotides, and more preferably 25 nucleotides.
  • Specific examples of the number of nucleotides in the region (X) are, for example, 19 to 50 nucleotides, preferably 19 to 30 nucleotides, and more preferably 19 to 25 nucleotides.
  • the lower limit of the number of nucleotides in the region (Xc) is, for example, 19 nucleotides, preferably 20 nucleotides.
  • the upper limit is, for example, 50 nucleotides, preferably 30 nucleotides, and more preferably 25 nucleotides.
  • Specific examples of the number of nucleotides in the region (Xc) are, for example, 19 to 50 nucleotides, preferably 19 to 30 nucleotides, and more preferably 19 to 25 nucleotides.
  • the region (X or Xc) containing the expression-suppressing sequence may be composed of only the expression-suppressing sequence, or may include the expression-suppressing sequence.
  • the number of nucleotides in the expression-suppressing sequence is as described above.
  • the region containing the expression-suppressing sequence may further have an additional sequence on the 5'side and / or 3'side of the expression-suppressing sequence.
  • the addition sequence is preferably added to the linker region (Lx) side.
  • the expression-suppressing sequence Is preferably located within the region (X), in which case the additional sequence is added to the 5'side of the expression-suppressing sequence.
  • the number of nucleotides in the additional sequence is, for example, 1-31 nucleotides, preferably 1-21 nucleotides, more preferably 1-11 nucleotides, and particularly preferably 1, 2, 3, 4, 5 or 6 nucleotides.
  • the region containing the expression-suppressing sequence (one of X or Xc) has an additional sequence on the linker region (Lx) side
  • the region containing the complementary sequence (the other of X or Xc) is also the linker region (Lx).
  • the side contains a sequence complementary to the additional sequence.
  • the relationship between the number of nucleotides (X) in the region (X) and the number of nucleotides (Xc) in the region (Xc) satisfies, for example, the following conditions (1) or (2), and in the former case, specifically. Meets the condition of (4) below, for example.
  • the nucleic acid molecule schematically shown in FIG. 1 (B) satisfies the condition of the following (1).
  • X-Xc 1-10, preferably 1, 2 or 3, More preferably 1 or 2 ... (4)
  • X Xc ⁇ ⁇ ⁇ (2)
  • the linker region (Lx) preferably has a structure that does not cause self-annealing inside its own region.
  • linker region (Lx) contains a nucleotide residue as described above, its length is not particularly limited.
  • the linker region (Lx) preferably has a length such that the region (X) and the region (Xc) can form a duplex.
  • the lower limit of the number of nucleotides in the linker region (Lx) is, for example, 1 base, preferably 2 bases, more preferably 3 bases, and the upper limit thereof is, for example, 100 bases, preferably 100 bases. It is 80 bases, more preferably 50 bases.
  • the total length of the nucleic acid molecule is not particularly limited.
  • the total number of nucleotides has a lower limit of, for example, 38 nucleotides, preferably 42 nucleotides, and more, when the linker region (Lx) contains nucleotide residues. It is preferably 50 nucleotides, more preferably 51 nucleotides, and particularly preferably 52 nucleotides.
  • the upper limit is, for example, 300 nucleotides, preferably 200 nucleotides, more preferably 150 nucleotides, still more preferably 100 nucleotides, and particularly preferably 80 nucleotides.
  • the total number of nucleotides excluding the linker region (Lx) has a lower limit of, for example, 36 nucleotides, preferably 38 nucleotides.
  • the upper limit is, for example, 100 nucleotides, preferably 80 nucleotides, more preferably 60 nucleotides, and even more preferably 50 nucleotides.
  • Specific examples of the total number of nucleotides are, for example, 36 to 100 nucleotides, preferably 38 to 80 nucleotides, more preferably 42 to 60 nucleotides, and even more preferably 42 to 50 nucleotides.
  • the single-stranded nucleic acid molecule of the present invention has the linker region (Lx) having a non-nucleotide structure.
  • the non-nucleotide structure is not particularly limited, and examples thereof include polyalkylene glycol, pyrrolidine skeleton, and piperidine skeleton.
  • examples of the polyalkylene glycol include polyethylene glycol.
  • the pyrrolidine skeleton may be, for example, the skeleton of a pyrrolidine derivative in which one or more carbons constituting the 5-membered ring of pyrrolidine are substituted, and when substituted, for example, a carbon atom other than the carbon of C-2. Is preferable.
  • the carbon may be replaced with, for example, nitrogen, oxygen or sulfur.
  • the pyrrolidine skeleton may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond within the 5-membered ring of pyrrolidine.
  • the carbon and nitrogen constituting the 5-membered ring of pyrrolidine may be, for example, hydrogen-bonded or a substituent as described later may be bonded.
  • the linker region (Lx) may be bound to the region (X) and the region (Xc) via, for example, any group of the pyrrolidine skeleton, preferably any one of the 5-membered rings. It is a carbon atom and nitrogen, preferably carbon (C-2) and nitrogen at the 2-position of the 5-membered ring.
  • the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton. Since the proline skeleton, prolinol skeleton, and the like are, for example, in vivo substances and their reduced forms, they are also excellent in safety.
  • the piperidine skeleton may be, for example, the skeleton of a piperidine derivative in which one or more carbons constituting the 6-membered ring of piperidine are substituted, and when substituted, for example, a carbon atom other than carbon of C-2. Is preferable.
  • the carbon may be replaced with, for example, nitrogen, oxygen or sulfur.
  • the piperidine backbone may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond within the 6-membered ring of piperidine.
  • the carbon and nitrogen constituting the 6-membered ring of piperidine may be bonded with, for example, a hydrogen group or a substituent as described later.
  • the linker region (Lx) may be attached to the region (X) and the region (Xc) via, for example, any group of the piperidine skeleton, preferably any one of the 6-membered rings. It is carbon atoms and nitrogen, more preferably carbon (C-2) and nitrogen at the 2-position of the 6-membered ring.
  • the linker region may contain, for example, only a non-nucleotide residue having the non-nucleotide structure, or may contain a non-nucleotide residue having the non-nucleotide structure and a nucleotide residue.
  • the linker region is represented by, for example, the following formula (I).
  • X 1 and X 2 are independently H 2 , O, S or NH; Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S; R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A.
  • L 1 is an alkylene chain consisting of n atoms, where the hydrogen atom on the alkylene carbon atom is replaced with OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a.
  • L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with oxygen atoms.
  • Y 1 is NH, O or S
  • the atom of L 1 bonded to Y 1 is carbon
  • the atom of L 1 bonded to OR 1 is carbon
  • the oxygen atoms are not adjacent to each other
  • L 2 is an alkylene chain consisting of m atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c.
  • L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
  • Y 2 is NH, O or S
  • the atom of L 2 bonded to Y 2 is carbon
  • the atom of L 2 bonded to OR 2 is carbon
  • the oxygen atoms are not adjacent to each other
  • R a , R b , R c and R d are independent substituents or protecting groups
  • l is 1 or 2
  • m is an integer in the range 0-30
  • n is an integer in the range 0-30
  • one carbon atom other than C-2 on the ring A may be substituted with nitrogen, oxygen, or sulfur, and a carbon-carbon double bond or carbon-nitrogen bond may be formed in the ring A.
  • the region (Xc) and the region (X) are bound to the linker region (Lx) via -OR 1- or -OR 2-, respectively.
  • R 1 and R 2 may or may not be present, and if present, R 1 and R 2 are independently nucleotide residues or the structure (I), respectively.
  • X 1 and X 2 are, for example, H 2 , O, S or NH, respectively, independently of each other.
  • X 1 when X 1 is H 2 , it means that X 1 forms CH 2 (methylene group) together with the carbon atom to which X 1 is bonded. The same is true for X 2.
  • Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S, respectively.
  • l 1 or 2.
  • ring A is a 5-membered ring, eg, the pyrrolidine skeleton.
  • the pyrrolidine skeleton include a proline skeleton, a prolinol skeleton, and the like, and these divalent structures can be exemplified.
  • ring A is a 6-membered ring, eg, the piperidine skeleton.
  • one carbon atom other than C-2 on ring A may be replaced with nitrogen, oxygen or sulfur.
  • the ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond in the ring A.
  • Ring A may be, for example, either L-type or D-type.
  • R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A.
  • the substituent R 3 may be 1, a plurality, or not present, and when there are a plurality of substituents, the same or different groups may be used.
  • R 4 and R 5 are, for example, independent substituents or protecting groups, which may be the same or different.
  • the substituents include, for example, halogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cyclylalkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, heterocyclylalkenyl. , Heterocyclylalkyl, heteroarylalkyl, silyl, silyloxyalkyl and the like. The same applies hereinafter.
  • Substituent R 3 may be one of these listed substituents.
  • the protecting group is, for example, a functional group that inactivates a highly reactive functional group, and examples thereof include known protecting groups.
  • the protecting group for the protecting group, for example, the description in the literature (JF W. McOmie, "Protecting Groups in Organic Chemistry” Prenum Press, London and New York, 1973) can be incorporated.
  • the protecting group is not particularly limited, and is, for example, tert-butyldimethylsilyl group (TBDMS), bis (2-acetoxyethyloxy) methyl group (ACE), triisopropylsilyloxymethyl group (TOM), 1- (2).
  • R 3 is OR 4
  • the protecting group is not particularly limited, and examples thereof include a TBDMS group, an ACE group, a TOM group, a CEE group, a CEM group, and a TEM group. The same applies hereinafter.
  • L 1 is an alkylene chain consisting of n atoms.
  • the hydrogen atom on the alkylene carbon atom may or may not be substituted with , for example, OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a.
  • L 1 may be a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
  • the polyether chain is, for example, polyethylene glycol.
  • L 2 is an alkylene chain consisting of m atoms.
  • the hydrogen atom on the alkylene carbon atom may or may not be substituted with , for example, OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c.
  • L 2 may be a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
  • Y 2 is NH, O or S
  • the atom of L 2 bonded to Y 2 is carbon
  • the atom of L 2 bonded to OR 2 is carbon
  • the oxygen atoms are not adjacent to each other. That is, for example, when Y 2 is O, the oxygen atom of L 2 and the oxygen atom of L 2 are not adjacent to each other, and the oxygen atom of OR 2 and the oxygen atom of L 2 are not adjacent to each other.
  • N of L 1 and m of L 2 are not particularly limited, and the lower limit is, for example, 0, and the upper limit is not particularly limited.
  • n and m can be appropriately set, for example, according to the desired length of the linker region (Lx).
  • n and m are preferably 0 to 30, more preferably 0 to 20, and even more preferably 0 to 15, respectively, from the viewpoints of manufacturing cost, yield, and the like.
  • n + m is, for example, 0 to 30, preferably 0 to 20, and more preferably 0 to 15.
  • R a , R b , R c and R d are, for example, independent substituents or protecting groups, respectively.
  • the substituent and the protecting group are, for example, the same as described above.
  • the hydrogen atom may be independently replaced with a halogen such as Cl, Br, F and I, for example.
  • the region (Xc) and the region (X) bind to the linker region (Lx) via -OR 1- or -OR 2-, respectively.
  • R 1 and R 2 may or may not be present.
  • R 1 and R 2 are independently nucleotide residues or structures of the formula (I) above.
  • the linker region (Lx) is, for example, the non-nucleotide residue having the structure of the formula (I) excluding the nucleotide residues R 1 and / or R 2. It is formed from a group and the nucleotide residue.
  • the linker region (Lx) is, for example, concatenated with two or more of the non-nucleotide residues having the structure of the formula (I). It becomes a structure.
  • the structure of the formula (I) may include, for example, one, two, three or four. As described above, when a plurality of the structures are included, it is preferable that the structures (I) are directly connected. On the other hand, in the absence of R 1 and R 2 , the linker region (Lx) is formed only from the non-nucleotide residue having the structure of the formula (I).
  • the combination of the combination of the region (Xc) and the region (X) and the -OR 1- and -OR 2- is not particularly limited, and for example, any of the following conditions can be mentioned.
  • Condition 1) The region (Xc) is coupled to the structure of formula (I) via -OR 2- and the region (X) via -OR 1-.
  • Condition (2) The region (Xc) is coupled to the structure of formula (I) via -OR 1 -and the region (X) via -OR 2-.
  • n, m and q are not particularly limited and are as described above.
  • the nucleic acid molecule of the present invention has any of the following structural formulas: (SEQ ID NO: 19) 5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3' (SEQ ID NO: 20) 5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3' (SEQ ID NO: 21) 5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3' (SEQ ID NO: 22) 5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3' (SEQ ID NO: 23) 5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3' (SEQ ID NO: 24) 5'-GC
  • Lx has a structure represented by the above formula (I), and more preferably, the above formulas (I-1) to (I-9). It has a structure represented by any of the above formulas, more preferably a structure represented by the above formula (I-4a) or (I-6a), and particularly preferably a structure represented by the above formula (I-6a). Has a structure.) Among them, single-stranded nucleic acid molecules consisting of the nucleotide sequences represented by SEQ ID NOs: 19 to 27, 29, 36, 49, 53 and 54 are particularly preferable, and are represented by SEQ ID NOs: 19, 27, 29, 36, 49, 53 and 54.
  • the single-stranded nucleic acid molecule consisting of the nucleotide sequences represented by SEQ ID NOs: 29 is even more preferable, and the single-stranded nucleic acid molecule consisting of the nucleotide sequences represented by SEQ ID NOs: 29, 36 and 49 is even more preferable, and the single-stranded nucleic acid molecule consisting of the nucleotide sequence represented by SEQ ID NO: 36 is composed.
  • Single-stranded nucleic acid molecules are most preferred.
  • the structural unit of the nucleic acid molecule of the present invention is not particularly limited, and examples thereof include nucleotide residues.
  • the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue.
  • the nucleotide residue include an unmodified nucleotide residue and a modified modified nucleotide residue.
  • the nucleic acid molecule of the present invention can improve nuclease resistance and stability by containing, for example, the modified nucleotide residue. Further, the nucleic acid molecule of the present invention may further contain a non-nucleotide residue in addition to the nucleotide residue, for example.
  • the nucleotide residue is preferable as the structural unit of the region other than the linker.
  • Each of the regions is composed of, for example, the following residues (1) to (3).
  • the structural unit of the linker region is not particularly limited, and examples thereof include the nucleotide residue and the non-nucleotide residue.
  • the linker region may be composed of, for example, only the nucleotide residue, may be composed of only the non-nucleotide residue, or may be composed of the nucleotide residue and the non-nucleotide residue. ..
  • the linker region is composed of, for example, the following residues (1) to (7).
  • nucleic acid molecule of the present invention examples include a molecule composed of only the nucleotide residue, a molecule containing the non-nucleotide residue in addition to the nucleotide residue, and the like.
  • the nucleotide residue may be, for example, only the unmodified nucleotide residue, only the modified nucleotide residue, or the unmodified nucleotide residue and the modified nucleotide residue. It may be both nucleotide residues.
  • the number of the modified nucleotide residues is not particularly limited, and is, for example, "1 or several", specifically. For example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the number of the non-nucleotide residues is not particularly limited and is, for example, "1 or several", specifically, for example, 1 to 1 to several. 8 pieces, 1 to 6 pieces, 1 to 4 pieces, 1, 2 or 3 pieces.
  • the number of the modified ribonucleotide residues is not particularly limited, and is, for example, "1 or several". Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the modified ribonucleotide residue relative to the unmodified ribonucleotide residue may be, for example, the deoxyribonucleotide residue in which the ribose residue is replaced with a deoxyribose residue.
  • the number of the deoxyribonucleotide residues is not particularly limited, and is, for example, "1 or several". Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the nucleic acid molecule of the present invention may contain, for example, a labeling substance and may be labeled with the labeling substance.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, and isotopes.
  • the labeling substance include fluorescent groups such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye, and examples of the dye include Alexa dye such as Alexa 488.
  • the isotope include a stable isotope and a radioactive isotope, and a stable isotope is preferable.
  • the stable isotope has a low risk of exposure and does not require a dedicated facility, so that it is easy to handle and the cost can be reduced.
  • the stable isotope does not change the physical properties of the labeled compound, and is excellent in properties as a tracer.
  • the stable isotope is not particularly limited, and examples thereof include 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S and 36 S.
  • nucleotide residues constituting a single-stranded nucleic acid molecule include, for example, sugars, bases and phosphoric acids as components.
  • examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue as described above.
  • the ribonucleotide residue has, for example, a ribose residue as a sugar, adenine (A), guanine (G), cytosine (C) and uracil (U) as a base, and the deoxyribose residue has.
  • it has a deoxyribose residue as a sugar and adenine (A), guanine (G), cytosine (C) and timine (T) as bases.
  • nucleotide residues examples include unmodified nucleotide residues and modified nucleotide residues.
  • the unmodified nucleotide residue is such that each of the components is, for example, the same or substantially the same as naturally occurring, preferably the same or substantially the same as naturally occurring in the human body. ..
  • the modified nucleotide residue is, for example, a nucleotide residue obtained by modifying the unmodified nucleotide residue.
  • the modified nucleotide residue may be modified, for example, by any of the components of the unmodified nucleotide residue.
  • “modification” is, for example, substitution, addition and / or deletion of the component, substitution, addition and / or deletion of an atom and / or functional group in the component, and is referred to as "modification". be able to.
  • modified nucleotide residue include naturally occurring nucleotide residues and artificially modified nucleotide residues. For the naturally occurring modified nucleotide residue, for example, Limbach et al.
  • modified nucleosides of RNA Nucleic Acids Res. 22: 2183 to 2196
  • the modified nucleotide residue may be, for example, a residue of a substitute for the nucleotide.
  • Modification of the nucleotide residue includes, for example, modification of the ribose-phosphate skeleton (hereinafter, ribophosphate skeleton).
  • a ribose residue can be modified.
  • the ribose residue can modify, for example, the 2'carbon, and specifically, for example, the hydroxyl group bonded to the 2'carbon can be replaced with a halogen such as hydrogen or fluoro. By substituting the hydroxyl group of the 2'carbon with hydrogen, the ribose residue can be replaced with deoxyribose.
  • the ribose residue can be replaced with, for example, a stereoisomer, and may be replaced with, for example, an arabinose residue.
  • the ribophosphate skeleton may be replaced with, for example, a non-ribophosphate skeleton having a non-ribose residue and / or a non-phosphate.
  • the non-ribophosphate skeleton include uncharged bodies of the ribophosphate skeleton.
  • Substitutes for the nucleotides substituted with the non-ribophosphate skeleton include, for example, morpholino, cyclobutyl, pyrrolidine and the like.
  • Other examples of the alternative include artificial nucleic acid monomer residues. Specific examples include, for example, PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acid), and PNA is preferable.
  • a phosphoric acid group can be modified.
  • the phosphate group closest to the sugar residue is called an ⁇ -phosphate group.
  • the ⁇ -phosphate group is negatively charged, and the charge is uniformly distributed over two oxygen atoms unbonded to sugar residues.
  • the two oxygen atoms that are unbonded to the sugar residue in the phosphodiester bond between the nucleotide residues are hereinafter also referred to as “non-linking oxygen”.
  • linking oxygen the two oxygen atoms bonded to the sugar residue are hereinafter referred to as "linking oxygen”. It is preferable that the ⁇ -phosphate group is modified so that it becomes uncharged or the charge distribution in the unbound oxygen becomes asymmetrical, for example.
  • the phosphoric acid group may replace, for example, the unbound oxygen.
  • the oxygen is, for example, any one of S (sulfur), Se (sulfur), B (boron), C (carbon), H (hydrogen), N (nitrogen) and OR (R is an alkyl group or an aryl group).
  • the unbound oxygen for example, both are preferably substituted, and more preferably both are substituted with S.
  • the modified phosphate group include phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoramidate, alkyl or arylphosphonate, and phosphotriester. Of these, phosphorodithioates in which the two unbound oxygens are both substituted with S are preferred.
  • the phosphoric acid group may replace, for example, the bound oxygen.
  • the oxygen can be replaced with, for example, any atom of S (sulfur), C (carbon) and N (nitrogen), and the modified phosphate group can be, for example, with a crosslinked phosphoramidate, S substituted with N. Examples thereof include a substituted crosslinked phosphorothioate and a C-substituted crosslinked methylenephosphonate.
  • the substitution of the bound oxygen is preferably carried out, for example, at at least one of the 5'-terminal nucleotide residue and the 3'-terminal nucleotide residue of the nucleic acid molecule of the present invention, and in the case of the 5'side, the substitution with C is preferable. In the case of the'side, substitution by N is preferable.
  • the phosphoric acid group may be replaced with, for example, the phosphorus-free linker.
  • the linkers include, for example, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioform acetal, form acetal, oxime, methylene imino, methylene methyl imino, methylene hydrazo, methylene dimethyl. It contains hydrazo, methyleneoxymethylimino and the like, and preferably contains a methylenecarbonylamino group and a methylenemethylimino group.
  • nucleic acid molecule of the present invention for example, at least one nucleotide residue at the 3'end and the 5'end may be modified.
  • the modification may be, for example, either the 3'end and the 5'end, or both.
  • the modification is, for example, as described above, and is preferably performed on the terminal phosphate group.
  • the phosphoric acid group may, for example, modify the whole, or may modify one or more atoms in the phosphoric acid group. In the former case, for example, the entire phosphate group may be substituted or deleted.
  • Modification of the terminal nucleotide residue includes, for example, addition of another molecule.
  • the other molecule include functional molecules such as the above-mentioned labeling substance and protecting group.
  • the protecting group include S (sulfur), Si (silicon), B (boron), and an ester-containing group.
  • Functional molecules such as the labeling substance can be used, for example, for detecting the nucleic acid molecule of the present invention.
  • the other molecule may be added to the phosphate group of the nucleotide residue, or may be added to the phosphate group or the sugar residue via a spacer, for example.
  • the terminal atom of the spacer can be added or substituted, for example, to the bound oxygen of the phosphate group or O, N, S or C of a sugar residue.
  • the binding site of the sugar residue is preferably, for example, C at the 3'position or C at the 5'position, or an atom that binds to these.
  • the spacer can also be added or substituted, for example, to the terminal atom of a nucleotide substitute such as PNA.
  • the spacer is not particularly limited, and is, for example,-(CH 2 ) n -,-(CH 2 ) n N-,-(CH 2 ) n O-,-(CH 2 ) n S-, O (CH 2).
  • CH 2 O) n CH 2 CH 2 OH non-basic sugar, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, morpholino, etc., as well as biotin and fluorescein reagents, etc. Good.
  • the molecule added to the terminal includes, for example, a dye, an intercalating agent (for example, acrydin), a cross-linking agent (for example, solarene, mitomycin C), porphyrin (TPPC4, texaphyllin, sapphirine), and a polycyclic type.
  • an intercalating agent for example, acrydin
  • a cross-linking agent for example, solarene, mitomycin C
  • porphyrin texaphyllin, sapphirine
  • a polycyclic type for example, a dye, an intercalating agent (for example, acrydin), a cross-linking agent (for example, solarene, mitomycin C), porphyrin (TPPC4, texaphyllin, sapphirine), and a polycyclic type.
  • Aromatic hydrocarbons eg phenazine, dihydrophenazine
  • artificial endonucleases eg EDTA
  • lipophilic carriers eg cholesterol, cholic acid, adamantan acetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis- O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) Cholic acid, dimethoxytrityl, or phenoxazine) and peptide complexes (eg, Antennapedia peptide, Tat peptide), alkylating agents, phosphoric acid, amino, mercapto,
  • the 5'end may be modified with, for example, a phosphate group or a phosphate group analog.
  • the phosphoric acid group is, for example, 5'monophosphoric acid ((HO) 2 (O) PO-5'), 5'diphosphoric acid ((HO) 2 (O) POP (HO) (O) -O- 5'), 5'triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-guanosine cap (7-methylated or Unmethylated, 7m-GO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-adenosine cap (Appp), optional Modified or unmodified nucleotide cap structure (NO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'monothiophosphate
  • the base is not particularly limited.
  • the base may be, for example, a natural base or a non-natural base.
  • the base may be, for example, naturally derived or synthetic.
  • As the base for example, a general base, a modified analog thereof, or the like can be used.
  • Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, uracil and thymine.
  • Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine and the like.
  • the base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyl uracil and 5-propynylcitosine; 6 -Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-halogenation, amination, Thiolization, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N -6, and O-6 substituted purines (including
  • the modified nucleotide residue may include, for example, a residue lacking a base, that is, a base-free ribophosphate skeleton.
  • the modified nucleotide residues are, for example, US Provisional Application No. 60 / 465,665 (Filing Date: April 25, 2003) and International Application No. PCT / US04 / 07070 (Filing Date: March 8, 2004). Sun; WO2004 / 080406) can be used, and the present invention can be incorporated by reference to these documents.
  • the method for synthesizing the nucleic acid molecule of the present invention is not particularly limited, and a conventionally known method can be adopted.
  • Examples of the synthesis method include a synthesis method by a genetic engineering method, a chemical synthesis method, and the like.
  • Examples of the genetic engineering method include an in vitro transcription synthesis method, a method using a vector, and a method using a PCR cassette.
  • the vector is not particularly limited, and examples thereof include non-viral vectors such as plasmids and viral vectors.
  • the chemical synthesis method is not particularly limited, and examples thereof include a phosphoramidite method and an H-phosphonate method.
  • a commercially available automatic nucleic acid synthesizer can be used.
  • amidite is generally used.
  • the amidite is not particularly limited, and examples of commercially available amidites include RNA Phosphoramidites (2'-O-TBDMSi, trade name, Sansenri Pharmaceutical), ACE amidite and TOM amidite, CEE amidite, CEM amidite, TEM amidite and the like. Can be given.
  • a vector encoding the nucleic acid molecule in an expressible state as a precursor of the nucleic acid molecule (expression vector of the present invention). ) Can also be provided.
  • the expression vector of the present invention is characterized by containing the DNA encoding the nucleic acid molecule of the present invention under the control of a functional promoter in the target cell.
  • the expression vector of the present invention is characterized by containing a promoter functionally linked to the DNA, and other configurations are not limited in any way.
  • the vector into which the DNA is inserted is not particularly limited, and for example, a general vector can be used, and examples thereof include a viral vector and a non-viral vector.
  • examples of the non-viral vector include a plasmid vector.
  • Hepatitis B virus DNA amplification inhibitor is a preparation that suppresses the amplification of hepatitis B virus DNA, and is characterized by containing the nucleic acid molecule of the present invention as an active ingredient. ..
  • the hepatitis B virus DNA amplification inhibitor includes, for example, a step of administering the nucleic acid molecule alone or in combination with a pharmacologically acceptable carrier to a subject in which the hepatitis B virus DNA is present.
  • the administration step is performed, for example, by bringing the nucleic acid molecule into contact with the administration subject.
  • the administration target include cells, tissues or organs of humans and non-human animals such as non-human mammals other than humans.
  • the administration may be, for example, in vivo or in vitro.
  • nucleic acid molecule of the present invention When the amplification of hepatitis B virus DNA is suppressed by the nucleic acid molecule of the present invention, the growth of hepatitis B virus is reduced. Therefore, the drug containing the nucleic acid molecule of the present invention as an active ingredient is useful for suppressing the growth of hepatitis B virus.
  • the nucleic acid molecule or expression vector of the present invention By administering an effective amount of the nucleic acid molecule or expression vector of the present invention to a target human infected with hepatitis B virus, the growth of the hepatitis B virus in the human can be suppressed.
  • Hepatitis B can be treated by using the pharmaceutical composition for suppressing the growth of hepatitis B virus of the present invention. Therefore, the pharmaceutical composition of the present invention is useful for the treatment of hepatitis B.
  • treatment is used to include prevention and delay of onset of disease, improvement of disease, and improvement of prognosis.
  • Hepatitis B causes liver cirrhosis and liver cancer when it becomes severe.
  • the pharmaceutical composition for treating hepatitis B of the present invention liver cirrhosis and liver cancer can be treated. Therefore, the pharmaceutical composition of the present invention is useful for the treatment of liver cirrhosis and liver cancer.
  • liver cirrhosis and liver cancer in the human can be treated.
  • the medicament of the present invention may use an effective amount of the nucleic acid molecule of the present invention alone, or may be formulated as a pharmaceutical composition together with an arbitrary carrier, for example, a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include, for example, excipients such as sucrose and starch, binders such as cellulose and methyl cellulose, disintegrants such as starch and carboxymethyl cellulose, lubricants such as magnesium stearate and aerodyl, citric acid, etc. Fragrances such as menthol, preservatives such as sodium benzoate and sodium hydrogen sulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolid, dispersants such as surfactants, water, Diluting agents such as physiological saline, base wax and the like can be mentioned, but the present invention is not limited thereto.
  • the medicament of the present invention may further contain a reagent for introducing a nucleic acid.
  • Reagents for introducing nucleic acids include atelocollagen; liposomes; nanoparticles; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI). And the like, cationic lipids and the like can be used.
  • the medicament of the present invention may be a pharmaceutical composition in which the nucleic acid molecule of the present invention is encapsulated in liposomes.
  • Liposomes are microclosed vesicles having an internal phase surrounded by one or more lipid bilayers, which can usually retain water-soluble substances in the internal phase and fat-soluble substances in the lipid bilayer.
  • the nucleic acid molecule of the invention may be retained in the liposome internal phase or in the lipid bilayer.
  • the liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected in the range of, for example, 10 to 1000 nm, preferably 50 to 300 nm. Considering the deliverability to the target tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
  • Examples of the method for encapsulating a water-soluble compound such as nucleic acid in liposomes include a lipid film method (vortex method), a reverse phase evaporation method, a surfactant removal method, a freeze-thaw method, and a remote loading method. Without limitation, any known method can be appropriately selected.
  • the medicament of the present invention is usually safely administered to humans so that the nucleic acid molecule or expression vector of the present invention is delivered to a target cell (eg, hepatocyte, liver cancer cell).
  • a target cell eg, hepatocyte, liver cancer cell.
  • the nucleic acid molecule of the present invention When the nucleic acid molecule of the present invention is administered to an administration subject in vivo, the nucleic acid molecule binds to a cell surface receptor for efficient delivery to a specific organ, tissue or cell in the living body. It may be conjugated to a ligand.
  • the nucleic acid molecule of the present invention can be conjugated to a surface receptor ligand or the like characteristic of liver cells in order to improve the delivery efficiency to the liver.
  • ligands include cholesterol and N-acetylgalactosamine (GalNAc) clusters.
  • Examples of N-acetylgalactosamine (GalNAc) clusters include compounds having the following structural formulas.
  • a buffer for example, a buffer, an isotonic agent, a solubilizing agent, a preservative, a viscous base, a chelating agent, a cooling agent, a pH adjusting agent, an antioxidant and the like are appropriately selected and added to the medicament of the present invention.
  • the buffer include a phosphate buffer, a boric acid buffer, a citric acid buffer, a tartrate buffer, an acetate buffer, and an amino acid.
  • the tonicity agent include sugars such as sorbitol, glucose and mannitol, polyhydric alcohols such as glycerin and propylene glycol, salts such as sodium chloride, and boric acid.
  • solubilizing agent examples include polyoxyethylene sorbitan monoolate (for example, polysorbate 80), polyoxyethylene hydrogenated castor oil, nonionic surfactants such as tyroxapol and pluronic, and polyhydric alcohols such as glycerin and macrogol. Be done.
  • preservatives include quaternary ammonium salts such as benzalkonium chloride, benzethonium chloride and cetylpyridinium chloride, and paraoxybenzoic acid such as methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate and butyl paraoxybenzoate.
  • Examples thereof include esters, benzyl alcohol, sorbic acid and salts thereof (sodium salt, potassium salt, etc.), timerosal (trade name), chlorobutanol, sodium dehydroacetate and the like.
  • Examples of the viscous base include water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol and polyvinyl alcohol, and celluloses such as hydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose and sodium carboxymethyl cellulose.
  • Examples of the chelating agent include sodium edetate and citric acid.
  • Examples of the refreshing agent include l-menthol, borneol, camphor, eucalyptus oil and the like.
  • Examples of the pH adjuster include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, boric acid or a salt thereof (hosand), hydrochloric acid, citric acid or a salt thereof (sodium citrate, sodium dihydrogen citrate). Etc.), phosphoric acid or a salt thereof (disodium hydrogen phosphate, potassium dihydrogen phosphate, etc.), acetic acid or a salt thereof (sodium acetate, ammonium acetate, etc.), citric acid or a salt thereof (sodium tartrate, etc.) and the like.
  • Examples of the antioxidant include sodium hydrogen sulfite, dry sodium sulfite, sodium pyrosulfite, concentrated mixed tocopherol and the like.
  • the content of the nucleic acid molecule of the present invention in the pharmaceutical composition of the present invention is, for example, about 0.1 to 100% by weight of the entire pharmaceutical composition.
  • the pharmaceutical composition of the present invention is a liposome preparation
  • the molar ratio of the nucleic acid molecule of the present invention to the liposome component is usually 1 / 100,000 to 1 / 10,000.
  • the amount of liposomes encapsulating the nucleic acid molecule of the present invention contained in the liposome preparation is not particularly limited as long as the liposome particles do not aggregate and the amount can exert a sufficient medicinal effect, and is usually 10 to 10. It is 100 mM.
  • the dose of the medicament of the present invention varies depending on the purpose of administration, the administration method, the type and size of ocular surface disease, and the situation (gender, age, weight, etc.) of the subject to be administered.
  • a single dose of the nucleic acid of the present invention it is usually preferably 0.01 to 1000 ⁇ g, preferably 0.05 to 100 ⁇ g, more preferably 0.1 to 50 ⁇ g, once to 10 times, preferably 5 to 10 times a day.
  • Example 1 Synthesis of single-stranded nucleic acid molecules
  • the single-stranded nucleic acid molecules shown below were synthesized by an ABI3900 nucleic acid synthesizer (trade name, Applied Biosystems) based on the phosphoramidite method.
  • EMM amidite International Publication No. 2013/027843
  • RNA amidite (hereinafter, the same applies).
  • the deprotection of the amidite was performed according to a conventional method.
  • the synthesized single-stranded nucleic acid molecules were purified by HPLC and then freeze-dried.
  • single-stranded nucleic acid molecules As single-stranded nucleic acid molecules, single-stranded nucleic acid molecules (PH-HB-0001, PH-HB-0002) having the hepatitis B virus gene expression-suppressing sequence represented by SEQ ID NOs: 1 and 2, from the above-mentioned SEQ ID NO: 3. Single-stranded nucleic acid molecules (PH-HB-0003, PH-HB-0004, PH-HB-0005) having a human NCAPH gene expression-suppressing sequence represented by 5, and human Sp1 gene expression represented by SEQ ID NOs: 6 and 7 above.
  • Single-stranded nucleic acid molecules having an inhibitory sequence (PH-Sp1-1, PH-Sp1-4) and single-stranded nucleic acid molecules having a human SOCS7 gene expression inhibitory sequence represented by SEQ ID NOs: 8 and 9 (PH-SOCS7-) 1, PH-SOCS7-4) were synthesized as described above.
  • Lx is a linker region Lx
  • L-proline diamide amidite was used to formulate the following structural formula.
  • PH-HB-0001 (SEQ ID NO: 19) 5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3' PH-HB-0002 (SEQ ID NO: 20) 5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3' PH-HB-0003 (SEQ ID NO: 21) 5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3' PH-HB-0004 (SEQ ID NO: 22) 5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3' PH-HB-0005 (SEQ ID NO: 23) 5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3' PH-
  • Hep38.7-Tet cells are cultured in DMEM / F12 medium (Life Technologies, 10565-018) with 10% fetal bovine serum (FBS), 100 U / mL penicillin (Thermo Fisher, 15140122), 100 ⁇ g / mL streptomycin. (Thermo Fisher, 15140122), 10 mM HEPES, 5 ⁇ g / mL Insulin, 400 ⁇ g / mL G418 (Nakaraitesku, 09380-086) was added to the medium. During normal passage, a medium supplemented with 400 ng / mL tetracycline was used, and when HBV replication was initiated, a medium without tetracycline was used.
  • FBS fetal bovine serum
  • Thermo Fisher, 15140122 100 U / mL penicillin
  • streptomycin 100 ⁇ g / mL streptomycin.
  • 10 mM HEPES 5 ⁇ g /
  • PshRNA The introduced single-stranded nucleic acid molecules (hereinafter, also referred to as PshRNA) are as follows. (a) PH-scramble1583 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-HB-0001 (d) PH-HB-0002
  • RNAs were introduced into Hep38.7 cells by reverse transfection using Lipofectamin-RNAiMAX and seeded on 96 well plates using 100 ⁇ L medium to a concentration of 3.0 x 10 4 cells / well. The RNA concentrations were adjusted to final concentrations of 0.5 nM, 10 nM, and 500 nM. Specifically, using a 96-well plate, 10 ⁇ L was prepared using OPTI-MEM so that the respective RNA concentrations were 5 nM, 100 nM, and 5000 nM, and separately prepared RNAiMAX 0.2 ⁇ L and OPTI-MEM 9.8 ⁇ L. Was mixed with the mixture of 1 and incubated at room temperature for 20 minutes.
  • HBV DNA 72 hours after changing to a tetracycline-free medium, the entire supernatant (about 200 ⁇ L) was collected, centrifuged to precipitate the contaminated cells, and then Smytest EX-R & D (MBL, Cat) from 50 ⁇ L of the supernatant. DNA was extracted using No. GS-J0201). The obtained DNA was lysed in 50 ⁇ L of DW (Ambion (R) Nuclease-Free Water, AM9937).
  • HBV DNA was quantified by real-time PCR using StepOnePlus (ThermoFisher / Applied Biosystems).
  • the Primer and Taqman Probe used for quantification are as follows. -Forward primer: 5'-CACATCAGGATTCCTAGGACC-3' (SEQ ID NO: 61) ⁇ Reverse primer: 5'-AGGTTGGTGAGTGATTGGAG-3' (SEQ ID NO: 62) -Taqman probe: 5'-FAM-CAGAGTCTAGACTCGTGGTGGACTTC-TAMRA-3'(SEQ ID NO: 63)
  • StepOnePlus PCR was performed with a final volume of 25 ⁇ L using 5 ⁇ L of each Primer 1 ⁇ M, Probe 0.25 ⁇ M and DNA extract stock solution.
  • the conditions for PCR are 50 °C 2min ⁇ 95 °C 10min ⁇ (95 °C 15sec ⁇ 60 °C 1min) ⁇ 53 cycles And said.
  • the copy number of HBV DNA in the sample was calculated from the obtained data and the calibration curve obtained using HBV-plasmid 10 1 to 10 7 copies (Fig. 2).
  • CccDNA was quantified by real-time PCR using StepOnePlus, referring to the method of Takkenberg et al. (J. Hepatol. 2018, 69, 301-307).
  • the Primer and Taqman Probe used for quantification are as follows. -Forward primer: 5'-CTCCCCGTCTGTGCCTTCT-3'(SEQ ID NO: 64) -Reverse primer: 5'-GCCCCAAAGCCACCCAAG-3'(SEQ ID NO: 65) -Taqman probe: 5'-FAM-CGTCGCATGGARACCACCGTGAACGCC-TAMRA-3' (SEQ ID NO: 66)
  • StepOnePlus PCR was performed with a final volume of 25 ⁇ L using 5 ⁇ L of each Primer 0.9 ⁇ M, Probe 0.4 ⁇ M and DNA extract stock solution.
  • the conditions for PCR are 50 °C 2min ⁇ 95 °C 10min ⁇ (95 °C 10sec ⁇ 58 °C 5sec ⁇ 63 °C 10sec ⁇ 72 °C 10sec) ⁇ 55 cycles And said.
  • the number of copies of HBV cccDNA in the sample was calculated from the obtained data and the calibration curve obtained using HBV-cccDNA plasmid 10 1 to 10 7 copies (Fig. 3).
  • Example 2 Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-HB-0003 (d) PH-HB-0004 (e) PH-HB-0005
  • the HBV DNA ratio tended to decrease at an RNA concentration of 500 nM compared to PH-7070.
  • a decrease in the cccDNA ratio was observed at an RNA concentration of 10 nM as compared with PH-7070.
  • Example 3 Evaluation of activity of the product of the present invention with respect to the amount of HBs antigen in the culture solution
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-HB-0003 (d) PH-HB-0004 (e) PH-HB-0005
  • RNA was introduced into Hep38.7 cells so that the final RNA concentrations were 0.5 nM, 10 nM, and 500 nM, respectively, in the same manner as in Example 1, and the supernatant was collected after 72 hours after changing to a tetracycline-free medium. did.
  • the amount of HBV HBs antigen present in the supernatant is determined by HBs S Antigen Quantitative ELISA Kit, Rapid-II (Beacle, Cat No. BCL-SHP-21) (detection limit 0.05). nUnit / mL) was used for measurement (Fig. 6).
  • HBsAg ratio was observed at RNA concentrations of 10 nM and 500 nM compared to PH-7070.
  • Example 4 Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-HB-0003 (d) PH-HB-0004 (e) PH-HB-0005
  • PH-HB-0003, PH-HB-0004 and PH-HB-0005 did not show a decrease in the HBV DNA ratio compared to PH-7070.
  • PH-HB-0003, PH-HB-0004 and PH-HB-0005 showed a decrease in cccDNA ratio at RNA concentrations of 10 nM and 500 nM compared to PH-7070.
  • the copy number of HBV DNA in the culture medium (Fig. 9) was calculated at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM by the same method as in Example 1.
  • PH-HB-0001, PH-HB-0007, PH-HB-0014, PH-HB-0027, PH-HB-0031, and PH-HB-0032 had a lower HBV DNA ratio than PH-7070. It was.
  • Example 6 Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-SP1-1 (d) PH-SP1-4
  • the HBV DNA ratio decreased at RNA concentrations of 10 nM and 500 nM compared to PH-7070.
  • the cccDNA ratio was decreased at RNA concentrations of 10 nM and 500 nM as compared with PH-7070.
  • Example 7 Evaluation of activity of the product of the present invention with respect to the amount of HBs antigen in the culture solution
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-SP1-1 (d) PH-SP1-4
  • the amount of HBV HBs antigen in the culture solution was measured at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM by the same method as in Example 3 (Fig. 12).
  • HBsAg ratio was reduced at the corresponding RNA concentration as compared with PH-7070.
  • Example 8 Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-SP1-1 (d) PH-SP1-4
  • the cccDNA ratio decreased at an RNA concentration of 500 nM compared to PH-7070.
  • Example 9 Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA
  • the introduced PshRNA is as follows. (a) PH-7070 (negative control) (b) PH-HBV_264 (Positive Control) (c) PH-SOCS7-1 (d) PH-SOCS7-4
  • PH-SOCS7-1 the cccDNA ratio was reduced at RNA concentrations of 10 nM and 500 nM compared to PH-7070.
  • PH-SOCS7-4 had a reduced cccDNA ratio at the corresponding RNA concentration compared to PH-7070.
  • Example 10 Number of cultured cells, culture procedure, and outline of HBV induction method 3.5 x 10 4 cells / well (100 ⁇ L medium, 96 well plate) of cells were seeded per well using a tetracycline-containing medium. After 20 hours, the medium was changed to a tetracycline-free medium and HBV replication was started. After 72 hours, the supernatant or cells were collected.
  • siRNAs of the following siRNA and negative controls were scr-1583 dn: GAC GCG GUA CGG AGA Att (SEQ ID NO: 109) and scr-1583 up: UUC UCC GUA. It is an siRNA consisting of CCG CGU Ctt (SEQ ID NO: 110).
  • siRNAs were introduced into Hep38.7 cells by reverse transfection using Lipofectamin-RNAiMAX and seeded on 96 well plates using 100 ⁇ L medium to a concentration of 3.0 x 10 4 cells / well. The RNA concentrations were adjusted to final concentrations of 0.5 nM, 10 nM, and 500 nM. Specifically, using a 96-well plate, 10 ⁇ L was prepared using OPTI-MEM so that the respective RNA concentrations were 5 nM, 100 nM, and 5000 nM, and separately prepared RNAiMAX 0.2 ⁇ L and OPTI-MEM 9.8 ⁇ L. Was mixed with the mixture of 1 and incubated at room temperature for 20 minutes.
  • the copy number of HBV DNA in the culture medium (FIG. 17) was calculated at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM by the same method as in Example 1.
  • the HBV DNA ratio decreased at RNA concentrations of 0.5 nM, 10 nM, and 500 nM as compared with the negative control.
  • the present invention is effective as a therapeutic agent for diseases caused by the expression of hepatitis B virus gene, such as hepatitis B, liver cirrhosis and liver cancer.

Abstract

The present invention provides a nucleic acid molecule which can suppress the amplification of hepatitis B virus DNA significantly. More specifically, the present invention provides a single-stranded nucleic acid molecule which can suppresses the amplification of hepatitis B gene virus DNA, the nucleic acid molecule being characterized by being composed only of a region (X), a linker region (Lx) and a region (Xc), the linker region (Lx) having a non-nucleotide structure containing at least one of a pyrrolidine base structure and a piperidine base structure, and at least one of the region (X) and the region (Xc) comprising a nucleotide sequence composed of at least 18 contiguous bases contained in any one of sequences capable of suppressing the expression of hepatitis B virus gene represented by SEQ ID NOs:1 and 2, human NCAPH gene represented by SEQ ID NOs:3 to 5, human Sp1 gene represented by SEQ ID NOs:6 and 7 and human SOCS7 gene represented by SEQ ID NOs:8 and 9.

Description

B型肝炎治療用核酸分子Nucleic acid molecule for the treatment of hepatitis B
 本発明は、B型肝炎ウイルス(HBV)DNAの増幅を効果的に抑制する核酸分子、および当該核酸分子を含む、B型肝炎ウイルス増殖抑制用、B型肝炎、肝硬変および肝臓がんの治療用の医薬組成物に関する。 The present invention comprises a nucleic acid molecule that effectively suppresses the amplification of hepatitis B virus (HBV) DNA, and a nucleic acid molecule for suppressing the growth of hepatitis B virus, for treating hepatitis B, liver cirrhosis and liver cancer. With respect to the pharmaceutical composition of.
 B型肝炎ウイルスには、日本国内で130万~150万人、世界中ではおよそ3億5,000万人が感染していると言われており、C型肝炎ウイルスと共に慢性肝炎の主な原因となっている。 Hepatitis B virus is said to infect 1.3 million to 1.5 million people in Japan and about 350 million people worldwide, and is a major cause of chronic hepatitis along with hepatitis C virus. ing.
 慢性C型肝炎では、現状の治療法によって、かなりの高率でHCVウイルスの完全排除が期待できるが、慢性B型肝炎の現在の治療法では、HBVウイルスの完全排除は出来ない。現状の慢性B型肝炎に対する治療法にはインターフェロン(IFN)療法と核酸アナログ製剤療法がある。IFN療法の奏効率は30~40%に留まり、強い副作用も伴う。一方の、核酸アナログ製剤は服用により肝炎が鎮静化し肝機能が改善するが、長期の服用を余儀なくされ、投薬中止によりほとんどの症例で肝炎が再燃する。これは、肝細胞核内に治療後も微量に存在するcccDNA(covalenty closed circular DNA、閉環状DNAまたは完全閉鎖二重鎖DNA)からの転写が治療終了後に起こるためである。したがって、前記の治療法と作用機序の異なる新たな革新的治療薬の開発が求められている(非特許文献1、2)。 For chronic hepatitis C, the current treatment can be expected to completely eliminate the HCV virus at a fairly high rate, but the current treatment for chronic hepatitis B cannot completely eliminate the HBV virus. Current treatments for chronic hepatitis B include interferon (IFN) therapy and nucleic acid analog drug therapy. The response rate of IFN therapy is only 30-40%, with strong side effects. On the other hand, the nucleic acid analog preparation calms hepatitis and improves liver function, but it is obliged to take it for a long period of time, and hepatitis relapses in most cases when the drug is discontinued. This is because transcription from cccDNA (covalenty closed circular DNA, closed circular DNA or completely closed double-stranded DNA), which is present in a trace amount in the nucleus of hepatocytes even after treatment, occurs after the end of treatment. Therefore, the development of a new innovative therapeutic agent having a different mechanism of action from the above-mentioned therapeutic method is required (Non-Patent Documents 1 and 2).
 慢性B型肝炎治療薬候補の作用機序が、非特許文献3にまとめられている。中でも、siRNAによる全ウイルスタンパク質の翻訳抑制は、HBVのウイルスとしての機能を完全に遮断することが期待できる。 The mechanism of action of the candidate for the treatment of chronic hepatitis B is summarized in Non-Patent Document 3. Above all, suppression of translation of all viral proteins by siRNA can be expected to completely block the function of HBV as a virus.
 核酸医薬品は従来の低分子医薬品や抗体医薬品では狙えないmRNAやmiRNA等の分子を創薬ターゲットとすることが可能であり、次世代の医薬品として高い期待が寄せられている。それにより、これまで治療が困難であった疾病に対する医薬品の創出が期待されており、全世界で研究が盛んに行われているのが現状である。 Nucleic acid drugs can target molecules such as mRNA and miRNA, which cannot be targeted by conventional small molecule drugs and antibody drugs, and are highly expected as next-generation drugs. As a result, it is expected to create medicines for diseases that have been difficult to treat, and the current situation is that research is being actively conducted all over the world.
 その一方で、核酸医薬品の開発においては、「(1)核酸分子の生体内での不安定性」「(2)副作用の懸念」「(3)薬物送達技術(DDS)の困難性」等の克服すべき課題があることが指摘されている。それにより、開発品の多さに比較して上市品は、未だ数少ないのが現状である。 On the other hand, in the development of nucleic acid drugs, overcoming "(1) instability of nucleic acid molecules in vivo", "(2) concerns about side effects", "(3) difficulty of drug delivery technology (DDS)", etc. It has been pointed out that there are issues to be addressed. As a result, the number of products on the market is still small compared to the number of products developed.
 核酸医薬における、遺伝子の発現を抑制する技術として、例えば、RNA干渉(RNAi)が知られている。RNA干渉による遺伝子の発現抑制は、例えば、短い二本鎖のRNA分子を、細胞等に投与することによって、実施されるのが一般的である。前記二本鎖のRNA分子は、通常、siRNA(small interfering RNA)と呼ばれる。近年、siRNAに代わるより効果的な一本鎖核酸分子が新たに見出されている(特許文献1、2)。また、B型肝炎治療用の該一本鎖核酸分子も作製されている(特許文献3)。 For example, RNA interference (RNAi) is known as a technique for suppressing gene expression in nucleic acid drugs. Suppression of gene expression by RNA interference is generally carried out, for example, by administering a short double-stranded RNA molecule to cells or the like. The double-stranded RNA molecule is usually called siRNA (small interfering RNA). In recent years, more effective single-stranded nucleic acid molecules have been newly found to replace siRNA (Patent Documents 1 and 2). In addition, the single-stranded nucleic acid molecule for the treatment of hepatitis B has also been produced (Patent Document 3).
国際公開第2012/005368号International Publication No. 2012/0053168 国際公開第2012/017919号International Publication No. 2012/017919 国際公開第2018/199338号International Publication No. 2018/1993338
 B型肝炎の治療のために、B型肝炎ウイルスの増殖を強力に抑制することのできる核酸の探索が望まれている。そこで、本発明は、B型肝炎ウイルスDNAの増幅を効果的に抑制する核酸分子、および当該核酸分子を含むB型肝炎ウイルス増殖抑制用、B型肝炎、肝硬変、肝臓がんの治療用の医薬組成物を提供することを目的とする。 For the treatment of hepatitis B, it is desired to search for a nucleic acid capable of strongly suppressing the growth of hepatitis B virus. Therefore, the present invention comprises a nucleic acid molecule that effectively suppresses the amplification of hepatitis B virus DNA, and a medicament for suppressing the growth of hepatitis B virus containing the nucleic acid molecule, and for treating hepatitis B, liver cirrhosis, and liver cancer. It is an object of the present invention to provide a composition.
 本発明者らは、B型肝炎ウイルスゲノムDNA、ヒトNCAPH遺伝子、ヒトSp1遺伝子およびヒトSOCS7遺伝子内の特定の部分配列を標的とするヌクレオチド配列を含む領域と、その相補鎖配列を含む領域とを、特定のリンカーを用いて連結した一本鎖核酸分子が、B型肝炎ウイルスDNAの増幅を顕著に抑制することを見出し、本発明を完成するに至った。 The present inventors include a region containing a nucleotide sequence targeting a specific partial sequence in the hepatitis B virus genomic DNA, a human NCAPH gene, a human Sp1 gene, and a human SOCS7 gene, and a region containing the complementary strand sequence thereof. , A single-stranded nucleic acid molecule linked using a specific linker has been found to remarkably suppress the amplification of hepatitis B virus DNA, and has completed the present invention.
 即ち、本発明は、以下に示すとおりである。
[1] B型肝炎ウイルスDNAの増幅を抑制する一本鎖核酸分子であって、
領域(X)、リンカー領域(Lx)および領域(Xc)のみからなり、
前記リンカー領域(Lx)が、ピロリジン骨格およびピペリジン骨格の少なくとも一方を含む非ヌクレオチド構造を有し、
前記領域(X)および前記領域(Xc)の一方が、下記配列番号1および2:
 (配列番号1) 5'- GAAGAUGAGAAGGCACAGACG -3'
 (配列番号2) 5'- UCCUGAACUGGAGCCACCAGC -3'
で表されるB型肝炎ウイルス遺伝子の一部に相補的な配列、ならびに下記配列番号3から5:
 (配列番号3) 5'- GUUUUCUGAUUGGGAAGGAGC -3'
 (配列番号4) 5'- CUAAUCCUUGGGCUUCUGGAG -3'
 (配列番号5) 5'- UAUACUUCACUGCUUCUGGCC -3'
で表されるヒトNCAPH遺伝子の一部に相補的な配列、ならびに下記配列番号6および7:
 (配列番号6) 5'- CCUGUGUGUGUACGUUUGUGC -3'
 (配列番号7) 5'- UGUACGUUUGUGCCUCUGUAG -3'
で表されるヒトSp1遺伝子の一部に相補的な配列、ならびに下記配列番号8および9:
 (配列番号8) 5'- CCUUUCUCUCCUGCUCCUACA -3'
 (配列番号9) 5'- GCUUCAUCUCUGCAUCUUCCC -3'
で表されるヒトSOCS7遺伝子の一部に相補的な配列から選ばれるいずれかのヌクレオチド配列中の、連続する少なくとも18ヌクレオチドからなるヌクレオチド配列を含む発現抑制配列を含み、
他方が、該発現抑制配列と相補的なヌクレオチド配列を含む、核酸分子。
[2] 領域(X)、リンカー領域(Lx)および領域(Xc)が、3’側から5’側にかけてこの順序で配置され、前記領域(X)の塩基数(X)および前記領域(Xc)の塩基数(Xc)が、下記式(1)または式(2)の条件を満たす、[1]記載の核酸分子。
   X>Xc ・・・(1)
   X=Xc ・・・(2)
[3] 前記領域(X)の塩基数(X)および前記領域(Xc)の塩基数(Xc)が、下記式(3)の条件を満たす、[2]記載の核酸分子。
   X-Xc=1、2または3 ・・・(3)
[4] 前記領域(Xc)の塩基数(Xc)が、19塩基~30塩基である、[1]から[3]のいずれかに記載の核酸分子。
[5] 前記リンカー領域(Lx)が、下記式(I)で表わされる、[1]から[4]のいずれかに記載の核酸分子。
That is, the present invention is as shown below.
[1] A single-stranded nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA.
Consists of region (X), linker region (Lx) and region (Xc) only
The linker region (Lx) has a non-nucleotide structure containing at least one of a pyrrolidine skeleton and a piperidine skeleton.
One of the region (X) and the region (Xc) has the following SEQ ID NOs: 1 and 2:
(SEQ ID NO: 1) 5'-GAAGAUGAGAAGGCACAGACG -3'
(SEQ ID NO: 2) 5'-UCCUGAACUGGAGCCACCAGC -3'
A sequence complementary to a part of the hepatitis B virus gene represented by, and SEQ ID NOs: 3 to 5:
(SEQ ID NO: 3) 5'-GUUUUCUGAUUGGGAAGGAGC -3'
(SEQ ID NO: 4) 5'-CUAAUCCUUGGGCUUCUGGAG -3'
(SEQ ID NO: 5) 5'-UAUACUUCACUGCUUCUGGCC -3'
A sequence complementary to a part of the human NCAPH gene represented by, and SEQ ID NOs: 6 and 7:
(SEQ ID NO: 6) 5'-CCUGUGUGUGUACGUUUGUGC -3'
(SEQ ID NO: 7) 5'-UGUACGUUUGUGCCUCUGUAG -3'
A sequence complementary to a part of the human Sp1 gene represented by, and SEQ ID NOs: 8 and 9:
(SEQ ID NO: 8) 5'-CCUUUCUCUCCUGCUCCUACA -3'
(SEQ ID NO: 9) 5'-GCUUCAUCUCUGCAUCUUCCC -3'
Contains an expression-suppressing sequence containing a nucleotide sequence consisting of at least 18 consecutive nucleotides in any of the nucleotide sequences selected from sequences complementary to a part of the human SOCS7 gene represented by.
On the other hand, a nucleic acid molecule containing a nucleotide sequence complementary to the expression-suppressing sequence.
[2] The region (X), the linker region (Lx) and the region (Xc) are arranged in this order from the 3'side to the 5'side, and the number of bases (X) in the region (X) and the region (Xc). The nucleic acid molecule according to [1], wherein the number of bases (Xc) in) satisfies the condition of the following formula (1) or formula (2).
X> Xc ・ ・ ・ (1)
X = Xc ・ ・ ・ (2)
[3] The nucleic acid molecule according to [2], wherein the number of bases (X) in the region (X) and the number of bases (Xc) in the region (Xc) satisfy the condition of the following formula (3).
X-Xc = 1, 2 or 3 ・ ・ ・ (3)
[4] The nucleic acid molecule according to any one of [1] to [3], wherein the number of bases (Xc) in the region (Xc) is 19 to 30 bases.
[5] The nucleic acid molecule according to any one of [1] to [4], wherein the linker region (Lx) is represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
前記式中、
X1およびX2は、それぞれ独立して、H2、O、SまたはNHであり;
Y1およびY2は、それぞれ独立して、単結合、CH2、NH、OまたはSであり;
R3は、環A上のC-3、C-4、C-5またはC-6に結合する水素原子または置換基であり;
L1は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORa、NH2、NHRa、NRaRb、SH、もしくはSRaで置換されても置換されていなくてもよく、または、
L1は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ただし、Y1が、NH、OまたはSの場合、Y1に結合するL1の原子は炭素であり、OR1に結合するL1の原子は炭素であり、酸素原子同士は隣接せず;
L2は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORc、NH2、NHRc、NRcRd、SHもしくはSRcで置換されても置換されていなくてもよく、または、
L2は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ただし、Y2が、NH、OまたはSの場合、Y2に結合するL2の原子は炭素であり、OR2に結合するL2の原子は炭素であり、酸素原子同士は隣接せず;
Ra、Rb、RcおよびRdは、それぞれ独立して、置換基または保護基であり;
lは、1または2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、前記環A上のC-2以外の1個の炭素原子が、窒素、酸素または硫黄で置換されてもよく、
前記環A内に、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよく、前記領域(Xc)および前記領域(X)は、それぞれ、-OR1-または-OR2-を介して、前記リンカー領域(Lx)に結合し、
ここで、R1およびR2は、存在しても存在しなくてもよく、存在する場合、R1およびR2は、それぞれ独立して、ヌクレオチド残基または前記構造(I)である。
[6] 前記リンカー領域(Lx)が、下記式(I-4a)または(I-6a)で表わされる、[1]から[5]のいずれかに記載の核酸分子。
In the above formula,
X 1 and X 2 are independently H 2 , O, S or NH;
Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S;
R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A;
L 1 is an alkylene chain consisting of n atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a. It may or may not be replaced, or
L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with oxygen atoms.
However, if Y 1 is NH, O or S, the atom of L 1 bonded to Y 1 is carbon, the atom of L 1 bonded to OR 1 is carbon, and the oxygen atoms are not adjacent to each other;
L 2 is an alkylene chain consisting of m atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c. It does not have to be replaced, or
L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
However, if Y 2 is NH, O or S, the atom of L 2 bonded to Y 2 is carbon, the atom of L 2 bonded to OR 2 is carbon, and the oxygen atoms are not adjacent to each other;
R a , R b , R c and R d are independent substituents or protecting groups;
l is 1 or 2;
m is an integer in the range 0-30;
n is an integer in the range 0-30;
In ring A, one carbon atom other than C-2 on the ring A may be replaced with nitrogen, oxygen or sulfur.
A carbon-carbon double bond or a carbon-nitrogen double bond may be contained in the ring A, and the region (Xc) and the region (X) are via -OR 1- or -OR 2-, respectively. To bind to the linker region (Lx)
Here, R 1 and R 2 may or may not be present, and if present, R 1 and R 2 are independently nucleotide residues or the structure (I), respectively.
[6] The nucleic acid molecule according to any one of [1] to [5], wherein the linker region (Lx) is represented by the following formula (I-4a) or (I-6a).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[7] RNA分子である、[1]から[6]のいずれかに記載の核酸分子。
[8] 少なくとも1つの修飾された残基を含む、[1]から[7]のいずれかに記載の核酸分子。
[9] 標識物質を含む、[1]から[8]のいずれかに記載の核酸分子。
[10] 安定同位体を含む、[1]から[9]のいずれかに記載の核酸分子。
[11] 塩基数の合計が、38塩基以上である、[1]から[10]のいずれかに記載の核酸分子。
[12] 下記配列番号19から27、29、36、49、53、54で表されるいずれかの塩基配列からなる、[1]から[11]のいずれかに記載の核酸分子。
(配列番号19)
 5’- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号20)
 5’- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3’
(配列番号21)
 5’- GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3’
(配列番号22)
 5’- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3’
(配列番号23)
 5’- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3’
(配列番号24)
 5’- GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3’
(配列番号25)
 5’- CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3’
(配列番号26)
 5’- UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3’
(配列番号27)
 5’- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3’
(配列番号29)
 5’- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号36)
 5’- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号49)
 5’- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号53)
 5’- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号54)
 5’- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3’
[13] [1]から[12]のいずれかに記載の核酸分子を含む、B型肝炎ウイルス遺伝子DNAの増幅抑制剤。
[14] [1]から[12]のいずれかに記載の核酸分子を含む医薬。
[15] [1]から[12]のいずれかに記載の核酸分子を含む、B型肝炎の治療剤。
[16] [1]から[12]のいずれかに記載の核酸分子を含む、肝硬変または肝臓がんの治療剤。
[17] 配列番号67で表されるB型肝炎ウイルスゲノムDNAのヌクレオチド配列の、ヌクレオチド番号:(1)1550-1568または(2)59-77で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的ゲノムDNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、B型肝炎ウイルス遺伝子の発現抑制配列として含む、
 配列番号68で表されるヒトNCAPH遺伝子のmRNAをコードするヌクレオチド配列の、ヌクレオチド番号:(3)1427-1445(4)1878-1896または(5)3467-3485で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的DNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、ヒトNCAPH遺伝子の発現抑制配列として含む、
 配列番号69で表されるヒトSp1遺伝子のmRNAコードするヌクレオチド配列の、ヌクレオチド番号:(6)2141-2159または(7)2133-2151で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的DNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、ヒトSp1遺伝子の発現抑制配列として含む、または
 配列番号70で表されるヒトSOCS7遺伝子のmRNAコードするヌクレオチド配列の、ヌクレオチド番号:(8)2707-2725または(9)1621-1639で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的DNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、ヒトSOCS7遺伝子の発現抑制配列として含む、
核酸分子。
[18] 前記発現抑制配列が、
(a)配列番号n(nは71~79から選ばれる整数)で表されるヌクレオチド配列(但し、該配列中、各UはTであってもよい)中の、連続する15ヌクレオチド以上のヌクレオチド配列、又は
(b)配列番号n(nは71~79から選ばれる整数)で表されるヌクレオチド配列(但し、該配列中、各UはTであってもよい)を含み、かつ配列番号67、68、69または70で表されるDNAのヌクレオチド配列と完全相補的な25ヌクレオチド以下の配列中の、連続する15ヌクレオチド以上のヌクレオチド配列である、[17]に記載の核酸分子。
[19] 前記(b)の25ヌクレオチド以下の配列が、
 (配列番号1) 5'- GAAGAUGAGAAGGCACAGACG -3'
 (配列番号2) 5'- UCCUGAACUGGAGCCACCAGC -3'
 (配列番号3) 5'- GUUUUCUGAUUGGGAAGGAGC -3'
 (配列番号4) 5'- CUAAUCCUUGGGCUUCUGGAG -3'
 (配列番号5) 5'- UAUACUUCACUGCUUCUGGCC -3'
 (配列番号6) 5'- CCUGUGUGUGUACGUUUGUGC -3'
 (配列番号7) 5'- UGUACGUUUGUGCCUCUGUAG -3'
 (配列番号8) 5'- CCUUUCUCUCCUGCUCCUACA -3'または
 (配列番号9) 5'- GCUUCAUCUCUGCAUCUUCCC -3'
である、[18]に記載の核酸分子。
[20] 前記発現抑制配列に相補的なヌクレオチド配列をさらに含む、[17]~[19]のいずれかに記載の核酸分子。
[21] 前記相補的なヌクレオチド配列が、
(c)配列番号n+9(nは71~79から選ばれる整数)で表されるヌクレオチド配列中の、前記(a)のヌクレオチド配列と完全相補的なヌクレオチド配列(但し、GとUとの対合は相補的とみなす)、又は
(d)配列番号p(pは1~9から選ばれる整数)で表されるヌクレオチド配列中の、前記(b)のヌクレオチド配列と完全相補的なヌクレオチド配列(但し、GとUとの対合は相補的とみなす)
である、[19]に記載の核酸分子。
[22] 配列番号n(nは71~79から選ばれる整数)で表されるヌクレオチド配列と、配列番号n+9で表されるヌクレオチド配列とを含む、あるいは、配列番号p(pは1~9から選ばれる整数)で表されるヌクレオチド配列と、配列番号p+9:
 (配列番号10) 5'- CGUCUGUGCCUUCUCAUCUUC -3'
 (配列番号11) 5'- GCUGGUGGCUCCAGUUCAGGA -3'
 (配列番号12) 5'- GCUCCUUCCCAAUCAGAAAAC -3'
 (配列番号13) 5'- CUCCAGAAGCCCAAGGAUUAG -3'
 (配列番号14) 5'- GGCCAGAAGCAGUGAAGUAUA -3'
 (配列番号15) 5'- GCACAAACGUACACACACAGG -3'
 (配列番号16) 5'- CUACAGAGGCACAAACGUACA -3'
 (配列番号17) 5'- UGUAGGAGCAGGAGAGAAAGG -3'または
 (配列番号18) 5'- GGGAAGAUGCAGAGAUGAAGC -3'
で表されるヌクレオチド配列とを含む、[20]又は[21]に記載の核酸分子。
[23] B型肝炎ウイルス遺伝子、ヒトNCAPH遺伝子、ヒトSp1遺伝子、またはヒトSOCS7遺伝子に対するsiRNAである、[20]~[22]のいずれかに記載の核酸分子。
[24] 前記siRNAが、一方もしくは両方の鎖に3’-オーバーハングを有する、[23]に記載の核酸分子。
[25] 配列番号m(mは89~98から選ばれる整数)で表されるヌクレオチド配列と、該配列にアニーリングした配列番号m+9で表されるヌクレオチド配列とからなる、[24]に記載の核酸分子。
[7] The nucleic acid molecule according to any one of [1] to [6], which is an RNA molecule.
[8] The nucleic acid molecule according to any one of [1] to [7], which comprises at least one modified residue.
[9] The nucleic acid molecule according to any one of [1] to [8], which comprises a labeling substance.
[10] The nucleic acid molecule according to any one of [1] to [9], which comprises a stable isotope.
[11] The nucleic acid molecule according to any one of [1] to [10], wherein the total number of bases is 38 bases or more.
[12] The nucleic acid molecule according to any one of [1] to [11], which comprises any of the base sequences represented by the following SEQ ID NOs: 19 to 27, 29, 36, 49, 53, 54.
(SEQ ID NO: 19)
5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 20)
5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3'
(SEQ ID NO: 21)
5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3'
(SEQ ID NO: 22)
5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3'
(SEQ ID NO: 23)
5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3'
(SEQ ID NO: 24)
5'-GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3'
(SEQ ID NO: 25)
5'-CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3'
(SEQ ID NO: 26)
5'-UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3'
(SEQ ID NO: 27)
5'- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3'
(SEQ ID NO: 29)
5'- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 36)
5'- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 49)
5'- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 53)
5'- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 54)
5'- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3'
[13] An amplification inhibitor for hepatitis B virus gene DNA, which comprises the nucleic acid molecule according to any one of [1] to [12].
[14] A medicament containing the nucleic acid molecule according to any one of [1] to [12].
[15] A therapeutic agent for hepatitis B, which comprises the nucleic acid molecule according to any one of [1] to [12].
[16] A therapeutic agent for liver cirrhosis or liver cancer, which comprises the nucleic acid molecule according to any one of [1] to [12].
[17] Consecutive 25 or less nucleotides of the nucleotide sequence of the hepatitis B viral genomic DNA represented by SEQ ID NO: 67, including the nucleotide sequence represented by nucleotide number: (1) 1550-1568 or (2) 59-77. A nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences in the target genomic DNA sequence is included as an expression-suppressing sequence of the hepatitis B virus gene.
Consecutive containing the nucleotide sequence represented by nucleotide number: (3) 1427-1445 (4) 1878-1896 or (5) 3467-3485 of the nucleotide sequence encoding the mRNA of the human NCAPH gene represented by SEQ ID NO: 68. A nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences in a target DNA sequence of 25 nucleotides or less is included as an expression-suppressing sequence of the human NCAPH gene.
Consecutive 25 or less target DNA sequences containing the nucleotide sequence represented by nucleotide number: (6) 2141-2159 or (7) 2133-2151 of the mRNA-encoding nucleotide sequence of the human Sp1 gene represented by SEQ ID NO: 69. The nucleotide number of the nucleotide sequence of the mRNA-encoding nucleotide sequence of the human SOCS7 gene represented by SEQ ID NO: 70, which contains a nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences as an expression-suppressing sequence of the human Sp1 gene. : A nucleotide sequence complementary to a contiguous 15 or more nucleotide sequence in a contiguous 25 or less nucleotide target DNA sequence containing the nucleotide sequence shown in (8) 2707-2725 or (9) 1621-1639. Included as an expression-suppressing sequence of SOCS7 gene,
Nucleic acid molecule.
[18] The expression-suppressing sequence is
(A) Consecutive 15 or more nucleotides in the nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) (wherein each U may be T in the sequence). A sequence or (b) a nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) (wherein each U may be T in the sequence), and SEQ ID NO: 67. , 68, 69 or 70. The nucleic acid molecule according to [17], which is a contiguous 15 or more nucleotide sequences in a sequence of 25 nucleotides or less that is completely complementary to the nucleotide sequence of DNA.
[19] The sequence of 25 nucleotides or less in (b) above is
(SEQ ID NO: 1) 5'-GAAGAUGAGAAGGCACAGACG -3'
(SEQ ID NO: 2) 5'-UCCUGAACUGGAGCCACCAGC -3'
(SEQ ID NO: 3) 5'-GUUUUCUGAUUGGGAAGGAGC -3'
(SEQ ID NO: 4) 5'-CUAAUCCUUGGGCUUCUGGAG -3'
(SEQ ID NO: 5) 5'-UAUACUUCACUGCUUCUGGCC -3'
(SEQ ID NO: 6) 5'-CCUGUGUGUGUACGUUUGUGC -3'
(SEQ ID NO: 7) 5'-UGUACGUUUGUGCCUCUGUAG -3'
(SEQ ID NO: 8) 5'-CCUUUCUCUCCUGCUCCUACA -3'or (SEQ ID NO: 9) 5'-GCUUCAUCUCUGCAUCUUCCC -3'
The nucleic acid molecule according to [18].
[20] The nucleic acid molecule according to any one of [17] to [19], further comprising a nucleotide sequence complementary to the expression-suppressing sequence.
[21] The complementary nucleotide sequence is
(C) In the nucleotide sequence represented by SEQ ID NO: n + 9 (n is an integer selected from 71 to 79), the nucleotide sequence completely complementary to the nucleotide sequence of (a) above (provided that G and U are used). The pairing is considered to be complementary), or (d) a nucleotide sequence that is completely complementary to the nucleotide sequence of (b) above in the nucleotide sequence represented by SEQ ID NO: p (p is an integer selected from 1 to 9). (However, the pairing of G and U is regarded as complementary)
The nucleic acid molecule according to [19].
[22] The nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) and the nucleotide sequence represented by SEQ ID NO: n + 9 are included, or SEQ ID NO: p (p is 1 to 1 to 1). The nucleotide sequence represented by (an integer selected from 9) and SEQ ID NO: p + 9:
(SEQ ID NO: 10) 5'-CGUCUGUGCCUUCUCAUCUUC -3'
(SEQ ID NO: 11) 5'-GCUGGUGGCUCCAGUUCAGGA -3'
(SEQ ID NO: 12) 5'-GCUCCUUCCCAAUCAGAAAAC -3'
(SEQ ID NO: 13) 5'-CUCCAGAAGCCCAAGGAUUAG -3'
(SEQ ID NO: 14) 5'-GGCCAGAAGCAGUGAAGUAUA -3'
(SEQ ID NO: 15) 5'-GCACAAACGUACACACACAGG -3'
(SEQ ID NO: 16) 5'-CUACAGAGGCACAAACGUACA -3'
(SEQ ID NO: 17) 5'-UGUGAGGAGCAGGAGAGAAAGG -3'or (SEQ ID NO: 18) 5'-GGGAGAGAUGCAGAGAUGAAGC -3'
The nucleic acid molecule according to [20] or [21], which comprises a nucleotide sequence represented by.
[23] The nucleic acid molecule according to any one of [20] to [22], which is siRNA against a hepatitis B virus gene, a human NCAPH gene, a human Sp1 gene, or a human SOCS7 gene.
[24] The nucleic acid molecule according to [23], wherein the siRNA has a 3'-overhang on one or both strands.
[25] Described in [24], which comprises a nucleotide sequence represented by SEQ ID NO: m (m is an integer selected from 89 to 98) and a nucleotide sequence represented by SEQ ID NO: m + 9, which is annealed to the sequence. Nucleic acid molecule.
 本発明の核酸分子によって、B型肝炎ウイルスDNAの増幅を効果的に抑制することができる。本発明の核酸分子を含む医薬組成物は、B型肝炎ウイルスDNAの増幅を効果的に抑制することにより、B型肝炎ウイルス増殖抑制用、B型肝炎、肝硬変、肝臓がんの治療用として有用である。 The nucleic acid molecule of the present invention can effectively suppress the amplification of hepatitis B virus DNA. The pharmaceutical composition containing the nucleic acid molecule of the present invention is useful for suppressing the growth of hepatitis B virus, for treating hepatitis B, cirrhosis, and liver cancer by effectively suppressing the amplification of hepatitis B virus DNA. Is.
図1は、本発明の核酸分子の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the nucleic acid molecule of the present invention. 図2は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 2 is a graph showing a relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図3は、本発明の実施例における細胞内B型肝炎ウイルスcccDNA量の相対値を示すグラフである。FIG. 3 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention. 図4は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 4 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図5は、本発明の実施例における細胞内B型肝炎ウイルスcccDNA量の相対値を示すグラフである。FIG. 5 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention. 図6は、本発明の実施例における培養上清中B型肝炎ウイルスHBs抗原量の相対値を示すグラフである。FIG. 6 is a graph showing the relative value of the amount of hepatitis B virus HBs antigen in the culture supernatant in the examples of the present invention. 図7は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 7 is a graph showing a relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図8は、本発明の実施例における細胞内B型肝炎ウイルスcccDNA量の相対値を示すグラフである。FIG. 8 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention. 図9は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 9 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図10は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 10 is a graph showing a relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図11は、本発明の実施例における細胞内B型肝炎ウイルスcccDNA量の相対値を示すグラフである。FIG. 11 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention. 図12は、本発明の実施例における培養上清中B型肝炎ウイルスHBs抗原量の相対値を示すグラフである。FIG. 12 is a graph showing the relative value of the amount of hepatitis B virus HBs antigen in the culture supernatant in the examples of the present invention. 図13は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 13 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図14は、本発明の実施例における細胞内B型肝炎ウイルスcccDNA量の相対値を示すグラフである。FIG. 14 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention. 図15は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 15 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention. 図16は、本発明の実施例における細胞内B型肝炎ウイルスcccDNA量の相対値を示すグラフである。FIG. 16 is a graph showing the relative value of the intracellular hepatitis B virus cccDNA amount in the examples of the present invention. 図17は、本発明の実施例における培養液中B型肝炎ウイルスDNA量の相対値を示すグラフである。FIG. 17 is a graph showing the relative value of the amount of hepatitis B virus DNA in the culture medium in the examples of the present invention.
 本明細書で使用する用語は、特に言及しない限り、当該技術分野で通常用いられる意味で用いることができる。 Unless otherwise specified, the terms used in the present specification can be used in the meanings commonly used in the art.
1.B型肝炎ウイルスDNAの増幅抑制用核酸分子
 本発明は、B型肝炎ウイルスDNAの増幅抑制活性を有する核酸分子を提供する。
1. Nucleic acid molecule for suppressing amplification of hepatitis B virus DNA The present invention provides a nucleic acid molecule having an amplification suppressing activity of hepatitis B virus DNA.
 B型肝炎ウイルスは、感染により肝細胞に侵入して増殖する。B型肝炎ウイルスが異物と認識された場合、それを排除するために免疫機能が働くが、肝細胞の中のウイルスのみを選択的に攻撃することは不可能であり、肝細胞自体が攻撃を受けて破壊され、肝炎の発症をもたらす。B型肝炎が重症化した場合には、肝硬変や肝臓がんが引き起こされる。 Hepatitis B virus invades hepatocytes due to infection and proliferates. When hepatitis B virus is recognized as a foreign substance, the immune function works to eliminate it, but it is impossible to selectively attack only the virus in hepatocytes, and the hepatocytes themselves attack. It is received and destroyed, leading to the development of hepatitis. When hepatitis B becomes severe, cirrhosis and liver cancer are caused.
 B型肝炎ウイルスは、遺伝情報を保存している不完全二重鎖DNA、DNAポリメラーゼが中心部に位置し、それがコア(HBc抗原)、外殻(HBe抗原)、および外膜(HBs抗原)に取り囲まれている構造を有する。 Hepatitis B virus has incomplete double-stranded DNA that stores genetic information, DNA polymerase located in the center, which are the core (HBc antigen), outer shell (HBe antigen), and outer membrane (HBs antigen). ) Has a structure surrounded by.
 B型肝炎ウイルスが肝細胞に侵入すると、ウイルス遺伝子が肝細胞の核内に移動し、不完全環状二重鎖DNAが完全閉鎖二重鎖DNA、covalenty closed circular DNA(cccDNA)に転換される。肝細胞核内のcccDNAからは4種のmRNA(3.5kb、2.4kb、2.1kb、0.7kb)が転写され、それらより構造タンパク質であるHBs抗原、HBc抗原、HBe抗原および逆転写酵素活性を有するポリメラーゼ、Xタンパク質が翻訳される(Molecular Therapy 2013;21(5)973-985、Figure 3a)。 When hepatitis B virus invades hepatocytes, the viral gene moves into the nucleus of hepatocytes, and incomplete circular double-stranded DNA is converted to covalenty closed circular DNA (cccDNA). Four types of mRNA (3.5 kb, 2.4 kb, 2.1 kb, 0.7 kb) are transcribed from the cccDNA in the hepatocyte nucleus, and the structural proteins HBs antigen, HBc antigen, HBe antigen, and reverse transcriptase-active polymerase are transcribed from them. , X protein is translated (Molecular Therapy 2013; 21 (5) 973-985, Figure 3a).
 ウイルスゲノムおよび前記4種類のmRNAには、タンパク質として翻訳可能な4つのORF(open reading frame)(S ORF、コアORF、X ORF、ポリメラーゼORF)の一部または全部が存在する(Molecular Therapy 2013;21(5)973-985、Figure 3a)。S ORFはHBs抗原を構成する3種類のタンパク質、large Sタンパク質(pre-S1、pre-S2およびS領域を含む)、Middle Sタンパク質(pre-S2およびS領域を含む)、そしてSmall Sタンパク質(S領域のみから成る)をコードする。コアORFは、コアタンパク質およびプレコアタンパク質をコードする。コアタンパク質はコア粒子を形成し、プレコアタンパク質は19個の疎水性シグナルペプチドとC末端の34アミノ酸残基が切断された後にHBe抗原となる。X ORFは、ウイルスの増殖や肝細胞癌の発症に関与すると考えられているXタンパク質をコードする。また、ポリメラーゼORFは、逆転写酵素活性を有するDNAポリメラーゼタンパク質をコードする。 The viral genome and the above four types of mRNA contain some or all of the four ORFs (open reading frames) (S ORFs, core ORFs, X ORFs, and polymerase ORFs) that can be translated as proteins (Molecular Therapy 2013; 21 (5) 973-985, Figure 3a). SORF consists of three proteins that make up HBsAg, large S protein (including pre-S1, pre-S2 and S regions), Middle S protein (including pre-S2 and S regions), and Small S protein (including pre-S2 and S regions). (Consists of only the S region) is coded. The core ORF encodes a core protein and a pre-core protein. The core protein forms core particles, and the pre-core protein becomes the HBe antigen after cleaving 19 hydrophobic signal peptides and 34 amino acid residues at the C-terminal. The X ORF encodes an X protein that is thought to be involved in viral growth and the development of hepatocellular carcinoma. The polymerase ORF also encodes a DNA polymerase protein with reverse transcriptase activity.
 あるタイプのmRNAはpregenomic RNAとしてコア粒子に取り込まれ、逆転写酵素の働きによりマイナス鎖DNAが合成され、次にプラス鎖DNAが合成され不完全環状二本鎖DNAとなる。さらに、HBs抗原より形成されるエンベロープに包まれてウイルス粒子(Dane粒子)となり血中に放出される。Dane粒子の血中放出以外の増殖ルートとして、mRNAにより翻訳されたHBs抗原、HBc抗原とp22cr抗原を含む中空粒子(DNAの核が無い粒子)や肝細胞膜を通過するHBe抗原などはDane粒子血中放出とは別ルートとして多量に血中に放出、分泌される。 A certain type of mRNA is incorporated into core particles as pregenomic RNA, minus-strand DNA is synthesized by the action of reverse transcriptase, and then plus-strand DNA is synthesized to become incomplete circular double-stranded DNA. Furthermore, it is wrapped in an envelope formed from HBs antigen and becomes virus particles (Dane particles), which are released into the blood. As a growth route other than the release of Dane particles into blood, HBs antigen translated by mRNA, hollow particles containing HBc antigen and p22cr antigen (particles without DNA nuclei), HBe antigen passing through the hepatocellular membrane, etc. are Dane particle blood. It is released and secreted in large quantities into the blood as a route different from the medium release.
 B型肝炎の診断は、血液中の前記HBs抗原および/またはHBe抗原を検出することにより行われる。
 血液中のHBs抗原が陽性であることは肝臓にHBVが存在し、HBVの成分が合成されていること、検査時にB型肝炎に感染していることを示す。血中のHBs抗原は肝臓内のウイルス増殖を把握し、治療完遂を判断する上での指標を提供する。
 HBe抗原はHBVが増殖する際に過剰に産生されるタンパク質であり、肝臓でHBVが活発に増殖している状態で、感染力が強いことを示す。
Diagnosis of hepatitis B is made by detecting the HBsAg and / or HBeAg in the blood.
A positive HBsAg in the blood indicates that HBV is present in the liver, that HBV components are synthesized, and that hepatitis B is infected at the time of examination. HBsAg in the blood grasps the viral growth in the liver and provides an index for judging the completion of treatment.
The HBe antigen is a protein that is overproduced when HBV proliferates, and indicates that it is highly infectious when HBV is actively proliferating in the liver.
 核酸分子の、B型肝炎ウイルス遺伝子の発現抑制活性は、例えば、評価対象の核酸分子をB型肝炎ウイルスに感染した細胞またはB型肝炎ウイルスゲノムを導入した細胞(好ましくは、ヒト細胞)等に導入し、当該細胞外に放出された(移行した)B型肝炎ウイルスHBs抗原の量あるいはB型肝炎ウイルスHBe抗原の量を、評価対象の核酸分子を導入していないか、ネガティブコントロールの核酸分子を導入した、B型肝炎ウイルスに感染した細胞またはB型肝炎ウイルスゲノムを導入した細胞(好ましくは、ヒト細胞)から放出された(移行した)B型肝炎ウイルスHBs抗原の量あるいはB型肝炎ウイルスHBe抗原の量と比較すること等により評価することが出来る。B型肝炎ウイルスHBs抗原あるいはHBe抗原の量は、B型肝炎ウイルスHBs抗原あるいはHBe抗原を特異的に認識する抗体を用いて、公知の免疫学的手法により抗原を検出することにより評価することができる。免疫学的手法としては、フローサイトメトリー解析、放射性同位元素免疫測定法(RIA法)、ELISA法(Methods in Enzymol.70:419-439(1980))、ウェスタンブロッティング、免疫組織染色等を挙げることができる。 The activity of the nucleic acid molecule to suppress the expression of the hepatitis B virus gene is, for example, in cells in which the nucleic acid molecule to be evaluated is infected with hepatitis B virus or cells into which the hepatitis B virus genome has been introduced (preferably human cells). The amount of hepatitis B virus HBs antigen or hepatitis B virus HBe antigen that was introduced and released (transferred) to the outside of the cell was determined by whether the nucleic acid molecule to be evaluated was introduced or a negative control nucleic acid molecule. The amount of hepatitis B virus HBs antigen released (transferred) from cells infected with hepatitis B virus or cells into which the hepatitis B virus genome was introduced (preferably human cells) or hepatitis B virus It can be evaluated by comparing with the amount of HBe antigen. The amount of hepatitis B virus HBsAg or HBeAg can be evaluated by detecting the antigen by a known immunological method using an antibody that specifically recognizes hepatitis B virus HBsAg or HBeg. it can. Immunological methods include flow cytometry analysis, radioimmunoassay immunoassay (RIA method), ELISA method (Methods in Enzymol. 70: 419-439 (1980)), Western blotting, immunohistochemical staining, etc. Can be done.
1. B型肝炎ウイルスDNAの増幅を抑制する核酸分子
 本発明は、B型肝炎ウイルス遺伝子のmRNA、ヒトNCAPH遺伝子のmRNA、ヒトSp1遺伝子のmRNAまたはヒトSOCS7遺伝子のmRNA中のヌクレオチド配列と相補的な配列を含む、B型肝炎ウイルスDNAの増幅を抑制する核酸分子(以下、「本発明の核酸分子」と記載する場合がある。)を提供する。
1. Nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA The present invention is complementary to the nucleotide sequence in the mRNA of the hepatitis B virus gene, the mRNA of the human NCAPH gene, the mRNA of the human Sp1 gene or the mRNA of the human SOCS7 gene. Provided is a nucleic acid molecule (hereinafter, may be referred to as “nucleic acid molecule of the present invention”) that suppresses the amplification of hepatitis B virus DNA, which contains such a sequence.
 本発明の核酸分子は、B型肝炎ウイルスDNAの増幅を抑制する配列として、B型肝炎ウイルス遺伝子のmRNA、ヒトNCAPH遺伝子のmRNA、ヒトSp1遺伝子のmRNAまたはヒトSOCS7遺伝子のmRNAの特定の部位と相補的な配列を含む。B型肝炎ウイルスのゲノムDNAのヌクレオチド配列としては、配列番号67で表されるHepatitis B virus isolate 31388のヌクレオチド配列(NCBIデータベースに、GenBank Accession No. MG571368として登録されている。)もしくはそのバリアントのヌクレオチド配列が挙げられる。 The nucleic acid molecule of the present invention can be used as a sequence that suppresses the amplification of hepatitis B virus DNA with a specific site of mRNA of hepatitis B virus gene, mRNA of human NCAPH gene, mRNA of human Sp1 gene or mRNA of human SOCS7 gene. Contains complementary sequences. As the nucleotide sequence of the genomic DNA of hepatitis B virus, the nucleotide sequence of Hepatitis B virus isolate 31388 represented by SEQ ID NO: 67 (registered as GenBank Accession No. MG571368 in the NCBI database) or a variant thereof. An array can be mentioned.
 ヒトNCAPH遺伝子のmRNAのヌクレオチド配列としては、配列番号68で表されるHomo sapiens non-SMC condensin I complex subunit H (NCAPH), transcript variant 1, mRNAのヌクレオチド配列(NCBIデータベースに、GenBank Accession No. NM_015341として登録されている。但し、該ヌクレオチド配列中、「t」は「u」と読み替えるものとする。)もしくはそのバリアントのヌクレオチド配列が挙げられる。 The nucleotide sequence of the mRNA of the human NCAPH gene is the nucleotide sequence of Homo sapiens non-SMC condensin I complex subunit H (NCAPH), transcript variant 1, mRNA represented by SEQ ID NO: 68 (GenBank Accession No. NM_015341 in the NCBI database). However, in the nucleotide sequence, "t" shall be read as "u") or the nucleotide sequence of a variant thereof.
 ヒトSp1遺伝子のmRNAのヌクレオチド配列としては、配列番号69で表されるHomo sapiens Sp1 transcription factor (SP1), transcript variant 1, mRNAのヌクレオチド配列(NCBIデータベースに、GenBank Accession No. NM_138473 XM_028606として登録されている。但し、該ヌクレオチド配列中、「t」は「u」と読み替えるものとする。)もしくはそのバリアントのヌクレオチド配列が挙げられる。 As the nucleotide sequence of the mRNA of the human Sp1 gene, the nucleotide sequence of Homo sapiens Sp1 transcription factor (SP1), transcript variant 1, mRNA represented by SEQ ID NO: 69 (registered as GenBank Accession No. NM_138473 XM_028606 in the NCBI database). However, in the nucleotide sequence, "t" shall be read as "u") or a variant of the nucleotide sequence thereof.
 ヒトSOCS7遺伝子のmRNAのヌクレオチド配列としては、配列番号70で表されるHomo sapiens suppressor of cytokine signaling 7 (SOCS7), mRNAのヌクレオチド配列(NCBIデータベースに、GenBank Accession No. NM_014598 XM_371052として登録されている。但し、該ヌクレオチド配列中、「t」は「u」と読み替えるものとする。)もしくはそのバリアントのヌクレオチド配列が挙げられる。 As the nucleotide sequence of the mRNA of the human SOCS7 gene, the nucleotide sequence of Homo sapiens suppressor of cytokine signaling 7 (SOCS7) and mRNA represented by SEQ ID NO: 70 is registered as GenBank Accession No. NM_014598 XM_371052 in the NCBI database. However, in the nucleotide sequence, "t" shall be read as "u") or a variant of the nucleotide sequence thereof.
 本明細書においては、以下、特にことわらない限り、配列番号67で表されるB型肝炎ウイルス株のゲノムヌクレオチド配列、配列番号68で表されるヒトNCAPH遺伝子のmRNAのヌクレオチド配列、配列番号69で表されるヒトSp1遺伝子のmRNAのヌクレオチド配列、配列番号70で表されるヒトSOCS7遺伝子のmRNAのヌクレオチド配列(但し、該ヌクレオチド配列中、「t」は「u」と読み替える場合がある。)に基づいて、ヌクオチドの位置やヌクレオチド配列の範囲等を記載するが、その場合、任意のバリアントにおける対応するヌクレオチドやヌクレオチド配列も、当該記載内容に包含されるものである。 In the present specification, unless otherwise specified, the genomic nucleotide sequence of the hepatitis B virus strain represented by SEQ ID NO: 67, the nucleotide sequence of the human NCAPH gene mRNA represented by SEQ ID NO: 68, and SEQ ID NO: 69. The nucleotide sequence of the mRNA of the human Sp1 gene represented by, and the nucleotide sequence of the mRNA of the human SOCS7 gene represented by SEQ ID NO: 70 (however, "t" may be read as "u" in the nucleotide sequence). The position of nucleotide, the range of the nucleotide sequence, and the like are described based on the above, and in that case, the corresponding nucleotide and nucleotide sequence in any variant are also included in the description.
 B型肝炎ウイルスDNAの増幅を抑制する配列(B型肝炎ウイルス遺伝子のmRNA、ヒトNCAPH遺伝子のmRNA、ヒトSp1遺伝子のmRNAまたはヒトSOCS7遺伝子のmRNAの発現抑制配列、以下、「発現抑制配列」ともいう)は、B型肝炎ウイルス遺伝子のmRNA、ヒトNCAPH遺伝子のmRNA、ヒトSp1遺伝子のmRNAまたはヒトSOCS7遺伝子のmRNAの特定の部位のヌクレオチド配列と相補的な配列である。ここで、「相補的な配列」とは、標的配列に対して完全相補的な(即ち、ミスマッチなくハイブリダイズする)配列だけでなく、哺乳動物細胞の生理的条件下で上記mRNAとハブリダイズし得る限り、1ないし数ヌクレオチド、好ましくは、1又は2ヌクレオチドのミスマッチを含む配列であってもよい。例えば、上記mRNA中の標的ヌクレオチド配列の相補鎖配列に対して、90%以上、好ましくは95%以上、97%以上、98%以上、99%以上の同一性を有する配列が挙げられる。本発明における「ヌクレオチド配列の同一性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。また、個々の塩基における相補性は、対象となる塩基とワトソン・クリック型塩基対を形成することに限定されるものではなく、フーグスティーン型塩基対やゆらぎ塩基対(Wobble base pair)を形成することも含む。 A sequence that suppresses the amplification of hepatitis B virus DNA (an expression-suppressing sequence of the mRNA of the hepatitis B virus gene, the mRNA of the human NCAPH gene, the mRNA of the human Sp1 gene or the mRNA of the human SOCS7 gene, hereinafter also referred to as "expression-suppressing sequence" Is a sequence complementary to the nucleotide sequence of a specific site of the mRNA of the hepatitis B virus gene, the mRNA of the human NCAPH gene, the mRNA of the human Sp1 gene or the mRNA of the human SOCS7 gene. Here, the "complementary sequence" is not only a sequence that is completely complementary to the target sequence (that is, hybridizes without mismatch), but can also be hubridized with the above-mentioned mRNA under physiological conditions of mammalian cells. As long as it is a sequence containing a mismatch of 1 to several nucleotides, preferably 1 or 2 nucleotides. For example, a sequence having 90% or more, preferably 95% or more, 97% or more, 98% or more, 99% or more identity with respect to the complementary strand sequence of the target nucleotide sequence in the mRNA can be mentioned. For "nucleic acid sequence identity" in the present invention, the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) is used, and the following conditions (expected value = 10; gap is allowed; filtering = ON; It can be calculated with match score = 1; mismatch score = -3). In addition, complementarity in individual bases is not limited to forming Watson-Crick base pairs with target bases, but forms Hoogsteen base pairs and Wobble base pairs. Including to do.
 あるいは、「相補的なヌクレオチド配列」とは、標的配列とストリンジェントな条件下でハイブリダイズするヌクレオチド配列である。ここで「ストリンジェントな条件」とは、例えば、Current Protocols in Molecular Biology, John Wiley & Sons,6.3.1-6.3.6,1999に記載される条件、例えば、6×SSC(sodium chloride/sodium citrate)/45℃でのハイブリダイゼーション、次いで0.2×SSC/0.1% SDS/50~65℃での一回以上の洗浄等が挙げられるが、当業者であれば、これと同等のストリンジェンシーを与えるハイブリダイゼーションの条件を適宜選択することができる。 Alternatively, the "complementary nucleotide sequence" is a nucleotide sequence that hybridizes with the target sequence under stringent conditions. Here, the “stringent condition” is, for example, the condition described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, for example, 6 × SSC (sodium chloride / sodium citrate). ) / Hybridization at 45 ° C, followed by 0.2 × SSC / 0.1% SDS / one or more washings at 50-65 ° C. Hybridization conditions can be appropriately selected.
 発現抑制配列が標的とする上記mRNAのヌクレオチド配列としては、
 配列番号67で表されるB型肝炎ウイルスゲノムDNAのヌクレオチド配列の、ヌクレオチド番号:(1)1550-1568または(2)59-77で示されるヌクレオチド配列
 配列番号68で表されるヒトNCAPH遺伝子のmRNAをコードするヌクレオチド配列の、ヌクレオチド番号:(3)1427-1445(4)1878-1896または(5)3467-3485で示されるヌクレオチド配列
 配列番号69で表されるヒトSp1遺伝子のmRNAコードするヌクレオチド配列の、ヌクレオチド番号:(6)2141-2159または(7)2133-2151で示されるヌクレオチド配列、または
 配列番号70で表されるヒトSOCS7遺伝子のmRNAコードするヌクレオチド配列の、ヌクレオチド番号:(8)2707-2725または(9)1621-1639で示されるヌクレオチド配列
が挙げられる。
As the nucleotide sequence of the above-mentioned mRNA targeted by the expression-suppressing sequence,
Nucleotide sequence of the hepatitis B virus genomic DNA represented by SEQ ID NO: 67 Nucleotide number: (1) 1550-1568 or (2) Nucleotide sequence represented by 59-77 The human NCAPH gene represented by SEQ ID NO: 68. Nucleotide encoding nucleotide sequence Nucleotide number: (3) 1427-1445 (4) 1878-1896 or (5) Nucleotide sequence represented by 3467-3485 Nucleotide encoding human Sp1 gene represented by SEQ ID NO: 69 Nucleotide number: (6) Nucleotide number of the nucleotide sequence shown by (6) 2141-2159 or (7) 2133-2151, or the mRNA-encoding nucleotide sequence of the human SOCS7 gene represented by SEQ ID NO: 70: (8) The nucleotide sequence shown in 2707-2725 or (9) 1621-1639 can be mentioned.
 発現抑制配列は、これらの各標的配列の全部に相補的であってもよいし、該標的配列中の一部に対して相補的であってもよいが、上記mRNAへの特異性を考慮すれば、各標的配列中の連続する15ヌクレオチド以上の配列に対して相補的であることが好ましい。また、発現抑制配列は、上記各標的配列中の連続する15ヌクレオチド以上の配列に加えて、該標的配列に隣接する上記mRNAのヌクレオチド配列に対して相補的な配列をさらに含むことができる。発現抑制配列が標的とするヌクレオチド配列の長さの上限は特に制限はないが、合成の容易さ等を考慮すれば、例えば100ヌクレオチド以下、好ましくは50ヌクレオチド以下、より好ましくは30ヌクレオチド以下、さらに好ましくは25ヌクレオチド以下の、上記mRNAの連続する部分ヌクレオチド配列である。従って、発現抑制配列が標的とするヌクレオチド配列の長さは、上記mRNAのヌクレオチド配列中、好ましくは、連続する15~30ヌクレオチド、より好ましくは、連続する15~25ヌクレオチドの部分ヌクレオチド配列であり得る。 The expression-suppressing sequence may be complementary to all of each of these target sequences, or may be complementary to a part of the target sequence, but the specificity for the mRNA should be taken into consideration. For example, it is preferably complementary to 15 or more contiguous sequences in each target sequence. In addition, the expression-suppressing sequence can further contain a sequence complementary to the nucleotide sequence of the mRNA adjacent to the target sequence, in addition to the sequence of 15 consecutive nucleotides or more in each of the target sequences. The upper limit of the length of the nucleotide sequence targeted by the expression-suppressing sequence is not particularly limited, but considering the ease of synthesis and the like, for example, 100 nucleotides or less, preferably 50 nucleotides or less, more preferably 30 nucleotides or less, and further. It is a contiguous partial nucleotide sequence of the above mRNA, preferably 25 nucleotides or less. Therefore, the length of the nucleotide sequence targeted by the expression-suppressing sequence can be preferably a continuous 15 to 30 nucleotides, more preferably a continuous 15 to 25 nucleotide partial nucleotide sequence in the nucleotide sequence of the mRNA. ..
 本発明の核酸分子は、B型肝炎ウイルスDNAの増幅を抑制し得る限りRNAであっても、DNAであってもよく、DNA/RNAキメラであってもよい。また、本発明の核酸分子は、B型肝炎ウイルスDNAの増幅を抑制し得る限り、二本鎖核酸であっても、一本鎖核酸であってもよい。二本鎖核酸の場合、二本鎖DNA、二本鎖RNA、DNA:RNAハイブリッド、DNA/RNAキメラとDNA、RNA又はDNA/RNAキメラとのハイブリッドのいずれであってもよい。 The nucleic acid molecule of the present invention may be RNA, DNA, or DNA / RNA chimera as long as it can suppress the amplification of hepatitis B virus DNA. Further, the nucleic acid molecule of the present invention may be a double-stranded nucleic acid or a single-stranded nucleic acid as long as it can suppress the amplification of hepatitis B virus DNA. In the case of a double-stranded nucleic acid, it may be any of double-stranded DNA, double-stranded RNA, DNA: RNA hybrid, and a hybrid of DNA / RNA chimera and DNA, RNA or DNA / RNA chimera.
 本発明の核酸分子が二本鎖核酸の場合、一方の鎖は上記mRNAの発現抑制配列、即ち、上記mRNAの(1)~(9)のいずれかを含む標的配列(好ましくは、上記mRNAの連続する25ヌクレオチド以下の部分配列)中の連続する15ヌクレオチド以上の配列と相補的な配列を含み(以下、標的RNAに結合し、遺伝子発現を抑制する配列を含む鎖を「ガイド鎖」ともいう)、他方の鎖は、少なくとも該発現抑制配列に相補的な配列を含む(以下、発現抑制配列に相補的な配列を含む鎖を「パッセンジャー鎖」ともいう)。ここで「相補的な配列」とは、上記mRNAのヌクレオチド配列に対する発現抑制配列の相補性について前記したのと同義である。 When the nucleic acid molecule of the present invention is a double-stranded nucleic acid, one strand is an expression-suppressing sequence of the above-mentioned mRNA, that is, a target sequence containing any one of the above-mentioned mRNAs (1) to (9) (preferably of the above-mentioned mRNA). A chain containing a sequence complementary to a sequence of 15 or more consecutive nucleotides in a continuous subsequence of 25 nucleotides or less (hereinafter, a sequence that binds to a target RNA and suppresses gene expression) is also referred to as a "guide strand". ), The other strand contains at least a sequence complementary to the expression-suppressing sequence (hereinafter, a chain containing a sequence complementary to the expression-suppressing sequence is also referred to as a "passenger chain"). Here, the "complementary sequence" is synonymous with the complementarity of the expression-suppressing sequence to the nucleotide sequence of the mRNA.
 本発明の核酸分子が一本鎖核酸の場合、上記のガイド鎖のみを有する場合と、ガイド鎖とパッセンジャー鎖とが任意のリンカーを介して連結され、分子内で遺伝子の発現を抑制する配列とそれに相補的な配列とがハイブリダイズして二重鎖を形成し得る場合とがある。 When the nucleic acid molecule of the present invention is a single-stranded nucleic acid, there are cases where it has only the above-mentioned guide strand, and a sequence in which the guide strand and the passenger strand are linked via an arbitrary linker to suppress gene expression in the molecule. In some cases, a sequence complementary thereto may hybridize to form a double strand.
 本発明の核酸分子の構成単位としては、例えば、リボヌクレオチド残基およびデオキシリボヌクレオチド残基があげられる。これらのヌクレオチド残基は、例えば、修飾されていても非修飾であってもよい。本発明の核酸分子は、例えば、修飾ヌクレオチド残基を含むことによって、ヌクレアーゼ耐性が向上し、安定性の改善が可能である。また、本発明の核酸分子は、例えば、前記ヌクレオチド残基の他に、さらに、非ヌクレオチド残基を含んでもよい。 Examples of the constituent unit of the nucleic acid molecule of the present invention include a ribonucleotide residue and a deoxyribonucleotide residue. These nucleotide residues may be modified or unmodified, for example. By including, for example, a modified nucleotide residue, the nucleic acid molecule of the present invention can improve nuclease resistance and stability. Further, the nucleic acid molecule of the present invention may further contain a non-nucleotide residue in addition to the nucleotide residue, for example.
 本発明の核酸分子において、リンカー以外の領域(ガイド鎖やパッセンジャー鎖)の構成単位は、ヌクレオチド残基であることが好ましい。各領域は、例えば、下記(1)~(3)の残基で構成される。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基および修飾ヌクレオチド残基
In the nucleic acid molecule of the present invention, the structural unit of the region (guide chain or passenger chain) other than the linker is preferably a nucleotide residue. Each region is composed of, for example, the following residues (1) to (3).
(1) Unmodified Nucleotide Residues (2) Modified Nucleotide Residues (3) Unmodified Nucleotide Residues and Modified Nucleotide Residues
 本発明の核酸分子は、例えば、標識物質で標識化されてもよい。標識物質は、特に制限されず、例えば、蛍光物質、色素、同位体等があげられる。標識物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素等の蛍光団があげられ、色素としては、例えば、Alexa488等のAlexa色素等があげられる。同位体としては、例えば、安定同位体および放射性同位体があげられる。安定同位体は、例えば、被曝の危険性が少なく、専用の施設も不要であることから取り扱い性に優れ、また、コストも低減できる。また、安定同位体は、例えば、標識した化合物の物性変化がなく、トレーサーとしての性質にも優れる。安定同位体としては、例えば、2H、13C、15N、17O、18O、33S、34Sおよび36Sがあげられる。 The nucleic acid molecule of the present invention may be labeled with, for example, a labeling substance. The labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, and isotopes. Examples of the labeling substance include fluorescent groups such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye, and examples of the dye include Alexa dye such as Alexa488. Isotopes include, for example, stable isotopes and radioactive isotopes. Stable isotopes, for example, have a low risk of exposure and do not require a dedicated facility, so that they are easy to handle and can reduce costs. Further, the stable isotope does not change the physical properties of the labeled compound, for example, and has excellent properties as a tracer. Stable isotopes include, for example, 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S and 36 S.
 ヌクレオチド残基は、構成要素として、糖、塩基およびリン酸を含む。リボヌクレオチド残基は、糖としてリボース残基を有し、塩基として、アデニン(A)、グアニン(G)、シトシン(C)およびウラシル(U)(チミン(T)に置き換えることもできる)を有し、デオキシリボヌクレオチド残基は、糖としてデオキシリボース残基を有し、塩基として、アデニン(dA)、グアニン(dG)、シトシン(dC)およびチミン(dT)(ウラシル(dU)に置き換えることもできる)を有する。 Nucleotide residues include sugars, bases and phosphoric acid as components. Ribonucleotide residues have a ribose residue as a sugar and bases adenine (A), guanine (G), cytosine (C) and uracil (U) (which can also be replaced with thymine (T)). However, the deoxyribonucleotide residue has a deoxyribose residue as a sugar and can be replaced with adenine (dA), guanine (dG), cytosine (dC) and thymine (dT) (uracil (dU)) as bases. ).
 修飾ヌクレオチド残基は、ヌクレオチド残基の構成要素のいずれが修飾されていてもよい。本発明において、「修飾」は、例えば、前記構成要素の置換、付加および/または脱離、前記構成要素における原子および/または官能基の置換、付加および/または脱離であり得る。修飾ヌクレオチド残基は、例えば、天然に存在する修飾ヌクレオチド残基であっても、人工的に修飾したヌクレオチド残基であってもよい。天然由来の修飾ヌクレオチド残基としては、例えば、リンバックら(Limbach et al.、1994、Summary:the modified nucleosides of RNA、Nucleic Acids Res.22:2183~2196)を参照できる。 The modified nucleotide residue may be any of the components of the nucleotide residue. In the present invention, the "modification" can be, for example, substitution, addition and / or elimination of the component, substitution, addition and / or elimination of an atom and / or functional group in the component. The modified nucleotide residue may be, for example, a naturally occurring modified nucleotide residue or an artificially modified nucleotide residue. As naturally derived modified nucleotide residues, for example, Limbach et al. (1994, Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183 to 2196) can be referred to.
 ヌクレオチド残基の修飾としては、例えば、リボース-リン酸骨格(以下、リボリン酸骨格)の修飾があげられる。 Examples of the modification of nucleotide residues include modification of the ribose-phosphate skeleton (hereinafter referred to as ribophosphate skeleton).
 前記リボリン酸骨格において、例えば、リボース残基を修飾できる。前記リボース残基は、例えば、2’位炭素を修飾でき、具体的には、例えば、2’位炭素に結合する水酸基を、水素原子、フッ素等のハロゲン原子又は-O-アルキル基(例、-O-Me基)、-O-アシル基(例、-O-COMe基)及びアミノ基からなる群より選ばれる原子又は基、好ましくは、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基に置換できる。前記2’位炭素の水酸基を水素に置換することで、リボース残基をデオキシリボースに置換できる。前記リボース残基は、例えば、立体異性体に置換でき、例えば、アラビノース残基に置換してもよい。 In the ribophosphate skeleton, for example, a ribose residue can be modified. The ribose residue can modify, for example, the 2'-carbon, and specifically, for example, a hydroxyl group bonded to the 2'-carbon can be a hydrogen atom, a halogen atom such as fluorine, or an -O-alkyl group (eg,). -O-Me group), -O-acyl group (eg, -O-COMe group) and amino group selected from the group consisting of an atom or group, preferably selected from the group consisting of hydrogen atom, methoxy group and fluorine atom. Can be replaced with an atom or group. By substituting the hydroxyl group of the 2'carbon with hydrogen, the ribose residue can be replaced with deoxyribose. The ribose residue can be replaced with, for example, a stereoisomer, and may be replaced with, for example, an arabinose residue.
 リボリン酸骨格は、例えば、非リボース残基および/または非リン酸を有する非リボリン酸骨格に置換してもよい。非リボリン酸骨格は、例えば、リボリン酸骨格の非荷電体があげられる。非リボリン酸骨格に置換されたヌクレオチドの代替物としては、例えば、モルホリノ、シクロブチル、ピロリジン等があげられる。前記代替物は、この他に、例えば、人工核酸モノマー残基があげられる。具体例として、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acid)等があげられ、好ましくはPNAである。 The ribophosphate skeleton may be replaced with, for example, a non-ribophosphate skeleton having a non-ribose residue and / or a non-phosphate. Examples of the non-ribophosphate skeleton include uncharged bodies of the ribophosphate skeleton. Alternatives to nucleotides substituted with a non-ribophosphate skeleton include, for example, morpholino, cyclobutyl, pyrrolidine and the like. Other examples of the alternative include artificial nucleic acid monomer residues. Specific examples include, for example, PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acid), and PNA is preferable.
 リボリン酸骨格において、リン酸基を修飾することもできる。リボリン酸骨格において、糖残基に最も隣接するリン酸基は、αリン酸基と呼ばれる。αリン酸基は、負に荷電し、その電荷は、糖残基に非結合の2つの酸素原子にわたって、均一に分布している。αリン酸基における4つの酸素原子のうち、ヌクレオチド残基間のホスホジエステル結合において、糖残基と非結合である2つの酸素原子は、以下、「非結合(non-linking)酸素」ともいう。他方、ヌクレオチド残基間のホスホジエステル結合において、糖残基と結合している2つの酸素原子は、以下、「結合(linking)酸素」という。αリン酸基は、例えば、非荷電となる修飾、または、非結合酸素における電荷分布が非対称型となる修飾を行うことが好ましい。 The phosphate group can also be modified in the ribophosphate skeleton. In the ribophosphate skeleton, the phosphate group closest to the sugar residue is called the α-phosphate group. The α-phosphate group is negatively charged, and the charge is uniformly distributed over the two oxygen atoms unbonded to the sugar residue. Of the four oxygen atoms in the α-phosphate group, the two oxygen atoms that are unbonded to the sugar residue in the phosphodiester bond between the nucleotide residues are hereinafter also referred to as “non-linking oxygen”. .. On the other hand, in the phosphodiester bond between nucleotide residues, the two oxygen atoms bound to the sugar residue are hereinafter referred to as "linking oxygen". The α-phosphate group is preferably modified to be uncharged or to have an asymmetric charge distribution in unbound oxygen, for example.
 リン酸基は、例えば、非結合酸素を置換してもよい。非結合酸素は、例えば、S(硫黄)、Se(セレン)、B(ホウ素)、C(炭素)、H(水素)、N(窒素)およびOR(Rは、アルキル基またはアリール基)のいずれかの原子で置換でき、好ましくは、Sで置換される。非結合酸素は、例えば、両方が置換されていることが好ましく、より好ましくは、両方がSで置換される。このような修飾リン酸基としては、例えば、ホスホロチオエート、ホスホロジチオエート、ホスホロセレネート、ボラノホスフェート、ボラノホスフェートエステル、ホスホネート水素、ホスホロアミデート、アルキルまたはアリールホスホネート、およびホスホトリエステル等があげられ、中でも、前記2つの非結合酸素が両方ともSで置換されているホスホロジチオエートが好ましい。 The phosphate group may replace, for example, unbound oxygen. The unbonded oxygen is, for example, S (sulfur), Se (sulfur), B (boron), C (carbon), H (hydrogen), N (nitrogen) and OR (R is an alkyl group or an aryl group). It can be replaced with the atom, preferably with S. For unbound oxygen, for example, both are preferably substituted, and more preferably both are substituted with S. Such modified phosphate groups include, for example, phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoromidate, alkyl or arylphosphonate, and phosphotriester. Among them, phosphorodithioate in which both of the above two unbound oxygens are substituted with S is preferable.
 リン酸基は、例えば、結合酸素を置換してもよい。結合酸素は、例えば、S(硫黄)、C(炭素)およびN(窒素)のいずれかの原子で置換でき、このような修飾リン酸基としては、例えば、Nで置換した架橋ホスホロアミデート、Sで置換した架橋ホスホロチオエート、およびCで置換した架橋メチレンホスホネート等があげられる。結合酸素の置換は、例えば、本発明の核酸分子の5’末端ヌクレオチド残基および3’末端ヌクレオチド残基の少なくとも一方において行うことが好ましく、5'側の場合、Cによる置換が好ましく、3’側の場合、Nによる置換が好ましい。 The phosphate group may replace the bound oxygen, for example. The bound oxygen can be replaced, for example, with any of the atoms S (sulfur), C (carbon) and N (nitrogen), and such modified phosphate groups include, for example, cross-linked phosphoramidates substituted with N. , S-substituted crosslinked phosphorothioate, C-substituted crosslinked methylenephosphonate, and the like. Substitution of bound oxygen is preferably carried out, for example, at at least one of the 5'-terminal nucleotide residue and the 3'-terminal nucleotide residue of the nucleic acid molecule of the present invention, and in the case of the 5'side, substitution by C is preferable, and 3'is substituted. On the side, substitution by N is preferred.
 リン酸基は、例えば、リン非含有のリンカーに置換してもよい。リンカーとしては、例えば、シロキサン、カーボネート、カルボキシメチル、カルバメート、アミド、チオエーテル、エチレンオキサイドリンカー、スルホネート、スルホンアミド、チオホルムアセタール、ホルムアセタール、オキシム、メチレンイミノ、メチレンメチルイミノ、メチレンヒドラゾ、メチレンジメチルヒドラゾ、およびメチレンオキシメチルイミノ等があげられ、好ましくは、メチレンカルボニルアミノ基およびメチレンメチルイミノ基が挙げられる。 The phosphoric acid group may be replaced with, for example, a phosphorus-free linker. Examples of the linker include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioform acetal, form acetal, oxime, methylene imino, methylene methyl imino, methylene hydrazo, and methylene dimethyl. Examples thereof include hydrazo and methyleneoxymethylimino, and preferred examples include a methylenecarbonylamino group and a methylenemethylimino group.
 本発明の核酸分子は、例えば、3’末端および5’末端の少なくとも一方のヌクレオチド残基が修飾されてもよい。当該修飾は前述のとおりであり、好ましくは、末端のリン酸基に行うことが好ましい。リン酸基は全体を修飾してもよいし、リン酸基における1つ以上の原子を修飾してもよい。前者の場合、例えば、リン酸基全体の置換でもよいし、欠失でもよい。 In the nucleic acid molecule of the present invention, for example, at least one nucleotide residue at the 3'end and the 5'end may be modified. The modification is as described above, and is preferably performed on the terminal phosphate group. The phosphate group may modify the whole or one or more atoms in the phosphate group. In the former case, for example, the entire phosphate group may be substituted or deleted.
 末端のヌクレオチド残基の修飾としては、例えば、他の分子の付加があげられる。他の分子としては、例えば、標識物質、保護基等の機能性分子があげられる。保護基としては、例えば、S(硫黄)、Si(ケイ素)、B(ホウ素)、エステル含有基等があげられる。前記標識物質等の機能性分子は、例えば、本発明の核酸分子の検出等に利用できる。 Modification of the terminal nucleotide residue includes, for example, addition of another molecule. Examples of other molecules include functional molecules such as labeling substances and protecting groups. Examples of the protecting group include S (sulfur), Si (silicon), B (boron), and an ester-containing group. Functional molecules such as the labeling substance can be used, for example, for detecting the nucleic acid molecule of the present invention.
 他の分子は、ヌクレオチド残基のリン酸基に付加してもよいし、スペーサーを介して、リン酸基または糖残基に付加してもよい。スペーサーの末端原子は、例えば、リン酸基の結合酸素、または、糖残基のO、N、SもしくはCに、付加または置換できる。糖残基の結合部位は、例えば、3’位のCもしくは5’位のC、またはこれらに結合する原子が好ましい。スペーサーは、例えば、前記PNA等のヌクレオチド代替物の末端原子に、付加または置換することもできる。 Other molecules may be added to the phosphate group of the nucleotide residue, or may be added to the phosphate group or sugar residue via a spacer. The terminal atom of the spacer can be added or substituted, for example, to the bound oxygen of the phosphate group or the sugar residue O, N, S or C. The binding site of the sugar residue is preferably, for example, C at the 3'position or C at the 5'position, or an atom that binds to these. The spacer can also be added or substituted, for example, to the terminal atom of the nucleotide substitute such as PNA.
 スペーサーは特に制限されず、例えば、-(CH2)n-、-(CH2)nN-、-(CH2)nO-、-(CH2)nS-、O(CH2CH2O)nCH2CH2OH、無塩基糖、アミド、カルボキシ、アミン、オキシアミン、オキシイミン、チオエーテル、ジスルフィド、チオ尿素、スルホンアミド、およびモルホリノ等、ならびに、ビオチン試薬およびフルオレセイン試薬等が挙げられる。前記式において、nは、正の整数であり、n=3または6が好ましい。 The spacer is not particularly limited, for example,-(CH 2 ) n -,-(CH 2 ) n N-,-(CH 2 ) n O-,-(CH 2 ) n S-, O (CH 2 CH 2). O) n CH 2 CH 2 OH, non-basic sugar, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, morpholino and the like, as well as biotin and fluorescein reagents. In the above equation, n is a positive integer, preferably n = 3 or 6.
 末端に付加する分子は、これらの他に、例えば、色素、インターカレート剤(例えば、アクリジン)、架橋剤(例えば、ソラレン、マイトマイシンC)、ポルフィリン(TPPC4、テキサフィリン、サッフィリン)、多環式芳香族炭化水素(例えば、フェナジン、ジヒドロフェナジン)、人工エンドヌクレアーゼ(例えば、EDTA)、親油性担体(例えば、コレステロール、コール酸、アダマンタン酢酸、1-ピレン酪酸、ジヒドロテストステロン、1,3-ビス-O(ヘキサデシル)グリセロール、ゲラニルオキシヘキシル基、ヘキサデシルグリセロール、ボルネオール、メントール、1,3-プロパンジオール、ヘプタデシル基、パルミチン酸、ミリスチン酸、O3-(オレオイル)リトコール酸、O3-(オレオイル)コール酸、ジメトキシトリチル、またはフェノキサジン)およびペプチド複合体(例えば、アンテナペディアペプチド、Tatペプチド)、アルキル化剤、リン酸、アミノ、メルカプト、PEG(例えば、PEG-40K)、MPEG、[MPEG]2、ポリアミノ、アルキル、置換アルキル、放射線標識マーカー、酵素、ハプテン(例えば、ビオチン)、輸送/吸収促進剤(例えば、アスピリン、ビタミンE、葉酸)、合成リボヌクレアーゼ(例えば、イミダゾール、ビスイミダゾール、ヒスタミン、イミダゾールクラスター、アクリジン-イミダゾール複合体、テトラアザマクロ環のEu3+複合体)等があげられる。 In addition to these, the molecules added to the ends include dyes, intercalating agents (eg, aclysine), cross-linking agents (eg, solarene, mitomycin C), porphyrin (TPPC4, texaphyrin, sapphirine), polycyclic aromatics. Group hydrocarbons (eg phenazine, dihydrophenazine), artificial endonucleases (eg EDTA), lipophilic carriers (eg cholesterol, cholic acid, adamantanacetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis-O (Hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) col Acids, dimethoxytrityls, or phenoxazines) and peptide complexes (eg, antennapedia peptides, Tat peptides), alkylating agents, phosphates, aminos, mercaptos, PEGs (eg, PEG-40K), MPEGs, [MPEG] 2 , Polyamino, alkyl, substituted alkyl, radiolabeling markers, enzymes, haptens (eg biotin), transport / absorption enhancers (eg aspirin, vitamin E, folic acid), synthetic ribonucleases (eg imidazole, bisimidazole, histamine, imidazole) Clusters, acrydin-imidazole complex, Eu3 + complex of tetraaza macro ring) and the like.
 本発明の核酸分子は、5’末端が、例えば、リン酸基またはリン酸基アナログで修飾されてもよい。リン酸基は、例えば、5’一リン酸((HO)2(O)P-O-5’)、5’二リン酸((HO)2(O)P-O-P(HO)(O)-O-5’)、5’三リン酸((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-グアノシンキャップ(7-メチル化または非メチル化、7m-G-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-アデノシンキャップ(Appp)、任意の修飾または非修飾ヌクレオチドキャップ構造(N-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’一チオリン酸(ホスホロチオエート:(HO)2(S)P-O-5’)、5’ジチオリン酸(ホスホロジチオエート:(HO)(HS)(S)P-O-5’)、5’-ホスホロチオール酸((HO)2(O)P-S-5’)、硫黄置換の一リン酸、二リン酸および三リン酸(例えば、5’-α-チオ三リン酸、5’-γ-チオ三リン酸等)、5’-ホスホルアミデート((HO)2(O)P-NH-5’、(HO)(NH2)(O)P-O-5’)、5’-アルキルホスホン酸(例えば、RP(OH)(O)-O-5’、(OH)2(O)P-5’-CH2、Rはアルキル(例えば、メチル、エチル、イソプロピル、プロピル等))、5’-アルキルエーテルホスホン酸(例えば、RP(OH)(O)-O-5’、Rはアルキルエーテル(例えば、メトキシメチル、エトキシメチル等))等があげられる。 The nucleic acid molecule of the present invention may be modified at the 5'end with, for example, a phosphate group or a phosphate group analog. Phosphate groups include, for example, 5'monophosphate ((HO) 2 (O) PO-5'), 5'diphosphate ((HO) 2 (O) POP (HO) (O) -O-5. '), 5'Triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-guanosine cap (7-methylated or non-methylated or non-methylated) Methylation, 7m-GO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-Adenosine Cap (Appp), Any Modification Or unmodified nucleotide cap structure (NO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'monothiophosphate (phosphorothioate: (HO) ) 2 (S) PO-5'), 5'dithiophosphate (phosphologithioate: (HO) (HS) (S) PO-5'), 5'-phosphorothiolate ((HO) 2 (O) ) PS-5'), sulfur-substituted monophosphate, diphosphate and triphosphate (eg 5'-α-thiotriphosphate, 5'-γ-thiotriphosphate, etc.), 5'-phospho Lumidate ((HO) 2 (O) P-NH-5', (HO) (NH 2 ) (O) PO-5'), 5'-alkylphosphonic acid (eg, RP (OH) (O)) -O-5', (OH) 2 (O) P-5'-CH 2 , R is alkyl (eg, methyl, ethyl, isopropyl, propyl, etc.), 5'-alkyl ether phosphoric acid (eg, RP (eg, RP) OH) (O) -O-5', R is alkyl ether (for example, methoxymethyl, ethoxymethyl, etc.)) and the like.
 ヌクレオチド残基において、塩基は特に制限されない。塩基は、天然の塩基でもよいし、非天然の塩基でもよい。例えば、一般的な塩基、その修飾アナログ等が使用できる。 The base is not particularly limited in the nucleotide residue. The base may be a natural base or a non-natural base. For example, a general base, a modified analog thereof, or the like can be used.
 塩基としては、例えば、アデニンおよびグアニン等のプリン塩基、シトシン、ウラシルおよびチミン等のピリミジン塩基があげられる。前記塩基は、この他に、イノシン、チミン、キサンチン、ヒポキサンチン、ヌバラリン(nubularine)、イソグアニシン(isoguanisine)、ツベルシジン(tubercidine)等があげられる。塩基は、例えば、2-アミノアデニン、6-メチル化プリン等のアルキル誘導体;2-プロピル化プリン等のアルキル誘導体;5-ハロウラシルおよび5-ハロシトシン;5-プロピニルウラシルおよび5-プロピニルシトシン;6-アゾウラシル、6-アゾシトシンおよび6-アゾチミン;5-ウラシル(プソイドウラシル)、4-チオウラシル、5-ハロウラシル、5-(2-アミノプロピル)ウラシル、5-アミノアリルウラシル;8-ハロ化、アミノ化、チオール化、チオアルキル化、ヒドロキシル化および他の8-置換プリン;5-トリフルオロメチル化および他の5-置換ピリミジン;7-メチルグアニン;5-置換ピリミジン;6-アザピリミジン;N-2、N-6、およびO-6置換プリン(2-アミノプロピルアデニンを含む);5-プロピニルウラシルおよび5-プロピニルシトシン;ジヒドロウラシル;3-デアザ-5-アザシトシン;2-アミノプリン;5-アルキルウラシル;7-アルキルグアニン;5-アルキルシトシン;7-デアザアデニン;N6,N6-ジメチルアデニン;2,6-ジアミノプリン;5-アミノ-アリル-ウラシル;N3-メチルウラシル;置換1,2,4-トリアゾール;2-ピリジノン;5-ニトロインドール;3-ニトロピロール;5-メトキシウラシル;ウラシル-5-オキシ酢酸;5-メトキシカルボニルメチルウラシル;5-メチル-2-チオウラシル;5-メトキシカルボニルメチル-2-チオウラシル;5-メチルアミノメチル-2-チオウラシル;3-(3-アミノ-3-カルボキシプロピル)ウラシル;3-メチルシトシン;5-メチルシトシン;N4-アセチルシトシン;2-チオシトシン;N6-メチルアデニン;N6-イソペンチルアデニン;2-メチルチオ-N6-イソペンテニルアデニン;N-メチルグアニン;O-アルキル化塩基等であり得る。また、プリンおよびピリミジンには、例えば、米国特許第3,687,808号、「Concise Encyclopedia Of Polymer Science And Engineering」、858~859頁、クロシュビッツ ジェー アイ(Kroschwitz J.I.)編、John Wiley & Sons、1990、およびイングリッシュら(Englischら)、Angewandte Chemie、International Edition、1991、30巻、p.613に開示されるものが含まれる。 Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, uracil and thymine. Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine and the like. The base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyl uracil and 5-propynylcitosine; 6- Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-halogenation, amination, thiol Uracil, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N- 6, and O-6 substituted purines (including 2-aminopropyl uracil); 5-propynyl uracil and 5-propynyl uracil; dihydro uracil; 3-deaza-5-azacitosin; 2-aminopurine; 5-alkyl uracil; 7 -Alkylguanine; 5-alkylcytocin; 7-deazaadenine; N6, N6-dimethyladenine; 2,6-diaminopurine; 5-amino-allyl-uracil; N3-methyluracil; substitution 1,2,4-triazol; 2 -Pyridinone; 5-nitroindole; 3-nitropyrrole; 5-methoxyuracil; uracil-5-oxyacil; 5-methoxycarbonylmethyluracil; 5-methyl-2-thiouracil; 5-methoxycarbonylmethyl-2-thiouracil; 5-Methylaminomethyl-2-thiouracil; 3- (3-amino-3-carboxypropyl) uracil; 3-methylcitosine; 5-methylcytosine; N4-acetylcitosine; 2-thiocitosine; N6-methyladenine; N6- It can be isopentyladenine; 2-methylthio-N6-isopentenyladenin; N-methylguanine; O-alkylated base and the like. For puddings and pyrimidines, for example, US Pat. No. 3,687,808, "Concise Encyclopedia Of Polymer Science And Engineering," pp. 858-859, Kroschwitz JI, John Wiley & Sons, 1990, and English. Et al. (Englisch et al.), Angewandte Chemie, International Edition, 1991, Vol. 30, p.613.
 修飾ヌクレオチド残基は、これらの他に、例えば、塩基を欠失する残基、すなわち、無塩基のリボリン酸骨格を含んでもよい。また、修飾ヌクレオチド残基は、例えば、米国仮出願第60/465,665号(出願日:2003年4月25日)、および米国仮出願第60/465,665号(出願日:2003年4月25日)(国際公開第WO2004/080406号)に記載される残基が使用でき、本発明は、これらの文献を援用できる。 In addition to these, the modified nucleotide residue may include, for example, a residue lacking a base, that is, a base-free ribophosphate skeleton. The modified nucleotide residues are, for example, US Provisional Application No. 60 / 465,665 (Filing Date: April 25, 2003) and US Provisional Application No. 60 / 465,665 (Filing Date: April 25, 2003). Residues described in WO 2004/080406 (International Publication No. WO2004 / 080406) can be used, and these documents can be incorporated by the present invention.
 本発明の核酸分子の合成方法は、特に制限されず、従来公知の方法が採用できる。前記合成方法は、例えば、遺伝子工学的手法による合成法、化学合成法等があげられる。遺伝子工学的手法は、例えば、インビトロ転写合成法、ベクターを用いる方法、PCRカセットによる方法があげられる。前記ベクターは、特に制限されず、プラスミド等の非ウイルスベクター、ウイルスベクター等があげられる。前記化学合成法は、特に制限されず、例えば、ホスホロアミダイト法およびH-ホスホネート法等があげられる。前記化学合成法は、例えば、市販の自動核酸合成機を使用可能である。前記化学合成法は、一般に、アミダイトが使用される。前記アミダイトは、特に制限されず、市販のアミダイトとして、例えば、RNA Phosphoramidites(2’-O-TBDMSi、商品名、三千里製薬)、ACEアミダイトおよびTOMアミダイト、CEEアミダイト、CEMアミダイト、TEMアミダイト等があげられる。 The method for synthesizing the nucleic acid molecule of the present invention is not particularly limited, and a conventionally known method can be adopted. Examples of the synthesis method include a synthesis method by a genetic engineering method, a chemical synthesis method, and the like. Examples of the genetic engineering method include an in vitro transcription synthesis method, a method using a vector, and a method using a PCR cassette. The vector is not particularly limited, and examples thereof include non-viral vectors such as plasmids and viral vectors. The chemical synthesis method is not particularly limited, and examples thereof include a phosphoramidite method and an H-phosphonate method. For the chemical synthesis method, for example, a commercially available automatic nucleic acid synthesizer can be used. As the chemical synthesis method, amidite is generally used. The amidite is not particularly limited, and commercially available amidites include, for example, RNA Phosphoramidites (2'-O-TBDMSi, trade name, Sansenri Pharmaceutical), ACE amidite and TOM amidite, CEE amidite, CEM amidite, TEM amidite and the like. Can be given.
 本発明の核酸分子としては、例えば、siRNA、アンチセンス核酸等が挙げられる。また、本発明の核酸分子としては、ガイド鎖とそれに相補的なパッセンジャー鎖とが、リンカーを介して連結された二重鎖を形成し得る一本鎖核酸分子を挙げることができる。 Examples of the nucleic acid molecule of the present invention include siRNA, antisense nucleic acid and the like. In addition, examples of the nucleic acid molecule of the present invention include a single-stranded nucleic acid molecule in which a guide strand and a passenger strand complementary thereto can form a double strand linked via a linker.
(i) siRNA
 siRNAとは、前記(1)~(9)のいずれかを含む標的配列(好ましくは、連続する25ヌクレオチド以下の部分配列)の全部もしくは一部と相補的な配列を含むガイド鎖と、それに相補的な配列を含むパッセンジャー鎖とからなる二本鎖オリゴRNAであって、RISC複合体に取り込まれ、ガイド鎖中の相補的な配列が標的配列と二重鎖を形成することで、RNAを切断し、遺伝子発現を抑制する核酸をいう。ここで「相補的な配列」とは、前記と同義である。
(i) siRNA
The siRNA is a guide strand containing a sequence complementary to all or part of a target sequence containing any of the above (1) to (9) (preferably a continuous partial sequence of 25 nucleotides or less), and complement thereof. A double-stranded oligo RNA consisting of a passenger strand containing a specific sequence, which is incorporated into a RISC complex, and the complementary sequence in the guide strand forms a duplex with the target sequence to cleave the RNA. A nucleic acid that suppresses gene expression. Here, "complementary sequence" has the same meaning as described above.
 siRNAの長さは、ガイド鎖中に前記(1)~(9)のいずれかを含む標的配列の全部もしくは一部と相補的な配列を含む限り特に限定されないが、siRNAが標的とするヌクレオチド配列は、原則的には15~50ヌクレオチド、好ましくは19~30ヌクレオチド、更に好ましくは19~27ヌクレオチド、特に好ましくは19~21ヌクレオチドであり得る。また、ガイド鎖及びパッセンジャー鎖は、5’または3’末端に、付加的なヌクレオチドを有していてもよい。該付加的ヌクレオチドの長さは、通常2~4ヌクレオチド程度であり、siRNAの全長として19ヌクレオチド以上である。該付加的ヌクレオチドは、DNAでもRNAでもよいが、DNAを用いると核酸の安定性を向上させることができる場合がある。このような付加的ヌクレオチドの配列としては、例えばug-3’、uu-3’、tg-3’、tt-3’、ggg-3’、guuu-3’、gttt-3’、ttttt-3’、uuuuu-3’などの配列が挙げられるが、これらに限定されるものではない。 The length of siRNA is not particularly limited as long as the guide strand contains a sequence complementary to all or part of the target sequence containing any of (1) to (9) above, but the nucleotide sequence targeted by siRNA is not particularly limited. In principle, it can be 15 to 50 nucleotides, preferably 19 to 30 nucleotides, more preferably 19 to 27 nucleotides, and particularly preferably 19 to 21 nucleotides. In addition, the guide chain and the passenger chain may have an additional nucleotide at the 5'or 3'end. The length of the additional nucleotide is usually about 2 to 4 nucleotides, and the total length of the siRNA is 19 nucleotides or more. The additional nucleotide may be DNA or RNA, but DNA may be used to improve the stability of the nucleic acid. Such additional nucleotide sequences include, for example, ug-3', uu-3', tg-3', tt-3', ggg-3', guuu-3', gttt-3', ttttt-3. Sequences such as', uuuuu-3'can be mentioned, but are not limited to these.
 siRNAは、遺伝子の発現を抑制する配列として、前記(1)~(9)のいずれかを含む標的配列の全部もしくは一部に相補的な配列をガイド鎖中に含むが、好ましい一実施態様においては、発現抑制配列として、下記のいずれかのヌクレオチド配列(配列番号n(nは71~79から選ばれる整数;但し、該配列中、UはTであってもよい)を含むガイド鎖と、それに相補的なパッセンジャー鎖(好ましくは配列番号n+9(nは71~79から選ばれる整数;但し、該配列中、UはTであってもよい)を含む)とからなる核酸分子等が挙げられる。 The siRNA contains, as a sequence that suppresses the expression of the gene, a sequence complementary to all or part of the target sequence containing any of (1) to (9) above in the guide strand, but in one preferred embodiment. Is, as an expression-suppressing sequence, a guide strand containing one of the following nucleotide sequences (SEQ ID NO: n (n is an integer selected from 71 to 79; where U may be T in the sequence)). A nucleic acid molecule or the like consisting of a passenger chain complementary thereto (preferably containing SEQ ID NO: n + 9 (n is an integer selected from 71 to 79; however, U may be T in the sequence)). Can be mentioned.
上記mRNAのORF中のヌクレオチド配列に相補的な発現抑制配列とその相補鎖配列
 (配列番号71) 5'- AGAUGAGAAGGCACAGACG -3'
 (配列番号72) 5'- CUGAACUGGAGCCACCAGC -3'
 (配列番号73) 5'- UUUCUGAUUGGGAAGGAGC -3'
 (配列番号74) 5'- AAUCCUUGGGCUUCUGGAG -3'
 (配列番号75) 5'- UACUUCACUGCUUCUGGCC -3'
 (配列番号76) 5'- UGUGUGUGUACGUUUGUGC -3'
 (配列番号77) 5'- UACGUUUGUGCCUCUGUAG -3'
 (配列番号78) 5'- UUUCUCUCCUGCUCCUACA -3'
 (配列番号79) 5'- UUCAUCUCUGCAUCUUCCC -3'
 (配列番号80) 5'- CGUCUGUGCCUUCUCAUCU -3'
 (配列番号81) 5'- GCUGGUGGCUCCAGUUCAG -3'
 (配列番号82) 5'- GCUCCUUCCCAAUCAGAAA -3'
 (配列番号83) 5'- CUCCAGAAGCCCAAGGAUU -3'
 (配列番号84) 5'- GGCCAGAAGCAGUGAAGUA -3'
 (配列番号85) 5'- GCACAAACGUACACACACA -3'
 (配列番号86) 5'- CUACAGAGGCACAAACGUA -3'
 (配列番号87) 5'- UGUAGGAGCAGGAGAGAAA -3'
 (配列番号88) 5'- GGGAAGAUGCAGAGAUGAA -3'
Expression-suppressing sequence complementary to the nucleotide sequence in the ORF of the above mRNA and its complementary strand sequence (SEQ ID NO: 71) 5'-AGAUGAGAAGGCACAGACG -3'
(SEQ ID NO: 72) 5'-CUGAACUGGAGCCACCAGC -3'
(SEQ ID NO: 73) 5'-UUUCUGAUUGGGAAGGAGC -3'
(SEQ ID NO: 74) 5'-AAUCCUUGGGCUUCUGGAG -3'
(SEQ ID NO: 75) 5'-UACUUCACUGCUUCUGGCC -3'
(SEQ ID NO: 76) 5'-UGUGUGUGUACGUUUGUGC -3'
(SEQ ID NO: 77) 5'-UACGUUUGUGCCUCUGUAG -3'
(SEQ ID NO: 78) 5'-UUUCUCUCCUGCUCCUACA -3'
(SEQ ID NO: 79) 5'-UUCAUCUCUGCAUCUUCCC -3'
(SEQ ID NO: 80) 5'-CGUCUGUGCCUUCUCAUCU -3'
(SEQ ID NO: 81) 5'-GCUGGUGGCUCCAGUUCAG -3'
(SEQ ID NO: 82) 5'-GCUCCUUCCCAAUCAGAAA -3'
(SEQ ID NO: 83) 5'-CUCCAGAAGCCCAAGGAUU -3'
(SEQ ID NO: 84) 5'- GGCCAGAAGCAGUGAAGUA -3'
(SEQ ID NO: 85) 5'-GCACAAACGUACACACACA -3'
(SEQ ID NO: 86) 5'-CUACAGAGGCACAAACGUA -3'
(SEQ ID NO: 87) 5'-UGUAGGAGCAGGAGAGAAA -3'
(SEQ ID NO: 88) 5'-GGGAAGAUGCAGAGAUGAA -3'
 siRNAは、一方もしくは両方の鎖に3’-オーバーハングを有していてもよい。オーバーハングを有する場合、オーバーハングの長さは、特に限定されず、下限が、例えば、1塩基長であり、上限が、例えば、4塩基長、3塩基長であり、範囲が、例えば、1~4塩基長、1~3塩基長、1~2塩基長である。 The siRNA may have a 3'-overhang on one or both strands. When having an overhang, the length of the overhang is not particularly limited, the lower limit is, for example, 1 base length, the upper limit is, for example, 4 base length, 3 base length, and the range is, for example, 1. It is up to 4 bases long, 1 to 3 bases long, and 1 to 2 bases long.
 オーバーハングの配列は、特に限定されず、A、U、G、C、Tのいずれであってもよい。オーバーハングの配列は、例えば、3’ 側から、TT、UU、CU、GC、UA、AA、CC、UG、CG、AU等が例示できる。前記オーバーハングは、例えば、TT、UUとすることで、RNA分解酵素に対する耐性を付加できる。 The arrangement of overhangs is not particularly limited and may be any of A, U, G, C and T. The overhang arrangement can be exemplified by, for example, TT, UU, CU, GC, UA, AA, CC, UG, CG, AU, etc. from the 3'side. By setting the overhang to, for example, TT or UU, resistance to RNA-degrading enzymes can be added.
 好ましい一実施態様においては、3’ -オーバーハングを有する発現抑制配列として、下記のいずれかのヌクレオチド配列(配列番号配列番号n(nは71~79から選ばれる整数;但し、該配列中、UはTであってもよい)を含むガイド鎖と、それに相補的な、3’ -オーバーハングを有するパッセンジャー鎖(好ましくは配列番号n+9(nは71~79から選ばれる整数;但し、該配列中、UはTであってもよい)を含む)とからなる核酸分子等が挙げられる。 In a preferred embodiment, as an expression-suppressing sequence having a 3'-overhang, one of the following nucleotide sequences (SEQ ID NO: SEQ ID NO: n (n is an integer selected from 71 to 79; however, in the sequence, U) Is a guide chain containing (may be T) and a passenger chain having a 3'-overhang complementary thereto (preferably SEQ ID NO: n + 9 (n is an integer selected from 71 to 79; however, said). In the sequence, U may be T), including)).
上記mRNAのORF中のヌクレオチド配列に相補的な発現抑制配列とその相補鎖配列
 (配列番号89) 5'- AGAUGAGAAGGCACAGACGtt -3'
 (配列番号90) 5'- CUGAACUGGAGCCACCAGCtt -3'
 (配列番号91) 5'- UUUCUGAUUGGGAAGGAGCtt -3'
 (配列番号92) 5'- AAUCCUUGGGCUUCUGGAGtt -3'
 (配列番号93) 5'- UACUUCACUGCUUCUGGCCtt -3'
 (配列番号94) 5'- UGUGUGUGUACGUUUGUGCtt -3'
 (配列番号95) 5'- UACGUUUGUGCCUCUGUAGtt -3'
 (配列番号96) 5'- UUUCUCUCCUGCUCCUACAtt -3'
 (配列番号97) 5'- UUCAUCUCUGCAUCUUCCCtt -3'
 (配列番号98) 5'- CGUCUGUGCCUUCUCAUCUtt -3'
 (配列番号99) 5'- GCUGGUGGCUCCAGUUCAGtt -3'
 (配列番号100) 5'- GCUCCUUCCCAAUCAGAAAtt -3'
 (配列番号101) 5'- CUCCAGAAGCCCAAGGAUUtt -3'
 (配列番号102) 5'- GGCCAGAAGCAGUGAAGUAtt -3'
 (配列番号103) 5'- GCACAAACGUACACACACAtt -3'
 (配列番号104) 5'- CUACAGAGGCACAAACGUAtt -3'
 (配列番号105) 5'- UGUAGGAGCAGGAGAGAAAtt -3'
 (配列番号106) 5'- GGGAAGAUGCAGAGAUGAAtt -3'
Expression-suppressing sequence complementary to the nucleotide sequence in the ORF of the above mRNA and its complementary strand sequence (SEQ ID NO: 89) 5'-AGAUGAGAAAGGCACAGACGtt -3'
(SEQ ID NO: 90) 5'-CUGAACUGGAGCCACCAGCtt -3'
(SEQ ID NO: 91) 5'-UUUCUGAUUGGGAAGGAGCtt -3'
(SEQ ID NO: 92) 5'-AAUCCUUGGGCUUCUGGAGtt -3'
(SEQ ID NO: 93) 5'-UACUUCACUGCUUCUGGCCtt -3'
(SEQ ID NO: 94) 5'-UGUGUGUGUACGUUUGUGCtt -3'
(SEQ ID NO: 95) 5'-UACGUUUGUGCCUCUGUAGtt -3'
(SEQ ID NO: 96) 5'-UUUCUCUCCUGCUCCUACAtt -3'
(SEQ ID NO: 97) 5'-UUCAUCUCUGCAUCUUCCCtt -3'
(SEQ ID NO: 98) 5'- CGUCUGUGCCUUCUCAUCUtt -3'
(SEQ ID NO: 99) 5'-GCUGGUGGCUCCAGUUCAGtt -3'
(SEQ ID NO: 100) 5'-GCUCCUUCCCAAUCAGAAAtt -3'
(SEQ ID NO: 101) 5'-CUCCAGAAGCCCAAGGAUutt -3'
(SEQ ID NO: 102) 5'-GGCCAGAAGCAGUGAAGUAtt -3'
(SEQ ID NO: 103) 5'-GCACAAACGUACACACACAtt -3'
(SEQ ID NO: 104) 5'-CUACAGAGGCACAAACGUAtt -3'
(SEQ ID NO: 105) 5'-UGUAGGAGCAGGAGAGAAAtt -3'
(SEQ ID NO: 106) 5'-GGGAAAGAUGCAGAGAUGAAtt -3'
 siRNAの合成方法は、特に限定されず、従来公知の核酸の製造方法が採用できる。合成方法としては、例えば、前記相補的な配列を含む核酸およびそれに相補的な配列の核酸をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中、約90~約95℃で約1分程度変性させた後、約30~約70℃で約1~約8時間アニーリングさせることにより調製する方法等が挙げられる。また、siRNAの前駆体となるshRNAを合成し、ダイサー(dicer)を用いてこれを切断することにより調製することもできる。siRNAを構成するヌクレオチド残基もまた、安定性、比活性などを向上させるために、上記と同様の修飾を受けていてよい。但し、siRNAの場合、天然型RNA中のすべてのリボヌクレオチド残基を修飾型で置換すると、RNAi活性が失われる場合があるので、RISC複合体が機能できる最小限の修飾ヌクレオチド残基の導入が必要である。 The method for synthesizing siRNA is not particularly limited, and a conventionally known method for producing nucleic acid can be adopted. As a synthesis method, for example, a nucleic acid containing the complementary sequence and a nucleic acid having a sequence complementary thereto are synthesized by a DNA / RNA automatic synthesizer, respectively, and in an appropriate annealing buffer at about 90 to about 95 ° C. Examples thereof include a method of preparing by denaturing for about 1 minute and then annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. It can also be prepared by synthesizing shRNA, which is a precursor of siRNA, and cleaving it with a dicer. Nucleotide residues constituting siRNA may also undergo the same modifications as described above in order to improve stability, specific activity and the like. However, in the case of siRNA, if all ribonucleotide residues in the native RNA are replaced with modified forms, RNAi activity may be lost, so introduction of the minimum modified nucleotide residues that can function the RISC complex is necessary. is necessary.
(ii) アンチセンス核酸
 アンチセンス核酸とは、前記(1)~(9)のいずれかを含む標的配列(好ましくは、連続する25ヌクレオチド以下の部分配列)の全部もしくは一部、好ましくは該ヌクレオチド配列中、連続する15ヌクレオチド以上のヌクレオチド配列と相補的な配列を含み、標的配列と特異的な二重鎖を形成して結合することにより、遺伝子発現を抑制する作用を有する核酸をいう。ここで「相補的な配列」とは、前記と同義である。
(ii) Antisense Nucleic Acid An antisense nucleic acid is all or part of a target sequence (preferably a continuous partial sequence of 25 nucleotides or less) containing any of (1) to (9), preferably the nucleotide. A nucleic acid that contains a sequence complementary to a consecutive nucleotide sequence of 15 nucleotides or more in a sequence and has an action of suppressing gene expression by forming and binding to a target sequence by forming a specific double strand. Here, "complementary sequence" has the same meaning as described above.
 アンチセンス核酸の長さは特に限定されないが、例えば、10~100ヌクレオチドであり、好ましくは15~40ヌクレオチドであり、より好ましくは15~30
ヌクレオチドであり得る。
The length of the antisense nucleic acid is not particularly limited, but is, for example, 10 to 100 nucleotides, preferably 15 to 40 nucleotides, and more preferably 15 to 30 nucleotides.
It can be a nucleotide.
 アンチセンス核酸は、好ましい一実施態様においては、発現抑制配列として、上記配列番号(配列番号n(nは71~79から選ばれる整数;但し、該配列中、UはTであってもよい)のいずれかで表されるヌクレオチド配列を含む。 In one preferred embodiment, the antisense nucleic acid has the above-mentioned SEQ ID NO: (SEQ ID NO: n (n is an integer selected from 71 to 79; where U may be T in the sequence)) as the expression-suppressing sequence. Includes a nucleotide sequence represented by any of.
 アンチセンス核酸は、ギャップマー型であってもよい。ギャップマー型のアンチセンス核酸とは、DNAと、その両側に、修飾や架橋が導入された核酸とを有する核酸である。DNA鎖を主鎖として、主鎖に相補的なRNAがヘテロ2本鎖核酸を形成し、RNAは、RNAase Hにより分解される。糖部の2’位のO-メチル化により、アンチセンス核酸の安定性が向上し、ターゲットへの結合親和性が増大する。また、リン酸結合をホスホロチオエート結合に置換することにより、アンチセンス核酸のヌクレアーゼ耐性が高まる。 The antisense nucleic acid may be of the gapmer type. The gapmer-type antisense nucleic acid is a nucleic acid having DNA and nucleic acids having modifications or crosslinks introduced on both sides thereof. With the DNA strand as the main chain, RNA complementary to the main chain forms a heteroduplex nucleic acid, and the RNA is degraded by RNAase H. O-methylation at the 2'position of the sugar moiety improves the stability of the antisense nucleic acid and increases its binding affinity to the target. Further, by substituting the phosphate bond with the phosphorothioate bond, the nuclease resistance of the antisense nucleic acid is enhanced.
 アンチセンス核酸の合成方法は、特に限定されず、従来公知の核酸の製造方法が採用できる。合成方法としては、例えば、前記相補的な配列を含む核酸をDNA/RNA自動合成機でそれぞれ合成することにより調製する方法等が挙げられる。また、上記した各種修飾を含むアンチセンス核酸も、従来公知の手法により、化学的に合成することができる。 The method for synthesizing the antisense nucleic acid is not particularly limited, and a conventionally known method for producing a nucleic acid can be adopted. Examples of the synthesis method include a method of preparing nucleic acids containing the complementary sequences by synthesizing them with an automatic DNA / RNA synthesizer. In addition, antisense nucleic acids containing the above-mentioned various modifications can also be chemically synthesized by a conventionally known method.
(iii) 一本鎖核酸分子
(1)発現抑制配列および相補配列
 本発明の核酸分子は、前述のように、B型肝炎ウイルスDNAの増幅を抑制する一本鎖核酸分子であって、下記配列番号1および2で表されるB型肝炎ウイルス遺伝子の一部に相補的な配列、下記配列番号3から5で表されるヒトNCAPH遺伝子の一部に相補的な配列、下記配列番号6および7で表されるヒトSp1遺伝子の一部に相補的な配列および下記配列番号8および9で表されるヒトSOCS7遺伝子の一部に相補的な配列から選ばれるいずれかのヌクレオチド配列中、連続する少なくとも18ヌクレオチドからなるヌクレオチド配列(「rヌクレオチド配列」という)を含む、遺伝子発現抑制配列を含むことを特徴とする。
 (配列番号1) 5'- GAAGAUGAGAAGGCACAGACG -3'
 (配列番号2) 5'- UCCUGAACUGGAGCCACCAGC -3'
 (配列番号3) 5'- GUUUUCUGAUUGGGAAGGAGC -3'
 (配列番号4) 5'- CUAAUCCUUGGGCUUCUGGAG -3'
 (配列番号5) 5'- UAUACUUCACUGCUUCUGGCC -3'
 (配列番号6) 5'- CCUGUGUGUGUACGUUUGUGC -3'
 (配列番号7) 5'- UGUACGUUUGUGCCUCUGUAG -3'
 (配列番号8) 5'- CCUUUCUCUCCUGCUCCUACA -3'
 (配列番号9) 5'- GCUUCAUCUCUGCAUCUUCCC -3'
(iii) Single-stranded nucleic acid molecule (1) Expression-suppressing sequence and complementary sequence The nucleic acid molecule of the present invention is a single-stranded nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA as described above, and has the following sequence. Sequences complementary to a part of the hepatitis B virus gene represented by numbers 1 and 2, sequences complementary to a part of the human NCAPH gene represented by SEQ ID NOs: 3 to 5 below, SEQ ID NOs: 6 and 7 below. At least consecutive nucleotide sequences selected from a sequence complementary to a part of the human Sp1 gene represented by and a sequence complementary to a part of the human SOCS7 gene represented by SEQ ID NOs: 8 and 9 below. It is characterized by containing a gene expression-suppressing sequence, which comprises a nucleotide sequence consisting of 18 nucleotides (referred to as "r-nucleotide sequence").
(SEQ ID NO: 1) 5'-GAAGAUGAGAAGGCACAGACG -3'
(SEQ ID NO: 2) 5'-UCCUGAACUGGAGCCACCAGC -3'
(SEQ ID NO: 3) 5'-GUUUUCUGAUUGGGAAGGAGC -3'
(SEQ ID NO: 4) 5'-CUAAUCCUUGGGCUUCUGGAG -3'
(SEQ ID NO: 5) 5'-UAUACUUCACUGCUUCUGGCC -3'
(SEQ ID NO: 6) 5'-CCUGUGUGUGUACGUUUGUGC -3'
(SEQ ID NO: 7) 5'-UGUACGUUUGUGCCUCUGUAG -3'
(SEQ ID NO: 8) 5'-CCUUUCUCUCCUGCUCCUACA -3'
(SEQ ID NO: 9) 5'-GCUUCAUCUCUGCAUCUUCCC -3'
 前記発現抑制配列は、例えば、前記rヌクレオチド配列のみからなる配列でもよいし、rヌクレオチド配列を含む配列でもよい。前記発現抑制配列がrヌクレオチド配列を含む配列である場合、rヌクレオチド配列の5’末端及び/又は3’末端に1以上のヌクレオチドが付加されるが、この場合、発現抑制配列全体として、標的となる遺伝子に対して相補的である(ここで「相補的」とは、後述の相補配列の定義に準ずる)。一方、後述する、本発明の核酸分子中の発現抑制配列を含む領域(X又はXc)内の発現抑制配列以外のヌクレオチド(配列)は、標的遺伝子に対して相補的であることを要しない。 The expression-suppressing sequence may be, for example, a sequence consisting of only the r-nucleotide sequence or a sequence containing the r-nucleotide sequence. When the expression-suppressing sequence is a sequence containing an r-nucleotide sequence, one or more nucleotides are added to the 5'end and / or 3'-end of the r-nucleotide sequence. (Here, "complementary" refers to the definition of a complementary sequence described later). On the other hand, nucleotides (sequences) other than the expression-suppressing sequence in the region (X or Xc) containing the expression-suppressing sequence in the nucleic acid molecule of the present invention, which will be described later, do not need to be complementary to the target gene.
 前記発現抑制配列の長さは、特に制限されず、例えば、18~32ヌクレオチド長であり、好ましくは19~30ヌクレオチド長であり、より好ましくは19、20、21ヌクレオチド長である。本発明において、例えば、塩基数の数値範囲は、その範囲に属する正の整数を全て開示するものであり、例えば、「1~4塩基」との記載は、「1、2、3、4塩基」の全ての開示を意味する(以下、同様)。 The length of the expression-suppressing sequence is not particularly limited, and is, for example, 18 to 32 nucleotides in length, preferably 19 to 30 nucleotides in length, and more preferably 19, 20, 21 nucleotides in length. In the present invention, for example, the numerical range of the number of bases discloses all positive integers belonging to the range, and for example, the description of "1 to 4 bases" is "1, 2, 3, 4 bases". Means all disclosures (the same shall apply hereinafter).
 本発明の一本鎖核酸分子は、さらに、前記発現抑制配列とアニーリング可能な相補配列を有する。 The single-stranded nucleic acid molecule of the present invention further has a complementary sequence that can be annealed with the expression-suppressing sequence.
 前記相補配列は、標的細胞内の生理的条件下で前記発現抑制配列とアニーリング可能であれば、必ずしも完全相補的でなくてもよい。即ち、前記相補配列は、前記発現抑制配列と、オーバーラップする領域において100%の相補性を有する配列でもよいし、例えば、90%~100%、93%~100%、95%~100%、98%~100%、99%~100%等の相補性を有する配列であってもよい。 The complementary sequence does not necessarily have to be completely complementary as long as it can be annealed with the expression-suppressing sequence under physiological conditions in the target cell. That is, the complementary sequence may be a sequence having 100% complementarity in a region overlapping the expression-suppressing sequence, for example, 90% to 100%, 93% to 100%, 95% to 100%, It may be a sequence having complementarity such as 98% to 100% and 99% to 100%.
 前記発現抑制配列が配列番号n(n=1-9)で表されるヌクレオチド配列中のrヌクレオチド配列を含む場合、前記相補配列は、下記配列番号n+9で表されるヌクレオチド配列中の、rヌクレオチド配列に対して相補的な配列(「sヌクレオチド配列」という)を含む。
 (配列番号10) 5'- CGUCUGUGCCUUCUCAUCUUC -3'
 (配列番号11) 5'- GCUGGUGGCUCCAGUUCAGGA -3'
 (配列番号12) 5'- GCUCCUUCCCAAUCAGAAAAC -3'
 (配列番号13) 5'- CUCCAGAAGCCCAAGGAUUAG -3'
 (配列番号14) 5'- GGCCAGAAGCAGUGAAGUAUA -3'
 (配列番号15) 5'- GCACAAACGUACACACACAGG -3'
 (配列番号16) 5'- CUACAGAGGCACAAACGUACA -3'
 (配列番号17) 5'- UGUAGGAGCAGGAGAGAAAGG -3'
 (配列番号18) 5'- GGGAAGAUGCAGAGAUGAAGC -3'
When the expression-suppressing sequence contains the r nucleotide sequence in the nucleotide sequence represented by SEQ ID NO: n (n = 1-9), the complementary sequence is the nucleotide sequence represented by SEQ ID NO: n + 9 below. Includes a sequence complementary to the r nucleotide sequence (referred to as "s nucleotide sequence").
(SEQ ID NO: 10) 5'-CGUCUGUGCCUUCUCAUCUUC -3'
(SEQ ID NO: 11) 5'-GCUGGUGGCUCCAGUUCAGGA -3'
(SEQ ID NO: 12) 5'-GCUCCUUCCCAAUCAGAAAAC -3'
(SEQ ID NO: 13) 5'-CUCCAGAAGCCCAAGGAUUAG -3'
(SEQ ID NO: 14) 5'-GGCCAGAAGCAGUGAAGUAUA -3'
(SEQ ID NO: 15) 5'-GCACAAACGUACACACACAGG -3'
(SEQ ID NO: 16) 5'-CUACAGAGGCACAAACGUACA -3'
(SEQ ID NO: 17) 5'-UGUAGGAGCAGGAGAGAAAGG -3'
(SEQ ID NO: 18) 5'-GGGAAAGAUGCAGAGAUGAAGC -3'
 前記相補配列は、例えば、前記sヌクレオチド配列からなる配列でもよいし、前記sヌクレオチド配列を含む配列でもよい。 The complementary sequence may be, for example, a sequence consisting of the s nucleotide sequence or a sequence containing the s nucleotide sequence.
 前記相補配列の長さは、特に制限されず、例えば、18~32ヌクレオチド長であり、好ましくは19~30ヌクレオチド長であり、より好ましくは19、20、21ヌクレオチド長である。 The length of the complementary sequence is not particularly limited, and is, for example, 18 to 32 nucleotides in length, preferably 19 to 30 nucleotides in length, and more preferably 19, 20, 21 nucleotides in length.
 前記発現抑制配列と前記相補配列はそれぞれ、例えば、リボヌクレオチド残基のみからなるRNA分子でもよいし、リボヌクレオチド残基の他に、デオキシリボヌクレオチド残基を含むRNA分子でもよい。ウラシル(U)残基がデオキシリボヌクレオチド残基で置換される場合、dT又はdUのいずれで置換されてもよい。 The expression-suppressing sequence and the complementary sequence may be, for example, an RNA molecule consisting only of a ribonucleotide residue, or an RNA molecule containing a deoxyribonucleotide residue in addition to the ribonucleotide residue. When the uracil (U) residue is replaced with a deoxyribonucleotide residue, it may be replaced with either dT or dU.
(2)一本鎖核酸分子
 本発明の核酸分子は、前記発現抑制配列を含む領域と、前記相補配列を含む領域とが、リンカー領域を介して間接的に連結している。前記発現抑制配列を含む領域と前記相補配列を含む領域との連結順序は、特に制限されず、例えば、前記発現抑制配列の5'末端側と、前記相補配列の3'末端側とがリンカー領域を介して連結してもよく、あるいは、前記発現抑制配列の3'末端側と前記相補配列の5'末端側とがリンカー領域を介して連結してもよい。好ましくは前者である。
(2) Single-stranded nucleic acid molecule In the nucleic acid molecule of the present invention, a region containing the expression-suppressing sequence and a region containing the complementary sequence are indirectly linked via a linker region. The order of linking the region containing the expression-suppressing sequence and the region containing the complementary sequence is not particularly limited. For example, the 5'-terminal side of the expression-suppressing sequence and the 3'-terminal side of the complementary sequence are linker regions. Or, the 3'end side of the expression-suppressing sequence and the 5'end side of the complementary sequence may be linked via a linker region. The former is preferable.
 前記リンカー領域は、例えば、ヌクレオチド残基から構成されてもよいし、非ヌクレオチド残基から構成されてもよい。あるいは、ヌクレオチド残基および非ヌクレオチド残基の両方から構成されてもよい。好ましくは、前記リンカー領域は非ヌクレオチド残基から構成されている。 The linker region may be composed of, for example, nucleotide residues or may be composed of non-nucleotide residues. Alternatively, it may be composed of both nucleotide residues and non-nucleotide residues. Preferably, the linker region is composed of non-nucleotide residues.
 以下に、本発明の一本鎖核酸分子の具体例を例示するが、本発明は、これには制限されない。
(ヘアピン型一本鎖核酸分子)
 好ましい一実施態様において、本発明の一本鎖核酸分子は、5'側領域および3'側領域が、互いにアニーリングして二本鎖構造(ステム構造)を形成する分子である。これは、shRNA(small hairpin RNAまたはshort hairpin RNA)の形態とも言える。shRNAは、ヘアピン構造をとっており、一般的に、一つのステム領域と一つのループ領域とを有する。
Specific examples of the single-stranded nucleic acid molecule of the present invention will be illustrated below, but the present invention is not limited thereto.
(Hairpin type single-stranded nucleic acid molecule)
In a preferred embodiment, the single-stranded nucleic acid molecule of the present invention is a molecule in which the 5'side region and the 3'side region are annealed to each other to form a double-stranded structure (stem structure). This can be said to be a form of shRNA (small hairpin RNA or short hairpin RNA). shRNA has a hairpin structure and generally has one stem region and one loop region.
 本形態の核酸分子は、領域(X)、リンカー領域(Lx)および領域(Xc)のみからなり、相補的な構造を有する前記領域(X)と前記領域(Xc)とが、前記リンカー領域(Lx)を介して連結された構造をとる。具体的には、前記領域(X)および前記領域(Xc)のうち、一方が、前記発現抑制配列を含み、他方が、前記相補配列を含むため、分子内アニーリングにより、前記領域(X)と前記領域(Xc)との間でステム構造を形成でき、前記リンカー領域(Lx)がループ構造となる。 The nucleic acid molecule of this embodiment consists only of a region (X), a linker region (Lx) and a region (Xc), and the region (X) and the region (Xc) having a complementary structure form the linker region (X). It has a structure connected via Lx). Specifically, since one of the region (X) and the region (Xc) contains the expression-suppressing sequence and the other contains the complementary sequence, intramolecular annealing can be performed to obtain the region (X). A stem structure can be formed with the region (Xc), and the linker region (Lx) becomes a loop structure.
 前記核酸分子は、前記領域(Xc)、前記リンカー領域(Lx)および前記領域(X)を、5'側から3'側にかけて、この順序で有してもよいし、3'側から5'側にかけて、この順序で有してもよい。好ましくは前者である。前記発現抑制配列は、前記領域(X)と前記領域(Xc)のいずれに配置してもよいが、前記相補配列の下流側、すなわち、前記相補配列よりも3'側に配置することが好ましい。従って、前記核酸分子が、前記領域(Xc)、前記リンカー領域(Lx)および前記領域(X)を、5'側から3'側にかけて、この順序で有する場合、前記発現抑制配列は前記領域(X)内に配置されることが好ましい。 The nucleic acid molecule may have the region (Xc), the linker region (Lx) and the region (X) in this order from the 5'side to the 3'side, or from the 3'side to 5'. It may be held in this order toward the side. The former is preferable. The expression-suppressing sequence may be arranged in either the region (X) or the region (Xc), but it is preferably arranged on the downstream side of the complementary sequence, that is, on the 3'side of the complementary sequence. .. Therefore, when the nucleic acid molecule has the region (Xc), the linker region (Lx) and the region (X) in this order from the 5'side to the 3'side, the expression-suppressing sequence is the region ( It is preferably placed within X).
 本形態の核酸分子の一例を、図1の模式図に示す。図1(A)は、各領域の順序の概略を示す模式図であり、図1(B)は、前記核酸分子が、前記分子内において二重鎖を形成している状態を示す模式図である。図1(B)に示すように、前記核酸分子は、前記領域(Xc)と前記領域(X)との間で、二重鎖が形成され、前記Lx領域が、その長さに応じてループ構造をとる。図1は、あくまでも、前記領域の連結順序および二重鎖を形成する各領域の位置関係を示すものであり、例えば、各領域の長さ、前記リンカー領域(Lx)の形状等は、これに制限されない。 An example of the nucleic acid molecule of this embodiment is shown in the schematic diagram of FIG. FIG. 1 (A) is a schematic diagram showing an outline of the order of each region, and FIG. 1 (B) is a schematic diagram showing a state in which the nucleic acid molecule forms a duplex in the molecule. is there. As shown in FIG. 1 (B), in the nucleic acid molecule, a duplex is formed between the region (Xc) and the region (X), and the Lx region loops according to its length. Take the structure. FIG. 1 merely shows the connection order of the regions and the positional relationship of each region forming the duplex. For example, the length of each region, the shape of the linker region (Lx), and the like are included in this. Not limited.
 前記核酸分子において、前記領域(Xc)および前記領域(X)のヌクレオチド数は、特に制限されない。以下に各領域の長さを例示するが、本発明は、これには制限されない。 In the nucleic acid molecule, the number of nucleotides in the region (Xc) and the region (X) is not particularly limited. The length of each region is illustrated below, but the present invention is not limited thereto.
 前記領域(X)のヌクレオチド数の下限は、例えば、19ヌクレオチドであり、好ましくは20塩基である。その上限は、例えば、50ヌクレオチドであり、好ましくは30ヌクレオチドであり、より好ましくは25ヌクレオチドである。前記領域(X)のヌクレオチド数の具体例は、例えば、19~50ヌクレオチドであり、好ましくは、19~30ヌクレオチド、より好ましくは19~25ヌクレオチドである。 The lower limit of the number of nucleotides in the region (X) is, for example, 19 nucleotides, preferably 20 bases. The upper limit is, for example, 50 nucleotides, preferably 30 nucleotides, and more preferably 25 nucleotides. Specific examples of the number of nucleotides in the region (X) are, for example, 19 to 50 nucleotides, preferably 19 to 30 nucleotides, and more preferably 19 to 25 nucleotides.
 前記領域(Xc)のヌクレオチド数の下限は、例えば、19ヌクレオチドであり、好ましくは20ヌクレオチドである。その上限は、例えば、50ヌクレオチドであり、好ましくは30ヌクレオチドであり、より好ましくは25ヌクレオチドである。前記領域(Xc)のヌクレオチド数の具体例は、例えば、19~50ヌクレオチドであり、好ましくは、19~30ヌクレオチド、より好ましくは19~25ヌクレオチドである。 The lower limit of the number of nucleotides in the region (Xc) is, for example, 19 nucleotides, preferably 20 nucleotides. The upper limit is, for example, 50 nucleotides, preferably 30 nucleotides, and more preferably 25 nucleotides. Specific examples of the number of nucleotides in the region (Xc) are, for example, 19 to 50 nucleotides, preferably 19 to 30 nucleotides, and more preferably 19 to 25 nucleotides.
 前記発現抑制配列を含む領域(XまたはXc)は、前記発現抑制配列のみから構成されてもよいし、前記発現抑制配列を含んでもよい。前記発現抑制配列のヌクレオチド数は、前述のとおりである。前記発現抑制配列を含む領域は、前記発現抑制配列の5’側および/または3’側に、さらに付加配列を有してもよい。付加配列は、前記リンカー領域(Lx)側に付加することが好ましい。前述のとおり、本発明の核酸分子が、前記領域(Xc)、前記リンカー領域(Lx)および前記領域(X)を、5'側から3'側にかけて、この順序で有する場合、前記発現抑制配列は前記領域(X)内に配置されることが好ましいので、その場合、付加配列は前記発現抑制配列の5’側に付加される。前記付加配列のヌクレオチド数は、例えば、1~31ヌクレオチドであり、好ましくは、1~21ヌクレオチドであり、より好ましくは、1~11ヌクレオチドであり、特に好ましくは、1、2、3、4、5又は6ヌクレオチドである。
 前記発現抑制配列を含む領域(X又はXcの一方)が前記リンカー領域(Lx)側に付加配列を有する場合、前記相補配列を含む領域(X又はXcの他方)も、前記リンカー領域(Lx)側に該付加配列と相補的な配列を含む。
The region (X or Xc) containing the expression-suppressing sequence may be composed of only the expression-suppressing sequence, or may include the expression-suppressing sequence. The number of nucleotides in the expression-suppressing sequence is as described above. The region containing the expression-suppressing sequence may further have an additional sequence on the 5'side and / or 3'side of the expression-suppressing sequence. The addition sequence is preferably added to the linker region (Lx) side. As described above, when the nucleic acid molecule of the present invention has the region (Xc), the linker region (Lx) and the region (X) in this order from the 5'side to the 3'side, the expression-suppressing sequence Is preferably located within the region (X), in which case the additional sequence is added to the 5'side of the expression-suppressing sequence. The number of nucleotides in the additional sequence is, for example, 1-31 nucleotides, preferably 1-21 nucleotides, more preferably 1-11 nucleotides, and particularly preferably 1, 2, 3, 4, 5 or 6 nucleotides.
When the region containing the expression-suppressing sequence (one of X or Xc) has an additional sequence on the linker region (Lx) side, the region containing the complementary sequence (the other of X or Xc) is also the linker region (Lx). The side contains a sequence complementary to the additional sequence.
 前記領域(X)のヌクレオチド数(X)と前記領域(Xc)のヌクレオチド数(Xc)との関係は、例えば、下記(1)または(2)の条件を満たし、前者の場合、具体的には、例えば、下記(4)の条件を満たす。例えば、図1(B)に模式的に示される核酸分子は、下記(1)の条件を満たすものである。
   X>Xc ・・・(1)
   X-Xc=1~10、好ましくは1、2または3、
        より好ましくは1または2   ・・・(4)
   X=Xc ・・・(2)
The relationship between the number of nucleotides (X) in the region (X) and the number of nucleotides (Xc) in the region (Xc) satisfies, for example, the following conditions (1) or (2), and in the former case, specifically. Meets the condition of (4) below, for example. For example, the nucleic acid molecule schematically shown in FIG. 1 (B) satisfies the condition of the following (1).
X> Xc ・ ・ ・ (1)
X-Xc = 1-10, preferably 1, 2 or 3,
More preferably 1 or 2 ... (4)
X = Xc ・ ・ ・ (2)
 前記リンカー領域(Lx)は、それ自体の領域内部において、自己アニーリングを生じない構造であることが好ましい。 The linker region (Lx) preferably has a structure that does not cause self-annealing inside its own region.
 前記リンカー領域(Lx)が、前述のようにヌクレオチド残基を含む場合、その長さは、特に制限されない。前記リンカー領域(Lx)は、例えば、前記領域(X)と前記領域(Xc)とが二重鎖を形成可能な長さであることが好ましい。前記リンカー領域(Lx)のヌクレオチド数は、その下限が、例えば、1塩基であり、好ましくは2塩基であり、より好ましくは3塩基であり、その上限が、例えば、100塩基であり、好ましくは80塩基であり、より好ましくは50塩基である。 When the linker region (Lx) contains a nucleotide residue as described above, its length is not particularly limited. The linker region (Lx) preferably has a length such that the region (X) and the region (Xc) can form a duplex. The lower limit of the number of nucleotides in the linker region (Lx) is, for example, 1 base, preferably 2 bases, more preferably 3 bases, and the upper limit thereof is, for example, 100 bases, preferably 100 bases. It is 80 bases, more preferably 50 bases.
 前記核酸分子の全長は、特に制限されない。前記核酸分子において、前記ヌクレオチド数の合計(全長のヌクレオチド数)は、前記リンカー領域(Lx)がヌクレオチド残基を含む場合、下限が、例えば、38ヌクレオチドであり、好ましくは42ヌクレオチドであり、より好ましくは50ヌクレオチドであり、さらに好ましくは51ヌクレオチドであり、特に好ましくは52ヌクレオチドである。その上限は、例えば、300ヌクレオチドであり、好ましくは200ヌクレオチドであり、より好ましくは150ヌクレオチドであり、さらに好ましくは100ヌクレオチドであり、特に好ましくは80ヌクレオチドである。
 前記核酸分子において、前記リンカー領域(Lx)を除くヌクレオチド数の合計は、下限が、例えば、36ヌクレオチドであり、好ましくは38ヌクレオチドである。その上限は、例えば、100ヌクレオチドであり、好ましくは80ヌクレオチドであり、より好ましくは60ヌクレオチドであり、さらに好ましくは50ヌクレオチドである。全長のヌクレオチド数の具体例は、例えば、36~100ヌクレオチド、好ましくは38~80ヌクレオチド、より好ましくは42~60ヌクレオチド、さらに好ましくは42~50ヌクレオチドである。
The total length of the nucleic acid molecule is not particularly limited. In the nucleic acid molecule, the total number of nucleotides (total number of nucleotides) has a lower limit of, for example, 38 nucleotides, preferably 42 nucleotides, and more, when the linker region (Lx) contains nucleotide residues. It is preferably 50 nucleotides, more preferably 51 nucleotides, and particularly preferably 52 nucleotides. The upper limit is, for example, 300 nucleotides, preferably 200 nucleotides, more preferably 150 nucleotides, still more preferably 100 nucleotides, and particularly preferably 80 nucleotides.
In the nucleic acid molecule, the total number of nucleotides excluding the linker region (Lx) has a lower limit of, for example, 36 nucleotides, preferably 38 nucleotides. The upper limit is, for example, 100 nucleotides, preferably 80 nucleotides, more preferably 60 nucleotides, and even more preferably 50 nucleotides. Specific examples of the total number of nucleotides are, for example, 36 to 100 nucleotides, preferably 38 to 80 nucleotides, more preferably 42 to 60 nucleotides, and even more preferably 42 to 50 nucleotides.
 より好ましい実施態様において、本発明の一本鎖核酸分子は、非ヌクレオチド構造の前記リンカー領域(Lx)を有する。 In a more preferred embodiment, the single-stranded nucleic acid molecule of the present invention has the linker region (Lx) having a non-nucleotide structure.
 前記非ヌクレオチド構造は、特に制限されず、例えば、ポリアルキレングリコール、ピロリジン骨格、ピペリジン骨格等があげられる。前記ポリアルキレングリコールは、例えば、ポリエチレングリコールがあげられる。 The non-nucleotide structure is not particularly limited, and examples thereof include polyalkylene glycol, pyrrolidine skeleton, and piperidine skeleton. Examples of the polyalkylene glycol include polyethylene glycol.
 前記ピロリジン骨格は、例えば、ピロリジンの5員環を構成する炭素が、1個以上、置換されたピロリジン誘導体の骨格でもよく、置換される場合、例えば、C-2の炭素以外の炭素原子であることが好ましい。前記炭素は、例えば、窒素、酸素または硫黄で置換されてもよい。前記ピロリジン骨格は、例えば、ピロリジンの5員環内に、例えば、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよい。前記ピロリジン骨格において、ピロリジンの5員環を構成する炭素および窒素は、例えば、水素が結合してもよいし、後述するような置換基が結合してもよい。前記リンカー領域(Lx)は、前記領域(X)および前記領域(Xc)と、例えば、前記ピロリジン骨格のいずれの基を介して結合してもよく、好ましくは、前記5員環のいずれか1個の炭素原子と窒素であり、好ましくは、前記5員環の2位の炭素(C-2)と窒素である。前記ピロリジン骨格としては、例えば、プロリン骨格、プロリノール骨格等があげられる。前記プロリン骨格およびプロリノール骨格等は、例えば、生体内物質およびその還元体であるため、安全性にも優れる。 The pyrrolidine skeleton may be, for example, the skeleton of a pyrrolidine derivative in which one or more carbons constituting the 5-membered ring of pyrrolidine are substituted, and when substituted, for example, a carbon atom other than the carbon of C-2. Is preferable. The carbon may be replaced with, for example, nitrogen, oxygen or sulfur. The pyrrolidine skeleton may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond within the 5-membered ring of pyrrolidine. In the pyrrolidine skeleton, the carbon and nitrogen constituting the 5-membered ring of pyrrolidine may be, for example, hydrogen-bonded or a substituent as described later may be bonded. The linker region (Lx) may be bound to the region (X) and the region (Xc) via, for example, any group of the pyrrolidine skeleton, preferably any one of the 5-membered rings. It is a carbon atom and nitrogen, preferably carbon (C-2) and nitrogen at the 2-position of the 5-membered ring. Examples of the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton. Since the proline skeleton, prolinol skeleton, and the like are, for example, in vivo substances and their reduced forms, they are also excellent in safety.
 前記ピペリジン骨格は、例えば、ピペリジンの6員環を構成する炭素が、1個以上、置換されたピペリジン誘導体の骨格でもよく、置換される場合、例えば、C-2の炭素以外の炭素原子であることが好ましい。前記炭素は、例えば、窒素、酸素または硫黄で置換されてもよい。前記ピペリジン骨格は、例えば、ピペリジンの6員環内に、例えば、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよい。前記ピペリジン骨格において、ピペリジンの6員環を構成する炭素および窒素は、例えば、水素基が結合してもよいし、後述するような置換基が結合してもよい。前記リンカー領域(Lx)は、前記領域(X)および前記領域(Xc)と、例えば、前記ピペリジン骨格のいずれの基を介して結合してもよく、好ましくは、前記6員環のいずれか1個の炭素原子と窒素であり、より好ましくは、前記6員環の2位の炭素(C-2)と窒素である。 The piperidine skeleton may be, for example, the skeleton of a piperidine derivative in which one or more carbons constituting the 6-membered ring of piperidine are substituted, and when substituted, for example, a carbon atom other than carbon of C-2. Is preferable. The carbon may be replaced with, for example, nitrogen, oxygen or sulfur. The piperidine backbone may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond within the 6-membered ring of piperidine. In the piperidine skeleton, the carbon and nitrogen constituting the 6-membered ring of piperidine may be bonded with, for example, a hydrogen group or a substituent as described later. The linker region (Lx) may be attached to the region (X) and the region (Xc) via, for example, any group of the piperidine skeleton, preferably any one of the 6-membered rings. It is carbon atoms and nitrogen, more preferably carbon (C-2) and nitrogen at the 2-position of the 6-membered ring.
 前記リンカー領域は、例えば、前記非ヌクレオチド構造からなる非ヌクレオチド残基のみを含んでもよいし、前記非ヌクレオチド構造からなる非ヌクレオチド残基と、ヌクレオチド残基とを含んでもよい。 The linker region may contain, for example, only a non-nucleotide residue having the non-nucleotide structure, or may contain a non-nucleotide residue having the non-nucleotide structure and a nucleotide residue.
 前記リンカー領域は、例えば、下記式(I)で表わされる。 The linker region is represented by, for example, the following formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記式(I)中、例えば、
X1およびX2は、それぞれ独立して、H2、O、SまたはNHであり;
Y1およびY2は、それぞれ独立して、単結合、CH2、NH、OまたはSであり;
R3は、環A上のC-3、C-4、C-5またはC-6に結合する水素原子または置換基であり、
L1は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORa、NH2、NHRa、NRaRb、SH、もしくはSRaで置換されても置換されていなくてもよく、または、
L1は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ただし、Y1が、NH、OまたはSの場合、Y1に結合するL1の原子は炭素であり、OR1に結合するL1の原子は炭素であり、酸素原子同士は隣接せず;
L2は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORc、NH2、NHRc、NRcRd、SHもしくはSRcで置換されても置換れていなくてもよく、または、
L2は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ただし、Y2が、NH、OまたはSの場合、Y2に結合するL2の原子は炭素であり、OR2に結合するL2の原子は炭素であり、酸素原子同士は隣接せず;
Ra、Rb、RcおよびRdは、それぞれ独立して、置換基または保護基であり;
lは、1または2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、前記環A上のC-2以外の1個の炭素原子が、窒素、酸素、硫黄で置換されてもよく、前記環A内に、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよく、
前記領域(Xc)および前記領域(X)は、それぞれ、-OR1-または-OR2-を介して、前記リンカー領域(Lx)に結合し、
ここで、R1およびR2は、存在しても存在しなくてもよく、存在する場合、R1およびR2は、それぞれ独立して、ヌクレオチド残基または前記構造(I)である。
In the above formula (I), for example,
X 1 and X 2 are independently H 2 , O, S or NH;
Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S;
R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A.
L 1 is an alkylene chain consisting of n atoms, where the hydrogen atom on the alkylene carbon atom is replaced with OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a. It may or may not have been replaced, or
L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with oxygen atoms.
However, if Y 1 is NH, O or S, the atom of L 1 bonded to Y 1 is carbon, the atom of L 1 bonded to OR 1 is carbon, and the oxygen atoms are not adjacent to each other;
L 2 is an alkylene chain consisting of m atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c. It does not have to be replaced, or
L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
However, if Y 2 is NH, O or S, the atom of L 2 bonded to Y 2 is carbon, the atom of L 2 bonded to OR 2 is carbon, and the oxygen atoms are not adjacent to each other;
R a , R b , R c and R d are independent substituents or protecting groups;
l is 1 or 2;
m is an integer in the range 0-30;
n is an integer in the range 0-30;
In ring A, one carbon atom other than C-2 on the ring A may be substituted with nitrogen, oxygen, or sulfur, and a carbon-carbon double bond or carbon-nitrogen bond may be formed in the ring A. May include double bonds,
The region (Xc) and the region (X) are bound to the linker region (Lx) via -OR 1- or -OR 2-, respectively.
Here, R 1 and R 2 may or may not be present, and if present, R 1 and R 2 are independently nucleotide residues or the structure (I), respectively.
 前記式(I)中、X1およびX2は、例えば、それぞれ独立して、H2、O、SまたはNHである。前記式(I)中において、X1がH2であるとは、X1が、X1の結合する炭素原子とともに、CH2(メチレン基)を形成することを意味する。X2についても同様である。 In formula (I), X 1 and X 2 are, for example, H 2 , O, S or NH, respectively, independently of each other. In the above formula (I), when X 1 is H 2 , it means that X 1 forms CH 2 (methylene group) together with the carbon atom to which X 1 is bonded. The same is true for X 2.
 前記式(I)中、Y1およびY2は、それぞれ独立して、単結合、CH2、NH、OまたはSである。 In formula (I), Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S, respectively.
 前記式(I)中、環Aにおいて、lは、1または2である。l=1の場合、環Aは、5員環であり、例えば、前記ピロリジン骨格である。前記ピロリジン骨格は、例えば、プロリン骨格、プロリノール骨格等があげられ、これらの二価の構造が例示できる。l=2の場合、環Aは、6員環であり、例えば、前記ピペリジン骨格である。環Aは、環A上のC-2以外の1個の炭素原子が、窒素、酸素または硫黄で置換されてもよい。また、環Aは、環A内に、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよい。環Aは、例えば、L型およびD型のいずれでもよい。 In the above formula (I), in ring A, l is 1 or 2. When l = 1, ring A is a 5-membered ring, eg, the pyrrolidine skeleton. Examples of the pyrrolidine skeleton include a proline skeleton, a prolinol skeleton, and the like, and these divalent structures can be exemplified. When l = 2, ring A is a 6-membered ring, eg, the piperidine skeleton. In ring A, one carbon atom other than C-2 on ring A may be replaced with nitrogen, oxygen or sulfur. Further, the ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond in the ring A. Ring A may be, for example, either L-type or D-type.
 前記式(I)中、R3は、環A上のC-3、C-4、C-5またはC-6に結合する水素原子または置換基である。R3が前記置換基の場合、置換基R3は、1でも複数でも、存在しなくてもよく、複数の場合、同一でも異なってもよい。 In formula (I), R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A. When R 3 is the substituent, the substituent R 3 may be 1, a plurality, or not present, and when there are a plurality of substituents, the same or different groups may be used.
 置換基R3は、例えば、ハロゲン、OH、OR4、NH2、NHR4、NR4R5、SH、SR4またはオキソ基(=O)等である。 Substituent R 3 is, for example, halogen, OH, OR 4 , NH 2 , NHR 4 , NR 4 R 5 , SH, SR 4 or oxo group (= O).
 R4およびR5は、例えば、それぞれ独立して、置換基または保護基であり、同一でも異なってもよい。前記置換基は、例えば、ハロゲン、アルキル、アルケニル、アルキニル、ハロアルキル、アリール、ヘテロアリール、アリールアルキル、シクロアルキル、シクロアルケニル、シクロアルキルアルキル、シクリルアルキル、ヒドロキシアルキル、アルコキシアルキル、アミノアルキル、ヘテロシクリルアルケニル、ヘテロシクリルアルキル、ヘテロアリールアルキル、シリル、シリルオキシアルキル等があげられる。以下、同様である。置換基R3は、これらの列挙する置換基でもよい。 R 4 and R 5 are, for example, independent substituents or protecting groups, which may be the same or different. The substituents include, for example, halogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cyclylalkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, heterocyclylalkenyl. , Heterocyclylalkyl, heteroarylalkyl, silyl, silyloxyalkyl and the like. The same applies hereinafter. Substituent R 3 may be one of these listed substituents.
 前記保護基は、例えば、反応性の高い官能基を不活性に変換する官能基であり、公知の保護基等があげられる。前記保護基は、例えば、文献(J. F. W. McOmie, 「Protecting Groups in Organic Chemistry」 Prenum Press, London and New York,1973)の記載を援用できる。前記保護基は、特に制限されず、例えば、tert-ブチルジメチルシリル基(TBDMS)、ビス(2-アセトキシエチルオキシ)メチル基(ACE)、トリイソプロピルシリルオキシメチル基(TOM)、1-(2-シアノエトキシ)エチル基(CEE)、2-シアノエトキシメチル基(CEM)およびトリルスルフォニルエトキシメチル基(TEM)、ジメトキシトリチル基(DMTr)等があげられる。R3がOR4の場合、前記保護基は、特に制限されず、例えば、TBDMS基、ACE基、TOM基、CEE基、CEM基およびTEM基等があげられる。以下、同様である。 The protecting group is, for example, a functional group that inactivates a highly reactive functional group, and examples thereof include known protecting groups. For the protecting group, for example, the description in the literature (JF W. McOmie, "Protecting Groups in Organic Chemistry" Prenum Press, London and New York, 1973) can be incorporated. The protecting group is not particularly limited, and is, for example, tert-butyldimethylsilyl group (TBDMS), bis (2-acetoxyethyloxy) methyl group (ACE), triisopropylsilyloxymethyl group (TOM), 1- (2). -Cyanoethoxy) ethyl group (CEE), 2-cyanoethoxymethyl group (CEM) and trilsulfonylethoxymethyl group (TEM), dimethoxytrityl group (DMTr) and the like can be mentioned. When R 3 is OR 4 , the protecting group is not particularly limited, and examples thereof include a TBDMS group, an ACE group, a TOM group, a CEE group, a CEM group, and a TEM group. The same applies hereinafter.
 前記式(I)中、L1は、n個の原子からなるアルキレン鎖である。前記アルキレン炭素原子上の水素原子は、例えば、OH、ORa、NH2、NHRa、NRaRb、SH、もしくはSRaで置換されてもよいし、置換されていなくてもよい。または、L1は、前記アルキレン鎖の1つ以上の炭素原子が酸素原子で置換されたポリエーテル鎖でもよい。前記ポリエーテル鎖は、例えば、ポリエチレングリコールである。なお、Y1が、NH、OまたはSの場合、Y1に結合するL1の原子は炭素であり、OR1に結合するL1の原子は炭素であり、酸素原子同士は隣接しない。つまり、例えば、Y1がOの場合、その酸素原子とL1の酸素原子は隣接せず、OR1の酸素原子とL1の酸素原子は隣接しない。 In the above formula (I), L 1 is an alkylene chain consisting of n atoms. The hydrogen atom on the alkylene carbon atom may or may not be substituted with , for example, OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a. Alternatively, L 1 may be a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms. The polyether chain is, for example, polyethylene glycol. When Y 1 is NH, O or S, the atom of L 1 bonded to Y 1 is carbon, the atom of L 1 bonded to OR 1 is carbon, and the oxygen atoms are not adjacent to each other. That is, for example, when Y 1 is O, the oxygen atom of L 1 and the oxygen atom of L 1 are not adjacent to each other, and the oxygen atom of OR 1 and the oxygen atom of L 1 are not adjacent to each other.
 前記式(I)中、L2は、m個の原子からなるアルキレン鎖である。前記アルキレン炭素原子上の水素原子は、例えば、OH、ORc、NH2、NHRc、NRcRd、SHもしくはSRcで置換されてもよいし、置換されていなくてもよい。または、L2は、前記アルキレン鎖の1つ以上の炭素原子が酸素原子で置換されたポリエーテル鎖でもよい。なお、Y2が、NH、OまたはSの場合、Y2に結合するL2の原子は炭素であり、OR2に結合するL2の原子は炭素であり、酸素原子同士は隣接しない。つまり、例えば、Y2がOの場合、その酸素原子とL2の酸素原子は隣接せず、OR2の酸素原子とL2の酸素原子は隣接しない。 In the above formula (I), L 2 is an alkylene chain consisting of m atoms. The hydrogen atom on the alkylene carbon atom may or may not be substituted with , for example, OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c. Alternatively, L 2 may be a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms. When Y 2 is NH, O or S, the atom of L 2 bonded to Y 2 is carbon, the atom of L 2 bonded to OR 2 is carbon, and the oxygen atoms are not adjacent to each other. That is, for example, when Y 2 is O, the oxygen atom of L 2 and the oxygen atom of L 2 are not adjacent to each other, and the oxygen atom of OR 2 and the oxygen atom of L 2 are not adjacent to each other.
 L1のnおよびL2のmは、特に制限されず、それぞれ、下限は、例えば、0であり、上限も、特に制限されない。nおよびmは、例えば、前記リンカー領域(Lx)の所望の長さに応じて、適宜設定できる。nおよびmは、例えば、製造コストおよび収率等の点から、それぞれ、0~30が好ましく、より好ましくは0~20であり、さらに好ましくは0~15である。nとmは、同じでもよいし(n=m)、異なってもよい。n+mは、例えば、0~30であり、好ましくは0~20であり、より好ましくは0~15である。 N of L 1 and m of L 2 are not particularly limited, and the lower limit is, for example, 0, and the upper limit is not particularly limited. n and m can be appropriately set, for example, according to the desired length of the linker region (Lx). n and m are preferably 0 to 30, more preferably 0 to 20, and even more preferably 0 to 15, respectively, from the viewpoints of manufacturing cost, yield, and the like. n and m may be the same (n = m) or different. n + m is, for example, 0 to 30, preferably 0 to 20, and more preferably 0 to 15.
 Ra、Rb、RcおよびRdは、例えば、それぞれ独立して、置換基または保護基である。前記置換基および前記保護基は、例えば、前述と同様である。 R a , R b , R c and R d are, for example, independent substituents or protecting groups, respectively. The substituent and the protecting group are, for example, the same as described above.
 前記式(I)において、水素原子は、例えば、それぞれ独立して、Cl、Br、FおよびI等のハロゲンに置換されてもよい。 In the above formula (I), the hydrogen atom may be independently replaced with a halogen such as Cl, Br, F and I, for example.
 前記領域(Xc)および前記領域(X)は、前記リンカー領域(Lx)に、それぞれ-OR1-または-OR2-を介して結合する。ここで、R1およびR2は、存在しても存在しなくてもよい。R1およびR2が存在する場合、R1およびR2は、それぞれ独立して、ヌクレオチド残基または前記式(I)の構造である。R1および/またはR2が前記ヌクレオチド残基の場合、前記リンカー領域(Lx)は、例えば、ヌクレオチド残基R1および/またはR2を除く前記式(I)の構造からなる前記非ヌクレオチド残基と、前記ヌクレオチド残基とから形成される。R1および/またはR2が前記式(I)の構造の場合、前記リンカー領域(Lx)は、例えば、前記式(I)の構造からなる前記非ヌクレオチド残基が、2つ以上連結された構造となる。前記式(I)の構造は、例えば、1個、2個、3個または4個含んでもよい。このように、前記構造を複数含む場合、前記(I)の構造は、直接連結されていることが好ましい。他方、R1およびR2が存在しない場合、前記リンカー領域(Lx)前記式(I)の構造からなる前記非ヌクレオチド残基のみから形成される。 The region (Xc) and the region (X) bind to the linker region (Lx) via -OR 1- or -OR 2-, respectively. Here, R 1 and R 2 may or may not be present. When R 1 and R 2 are present, R 1 and R 2 are independently nucleotide residues or structures of the formula (I) above. When R 1 and / or R 2 is the nucleotide residue, the linker region (Lx) is, for example, the non-nucleotide residue having the structure of the formula (I) excluding the nucleotide residues R 1 and / or R 2. It is formed from a group and the nucleotide residue. When R 1 and / or R 2 has the structure of the formula (I), the linker region (Lx) is, for example, concatenated with two or more of the non-nucleotide residues having the structure of the formula (I). It becomes a structure. The structure of the formula (I) may include, for example, one, two, three or four. As described above, when a plurality of the structures are included, it is preferable that the structures (I) are directly connected. On the other hand, in the absence of R 1 and R 2 , the linker region (Lx) is formed only from the non-nucleotide residue having the structure of the formula (I).
 前記領域(Xc)および前記領域(X)と、前記-OR1-および-OR2-との結合の組合せは、特に制限されず、例えば、以下のいずれかの条件があげられる。
条件(1)
 前記領域(Xc)は、-OR2-を介して、前記領域(X)は、-OR1-を介して、前記式(I)の構造と結合する。
条件(2)
 前記領域(Xc)は、-OR1-を介して、前記領域(X)は、-OR2-を介して、前記式(I)の構造と結合する。
The combination of the combination of the region (Xc) and the region (X) and the -OR 1- and -OR 2- is not particularly limited, and for example, any of the following conditions can be mentioned.
Condition 1)
The region (Xc) is coupled to the structure of formula (I) via -OR 2- and the region (X) via -OR 1-.
Condition (2)
The region (Xc) is coupled to the structure of formula (I) via -OR 1 -and the region (X) via -OR 2-.
 前記式(I)の構造は、例えば、下記式(I-1)~式(I-9)が例示でき、下記式において、nおよびmは、前記式(I)と同じである。下記式において、qは、0~10の整数である。 The structure of the above formula (I) can be exemplified by the following formulas (I-1) to (I-9), and in the following formulas, n and m are the same as the above formula (I). In the following equation, q is an integer from 0 to 10.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記式(I-1)~(I-9)において、n、mおよびqは、特に制限されず、前述のとおりである。具体例として、前記式(I-1)において、n=8、前記(I-2)において、n=3、前記式(I-3)において、n=4または8、前記(I-4)において、n=7または8、前記式(I-5)において、n=3およびm=4、前記(I-6)において、n=8およびm=4、n=5およびm=4、前記式(I-7)において、n=8およびm=4、前記(I-8)において、n=5およびm=4、n=8およびm=4、前記式(I-9)において、q=1およびm=4があげられる。前記式(I-4)の一例(n=8)を、下記式(I-4a)に、前記式(I-6)の一例(n=5、m=4)を、下記式(I-6a)に示す。 In the above formulas (I-1) to (I-9), n, m and q are not particularly limited and are as described above. As specific examples, n = 8 in the formula (I-1), n = 3 in the formula (I-2), n = 4 or 8 in the formula (I-3), the above (I-4). In the above equation (I-5), n = 3 and m = 4, in the above (I-6), n = 8 and m = 4, n = 5 and m = 4, the above. In equation (I-7), n = 8 and m = 4, in (I-8), n = 5 and m = 4, n = 8 and m = 4, in equation (I-9), q = 1 and m = 4. An example (n = 8) of the above formula (I-4) is applied to the following formula (I-4a), and an example (n = 5, m = 4) of the above formula (I-6) is given to the following formula (I-). Shown in 6a).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 特に好ましい実施態様において、本発明の核酸分子は、以下のいずれかの構造式を有する。
(配列番号19)
 5’- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号20)
 5’- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3’
(配列番号21)
 5’- GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3’
(配列番号22)
 5’- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3’
(配列番号23)
 5’- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3’
(配列番号24)
 5’- GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3’
(配列番号25)
 5’- CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3’
(配列番号26)
 5’- UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3’
(配列番号27)
 5’- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3’
(配列番号28)
 5’- CGUCUGUGCCUUCUCAUCUUC-Lx-GAAGAUGAGAAGGCACAGACGGG -3’
(配列番号29)
 5’- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号30)
 5’- CGUCUGUGCCUUCUCAUCUUCA-Lx-UGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号31)
 5’- CGUCUGUGCCUUCUCAUCUUCG-Lx-CGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号32)
 5’- CGUCUGUGCCUUCUCAUCUUCC-Lx-GGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号33)
 5’- CGUCUGUGCCUUCUCAUCUUCUU-Lx-AAGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号34)
 5’- CGUCUGUGCCUUCUCAUCUUCAA-Lx-UUGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号35)
 5’- CGUCUGUGCCUUCUCAUCUUCUA-Lx-UAGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号36)
 5’- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号37)
 5’- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号38)
 5’- CGUCUGUGCCUUCUCAUCUUCGG-Lx-CCGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号39)
 5’- CGUCUGUGCCUUCUCAUCUUCCG-Lx-CGGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号40)
 5’- CGUCUGUGCCUUCUCAUCUUCGC-Lx-GCGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号41)
 5’- CGUCUGUGCCUUCUCAUCUUCUC-Lx-GAGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号42)
 5’- CGUCUGUGCCUUCUCAUCUUCUG-Lx-CAGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号43)
 5’- CGUCUGUGCCUUCUCAUCUUCAC-Lx-GUGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号44)
 5’- CGUCUGUGCCUUCUCAUCUUCAG-Lx-CUGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号45)
 5’- CGUCUGUGCCUUCUCAUCUUCCU-Lx-AGGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号46)
 5’- CGUCUGUGCCUUCUCAUCUUCCA-Lx-UGGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号47)
 5’- CGUCUGUGCCUUCUCAUCUUCGU-Lx-ACGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号48)
 5’- CGUCUGUGCCUUCUCAUCUUCGA-Lx-UCGAAGAUGAGAAGGCACAGACGGG -3’
(配列番号49)
 5’- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号50)
 5’- CGUCUGUGCCUUCUCAUCUGCUU-Lx-AAGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号51)
 5’- CGUCUGUGCCUUCUCAUCUGCAA-Lx-UUGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号52)
 5’- CGUCUGUGCCUUCUCAUCUGCUA-Lx-UAGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号53)
 5’- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号54)
 5’- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号55)
 5’- CGUCUGUGCCUUCUCAUCUGCAG-Lx-CUGCAGAUGAGAAGGCACAGACGGG -3’
(配列番号56)
 5’- CGUCUGUGCCUUCUCAUCUGCCG-Lx-CGGCAGAUGAGAAGGCACAGACGGG -3’
(式中、Lxは前記いずれかのリンカー領域を表す。好ましくは、Lxは上記式(I)で表わされる構造を有し、より好ましくは、上記式(I-1)~(I-9)のいずれかで表わされる構造を有し、さらに好ましくは、上記式(I-4a)又は(I-6a)で表わされる構造を有し、特に好ましくは、上記式(I-6a)で表わされる構造を有する。)
 中でも、配列番号19~27、29、36、49、53、54で表わされるヌクレオチド配列からなる一本鎖核酸分子が特に好ましく、配列番号19、27、29、36、49、53、54で表わされるヌクレオチド配列からなる一本鎖核酸分子がいっそう特に好ましく、配列番号29、36、49で表わされるヌクレオチド配列からなる一本鎖核酸分子がよりいっそう特に好ましく、配列番号36で表わされるヌクレオチド配列からなる一本鎖核酸分子が最も好ましい。
In a particularly preferred embodiment, the nucleic acid molecule of the present invention has any of the following structural formulas:
(SEQ ID NO: 19)
5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 20)
5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3'
(SEQ ID NO: 21)
5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3'
(SEQ ID NO: 22)
5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3'
(SEQ ID NO: 23)
5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3'
(SEQ ID NO: 24)
5'-GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3'
(SEQ ID NO: 25)
5'-CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3'
(SEQ ID NO: 26)
5'-UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3'
(SEQ ID NO: 27)
5'- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3'
(SEQ ID NO: 28)
5'- CGUCUGUGCCUUCUCAUCUUC-Lx-GAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 29)
5'- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 30)
5'- CGUCUGUGCCUUCUCAUCUUCA-Lx-UGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 31)
5'- CGUCUGUGCCUUCUCAUCUUCG-Lx-CGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 32)
5'- CGUCUGUGCCUUCUCAUCUUCC-Lx-GGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 33)
5'- CGUCUGUGCCUUCUCAUCUUCUU-Lx-AAGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 34)
5'- CGUCUGUGCCUUCUCAUCUUCAA-Lx-UUGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 35)
5'- CGUCUGUGCCUUCUCAUCUUCUA-Lx-UAGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 36)
5'- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 37)
5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 38)
5'- CGUCUGUGCCUUCUCAUCUUCGG-Lx-CCGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 39)
5'- CGUCUGUGCCUUCUCAUCUUCCG-Lx-CGGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 40)
5'- CGUCUGUGCCUUCUCAUCUUCGC-Lx-GCGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 41)
5'- CGUCUGUGCCUUCUCAUCUUCUC-Lx-GAGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 42)
5'- CGUCUGUGCCUUCUCAUCUUCUG-Lx-CAGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 43)
5'- CGUCUGUGCCUUCUCAUCUUCAC-Lx-GUGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 44)
5'- CGUCUGUGCCUUCUCAUCUUCAG-Lx-CUGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 45)
5'- CGUCUGUGCCUUCUCAUCUUCCU-Lx-AGGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 46)
5'- CGUCUGUGCCUUCUCAUCUUCCA-Lx-UGGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 47)
5'- CGUCUGUGCCUUCUCAUCUUCGU-Lx-ACGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 48)
5'- CGUCUGUGCCUUCUCAUCUUCGA-Lx-UCGAAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 49)
5'- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 50)
5'- CGUCUGUGCCUUCUCAUCUGCUU-Lx-AAGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 51)
5'- CGUCUGUGCCUUCUCAUCUGCAA-Lx-UUGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 52)
5'- CGUCUGUGCCUUCUCAUCUGCUA-Lx-UAGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 53)
5'- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 54)
5'- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 55)
5'- CGUCUGUGCCUUCUCAUCUGCAG-Lx-CUGCAGAUGAGAAGGCACAGACGGG -3'
(SEQ ID NO: 56)
5'- CGUCUGUGCCUUCUCAUCUGCCG-Lx-CGGCAGAUGAGAAGGCACAGACGGG -3'
(In the formula, Lx represents any of the above linker regions. Preferably, Lx has a structure represented by the above formula (I), and more preferably, the above formulas (I-1) to (I-9). It has a structure represented by any of the above formulas, more preferably a structure represented by the above formula (I-4a) or (I-6a), and particularly preferably a structure represented by the above formula (I-6a). Has a structure.)
Among them, single-stranded nucleic acid molecules consisting of the nucleotide sequences represented by SEQ ID NOs: 19 to 27, 29, 36, 49, 53 and 54 are particularly preferable, and are represented by SEQ ID NOs: 19, 27, 29, 36, 49, 53 and 54. The single-stranded nucleic acid molecule consisting of the nucleotide sequences represented by SEQ ID NOs: 29 is even more preferable, and the single-stranded nucleic acid molecule consisting of the nucleotide sequences represented by SEQ ID NOs: 29, 36 and 49 is even more preferable, and the single-stranded nucleic acid molecule consisting of the nucleotide sequence represented by SEQ ID NO: 36 is composed. Single-stranded nucleic acid molecules are most preferred.
 本発明の核酸分子の構成単位は、特に制限されず、例えば、ヌクレオチド残基があげられる。前記ヌクレオチド残基は、例えば、リボヌクレオチド残基およびデオキシリボヌクレオチド残基があげられる。前記ヌクレオチド残基は、例えば、修飾されていない非修飾ヌクレオチド残基および修飾された修飾ヌクレオチド残基があげられる。本発明の核酸分子は、例えば、前記修飾ヌクレオチド残基を含むことによって、ヌクレアーゼ耐性を向上し、安定性を向上可能である。また、本発明の核酸分子は、例えば、前記ヌクレオチド残基の他に、さらに、非ヌクレオチド残基を含んでもよい。 The structural unit of the nucleic acid molecule of the present invention is not particularly limited, and examples thereof include nucleotide residues. Examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue. Examples of the nucleotide residue include an unmodified nucleotide residue and a modified modified nucleotide residue. The nucleic acid molecule of the present invention can improve nuclease resistance and stability by containing, for example, the modified nucleotide residue. Further, the nucleic acid molecule of the present invention may further contain a non-nucleotide residue in addition to the nucleotide residue, for example.
 本発明の核酸分子において、前記リンカー以外の領域の構成単位は、それぞれ、前記ヌクレオチド残基が好ましい。前記各領域は、例えば、下記(1)~(3)の残基で構成される。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基および修飾ヌクレオチド残基
In the nucleic acid molecule of the present invention, the nucleotide residue is preferable as the structural unit of the region other than the linker. Each of the regions is composed of, for example, the following residues (1) to (3).
(1) Unmodified Nucleotide Residues (2) Modified Nucleotide Residues (3) Unmodified Nucleotide Residues and Modified Nucleotide Residues
 本発明の核酸分子において、前記リンカー領域の構成単位は、特に制限されず、例えば、前記ヌクレオチド残基および前記非ヌクレオチド残基があげられる。前記リンカー領域は、例えば、前記ヌクレオチド残基のみから構成されてもよいし、前記非ヌクレオチド残基のみから構成されてもよいし、前記ヌクレオチド残基と前記非ヌクレオチド残基から構成されてもよい。前記リンカー領域は、例えば、下記(1)~(7)の残基で構成される。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基および修飾ヌクレオチド残基
(4)非ヌクレオチド残基
(5)非ヌクレオチド残基および非修飾ヌクレオチド残基
(6)非ヌクレオチド残基および修飾ヌクレオチド残基
(7)非ヌクレオチド残基、非修飾ヌクレオチド残基および修飾ヌクレオチド残基
In the nucleic acid molecule of the present invention, the structural unit of the linker region is not particularly limited, and examples thereof include the nucleotide residue and the non-nucleotide residue. The linker region may be composed of, for example, only the nucleotide residue, may be composed of only the non-nucleotide residue, or may be composed of the nucleotide residue and the non-nucleotide residue. .. The linker region is composed of, for example, the following residues (1) to (7).
(1) Unmodified nucleotide residues (2) Modified nucleotide residues (3) Unmodified nucleotide residues and modified nucleotide residues (4) Non-nucleotide residues (5) Unmodified nucleotide residues and unmodified nucleotide residues (6) ) Non-nucleotide residues and modified nucleotide residues (7) Non-nucleotide residues, unmodified nucleotide residues and modified nucleotide residues
 本発明の核酸分子は、前記ヌクレオチド残基のみから構成される分子、前記ヌクレオチド残基の他に前記非ヌクレオチド残基を含む分子等があげられる。本発明の核酸分子において、前記ヌクレオチド残基は、前述のように、例えば、前記非修飾ヌクレオチド残基のみでもよいし、前記修飾ヌクレオチド残基のみでもよいし、前記非修飾ヌクレオチド残基および前記修飾ヌクレオチド残基の両方でもよい。前記核酸分子が、前記非修飾ヌクレオチド残基と前記修飾ヌクレオチド残基を含む場合、前記修飾ヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~5個、好ましくは1~4個、より好ましくは1~3個、最も好ましくは1または2個である。本発明の核酸分子が、前記非ヌクレオチド残基を含む場合、前記非ヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~8個、1~6個、1~4個、1、2または3個である。 Examples of the nucleic acid molecule of the present invention include a molecule composed of only the nucleotide residue, a molecule containing the non-nucleotide residue in addition to the nucleotide residue, and the like. In the nucleic acid molecule of the present invention, as described above, the nucleotide residue may be, for example, only the unmodified nucleotide residue, only the modified nucleotide residue, or the unmodified nucleotide residue and the modified nucleotide residue. It may be both nucleotide residues. When the nucleic acid molecule contains the unmodified nucleotide residue and the modified nucleotide residue, the number of the modified nucleotide residues is not particularly limited, and is, for example, "1 or several", specifically. For example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2. When the nucleic acid molecule of the present invention contains the non-nucleotide residues, the number of the non-nucleotide residues is not particularly limited and is, for example, "1 or several", specifically, for example, 1 to 1 to several. 8 pieces, 1 to 6 pieces, 1 to 4 pieces, 1, 2 or 3 pieces.
 前記核酸分子が、例えば、前記非修飾リボヌクレオチド残基の他に前記修飾リボヌクレオチド残基を含む場合、前記修飾リボヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~5個、好ましくは1~4個、より好ましくは1~3個、最も好ましくは1または2個である。前記非修飾リボヌクレオチド残基に対する前記修飾リボヌクレオチド残基は、例えば、リボース残基がデオキシリボース残基に置換された前記デオキシリボヌクレオチド残基でもよい。前記核酸分子が、例えば、前記非修飾リボヌクレオチド残基の他に前記デオキシリボヌクレオチド残基を含む場合、前記デオキシリボヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~5個、好ましくは1~4個、より好ましくは1~3個、最も好ましくは1または2個である。 When the nucleic acid molecule contains, for example, the modified ribonucleotide residue in addition to the unmodified ribonucleotide residue, the number of the modified ribonucleotide residues is not particularly limited, and is, for example, "1 or several". Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2. The modified ribonucleotide residue relative to the unmodified ribonucleotide residue may be, for example, the deoxyribonucleotide residue in which the ribose residue is replaced with a deoxyribose residue. When the nucleic acid molecule contains, for example, the deoxyribonucleotide residue in addition to the unmodified ribonucleotide residue, the number of the deoxyribonucleotide residues is not particularly limited, and is, for example, "1 or several". Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
 本発明の核酸分子は、例えば、標識物質を含み、前記標識物質で標識化されてもよい。前記標識物質は、特に制限されず、例えば、蛍光物質、色素、同位体等があげられる。前記標識物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素等の蛍光団があげられ、前記色素は、例えば、Alexa488等のAlexa色素等があげられる。前記同位体は、例えば、安定同位体および放射性同位体があげられ、好ましくは安定同位体である。前記安定同位体は、例えば、被ばくの危険性が少なく、専用の施設も不要であることから取り扱い性に優れ、また、コストも低減できる。また、前記安定同位体は、例えば、標識した化合物の物性変化がなく、トレーサーとしての性質にも優れる。前記安定同位体は、特に制限されず、例えば、2H、13C、15N、17O、18O、33S、34Sおよび36Sがあげられる。 The nucleic acid molecule of the present invention may contain, for example, a labeling substance and may be labeled with the labeling substance. The labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, and isotopes. Examples of the labeling substance include fluorescent groups such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye, and examples of the dye include Alexa dye such as Alexa 488. Examples of the isotope include a stable isotope and a radioactive isotope, and a stable isotope is preferable. For example, the stable isotope has a low risk of exposure and does not require a dedicated facility, so that it is easy to handle and the cost can be reduced. Further, the stable isotope does not change the physical properties of the labeled compound, and is excellent in properties as a tracer. The stable isotope is not particularly limited, and examples thereof include 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S and 36 S.
2.一本鎖核酸分子を構成するヌクレオチド残基
 前記ヌクレオチド残基は、例えば、構成要素として、糖、塩基およびリン酸を含む。前記ヌクレオチド残基は、前述のように、例えば、リボヌクレオチド残基およびデオキシリボヌクレオチド残基があげられる。前記リボヌクレオチド残基は、例えば、糖としてリボース残基を有し、塩基として、アデニン(A)、グアニン(G)、シトシン(C)およびウラシル(U)を有し、前記デオキシリボース残基は、例えば、糖としてデオキシリボース残基を有し、塩基として、アデニン(A)、グアニン(G)、シトシン(C)およびチミン(T)を有する。
2. Nucleotide residues constituting a single-stranded nucleic acid molecule The nucleotide residues include, for example, sugars, bases and phosphoric acids as components. Examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue as described above. The ribonucleotide residue has, for example, a ribose residue as a sugar, adenine (A), guanine (G), cytosine (C) and uracil (U) as a base, and the deoxyribose residue has. For example, it has a deoxyribose residue as a sugar and adenine (A), guanine (G), cytosine (C) and timine (T) as bases.
 前記ヌクレオチド残基は、未修飾ヌクレオチド残基および修飾ヌクレオチド残基があげられる。前記未修飾ヌクレオチド残基は、前記各構成要素が、例えば、天然に存在するものと同一または実質的に同一であり、好ましくは、人体において天然に存在するものと同一または実質的に同一である。 Examples of the nucleotide residue include unmodified nucleotide residues and modified nucleotide residues. The unmodified nucleotide residue is such that each of the components is, for example, the same or substantially the same as naturally occurring, preferably the same or substantially the same as naturally occurring in the human body. ..
 前記修飾ヌクレオチド残基は、例えば、前記未修飾ヌクレオチド残基を修飾したヌクレオチド残基である。前記修飾ヌクレオチド残基は、例えば、前記未修飾ヌクレオチド残基の構成要素のいずれが修飾されてもよい。本発明において、「修飾」は、例えば、前記構成要素の置換、付加および/または欠失、前記構成要素における原子および/または官能基の置換、付加および/または欠失であり、「改変」ということができる。前記修飾ヌクレオチド残基は、例えば、天然に存在するヌクレオチド残基、人工的に修飾したヌクレオチド残基等があげられる。前記天然由来の修飾ヌクレオチド残基は、例えば、リンバックら(Limbach et al.、1994、Summary:the modified nucleosides of RNA、Nucleic Acids Res.22:2183~2196)を参照できる。また、前記修飾ヌクレオチド残基は、例えば、前記ヌクレオチドの代替物の残基でもよい。 The modified nucleotide residue is, for example, a nucleotide residue obtained by modifying the unmodified nucleotide residue. The modified nucleotide residue may be modified, for example, by any of the components of the unmodified nucleotide residue. In the present invention, "modification" is, for example, substitution, addition and / or deletion of the component, substitution, addition and / or deletion of an atom and / or functional group in the component, and is referred to as "modification". be able to. Examples of the modified nucleotide residue include naturally occurring nucleotide residues and artificially modified nucleotide residues. For the naturally occurring modified nucleotide residue, for example, Limbach et al. (1994, Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183 to 2196) can be referred to. Further, the modified nucleotide residue may be, for example, a residue of a substitute for the nucleotide.
 前記ヌクレオチド残基の修飾は、例えば、リボース-リン酸骨格(以下、リボリン酸骨格)の修飾があげられる。 Modification of the nucleotide residue includes, for example, modification of the ribose-phosphate skeleton (hereinafter, ribophosphate skeleton).
 前記リボリン酸骨格において、例えば、リボース残基を修飾できる。前記リボース残基は、例えば、2’位炭素を修飾でき、具体的には、例えば、2’位炭素に結合する水酸基を、水素またはフルオロ等のハロゲンに置換できる。前記2’位炭素の水酸基を水素に置換することで、リボース残基をデオキシリボースに置換できる。前記リボース残基は、例えば、立体異性体に置換でき、例えば、アラビノース残基に置換してもよい。 In the ribophosphate skeleton, for example, a ribose residue can be modified. The ribose residue can modify, for example, the 2'carbon, and specifically, for example, the hydroxyl group bonded to the 2'carbon can be replaced with a halogen such as hydrogen or fluoro. By substituting the hydroxyl group of the 2'carbon with hydrogen, the ribose residue can be replaced with deoxyribose. The ribose residue can be replaced with, for example, a stereoisomer, and may be replaced with, for example, an arabinose residue.
 前記リボリン酸骨格は、例えば、非リボース残基および/または非リン酸を有する非リボリン酸骨格に置換してもよい。前記非リボリン酸骨格は、例えば、前記リボリン酸骨格の非荷電体があげられる。前記非リボリン酸骨格に置換された、前記ヌクレオチドの代替物は、例えば、モルホリノ、シクロブチル、ピロリジン等があげられる。前記代替物は、この他に、例えば、人工核酸モノマー残基があげられる。具体例として、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acid)等があげられ、好ましくはPNAである。 The ribophosphate skeleton may be replaced with, for example, a non-ribophosphate skeleton having a non-ribose residue and / or a non-phosphate. Examples of the non-ribophosphate skeleton include uncharged bodies of the ribophosphate skeleton. Substitutes for the nucleotides substituted with the non-ribophosphate skeleton include, for example, morpholino, cyclobutyl, pyrrolidine and the like. Other examples of the alternative include artificial nucleic acid monomer residues. Specific examples include, for example, PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acid), and PNA is preferable.
 前記リボリン酸骨格において、例えば、リン酸基を修飾できる。前記リボリン酸骨格において、糖残基に最も隣接するリン酸基は、αリン酸基と呼ばれる。前記αリン酸基は、負に荷電し、その電荷は、糖残基に非結合の2つの酸素原子にわたって、均一に分布している。前記αリン酸基における4つの酸素原子のうち、ヌクレオチド残基間のホスホジエステル結合において、糖残基と非結合である2つの酸素原子は、以下、「非結合(non-linking)酸素」ともいう。他方、前記ヌクレオチド残基間のホスホジエステル結合において、糖残基と結合している2つの酸素原子は、以下、「結合(linking)酸素」という。前記αリン酸基は、例えば、非荷電となる修飾、または、前記非結合酸素における電荷分布が非対称型となる修飾を行うことが好ましい。 In the ribophosphate skeleton, for example, a phosphoric acid group can be modified. In the ribophosphate skeleton, the phosphate group closest to the sugar residue is called an α-phosphate group. The α-phosphate group is negatively charged, and the charge is uniformly distributed over two oxygen atoms unbonded to sugar residues. Of the four oxygen atoms in the α-phosphate group, the two oxygen atoms that are unbonded to the sugar residue in the phosphodiester bond between the nucleotide residues are hereinafter also referred to as “non-linking oxygen”. Say. On the other hand, in the phosphodiester bond between the nucleotide residues, the two oxygen atoms bonded to the sugar residue are hereinafter referred to as "linking oxygen". It is preferable that the α-phosphate group is modified so that it becomes uncharged or the charge distribution in the unbound oxygen becomes asymmetrical, for example.
 前記リン酸基は、例えば、前記非結合酸素を置換してもよい。前記酸素は、例えば、S(硫黄)、Se(セレン)、B(ホウ素)、C(炭素)、H(水素)、N(窒素)およびOR(Rは、アルキル基またはアリール基)のいずれかの原子で置換でき、好ましくは、Sで置換される。前記非結合酸素は、例えば、両方が置換されていることが好ましく、より好ましくは、両方がSで置換される。前記修飾リン酸基は、例えば、ホスホロチオエート、ホスホロジチオエート、ホスホロセレネート、ボラノホスフェート、ボラノホスフェートエステル、ホスホネート水素、ホスホロアミデート、アルキルまたはアリールホスホネート、およびホスホトリエステル等があげられ、中でも、前記2つの非結合酸素が両方ともSで置換されているホスホロジチオエートが好ましい。 The phosphoric acid group may replace, for example, the unbound oxygen. The oxygen is, for example, any one of S (sulfur), Se (sulfur), B (boron), C (carbon), H (hydrogen), N (nitrogen) and OR (R is an alkyl group or an aryl group). Can be replaced with an atom of, preferably with S. For the unbound oxygen, for example, both are preferably substituted, and more preferably both are substituted with S. Examples of the modified phosphate group include phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoramidate, alkyl or arylphosphonate, and phosphotriester. Of these, phosphorodithioates in which the two unbound oxygens are both substituted with S are preferred.
 前記リン酸基は、例えば、前記結合酸素を置換してもよい。前記酸素は、例えば、S(硫黄)、C(炭素)およびN(窒素)のいずれかの原子で置換でき、前記修飾リン酸基は、例えば、Nで置換した架橋ホスホロアミデート、Sで置換した架橋ホスホロチオエート、およびCで置換した架橋メチレンホスホネート等があげられる。前記結合酸素の置換は、例えば、本発明の核酸分子の5’末端ヌクレオチド残基および3’末端ヌクレオチド残基の少なくとも一方において行うことが好ましく、5'側の場合、Cによる置換が好ましく、3’側の場合、Nによる置換が好ましい。 The phosphoric acid group may replace, for example, the bound oxygen. The oxygen can be replaced with, for example, any atom of S (sulfur), C (carbon) and N (nitrogen), and the modified phosphate group can be, for example, with a crosslinked phosphoramidate, S substituted with N. Examples thereof include a substituted crosslinked phosphorothioate and a C-substituted crosslinked methylenephosphonate. The substitution of the bound oxygen is preferably carried out, for example, at at least one of the 5'-terminal nucleotide residue and the 3'-terminal nucleotide residue of the nucleic acid molecule of the present invention, and in the case of the 5'side, the substitution with C is preferable. In the case of the'side, substitution by N is preferable.
 前記リン酸基は、例えば、前記リン非含有のリンカーに置換してもよい。前記リンカーは、例えば、シロキサン、カーボネート、カルボキシメチル、カルバメート、アミド、チオエーテル、エチレンオキサイドリンカー、スルホネート、スルホンアミド、チオホルムアセタール、ホルムアセタール、オキシム、メチレンイミノ、メチレンメチルイミノ、メチレンヒドラゾ、メチレンジメチルヒドラゾ、およびメチレンオキシメチルイミノ等を含み、好ましくは、メチレンカルボニルアミノ基およびメチレンメチルイミノ基を含む。 The phosphoric acid group may be replaced with, for example, the phosphorus-free linker. The linkers include, for example, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioform acetal, form acetal, oxime, methylene imino, methylene methyl imino, methylene hydrazo, methylene dimethyl. It contains hydrazo, methyleneoxymethylimino and the like, and preferably contains a methylenecarbonylamino group and a methylenemethylimino group.
 本発明の核酸分子は、例えば、3’末端および5’末端の少なくとも一方のヌクレオチド残基が修飾されてもよい。前記修飾は、例えば、3’末端および5’末端のいずれか一方でもよいし、両方でもよい。前記修飾は、例えば、前述のとおりであり、好ましくは、末端のリン酸基に行うことが好ましい。前記リン酸基は、例えば、全体を修飾してもよいし、前記リン酸基における1つ以上の原子を修飾してもよい。前者の場合、例えば、リン酸基全体の置換でもよいし、欠失でもよい。 In the nucleic acid molecule of the present invention, for example, at least one nucleotide residue at the 3'end and the 5'end may be modified. The modification may be, for example, either the 3'end and the 5'end, or both. The modification is, for example, as described above, and is preferably performed on the terminal phosphate group. The phosphoric acid group may, for example, modify the whole, or may modify one or more atoms in the phosphoric acid group. In the former case, for example, the entire phosphate group may be substituted or deleted.
 前記末端のヌクレオチド残基の修飾は、例えば、他の分子の付加があげられる。前記他の分子は、例えば、前述のような標識物質、保護基等の機能性分子があげられる。前記保護基は、例えば、S(硫黄)、Si(ケイ素)、B(ホウ素)、エステル含有基等があげられる。前記標識物質等の機能性分子は、例えば、本発明の核酸分子の検出等に利用できる。 Modification of the terminal nucleotide residue includes, for example, addition of another molecule. Examples of the other molecule include functional molecules such as the above-mentioned labeling substance and protecting group. Examples of the protecting group include S (sulfur), Si (silicon), B (boron), and an ester-containing group. Functional molecules such as the labeling substance can be used, for example, for detecting the nucleic acid molecule of the present invention.
 前記他の分子は、例えば、前記ヌクレオチド残基のリン酸基に付加してもよいし、スペーサーを介して、前記リン酸基または前記糖残基に付加してもよい。前記スペーサーの末端原子は、例えば、前記リン酸基の前記結合酸素、または、糖残基のO、N、SもしくはCに、付加または置換できる。前記糖残基の結合部位は、例えば、3’位のCもしくは5’位のC、またはこれらに結合する原子が好ましい。前記スペーサーは、例えば、前記PNA等のヌクレオチド代替物の末端原子に、付加または置換することもできる。 The other molecule may be added to the phosphate group of the nucleotide residue, or may be added to the phosphate group or the sugar residue via a spacer, for example. The terminal atom of the spacer can be added or substituted, for example, to the bound oxygen of the phosphate group or O, N, S or C of a sugar residue. The binding site of the sugar residue is preferably, for example, C at the 3'position or C at the 5'position, or an atom that binds to these. The spacer can also be added or substituted, for example, to the terminal atom of a nucleotide substitute such as PNA.
 前記スペーサーは、特に制限されず、例えば、-(CH2)n-、-(CH2)nN-、-(CH2)nO-、-(CH2)nS-、O(CH2CH2O)nCH2CH2OH、無塩基糖、アミド、カルボキシ、アミン、オキシアミン、オキシイミン、チオエーテル、ジスルフィド、チオ尿素、スルホンアミド、およびモルホリノ等、ならびに、ビオチン試薬およびフルオレセイン試薬等を含んでもよい。前記式において、nは、正の整数であり、n=3または6が好ましい。 The spacer is not particularly limited, and is, for example,-(CH 2 ) n -,-(CH 2 ) n N-,-(CH 2 ) n O-,-(CH 2 ) n S-, O (CH 2). CH 2 O) n CH 2 CH 2 OH, non-basic sugar, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, morpholino, etc., as well as biotin and fluorescein reagents, etc. Good. In the above equation, n is a positive integer, preferably n = 3 or 6.
 前記末端に付加する分子は、これらの他に、例えば、色素、インターカレート剤(例えば、アクリジン)、架橋剤(例えば、ソラレン、マイトマイシンC)、ポルフィリン(TPPC4、テキサフィリン、サッフィリン)、多環式芳香族炭化水素(例えば、フェナジン、ジヒドロフェナジン)、人工エンドヌクレアーゼ(例えば、EDTA)、親油性担体(例えば、コレステロール、コール酸、アダマンタン酢酸、1-ピレン酪酸、ジヒドロテストステロン、1,3-ビス-O(ヘキサデシル)グリセロール、ゲラニルオキシヘキシル基、ヘキサデシルグリセロール、ボルネオール、メントール、1,3-プロパンジオール、ヘプタデシル基、パルミチン酸、ミリスチン酸、O3-(オレオイル)リトコール酸、O3-(オレオイル)コール酸、ジメトキシトリチル、またはフェノキサジン)およびペプチド複合体(例えば、アンテナペディアペプチド、Tatペプチド)、アルキル化剤、リン酸、アミノ、メルカプト、PEG(例えば、PEG-40K)、MPEG、[MPEG]2、ポリアミノ、アルキル、置換アルキル、放射線標識マーカー、酵素、ハプテン(例えば、ビオチン)、輸送/吸収促進剤(例えば、アスピリン、ビタミンE、葉酸)、合成リボヌクレアーゼ(例えば、イミダゾール、ビスイミダゾール、ヒスタミン、イミダゾールクラスター、アクリジン-イミダゾール複合体、テトラアザマクロ環のEu3+複合体)等があげられる。 In addition to these, the molecule added to the terminal includes, for example, a dye, an intercalating agent (for example, acrydin), a cross-linking agent (for example, solarene, mitomycin C), porphyrin (TPPC4, texaphyllin, sapphirine), and a polycyclic type. Aromatic hydrocarbons (eg phenazine, dihydrophenazine), artificial endonucleases (eg EDTA), lipophilic carriers (eg cholesterol, cholic acid, adamantan acetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis- O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) Cholic acid, dimethoxytrityl, or phenoxazine) and peptide complexes (eg, Antennapedia peptide, Tat peptide), alkylating agents, phosphoric acid, amino, mercapto, PEG (eg, PEG-40K), MPEG, [MPEG] 2 , polyamino, alkyl, substituted alkyl, radiolabeling markers, enzymes, haptens (eg, biotin), transport / absorption enhancers (eg, aspirin, vitamin E, folic acid), synthetic ribonucleases (eg, imidazole, bisimidazole, histamine, Examples thereof include an imidazole cluster, an aclysine-imidazole complex, and an Eu 3+ complex of a tetraaza macro ring).
 本発明の核酸分子は、前記5’末端が、例えば、リン酸基またはリン酸基アナログで修飾されてもよい。前記リン酸基は、例えば、5’一リン酸((HO)2(O)P-O-5’)、5’二リン酸((HO)2(O)P-O-P(HO)(O)-O-5’)、5’三リン酸((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-グアノシンキャップ(7-メチル化または非メチル化、7m-G-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-アデノシンキャップ(Appp)、任意の修飾または非修飾ヌクレオチドキャップ構造(N-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’一チオリン酸(ホスホロチオエート:(HO)2(S)P-O-5’)、5’一ジチオリン酸(ホスホロジチオエート:(HO)(HS)(S)P-O-5’)、5’-ホスホロチオール酸((HO)2(O)P-S-5’)、硫黄置換の一リン酸、二リン酸および三リン酸(例えば、5’-α-チオ三リン酸、5’-γ-チオ三リン酸等)、5’-ホスホルアミデート((HO)2(O)P-NH-5’、(HO)(NH2)(O)P-O-5’)、5’-アルキルホスホン酸(例えば、RP(OH)(O)-O-5’、(OH)2(O)P-5’-CH2、Rはアルキル(例えば、メチル、エチル、イソプロピル、プロピル等))、5’-アルキルエーテルホスホン酸(例えば、RP(OH)(O)-O-5’、Rはアルキルエーテル(例えば、メトキシメチル、エトキシメチル等))等があげられる。 In the nucleic acid molecule of the present invention, the 5'end may be modified with, for example, a phosphate group or a phosphate group analog. The phosphoric acid group is, for example, 5'monophosphoric acid ((HO) 2 (O) PO-5'), 5'diphosphoric acid ((HO) 2 (O) POP (HO) (O) -O- 5'), 5'triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-guanosine cap (7-methylated or Unmethylated, 7m-GO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-adenosine cap (Appp), optional Modified or unmodified nucleotide cap structure (NO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'monothiophosphate (phosphorothioate: ( HO) 2 (S) PO-5'), 5'monodithiophosphate (phosphologithioate: (HO) (HS) (S) PO-5'), 5'-phosphorothiolate ((HO) 2) (O) PS-5'), sulfur-substituted monophosphate, diphosphate and triphosphate (eg, 5'-α-thiotriphosphate, 5'-γ-thiotriphosphate, etc.), 5' -Phosphoramidate ((HO) 2 (O) P-NH-5', (HO) (NH 2 ) (O) PO-5'), 5'-alkylphosphonic acid (eg, RP (OH) ( O) -O-5', (OH) 2 (O) P-5'-CH 2 , R is alkyl (eg, methyl, ethyl, isopropyl, propyl, etc.), 5'-alkyl ether phosphoric acid (eg, eg, methyl, ethyl, isopropyl, propyl, etc.) RP (OH) (O) -O-5', R is alkyl ether (for example, methoxymethyl, ethoxymethyl, etc.)) and the like.
 前記ヌクレオチド残基において、前記塩基は、特に制限されない。前記塩基は、例えば、天然の塩基でもよいし、非天然の塩基でもよい。前記塩基は、例えば、天然由来でもよいし、合成品でもよい。前記塩基は、例えば、一般的な塩基、その修飾アナログ等が使用できる。 In the nucleotide residue, the base is not particularly limited. The base may be, for example, a natural base or a non-natural base. The base may be, for example, naturally derived or synthetic. As the base, for example, a general base, a modified analog thereof, or the like can be used.
 前記塩基は、例えば、アデニンおよびグアニン等のプリン塩基、シトシン、ウラシルおよびチミン等のピリミジン塩基があげられる。前記塩基は、この他に、イノシン、チミン、キサンチン、ヒポキサンチン、ヌバラリン(nubularine)、イソグアニシン(isoguanisine)、ツベルシジン(tubercidine)等があげられる。前記塩基は、例えば、2-アミノアデニン、6-メチル化プリン等のアルキル誘導体;2-プロピル化プリン等のアルキル誘導体;5-ハロウラシルおよび5-ハロシトシン;5-プロピニルウラシルおよび5-プロピニルシトシン;6-アゾウラシル、6-アゾシトシンおよび6-アゾチミン;5-ウラシル(プソイドウラシル)、4-チオウラシル、5-ハロウラシル、5-(2-アミノプロピル)ウラシル、5-アミノアリルウラシル;8-ハロ化、アミノ化、チオール化、チオアルキル化、ヒドロキシル化および他の8-置換プリン;5-トリフルオロメチル化および他の5-置換ピリミジン;7-メチルグアニン;5-置換ピリミジン;6-アザピリミジン;N-2、N-6、およびO-6置換プリン(2-アミノプロピルアデニンを含む);5-プロピニルウラシルおよび5-プロピニルシトシン;ジヒドロウラシル;3-デアザ-5-アザシトシン;2-アミノプリン;5-アルキルウラシル;7-アルキルグアニン;5-アルキルシトシン;7-デアザアデニン;N6,N6-ジメチルアデニン;2,6-ジアミノプリン;5-アミノ-アリル-ウラシル;N3-メチルウラシル;置換1,2,4-トリアゾール;2-ピリジノン;5-ニトロインドール;3-ニトロピロール;5-メトキシウラシル;ウラシル-5-オキシ酢酸;5-メトキシカルボニルメチルウラシル;5-メチル-2-チオウラシル;5-メトキシカルボニルメチル-2-チオウラシル;5-メチルアミノメチル-2-チオウラシル;3-(3-アミノ-3-カルボキシプロピル)ウラシル;3-メチルシトシン;5-メチルシトシン;N4-アセチルシトシン;2-チオシトシン;N6-メチルアデニン;N6-イソペンチルアデニン;2-メチルチオ-N6-イソペンテニルアデニン;N-メチルグアニン;O-アルキル化塩基等があげられる。また、プリンおよびピリミジンは、例えば、米国特許第3,687,808号、「Concise Encyclopedia Of Polymer Science And Engineering」、858~859頁、クロシュビッツ ジェー アイ(Kroschwitz J.I.)編、John Wiley & Sons、1990、およびイングリッシュら(Englischら)、Angewandte Chemie、International Edition、1991、30巻、p.613に開示されるものが含まれる。 Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, uracil and thymine. Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine and the like. The base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyl uracil and 5-propynylcitosine; 6 -Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-halogenation, amination, Thiolization, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N -6, and O-6 substituted purines (including 2-aminopropyl uracil); 5-propynyl uracil and 5-propynyl uracil; dihydro uracil; 3-deaza-5-azacitosin; 2-aminopurine; 5-alkyl uracil; 7-alkylguanine; 5-alkylcytosine; 7-deazaadenine; N6, N6-dimethyladenine; 2,6-diaminopurine; 5-amino-allyl-uracil; N3-methyluracil; substitution 1,2,4-triazole; 2-pyridinone; 5-nitroindole; 3-nitropyrrole; 5-methoxyuracil; uracil-5-oxyacil; 5-methoxycarbonylmethyluracil; 5-methyl-2-thiouracil; 5-methoxycarbonylmethyl-2-thiouracil 5-Methylaminomethyl-2-thiouracil; 3- (3-amino-3-carboxypropyl) uracil; 3-methylcytosine; 5-methylcytosine; N4-acetylcitosine; 2-thiocitosine; N6-methyladenine; N6 -Isopentyladenine; 2-methylthio-N6-isopentenyladenin; N-methylguanine; O-alkylated base and the like. For example, U.S. Pat. No. 3,687,808, "Concise Encyclopedia Of Polymer Science And Engineering," pp. 858-859, edited by Kroschwitz JI, John Wiley & Sons, 1990, and English et al. (Englisch et al.), Angewandte Chemie, International Edition, 1991, Vol. 30, p. 613.
 前記修飾ヌクレオチド残基は、これらの他に、例えば、塩基を欠失する残基、すなわち、無塩基のリボリン酸骨格を含んでもよい。また、前記修飾ヌクレオチド残基は、例えば、米国仮出願第60/465,665号(出願日:2003年4月25日)、および国際出願第PCT/US04/07070号(出願日:2004年3月8日;WO2004/080406)に記載される残基が使用でき、本発明は、これらの文献を援用できる。 In addition to these, the modified nucleotide residue may include, for example, a residue lacking a base, that is, a base-free ribophosphate skeleton. The modified nucleotide residues are, for example, US Provisional Application No. 60 / 465,665 (Filing Date: April 25, 2003) and International Application No. PCT / US04 / 07070 (Filing Date: March 8, 2004). Sun; WO2004 / 080406) can be used, and the present invention can be incorporated by reference to these documents.
3.本発明の核酸分子の合成方法
 本発明の核酸分子の合成方法は、特に制限されず、従来公知の方法が採用できる。前記合成方法は、例えば、遺伝子工学的手法による合成法、化学合成法等があげられる。遺伝子工学的手法は、例えば、インビトロ転写合成法、ベクターを用いる方法、PCRカセットによる方法があげられる。前記ベクターは、特に制限されず、プラスミド等の非ウイルスベクター、ウイルスベクター等があげられる。前記化学合成法は、特に制限されず、例えば、ホスホロアミダイト法およびH-ホスホネート法等があげられる。前記化学合成法は、例えば、市販の自動核酸合成機を使用可能である。前記化学合成法は、一般に、アミダイトが使用される。前記アミダイトは、特に制限されず、市販のアミダイトとして、例えば、RNA Phosphoramidites(2’-O-TBDMSi、商品名、三千里製薬)、ACEアミダイトおよびTOMアミダイト、CEEアミダイト、CEMアミダイト、TEMアミダイト等があげられる。
3. Method for synthesizing nucleic acid molecule of the present invention The method for synthesizing the nucleic acid molecule of the present invention is not particularly limited, and a conventionally known method can be adopted. Examples of the synthesis method include a synthesis method by a genetic engineering method, a chemical synthesis method, and the like. Examples of the genetic engineering method include an in vitro transcription synthesis method, a method using a vector, and a method using a PCR cassette. The vector is not particularly limited, and examples thereof include non-viral vectors such as plasmids and viral vectors. The chemical synthesis method is not particularly limited, and examples thereof include a phosphoramidite method and an H-phosphonate method. For the chemical synthesis method, for example, a commercially available automatic nucleic acid synthesizer can be used. As the chemical synthesis method, amidite is generally used. The amidite is not particularly limited, and examples of commercially available amidites include RNA Phosphoramidites (2'-O-TBDMSi, trade name, Sansenri Pharmaceutical), ACE amidite and TOM amidite, CEE amidite, CEM amidite, TEM amidite and the like. Can be given.
4.発現ベクター
 本発明の核酸分子が、非修飾リボヌクレオチド残基のみで構成される場合、該核酸分子の前駆体として、該核酸分子を発現可能な状態でコードするベクター(本発明の発現ベクター)の形態で提供することもできる。本発明の発現ベクターは、前記本発明の核酸分子をコードするDNAを標的細胞内で機能的なプロモーターの制御下に含むことを特徴とする。本発明の発現ベクターは、前記DNAと機能的に連結されたプロモーターを含むことが特徴であり、その他の構成は、何ら制限されない。前記DNAを挿入するベクターは、特に制限されず、例えば、一般的なベクターが使用でき、ウイルスベクターおよび非ウイルスベクター等があげられる。前記非ウイルスベクターは、例えば、プラスミドベクターがあげられる。該発現ベクターを、自体公知の遺伝子導入法を用いて、標的細胞(例、B型肝炎ウイルスDNAを有する細胞)に導入することにより、該細胞内でのB型肝炎ウイルスDNAの増幅を抑制することができる。
4. Expression Vector When the nucleic acid molecule of the present invention is composed of only unmodified ribonucleotide residues, a vector encoding the nucleic acid molecule in an expressible state as a precursor of the nucleic acid molecule (expression vector of the present invention). ) Can also be provided. The expression vector of the present invention is characterized by containing the DNA encoding the nucleic acid molecule of the present invention under the control of a functional promoter in the target cell. The expression vector of the present invention is characterized by containing a promoter functionally linked to the DNA, and other configurations are not limited in any way. The vector into which the DNA is inserted is not particularly limited, and for example, a general vector can be used, and examples thereof include a viral vector and a non-viral vector. Examples of the non-viral vector include a plasmid vector. By introducing the expression vector into a target cell (eg, a cell having hepatitis B virus DNA) using a gene transfer method known per se, the amplification of hepatitis B virus DNA in the cell is suppressed. be able to.
5.B型肝炎ウイルスDNAの増幅抑制剤
 本発明の増幅抑制剤は、B型肝炎ウイルスDNAの増幅を抑制する製剤であって、前記本発明の核酸分子を有効成分とすることを特徴とする。
5. Hepatitis B virus DNA amplification inhibitor The amplification inhibitor of the present invention is a preparation that suppresses the amplification of hepatitis B virus DNA, and is characterized by containing the nucleic acid molecule of the present invention as an active ingredient. ..
 B型肝炎ウイルスDNAの増幅抑制剤は、例えば、前記B型肝炎ウイルスDNAが存在する対象に、前記核酸分子を単独で、あるいは薬理学上許容される担体とともに投与する工程を含む。前記投与工程は、例えば、前記投与対象に前記核酸分子を接触させることにより行われる。前記投与対象は、例えば、ヒト、ヒトを除く非ヒト哺乳類等の非ヒト動物の、細胞、組織または器官が挙げられる。前記投与は、例えば、in vivoでもin vitroでもよい。 The hepatitis B virus DNA amplification inhibitor includes, for example, a step of administering the nucleic acid molecule alone or in combination with a pharmacologically acceptable carrier to a subject in which the hepatitis B virus DNA is present. The administration step is performed, for example, by bringing the nucleic acid molecule into contact with the administration subject. Examples of the administration target include cells, tissues or organs of humans and non-human animals such as non-human mammals other than humans. The administration may be, for example, in vivo or in vitro.
6.疾患の治療剤
 B型肝炎ウイルスDNAの増幅を本発明の核酸分子により抑制すると、B型肝炎ウイルスの増殖が低下する。従って、本発明の核酸分子を有効成分とする医薬は、B型肝炎ウイルス増殖抑制用として有用である。本発明の核酸分子または発現ベクターの有効量を対象のB型肝炎ウイルスに感染したヒトに投与することにより、当該ヒトにおけるB型肝炎ウイルスの増殖を抑制することができる。B型肝炎ウイルスの増殖を抑制できれば、B型肝炎の発症を阻止することができ、また、既にB型肝炎を発症している場合は、回復させることができる。本発明のB型肝炎ウイルス増殖抑制用医薬組成物を用いることにより、B型肝炎を治療することができる。従って、本発明の医薬組成物は、B型肝炎の治療に有用である。本発明の核酸分子または発現ベクターの有効量を対象ヒトに投与することにより、当該ヒトにおけるB型肝炎を治療することができる。ここで「治療」とは、疾患の予防及び発症遅延、疾患の改善、並びに予後の改善の包含する意味で用いる。
6. Therapeutic agent for diseases When the amplification of hepatitis B virus DNA is suppressed by the nucleic acid molecule of the present invention, the growth of hepatitis B virus is reduced. Therefore, the drug containing the nucleic acid molecule of the present invention as an active ingredient is useful for suppressing the growth of hepatitis B virus. By administering an effective amount of the nucleic acid molecule or expression vector of the present invention to a target human infected with hepatitis B virus, the growth of the hepatitis B virus in the human can be suppressed. If the growth of hepatitis B virus can be suppressed, the onset of hepatitis B can be prevented, and if hepatitis B has already developed, it can be recovered. Hepatitis B can be treated by using the pharmaceutical composition for suppressing the growth of hepatitis B virus of the present invention. Therefore, the pharmaceutical composition of the present invention is useful for the treatment of hepatitis B. By administering an effective amount of the nucleic acid molecule or expression vector of the present invention to a target human, hepatitis B in the human can be treated. Here, "treatment" is used to include prevention and delay of onset of disease, improvement of disease, and improvement of prognosis.
 B型肝炎は重症化すると肝硬変や肝臓がんを引き起こす。本発明のB型肝炎治療用医薬組成物を用いることにより、肝硬変や肝臓がんを治療することができる。従って、本発明の医薬組成物は、肝硬変や肝臓がんの治療に有用である。本発明の核酸分子または発現ベクターの有効量を対象ヒトに投与することにより、当該ヒトにおける肝硬変や肝臓がんを治療することができる。 Hepatitis B causes liver cirrhosis and liver cancer when it becomes severe. By using the pharmaceutical composition for treating hepatitis B of the present invention, liver cirrhosis and liver cancer can be treated. Therefore, the pharmaceutical composition of the present invention is useful for the treatment of liver cirrhosis and liver cancer. By administering an effective amount of the nucleic acid molecule or expression vector of the present invention to a target human, liver cirrhosis and liver cancer in the human can be treated.
 本発明の医薬は、有効量の本発明の核酸分子を単独で用いてもよいし、任意の担体、例えば医薬上許容される担体とともに、医薬組成物として製剤化することもできる。 The medicament of the present invention may use an effective amount of the nucleic acid molecule of the present invention alone, or may be formulated as a pharmaceutical composition together with an arbitrary carrier, for example, a pharmaceutically acceptable carrier.
 医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリド等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。 Pharmaceutically acceptable carriers include, for example, excipients such as sucrose and starch, binders such as cellulose and methyl cellulose, disintegrants such as starch and carboxymethyl cellulose, lubricants such as magnesium stearate and aerodyl, citric acid, etc. Fragrances such as menthol, preservatives such as sodium benzoate and sodium hydrogen sulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolid, dispersants such as surfactants, water, Diluting agents such as physiological saline, base wax and the like can be mentioned, but the present invention is not limited thereto.
 本発明の核酸分子の標的細胞内への導入を促進するために、本発明の医薬は更に核酸導入用試薬を含むことができる。該核酸導入用試薬としては、アテロコラーゲン;リポソーム;ナノパーティクル;リポフェクチン、リプフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質等を用いることが出来る。 In order to promote the introduction of the nucleic acid molecule of the present invention into a target cell, the medicament of the present invention may further contain a reagent for introducing a nucleic acid. Reagents for introducing nucleic acids include atelocollagen; liposomes; nanoparticles; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI). And the like, cationic lipids and the like can be used.
 好ましい一実施態様において、本発明の医薬は、本発明の核酸分子がリポソームに封入されてなる医薬組成物であり得る。リポソームは、1以上の脂質二重層により包囲された内相を有する微細閉鎖小胞であり、通常は水溶性物質を内相に、脂溶性物質を脂質二重層内に保持することができる。本明細書において「封入」という場合には、本発明の核酸分子はリポソーム内相に保持されてもよいし、脂質二重層内に保持されてもよい。本発明に用いられるリポソームは単層膜であっても多層膜であってもよく、また、粒子径は、例えば10~1000nm、好ましくは50~300nmの範囲で適宜選択できる。標的組織への送達性を考慮すると、粒子径は、例えば200nm以下、好ましくは100nm以下であり得る。 In one preferred embodiment, the medicament of the present invention may be a pharmaceutical composition in which the nucleic acid molecule of the present invention is encapsulated in liposomes. Liposomes are microclosed vesicles having an internal phase surrounded by one or more lipid bilayers, which can usually retain water-soluble substances in the internal phase and fat-soluble substances in the lipid bilayer. When referred to as "encapsulation" herein, the nucleic acid molecule of the invention may be retained in the liposome internal phase or in the lipid bilayer. The liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected in the range of, for example, 10 to 1000 nm, preferably 50 to 300 nm. Considering the deliverability to the target tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
 核酸のような水溶性化合物のリポソームへの封入法としては、リピドフィルム法(ボルテックス法)、逆相蒸発法、界面活性剤除去法、凍結融解法、リモートローディング法等が挙げられるが、これらに限定されず、任意の公知の方法を適宜選択することができる。 Examples of the method for encapsulating a water-soluble compound such as nucleic acid in liposomes include a lipid film method (vortex method), a reverse phase evaporation method, a surfactant removal method, a freeze-thaw method, and a remote loading method. Without limitation, any known method can be appropriately selected.
 本発明の医薬は、通常、本発明の核酸分子または発現ベクターが、標的とする細胞(例、肝細胞、肝臓の癌細胞)に送達されるように、ヒトに対して安全に投与される。 The medicament of the present invention is usually safely administered to humans so that the nucleic acid molecule or expression vector of the present invention is delivered to a target cell (eg, hepatocyte, liver cancer cell).
 本発明の核酸分子を投与対象にin vivoで投与する場合、該核酸分子は、生体内の特定の器官、組織または細胞に臓器への送達を効率よく行なうために、細胞表面受容体と結合するリガンドとコンジュゲートしていてもよい。本発明の核酸分子は、肝臓への送達効率を向上させるために、肝臓の細胞に特徴的な表面受容体のリガンド等とコンジュゲートすることができる。
 かかるリガンドとしては、コレステロールおよびN-acetylgalactosamine(GalNAc)クラスター等が挙げられる。
 N-acetylgalactosamine(GalNAc)クラスターとしては、例えば、以下の構造式の化合物が挙げられる。
When the nucleic acid molecule of the present invention is administered to an administration subject in vivo, the nucleic acid molecule binds to a cell surface receptor for efficient delivery to a specific organ, tissue or cell in the living body. It may be conjugated to a ligand. The nucleic acid molecule of the present invention can be conjugated to a surface receptor ligand or the like characteristic of liver cells in order to improve the delivery efficiency to the liver.
Examples of such ligands include cholesterol and N-acetylgalactosamine (GalNAc) clusters.
Examples of N-acetylgalactosamine (GalNAc) clusters include compounds having the following structural formulas.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の医薬には、例えば緩衝剤、等張化剤、溶解補助剤、防腐剤、粘性基剤、キレート剤、清涼化剤、pH調整剤、抗酸化剤などを適宜選択して添加することができる。
 緩衝剤としては、例えば、リン酸緩衝剤、ホウ酸緩衝剤、クエン酸緩衝剤、酒石酸緩衝剤、酢酸緩衝剤、アミノ酸などが挙げられる。
 等張化剤としては、ソルビトール、グルコース、マンニトールなどの糖類、グリセリン、プロピレングリコールなどの多価アルコール類、塩化ナトリウムなどの塩類、ホウ酸などが挙げられる。
 溶解補助剤としては、ポリオキシエチレンソルビタンモノオレート(例えば、ポリソルベート80)、ポリオキシエチレン硬化ヒマシ油、チロキサポール、プルロニックなどの非イオン性界面活性剤、グリセリン、マクロゴールなどの多価アルコールなどが挙げられる。
 防腐剤としては、例えば、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウムなどの第四級アンモニウム塩類、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチルなどのパラオキシ安息香酸エステル類、ベンジルアルコール、ソルビン酸およびその塩(ナトリウム塩、カリウム塩など)、チメロサール(商品名)、クロロブタノール、デヒドロ酢酸ナトリウムなどが挙げられる。
 粘性基剤としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールなどの水溶性高分子、ヒドロキシエチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウムなどのセルロース類などが挙げられる。
 キレート剤としては、エデト酸ナトリウム、クエン酸などが挙げられる。
 清涼化剤としては、l-メントール、ボルネオール、カンフル、ユーカリ油などが挙げられる。
 pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ホウ酸またはその塩(ホウ砂)、塩酸、クエン酸またはその塩(クエン酸ナトリウム、クエン酸二水素ナトリウム等)、リン酸またはその塩(リン酸水素二ナトリウム、リン酸二水素カリウム等)、酢酸またはその塩(酢酸ナトリウム、酢酸アンモニウム等)、酒石酸またはその塩(酒石酸ナトリウム等)等が挙げられる。
 抗酸化剤としては、例えば、亜硫酸水素ナトリウム、乾燥亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、濃縮混合トコフェロール等が挙げられる。
For example, a buffer, an isotonic agent, a solubilizing agent, a preservative, a viscous base, a chelating agent, a cooling agent, a pH adjusting agent, an antioxidant and the like are appropriately selected and added to the medicament of the present invention. Can be done.
Examples of the buffer include a phosphate buffer, a boric acid buffer, a citric acid buffer, a tartrate buffer, an acetate buffer, and an amino acid.
Examples of the tonicity agent include sugars such as sorbitol, glucose and mannitol, polyhydric alcohols such as glycerin and propylene glycol, salts such as sodium chloride, and boric acid.
Examples of the solubilizing agent include polyoxyethylene sorbitan monoolate (for example, polysorbate 80), polyoxyethylene hydrogenated castor oil, nonionic surfactants such as tyroxapol and pluronic, and polyhydric alcohols such as glycerin and macrogol. Be done.
Examples of preservatives include quaternary ammonium salts such as benzalkonium chloride, benzethonium chloride and cetylpyridinium chloride, and paraoxybenzoic acid such as methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate and butyl paraoxybenzoate. Examples thereof include esters, benzyl alcohol, sorbic acid and salts thereof (sodium salt, potassium salt, etc.), timerosal (trade name), chlorobutanol, sodium dehydroacetate and the like.
Examples of the viscous base include water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol and polyvinyl alcohol, and celluloses such as hydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose and sodium carboxymethyl cellulose.
Examples of the chelating agent include sodium edetate and citric acid.
Examples of the refreshing agent include l-menthol, borneol, camphor, eucalyptus oil and the like.
Examples of the pH adjuster include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, boric acid or a salt thereof (hosand), hydrochloric acid, citric acid or a salt thereof (sodium citrate, sodium dihydrogen citrate). Etc.), phosphoric acid or a salt thereof (disodium hydrogen phosphate, potassium dihydrogen phosphate, etc.), acetic acid or a salt thereof (sodium acetate, ammonium acetate, etc.), citric acid or a salt thereof (sodium tartrate, etc.) and the like.
Examples of the antioxidant include sodium hydrogen sulfite, dry sodium sulfite, sodium pyrosulfite, concentrated mixed tocopherol and the like.
 本発明の医薬組成物中の本発明の核酸分子の含有量は、例えば、医薬組成物全体の約0.1ないし100重量%である。
 本発明の医薬組成物がリポソーム製剤の場合、リポソーム構成成分に対する本発明の核酸分子のモル比は、通常1/100,000~1/10,000である。また、リポソーム製剤中に含有される本発明の核酸分子を封入したリポソームの量は、リポソーム粒子が凝集しない程度で、かつ十分な薬効を発揮し得る量であれば特に制限はなく、通常10~100mMである。
The content of the nucleic acid molecule of the present invention in the pharmaceutical composition of the present invention is, for example, about 0.1 to 100% by weight of the entire pharmaceutical composition.
When the pharmaceutical composition of the present invention is a liposome preparation, the molar ratio of the nucleic acid molecule of the present invention to the liposome component is usually 1 / 100,000 to 1 / 10,000. The amount of liposomes encapsulating the nucleic acid molecule of the present invention contained in the liposome preparation is not particularly limited as long as the liposome particles do not aggregate and the amount can exert a sufficient medicinal effect, and is usually 10 to 10. It is 100 mM.
 本発明の医薬の投与量は、投与の目的、投与方法、眼表面疾患の種類、大きさ、投与対象者の状況(性別、年齢、体重など)によって異なるが、成人に点眼投与する場合、通常、本発明の核酸の1回投与量として通常0.01~1000μg、好ましくは0.05~100μg、より好ましくは0.1~50μgを、1日1回ないし10回、好ましくは5~10回投与することが望ましい。 The dose of the medicament of the present invention varies depending on the purpose of administration, the administration method, the type and size of ocular surface disease, and the situation (gender, age, weight, etc.) of the subject to be administered. As a single dose of the nucleic acid of the present invention, it is usually preferably 0.01 to 1000 μg, preferably 0.05 to 100 μg, more preferably 0.1 to 50 μg, once to 10 times, preferably 5 to 10 times a day.
 以下、実施例等により、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and the like, but the present invention is not limited thereto.
(実施例1)
(1)一本鎖核酸分子の合成
 以下に示す一本鎖核酸分子を、ホスホロアミダイト法に基づき、ABI3900核酸合成機(商品名、アプライドバイオシステムズ)により合成した。前記合成には、RNAアミダイトとして、EMMアミダイト(国際公開第2013/027843号)を用いた(以下、同様)。前記アミダイトの脱保護は、定法に従った。合成した一本鎖核酸分子は、HPLCによる精製後、それぞれ凍結乾燥した。
(Example 1)
(1) Synthesis of single-stranded nucleic acid molecules The single-stranded nucleic acid molecules shown below were synthesized by an ABI3900 nucleic acid synthesizer (trade name, Applied Biosystems) based on the phosphoramidite method. For the synthesis, EMM amidite (International Publication No. 2013/027843) was used as RNA amidite (hereinafter, the same applies). The deprotection of the amidite was performed according to a conventional method. The synthesized single-stranded nucleic acid molecules were purified by HPLC and then freeze-dried.
 一本鎖核酸分子として、前記配列番号1および2で表わされるB型肝炎ウイルス遺伝子発現抑制配列を有する一本鎖核酸分子(PH-HB-0001、PH-HB-0002)、前記配列番号3から5で表わされるヒトNCAPH遺伝子発現抑制配列を有する一本鎖核酸分子(PH-HB-0003、PH-HB-0004、PH-HB-0005)、前記配列番号6および7で表わされるヒトSp1遺伝子発現抑制配列を有する一本鎖核酸分子(PH-Sp1-1、PH-Sp1-4)および前記配列番号8および9で表わされるヒトSOCS7遺伝子発現抑制配列を有する一本鎖核酸分子(PH-SOCS7-1、PH-SOCS7-4)を、それぞれ上記のように合成した。各一本鎖核酸分子において、Lxは、リンカー領域Lxであり、L-プロリンジアミドアミダイトを用いて下記構造式とした。
PH-HB-0001(配列番号19)
 5’- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3’
PH-HB-0002(配列番号20)
 5’- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3’
PH-HB-0003(配列番号21)
 5’- GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3’
PH-HB-0004(配列番号22)
 5’- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3’
PH-HB-0005(配列番号23)
 5’- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3’
PH-Sp1-1(配列番号24)
 5’- GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3’
PH-Sp1-4(配列番号25)
 5’- CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3’
PH-SOCS7-1(配列番号26)
 5’- UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3’
PH-SOCS7-4(配列番号27)
 5’- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3’
PH-HB-0007(配列番号29)
 5’- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3’
PH-HB-0014(配列番号36)
 5’- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3’
PH-HB-0027(配列番号49)
 5’- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3’
PH-HB-0031(配列番号53)
 5’- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3’
PH-HB-0032(配列番号54)
 5’- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3’
PH-7070(配列番号57)
 5'- GUACCGCACGUCAUUCGUAUCCC-Lx-GGGAUACGAAUGACGUGCGGUACGU -3'
PH-scramble1583(配列番号58)
 5'- UUCUCCGUACCGCGUCUACCACC-Lx-GGUGGUAGACGCGGUACGGAGAAAC -3'
PH-HBV_264(配列番号59)
 5'- GGACUUCUCUCAAUUUUCUAGCC-Lx-GGCUAGAAAAUUGAGAGAAGUCCAC -3'
PH-HBV_1583(配列番号60)
 5'- GCACUUCGCUUCACCUCUGCACC-Lx-GGUGCAGAGGUGAAGCGAAGUGCAC -3'
As single-stranded nucleic acid molecules, single-stranded nucleic acid molecules (PH-HB-0001, PH-HB-0002) having the hepatitis B virus gene expression-suppressing sequence represented by SEQ ID NOs: 1 and 2, from the above-mentioned SEQ ID NO: 3. Single-stranded nucleic acid molecules (PH-HB-0003, PH-HB-0004, PH-HB-0005) having a human NCAPH gene expression-suppressing sequence represented by 5, and human Sp1 gene expression represented by SEQ ID NOs: 6 and 7 above. Single-stranded nucleic acid molecules having an inhibitory sequence (PH-Sp1-1, PH-Sp1-4) and single-stranded nucleic acid molecules having a human SOCS7 gene expression inhibitory sequence represented by SEQ ID NOs: 8 and 9 (PH-SOCS7-) 1, PH-SOCS7-4) were synthesized as described above. In each single-stranded nucleic acid molecule, Lx is a linker region Lx, and L-proline diamide amidite was used to formulate the following structural formula.
PH-HB-0001 (SEQ ID NO: 19)
5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3'
PH-HB-0002 (SEQ ID NO: 20)
5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3'
PH-HB-0003 (SEQ ID NO: 21)
5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3'
PH-HB-0004 (SEQ ID NO: 22)
5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3'
PH-HB-0005 (SEQ ID NO: 23)
5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3'
PH-Sp1-1 (SEQ ID NO: 24)
5'-GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3'
PH-Sp1-4 (SEQ ID NO: 25)
5'-CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3'
PH-SOCS7-1 (SEQ ID NO: 26)
5'-UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3'
PH-SOCS7-4 (SEQ ID NO: 27)
5'- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3'
PH-HB-0007 (SEQ ID NO: 29)
5'- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3'
PH-HB-0014 (SEQ ID NO: 36)
5'- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3'
PH-HB-0027 (SEQ ID NO: 49)
5'- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3'
PH-HB-0031 (SEQ ID NO: 53)
5'- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3'
PH-HB-0032 (SEQ ID NO: 54)
5'- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3'
PH-7070 (SEQ ID NO: 57)
5'-GUACCGCACGUCAUUCGUAUCCC-Lx-GGGAUACGAAUGACGUGCGGUACGU -3'
PH-scramble1583 (SEQ ID NO: 58)
5'- UUCUCCGUACCGCGUCUACCACC-Lx-GGUGGUAGACGCGGUACGGAGAAAC -3'
PH-HBV_264 (SEQ ID NO: 59)
5'- GGACUUCUCUCAAUUUUCUAGCC-Lx-GGCUAGAAAAUUGAGAGAAGUCCAC -3'
PH-HBV_1583 (SEQ ID NO: 60)
5'- GCACUUCGCUUCACCUCUGCACC-Lx-GGUGCAGAGGUGAAGCGAAGUGCAC -3'
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(2)培養液中HBV DNA、及び細胞内HBV cccDNA量に対する本発明品の活性評価
 評価には、Hep38.7-Tet細胞を用いた(Biochem Biophys Res Commun 2014;452:315-321. Ogura N, Watashi K, Noguchi T, Wakita T. Formation of covalently closed circular DNA in Hep38.7-Tet cells, a tetracycline inducible hepatitis B virus expression cell line. )。Hep38.7-Tet細胞の培養は、DMEM/F12培地 (Life Technologies, 10565-018) に、10% 牛胎児血清 (FBS)、100 U/mL ペニシリン(Thermo Fisher, 15140122)、100 μg/mLストレプトマイシン(Thermo Fisher, 15140122)、10mM HEPES、5 μg/mL Insulin、400 μg/mL G418(ナカライテスク, 09380-086)を添加した培地を用いた。
 通常の継代時は、これに400 ng/mLテトラサイクリンを添加した培地を用い、HBV複製を開始する場合には、テトラサイクリンを添加しない培地を用いた。
(2) Evaluation of activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and intracellular HBV cccDNA Hep38.7-Tet cells were used for evaluation (Biochem Biophys Res Commun 2014; 452: 315-321. Ogura N , Watashi K, Noguchi T, Wakita T. Formation of covalently closed circular DNA in Hep38.7-Tet cells, a tetracycline inducible hepatitis B virus expression cell line.). Hep38.7-Tet cells are cultured in DMEM / F12 medium (Life Technologies, 10565-018) with 10% fetal bovine serum (FBS), 100 U / mL penicillin (Thermo Fisher, 15140122), 100 μg / mL streptomycin. (Thermo Fisher, 15140122), 10 mM HEPES, 5 μg / mL Insulin, 400 μg / mL G418 (Nakaraitesku, 09380-086) was added to the medium.
During normal passage, a medium supplemented with 400 ng / mL tetracycline was used, and when HBV replication was initiated, a medium without tetracycline was used.
培養細胞数と培養の手順、及びHBV誘導方法の概要
 テトラサイクリン含有培地を使い、1ウェル毎に3.0 x 104 cells /well(100μLの培地、96 well plate)、または1.5x105 cells/well(500μLの培地、24 well plate)の細胞を播いた。24時間後、テトラサイクリン不含有培地に変更してHBV複製を開始した。72時間後、上清または細胞を回収した。
Number of cultured cells, culture procedure, and outline of HBV induction method 3.0 x 10 4 cells / well (100 μL medium, 96 well plate) or 1.5 x 10 5 cells / well (500 μL) per well using tetracycline-containing medium. The cells of 24 well plates) were sown. After 24 hours, the medium was changed to a tetracycline-free medium and HBV replication was started. After 72 hours, the supernatant or cells were collected.
 導入した一本鎖核酸分子(以下、PshRNAともいう)は、以下の通りである。
(a)PH-scramble1583(ネガティブコントロール)
(b)PH-HBV_264(ポジティブコントロール)
(c)PH-HB-0001
(d)PH-HB-0002
The introduced single-stranded nucleic acid molecules (hereinafter, also referred to as PshRNA) are as follows.
(a) PH-scramble1583 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-HB-0001
(d) PH-HB-0002
 これらのRNAを、Lipofectamin-RNAiMAXを用いたリバーストランスフェクション法により、Hep38.7細胞に導入し、3.0 x 104 cells /wellになるように100μLの培地を用いて96 well plateに播種した。それぞれのRNA濃度は、終濃度0.5 nM, 10 nM, 500 nMになるように調製した。具体的には、96well plateを用いて、それぞれのRNA濃度が5 nM, 100 nM, 5000 nMになるようにOPTI-MEMを用いて10μL調製し、別途調製したRNAiMAX 0.2μLとOPTI-MEM 9.8μLの混合液と混和し、室温で20分インキュベーションした。それぞれのウェルに、3.0x104 のHep38.7細胞を100μLのテトラサイクリン含有培地(400 ng/mL)に懸濁した細胞液を加え、翌日まで(約20hrs)37℃、5% CO2でインキュベーションを行った。培地を除去し、テトラサイクリン不含有培地を200μL添加して、HBV誘導反応開始し、37℃、5% CO2で72時間インキュベーションを続けた。 These RNAs were introduced into Hep38.7 cells by reverse transfection using Lipofectamin-RNAiMAX and seeded on 96 well plates using 100 μL medium to a concentration of 3.0 x 10 4 cells / well. The RNA concentrations were adjusted to final concentrations of 0.5 nM, 10 nM, and 500 nM. Specifically, using a 96-well plate, 10 μL was prepared using OPTI-MEM so that the respective RNA concentrations were 5 nM, 100 nM, and 5000 nM, and separately prepared RNAiMAX 0.2 μL and OPTI-MEM 9.8 μL. Was mixed with the mixture of 1 and incubated at room temperature for 20 minutes. To each well, add the extracellular fluid in which 3.0 x 10 4 Hep 38.7 cells were suspended in 100 μL of tetracycline-containing medium (400 ng / mL), and incubate at 37 ° C. and 5% CO 2 until the next day (about 20 hrs). went. The medium was removed, 200 μL of tetracycline-free medium was added, an HBV-induced reaction was initiated, and incubation was continued at 37 ° C. and 5% CO 2 for 72 hours.
HBV DNAの測定
 テトラサイクリン不含有培地に変えて72時間後上清を全量(約200μL)回収し、遠心して混入した細胞を沈殿させたのち、その上清50μLからスマイテスト EX-R&D(MBL、Cat No. GS-J0201)を用いてDNAを抽出した。得られたDNAを50μLのDW(Ambion(R) Nuclease-Free Water, AM9937)に溶解した。
Measurement of HBV DNA 72 hours after changing to a tetracycline-free medium, the entire supernatant (about 200 μL) was collected, centrifuged to precipitate the contaminated cells, and then Smytest EX-R & D (MBL, Cat) from 50 μL of the supernatant. DNA was extracted using No. GS-J0201). The obtained DNA was lysed in 50 μL of DW (Ambion (R) Nuclease-Free Water, AM9937).
 このDNAを用いて、StepOnePlus(ThermoFisher/Applied Biosystems)を用いたrealtime PCRでHBV DNAを定量した。
定量に用いたPrimerとTaqman Probeは以下の通りである。
・Forward primer: 5’-CACATCAGGATTCCTAGGACC-3’(配列番号61)
・Reverse primer: 5’-AGGTTGGTGAGTGATTGGAG-3’(配列番号62)
・Taqman probe:5’-FAM-CAGAGTCTAGACTCGTGGTGGACTTC-TAMRA-3’(配列番号63)
Using this DNA, HBV DNA was quantified by real-time PCR using StepOnePlus (ThermoFisher / Applied Biosystems).
The Primer and Taqman Probe used for quantification are as follows.
-Forward primer: 5'-CACATCAGGATTCCTAGGACC-3' (SEQ ID NO: 61)
・ Reverse primer: 5'-AGGTTGGTGAGTGATTGGAG-3' (SEQ ID NO: 62)
-Taqman probe: 5'-FAM-CAGAGTCTAGACTCGTGGTGGACTTC-TAMRA-3'(SEQ ID NO: 63)
 それぞれのPrimer 1μM、Probe 0.25μMとDNA抽出液原液を5μL用いて、終容量25μLでStepOnePlus PCRを実施した。PCRの条件は、
50℃ 2min → 95℃ 10min → (95℃ 15sec → 60℃ 1min)×53 cycles
とした。
StepOnePlus PCR was performed with a final volume of 25 μL using 5 μL of each Primer 1 μM, Probe 0.25 μM and DNA extract stock solution. The conditions for PCR are
50 ℃ 2min → 95 ℃ 10min → (95 ℃ 15sec → 60 ℃ 1min) × 53 cycles
And said.
 得られたデータと、HBV-plasmid 101~107コピーを用いて得られた検量線から、サンプル中のHBV DNAのコピー数を算出した(図2)。 The copy number of HBV DNA in the sample was calculated from the obtained data and the calibration curve obtained using HBV-plasmid 10 1 to 10 7 copies (Fig. 2).
 PH-HB-0001およびPH-HB-0002では、PH-scramble1583に比べてHBVDNA比が減少していた。 In PH-HB-0001 and PH-HB-0002, the HBV DNA ratio was decreased as compared with PH-scramble 1583.
cccDNA量の測定
 テトラサイクリン不含有培地に変えて72時間後、スマイテスト EX-R&D(MBL、Cat No. GS-J0201)で細胞DNAを抽出した。1well分の細胞DNAを200μLのDWに溶解した。
Measurement of cccDNA amount 72 hours after changing to a tetracycline-free medium, cellular DNA was extracted by Smytest EX-R & D (MBL, Cat No. GS-J0201). 1 well of cellular DNA was lysed in 200 μL of DW.
 Takkenberg et al.(J. Hepatol. 2018, 69, 301-307)の方法を参考に、StepOnePlusを用いたrealtime PCRでcccDNAを定量した。 CccDNA was quantified by real-time PCR using StepOnePlus, referring to the method of Takkenberg et al. (J. Hepatol. 2018, 69, 301-307).
 定量に用いたPrimerとTaqman Probeは以下の通りである。
・Forward primer : 5’-CTCCCCGTCTGTGCCTTCT-3’(配列番号64)
・Reverse primer : 5’-GCCCCAAAGCCACCCAAG-3’(配列番号65)
・Taqman probe : 5’-FAM-CGTCGCATGGARACCACCGTGAACGCC-TAMRA-3’(配列番号66)
The Primer and Taqman Probe used for quantification are as follows.
-Forward primer: 5'-CTCCCCGTCTGTGCCTTCT-3'(SEQ ID NO: 64)
-Reverse primer: 5'-GCCCCAAAGCCACCCAAG-3'(SEQ ID NO: 65)
-Taqman probe: 5'-FAM-CGTCGCATGGARACCACCGTGAACGCC-TAMRA-3' (SEQ ID NO: 66)
 それぞれのPrimer 0.9μM、Probe 0.4μMとDNA抽出液原液を5μL用いて、終容量25μLでStepOnePlus PCRを実施した。PCRの条件は、
50℃ 2min → 95℃ 10min → (95℃ 10sec → 58℃ 5sec → 63℃ 10sec → 72℃ 10sec)×55 cycles
とした。
StepOnePlus PCR was performed with a final volume of 25 μL using 5 μL of each Primer 0.9 μM, Probe 0.4 μM and DNA extract stock solution. The conditions for PCR are
50 ℃ 2min → 95 ℃ 10min → (95 ℃ 10sec → 58 ℃ 5sec → 63 ℃ 10sec → 72 ℃ 10sec) × 55 cycles
And said.
 得られたデータと、HBV-cccDNA plasmid 101~107コピーを用いて得られた検量線から、サンプル中のHBV cccDNAのコピー数を算出した(図3)。 The number of copies of HBV cccDNA in the sample was calculated from the obtained data and the calibration curve obtained using HBV-cccDNA plasmid 10 1 to 10 7 copies (Fig. 3).
 PH-HB-0001およびPH-HB-0002では、PH-scramble1583に比べて、対応するRNA濃度においてcccDNA比が減少していた。 In PH-HB-0001 and PH-HB-0002, the cccDNA ratio was reduced at the corresponding RNA concentration as compared with PH-scramble 1583.
(実施例2)
培養液中HBV DNA、及び細胞内HBV cccDNA量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-HB-0003
(d) PH-HB-0004
(e) PH-HB-0005
(Example 2)
Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-HB-0003
(d) PH-HB-0004
(e) PH-HB-0005
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図4)、及び細胞内のHBV cccDNAのコピー数(図5)を算出した。 In the same manner as in Example 1, the number of copies of HBV DNA in the culture medium (Fig. 4) and the number of copies of HBV cccDNA in the cell at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM (Fig. 5). ) Was calculated.
 PH-HB-0004およびPH-HB-0005では、PH-7070に比べて、RNA濃度500nMでHBVDNA比が減少している傾向が見られた。PH-HB-0003およびPH-HB-0004では、PH-7070に比べて、RNA濃度10nMでcccDNA比の減少が見られた。 In PH-HB-0004 and PH-HB-0005, the HBV DNA ratio tended to decrease at an RNA concentration of 500 nM compared to PH-7070. In PH-HB-0003 and PH-HB-0004, a decrease in the cccDNA ratio was observed at an RNA concentration of 10 nM as compared with PH-7070.
(実施例3)
培養液中HBs抗原量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-HB-0003
(d) PH-HB-0004
(e) PH-HB-0005
(Example 3)
Evaluation of activity of the product of the present invention with respect to the amount of HBs antigen in the culture solution The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-HB-0003
(d) PH-HB-0004
(e) PH-HB-0005
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMになるようにRNAをHep38.7細胞に導入し、テトラサイクリン不含有培地に変えて72時間後上清を回収した。遠心して混入した細胞を沈殿させたのち、その上清中に存在するHBV HBs抗原量を、HBs S Antigen Quantitative ELISA Kit, Rapid-II (Beacle, Cat No. BCL-SHP-21) (検出限界 0.05 nUnit/mL)を用いて測定した(図6)。 RNA was introduced into Hep38.7 cells so that the final RNA concentrations were 0.5 nM, 10 nM, and 500 nM, respectively, in the same manner as in Example 1, and the supernatant was collected after 72 hours after changing to a tetracycline-free medium. did. After precipitating the contaminated cells by centrifugation, the amount of HBV HBs antigen present in the supernatant is determined by HBs S Antigen Quantitative ELISA Kit, Rapid-II (Beacle, Cat No. BCL-SHP-21) (detection limit 0.05). nUnit / mL) was used for measurement (Fig. 6).
 PH-HB-0005では、PH-7070に比べて、RNA濃度10nMおよび500nMでHBsAg比の減少が見られた。 In PH-HB-0005, a decrease in HBsAg ratio was observed at RNA concentrations of 10 nM and 500 nM compared to PH-7070.
(実施例4)
培養液中HBV DNA、及び細胞内HBV cccDNA量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-HB-0003
(d) PH-HB-0004
(e) PH-HB-0005
(Example 4)
Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-HB-0003
(d) PH-HB-0004
(e) PH-HB-0005
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図7)、及び細胞内のHBV cccDNAのコピー数(図8)を算出した。 The number of copies of HBV DNA in the culture medium (Fig. 7) and the number of copies of HBV cccDNA in the cell at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM (Fig. 7) in the same manner as in Example 1 (Fig. 8). ) Was calculated.
 PH-HB-0003、PH-HB-0004およびPH-HB-0005では、PH-7070に比べてHBVDNA比の減少は見られなかった。PH-HB-0003、PH-HB-0004およびPH-HB-0005では、PH-7070に比べて、RNA濃度10nMおよび500nMでcccDNA比の減少が見られた。 PH-HB-0003, PH-HB-0004 and PH-HB-0005 did not show a decrease in the HBV DNA ratio compared to PH-7070. PH-HB-0003, PH-HB-0004 and PH-HB-0005 showed a decrease in cccDNA ratio at RNA concentrations of 10 nM and 500 nM compared to PH-7070.
(実施例5)
培養液中HBV DNA量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-HB-0001
(d) PH-HB-0007
(e) PH-HB-0014
(f) PH-HB-0027
(g) PH-HB-0031
(h) PH-HB-0032
(Example 5)
Evaluation of activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-HB-0001
(d) PH-HB-0007
(e) PH-HB-0014
(f) PH-HB-0027
(g) PH-HB-0031
(h) PH-HB-0032
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図9)を算出した。 The copy number of HBV DNA in the culture medium (Fig. 9) was calculated at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM by the same method as in Example 1.
 PH-HB-0001、PH-HB-0007、PH-HB-0014、PH-HB-0027、PH-HB-0031、およびPH-HB-0032では、PH-7070に比べてHBVDNA比が減少していた。 PH-HB-0001, PH-HB-0007, PH-HB-0014, PH-HB-0027, PH-HB-0031, and PH-HB-0032 had a lower HBV DNA ratio than PH-7070. It was.
(実施例6)
培養液中HBV DNA、及び細胞内HBV cccDNA量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-SP1-1
(d) PH-SP1-4
(Example 6)
Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-SP1-1
(d) PH-SP1-4
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図10)、及び細胞内のHBV cccDNAのコピー数(図11)を算出した。 In the same manner as in Example 1, the number of copies of HBV DNA in the culture medium (Fig. 10) and the number of copies of HBV cccDNA in the cell at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM (Fig. 11). ) Was calculated.
 PH-SP1-1では、PH-7070に比べて、RNA濃度10nMおよび500nMでHBVDNA比が減少していた。PH-SP1-4では、PH-7070に比べて、RNA濃度10nMおよび500nMでcccDNA比が減少していた。 In PH-SP1-1, the HBV DNA ratio decreased at RNA concentrations of 10 nM and 500 nM compared to PH-7070. In PH-SP1-4, the cccDNA ratio was decreased at RNA concentrations of 10 nM and 500 nM as compared with PH-7070.
(実施例7)
培養液中HBs抗原量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-SP1-1
(d) PH-SP1-4
(Example 7)
Evaluation of activity of the product of the present invention with respect to the amount of HBs antigen in the culture solution The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-SP1-1
(d) PH-SP1-4
 実施例3と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV HBs抗原量を測定した(図12)。 The amount of HBV HBs antigen in the culture solution was measured at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM by the same method as in Example 3 (Fig. 12).
 PH-SP-1およびPH-SP-4では、PH-7070に比べて、対応するRNA濃度においてHBsAg比が減少していた。 In PH-SP-1 and PH-SP-4, the HBsAg ratio was reduced at the corresponding RNA concentration as compared with PH-7070.
(実施例8)
培養液中HBV DNA、及び細胞内HBV cccDNA量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-SP1-1
(d) PH-SP1-4
(Example 8)
Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-SP1-1
(d) PH-SP1-4
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図13)、及び細胞内のHBV cccDNAのコピー数(図14)を算出した。 In the same manner as in Example 1, the number of copies of HBV DNA in the culture medium (Fig. 13) and the number of copies of HBV cccDNA in the cell at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM (Fig. 14). ) Was calculated.
 PH-SP1-1およびPH-SP-4では、PH-7070に比べて、RNA濃度500nMでcccDNA比が減少していた。 In PH-SP1-1 and PH-SP-4, the cccDNA ratio decreased at an RNA concentration of 500 nM compared to PH-7070.
(実施例9)
培養液中HBV DNA、及び細胞内HBV cccDNA量に対する本発明品の活性評価
 導入したPshRNAは、以下の通りである。
(a) PH-7070(ネガティブコントロール)
(b) PH-HBV_264(ポジティブコントロール)
(c) PH-SOCS7-1
(d) PH-SOCS7-4
(Example 9)
Evaluation of the activity of the product of the present invention with respect to the amount of HBV DNA in the culture medium and the amount of intracellular HBV cccDNA The introduced PshRNA is as follows.
(a) PH-7070 (negative control)
(b) PH-HBV_264 (Positive Control)
(c) PH-SOCS7-1
(d) PH-SOCS7-4
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図15)、及び細胞内のHBV cccDNAのコピー数(図16)を算出した。 The number of copies of HBV DNA in the culture medium (Fig. 15) and the number of copies of HBV cccDNA in the cell at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM (Fig. 15) in the same manner as in Example 1 (Fig. 16). ) Was calculated.
 PH-SOCS7-1では、PH-7070に比べて、RNA濃度10nMおよび500nMにおいてcccDNA比が減少していた。PH-SOCS7-4では、PH-7070に比べて、対応するRNA濃度においてcccDNA比が減少していた。 In PH-SOCS7-1, the cccDNA ratio was reduced at RNA concentrations of 10 nM and 500 nM compared to PH-7070. PH-SOCS7-4 had a reduced cccDNA ratio at the corresponding RNA concentration compared to PH-7070.
(実施例10)
培養細胞数と培養の手順、及びHBV誘導方法の概要
 テトラサイクリン含有培地を使い、1ウェル毎に3.5 x 104 cells /well(100μLの培地、96 well plate)の細胞を播いた。20時間後、テトラサイクリン不含有培地に変更してHBV複製を開始した。72時間後、上清または細胞を回収した。
(Example 10)
Number of cultured cells, culture procedure, and outline of HBV induction method 3.5 x 10 4 cells / well (100 μL medium, 96 well plate) of cells were seeded per well using a tetracycline-containing medium. After 20 hours, the medium was changed to a tetracycline-free medium and HBV replication was started. After 72 hours, the supernatant or cells were collected.
培養液中HBV DNAに対する本発明品の活性評価
 導入したsiRNAは、以下のsiRNA及びネガティブコントロールの、scr-1583 dn: GAC GCG GUA CGG AGA Att(配列番号109)およびscr-1583 up: UUC UCC GUA CCG CGU Ctt(配列番号110)から成るsiRNAである。
Evaluation of activity of the product of the present invention against HBV DNA in culture medium The introduced siRNAs of the following siRNA and negative controls were scr-1583 dn: GAC GCG GUA CGG AGA Att (SEQ ID NO: 109) and scr-1583 up: UUC UCC GUA. It is an siRNA consisting of CCG CGU Ctt (SEQ ID NO: 110).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 これらのsiRNAを、Lipofectamin-RNAiMAXを用いたリバーストランスフェクション法により、Hep38.7細胞に導入し、3.0 x 104 cells /wellになるように100μLの培地を用いて96 well plateに播種した。それぞれのRNA濃度は、終濃度0.5 nM, 10 nM, 500 nMになるように調製した。具体的には、96well plateを用いて、それぞれのRNA濃度が5 nM, 100 nM, 5000 nMになるようにOPTI-MEMを用いて10μL調製し、別途調製したRNAiMAX 0.2μLとOPTI-MEM 9.8μLの混合液と混和し、室温で20分インキュベーションした。それぞれのウェルに、3.0x104 のHep38.7細胞を100μLのテトラサイクリン含有培地(400 ng/mL)に懸濁した細胞液を加え、翌日まで(約20hrs)37℃、5% CO2でインキュベーションを行った。培地を除去し、テトラサイクリン不含有培地を200μL添加して、HBV誘導反応開始し、37℃、5% CO2で72時間インキュベーションを続けた。 These siRNAs were introduced into Hep38.7 cells by reverse transfection using Lipofectamin-RNAiMAX and seeded on 96 well plates using 100 μL medium to a concentration of 3.0 x 10 4 cells / well. The RNA concentrations were adjusted to final concentrations of 0.5 nM, 10 nM, and 500 nM. Specifically, using a 96-well plate, 10 μL was prepared using OPTI-MEM so that the respective RNA concentrations were 5 nM, 100 nM, and 5000 nM, and separately prepared RNAiMAX 0.2 μL and OPTI-MEM 9.8 μL. Was mixed with the mixture of 1 and incubated at room temperature for 20 minutes. To each well, add the extracellular fluid in which 3.0 x 10 4 Hep 38.7 cells were suspended in 100 μL of tetracycline-containing medium (400 ng / mL), and incubate at 37 ° C. and 5% CO 2 until the next day (about 20 hrs). went. The medium was removed, 200 μL of tetracycline-free medium was added, an HBV-induced reaction was initiated, and incubation was continued at 37 ° C. and 5% CO 2 for 72 hours.
 実施例1と同様の方法で、それぞれのRNA終濃度0.5 nM, 10 nM, 500 nMにおける、培養液中のHBV DNAのコピー数(図17)を算出した。 The copy number of HBV DNA in the culture medium (FIG. 17) was calculated at the respective RNA final concentrations of 0.5 nM, 10 nM, and 500 nM by the same method as in Example 1.
 Si-0001及びsi0002では、ネガティブコントロールに比べて、RNA濃度0.5nM、10nMおよび500nMでHBVDNA比が減少していた。 In Si-0001 and si0002, the HBV DNA ratio decreased at RNA concentrations of 0.5 nM, 10 nM, and 500 nM as compared with the negative control.
 本発明の一本鎖核酸分子によれば、B型肝炎ウイルスDNAの増幅抑制が可能である。このため、本発明は、B型肝炎ウイルス遺伝子の発現が原因となる疾患、例えば、B型肝炎、肝硬変および肝臓がん等の治療剤として有効である。 According to the single-stranded nucleic acid molecule of the present invention, it is possible to suppress the amplification of hepatitis B virus DNA. Therefore, the present invention is effective as a therapeutic agent for diseases caused by the expression of hepatitis B virus gene, such as hepatitis B, liver cirrhosis and liver cancer.
 本出願は日本で出願された特願2019-215848(出願日:2019年11月28日)を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2019-215884 (filed on November 28, 2019) filed in Japan, the contents of which are all included in the present specification.

Claims (25)

  1.  配列番号67で表されるB型肝炎ウイルスゲノムDNAのヌクレオチド配列の、ヌクレオチド番号:(1)1550-1568または(2)59-77で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的ゲノムDNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、B型肝炎ウイルス遺伝子の発現抑制配列として含む、
     配列番号68で表されるヒトNCAPH遺伝子のmRNAをコードするヌクレオチド配列の、ヌクレオチド番号:(3)1427-1445(4)1878-1896または(5)3467-3485で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的DNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、ヒトNCAPH遺伝子の発現抑制配列として含む、
     配列番号69で表されるヒトSp1遺伝子のmRNAコードするヌクレオチド配列の、ヌクレオチド番号:(6)2141-2159または(7)2133-2151で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的DNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、ヒトSp1遺伝子の発現抑制配列として含む、または
     配列番号70で表されるヒトSOCS7遺伝子のmRNAコードするヌクレオチド配列の、ヌクレオチド番号:(8)2707-2725または(9)1621-1639で示されるヌクレオチド配列を含む連続する25ヌクレオチド以下の標的DNA配列中の、連続する15ヌクレオチド以上のヌクレオチド配列と相補的なヌクレオチド配列を、ヒトSOCS7遺伝子の発現抑制配列として含む、
    核酸分子。
    Consecutive 25 or less target genomic DNAs containing the nucleotide sequence of the hepatitis B viral genomic DNA represented by SEQ ID NO: 67, including the nucleotide sequence represented by nucleotide number: (1) 1550-1568 or (2) 59-77. A nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences in the sequence is included as an expression-suppressing sequence of the hepatitis B virus gene.
    Consecutive containing the nucleotide sequence represented by nucleotide number: (3) 1427-1445 (4) 1878-1896 or (5) 3467-3485 of the nucleotide sequence encoding the mRNA of the human NCAPH gene represented by SEQ ID NO: 68. A nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences in a target DNA sequence of 25 nucleotides or less is included as an expression-suppressing sequence of the human NCAPH gene.
    Consecutive 25 or less target DNA sequences containing the nucleotide sequence represented by nucleotide number: (6) 2141-2159 or (7) 2133-2151 of the mRNA-encoding nucleotide sequence of the human Sp1 gene represented by SEQ ID NO: 69. The nucleotide number of the nucleotide sequence of the mRNA-encoding nucleotide sequence of the human SOCS7 gene, which contains a nucleotide sequence complementary to a contiguous 15 or more nucleotide sequences as an expression-suppressing sequence of the human Sp1 gene, or is represented by SEQ ID NO: 70. : A nucleotide sequence complementary to a contiguous 15 or more nucleotide sequence in a contiguous 25 or less nucleotide target DNA sequence containing the nucleotide sequence shown in (8) 2707-2725 or (9) 1621-1639. Included as an expression-suppressing sequence of the SOCS7 gene,
    Nucleic acid molecule.
  2.  前記発現抑制配列が、
    (a)配列番号n(nは71~79から選ばれる整数)で表されるヌクレオチド配列(但し、該配列中、各UはTであってもよい)中の、連続する15ヌクレオチド以上のヌクレオチド配列、又は
    (b)配列番号n(nは71~79から選ばれる整数)で表されるヌクレオチド配列(但し、該配列中、各UはTであってもよい)を含み、かつ配列番号67、68、69または70で表されるDNAのヌクレオチド配列と完全相補的な25ヌクレオチド以下の配列中の、連続する15ヌクレオチド以上のヌクレオチド配列である、請求項1に記載の核酸分子。
    The expression-suppressing sequence
    (A) Consecutive 15 or more nucleotides in the nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) (wherein each U may be T in the sequence). A sequence or (b) a nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) (wherein each U may be T in the sequence), and SEQ ID NO: 67. The nucleic acid molecule according to claim 1, which is a contiguous 15 or more nucleotide sequences in a sequence of 25 nucleotides or less that is completely complementary to the nucleotide sequence of DNA represented by 68, 69 or 70.
  3.  前記(b)の25ヌクレオチド以下の配列が、
     (配列番号1) 5'- GAAGAUGAGAAGGCACAGACG -3'
     (配列番号2) 5'- UCCUGAACUGGAGCCACCAGC -3'
     (配列番号3) 5'- GUUUUCUGAUUGGGAAGGAGC -3'
     (配列番号4) 5'- CUAAUCCUUGGGCUUCUGGAG -3'
     (配列番号5) 5'- UAUACUUCACUGCUUCUGGCC -3'
     (配列番号6) 5'- CCUGUGUGUGUACGUUUGUGC -3'
     (配列番号7) 5'- UGUACGUUUGUGCCUCUGUAG -3'
     (配列番号8) 5'- CCUUUCUCUCCUGCUCCUACA -3'または
     (配列番号9) 5'- GCUUCAUCUCUGCAUCUUCCC -3'
    である、請求項2に記載の核酸分子。
    The sequence of 25 nucleotides or less in (b) above
    (SEQ ID NO: 1) 5'-GAAGAUGAGAAGGCACAGACG -3'
    (SEQ ID NO: 2) 5'-UCCUGAACUGGAGCCACCAGC -3'
    (SEQ ID NO: 3) 5'-GUUUUCUGAUUGGGAAGGAGC -3'
    (SEQ ID NO: 4) 5'-CUAAUCCUUGGGCUUCUGGAG -3'
    (SEQ ID NO: 5) 5'-UAUACUUCACUGCUUCUGGCC -3'
    (SEQ ID NO: 6) 5'-CCUGUGUGUGUACGUUUGUGC -3'
    (SEQ ID NO: 7) 5'-UGUACGUUUGUGCCUCUGUAG -3'
    (SEQ ID NO: 8) 5'-CCUUUCUCUCCUGCUCCUACA -3'or (SEQ ID NO: 9) 5'-GCUUCAUCUCUGCAUCUUCCC -3'
    The nucleic acid molecule according to claim 2.
  4.  前記発現抑制配列に相補的なヌクレオチド配列をさらに含む、請求項1~3のいずれか1項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 3, further comprising a nucleotide sequence complementary to the expression-suppressing sequence.
  5.  前記相補的なヌクレオチド配列が、
    (c)配列番号n+9(nは71~79から選ばれる整数)で表されるヌクレオチド配列中の、前記(a)のヌクレオチド配列と完全相補的なヌクレオチド配列(但し、GとUとの対合は相補的とみなす)、又は
    (d)配列番号p(pは1~9から選ばれる整数)で表されるヌクレオチド配列中の、前記(b)のヌクレオチド配列と完全相補的なヌクレオチド配列(但し、GとUとの対合は相補的とみなす)
    である、請求項3に記載の核酸分子。
    The complementary nucleotide sequence
    (C) In the nucleotide sequence represented by SEQ ID NO: n + 9 (n is an integer selected from 71 to 79), the nucleotide sequence completely complementary to the nucleotide sequence of (a) above (provided that G and U are used). The pairing is considered to be complementary), or (d) a nucleotide sequence that is completely complementary to the nucleotide sequence of (b) above in the nucleotide sequence represented by SEQ ID NO: p (p is an integer selected from 1 to 9). (However, the pairing of G and U is regarded as complementary)
    The nucleic acid molecule according to claim 3.
  6.  配列番号n(nは71~79から選ばれる整数)で表されるヌクレオチド配列と、配列番号n+9で表されるヌクレオチド配列とを含む、あるいは、配列番号p(pは1~9から選ばれる整数)で表されるヌクレオチド配列と、配列番号p+9:
     (配列番号10) 5'- CGUCUGUGCCUUCUCAUCUUC -3'
     (配列番号11) 5'- GCUGGUGGCUCCAGUUCAGGA -3'
     (配列番号12) 5'- GCUCCUUCCCAAUCAGAAAAC -3'
     (配列番号13) 5'- CUCCAGAAGCCCAAGGAUUAG -3'
     (配列番号14) 5'- GGCCAGAAGCAGUGAAGUAUA -3'
     (配列番号15) 5'- GCACAAACGUACACACACAGG -3'
     (配列番号16) 5'- CUACAGAGGCACAAACGUACA -3'
     (配列番号17) 5'- UGUAGGAGCAGGAGAGAAAGG -3'または
     (配列番号18) 5'- GGGAAGAUGCAGAGAUGAAGC -3'
    で表されるヌクレオチド配列とを含む、請求項4又は5に記載の核酸分子。
    Containing a nucleotide sequence represented by SEQ ID NO: n (n is an integer selected from 71 to 79) and a nucleotide sequence represented by SEQ ID NO: n + 9, or SEQ ID NO: p (p is selected from 1 to 9). Nucleotide sequence represented by (integer) and SEQ ID NO: p + 9:
    (SEQ ID NO: 10) 5'-CGUCUGUGCCUUCUCAUCUUC -3'
    (SEQ ID NO: 11) 5'-GCUGGUGGCUCCAGUUCAGGA -3'
    (SEQ ID NO: 12) 5'-GCUCCUUCCCAAUCAGAAAAC -3'
    (SEQ ID NO: 13) 5'-CUCCAGAAGCCCAAGGAUUAG -3'
    (SEQ ID NO: 14) 5'-GGCCAGAAGCAGUGAAGUAUA -3'
    (SEQ ID NO: 15) 5'-GCACAAACGUACACACACAGG -3'
    (SEQ ID NO: 16) 5'-CUACAGAGGCACAAACGUACA -3'
    (SEQ ID NO: 17) 5'-UGUGAGGAGCAGGAGAGAAAGG -3'or (SEQ ID NO: 18) 5'-GGGAGAGAUGCAGAGAUGAAGC -3'
    The nucleic acid molecule of claim 4 or 5, comprising the nucleotide sequence represented by.
  7.  B型肝炎ウイルス遺伝子、ヒトNCAPH遺伝子、ヒトSp1遺伝子、またはヒトSOCS7遺伝子に対するsiRNAである、請求項4~6のいずれか1項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 4 to 6, which is siRNA for a hepatitis B virus gene, a human NCAPH gene, a human Sp1 gene, or a human SOCS7 gene.
  8.  前記siRNAが、一方もしくは両方の鎖に3’-オーバーハングを有する、請求項7に記載の核酸分子。 The nucleic acid molecule according to claim 7, wherein the siRNA has a 3'-overhang on one or both strands.
  9.  配列番号m(mは89~98から選ばれる整数)で表されるヌクレオチド配列と、該配列にアニーリングした配列番号m+9で表されるヌクレオチド配列とからなる、請求項8に記載の核酸分子。__ The nucleic acid molecule according to claim 8, which comprises a nucleotide sequence represented by SEQ ID NO: m (m is an integer selected from 89 to 98) and a nucleotide sequence represented by SEQ ID NO: m + 9, which is annealed to the sequence. .. __
  10.  B型肝炎ウイルスDNAの増幅を抑制する一本鎖核酸分子であって、
    領域(X)、リンカー領域(Lx)および領域(Xc)のみからなり、
    前記リンカー領域(Lx)が、ピロリジン骨格およびピペリジン骨格の少なくとも一方を含む非ヌクレオチド構造を有し、
    前記領域(X)および前記領域(Xc)の一方が、下記配列番号1および2:
     (配列番号1) 5'- GAAGAUGAGAAGGCACAGACG -3'
     (配列番号2) 5'- UCCUGAACUGGAGCCACCAGC -3'
    で表されるB型肝炎ウイルス遺伝子の一部に相補的な配列、ならびに下記配列番号3から5:
     (配列番号3) 5'- GUUUUCUGAUUGGGAAGGAGC -3'
     (配列番号4) 5'- CUAAUCCUUGGGCUUCUGGAG -3'
     (配列番号5) 5'- UAUACUUCACUGCUUCUGGCC -3'
    で表されるヒトNCAPH遺伝子の一部に相補的な配列、ならびに下記配列番号6および7:
     (配列番号6) 5'- CCUGUGUGUGUACGUUUGUGC -3'
     (配列番号7) 5'- UGUACGUUUGUGCCUCUGUAG -3'
    で表されるヒトSp1遺伝子の一部に相補的な配列、ならびに下記配列番号8および9:
     (配列番号8) 5'- CCUUUCUCUCCUGCUCCUACA -3'
     (配列番号9) 5'- GCUUCAUCUCUGCAUCUUCCC -3'
    で表されるヒトSOCS7遺伝子の一部に相補的な配列から選ばれるいずれかのヌクレオチド配列中の、連続する少なくとも18ヌクレオチドからなるヌクレオチド配列を含む発現抑制配列を含み、
    他方が、該発現抑制配列と相補的なヌクレオチド配列を含む、請求項1に記載の核酸分子。
    A single-stranded nucleic acid molecule that suppresses the amplification of hepatitis B virus DNA.
    Consists of region (X), linker region (Lx) and region (Xc) only
    The linker region (Lx) has a non-nucleotide structure containing at least one of a pyrrolidine skeleton and a piperidine skeleton.
    One of the region (X) and the region (Xc) has the following SEQ ID NOs: 1 and 2:
    (SEQ ID NO: 1) 5'-GAAGAUGAGAAGGCACAGACG -3'
    (SEQ ID NO: 2) 5'-UCCUGAACUGGAGCCACCAGC -3'
    A sequence complementary to a part of the hepatitis B virus gene represented by, and SEQ ID NOs: 3 to 5:
    (SEQ ID NO: 3) 5'-GUUUUCUGAUUGGGAAGGAGC -3'
    (SEQ ID NO: 4) 5'-CUAAUCCUUGGGCUUCUGGAG -3'
    (SEQ ID NO: 5) 5'-UAUACUUCACUGCUUCUGGCC -3'
    A sequence complementary to a part of the human NCAPH gene represented by, and SEQ ID NOs: 6 and 7:
    (SEQ ID NO: 6) 5'-CCUGUGUGUGUACGUUUGUGC -3'
    (SEQ ID NO: 7) 5'-UGUACGUUUGUGCCUCUGUAG -3'
    A sequence complementary to a part of the human Sp1 gene represented by, and SEQ ID NOs: 8 and 9:
    (SEQ ID NO: 8) 5'-CCUUUCUCUCCUGCUCCUACA -3'
    (SEQ ID NO: 9) 5'-GCUUCAUCUCUGCAUCUUCCC -3'
    Contains an expression-suppressing sequence containing a nucleotide sequence consisting of at least 18 consecutive nucleotides in any of the nucleotide sequences selected from sequences complementary to a part of the human SOCS7 gene represented by.
    The nucleic acid molecule according to claim 1, wherein the other is a nucleotide sequence complementary to the expression-suppressing sequence.
  11.  領域(X)、リンカー領域(Lx)および領域(Xc)が、3’側から5’側にかけてこの順序で配置され、前記領域(X)の塩基数(X)および前記領域(Xc)の塩基数(Xc)が、下記式(1)または式(2)の条件を満たす、請求項10記載の核酸分子。
       X>Xc ・・・(1)
       X=Xc ・・・(2)
    The region (X), the linker region (Lx) and the region (Xc) are arranged in this order from the 3'side to the 5'side, and the number of bases (X) in the region (X) and the bases in the region (Xc) are arranged. The nucleic acid molecule according to claim 10, wherein the number (Xc) satisfies the condition of the following formula (1) or formula (2).
    X> Xc ・ ・ ・ (1)
    X = Xc ・ ・ ・ (2)
  12.  前記領域(X)の塩基数(X)および前記領域(Xc)の塩基数(Xc)が、下記式(3)の条件を満たす、請求項11記載の核酸分子。
       X-Xc=1、2または3 ・・・(3)
    The nucleic acid molecule according to claim 11, wherein the number of bases (X) in the region (X) and the number of bases (Xc) in the region (Xc) satisfy the condition of the following formula (3).
    X-Xc = 1, 2 or 3 ・ ・ ・ (3)
  13.  前記領域(Xc)の塩基数(Xc)が、19塩基~30塩基である、請求項10から12のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 10 to 12, wherein the number of bases (Xc) in the region (Xc) is 19 to 30 bases.
  14.  前記リンカー領域(Lx)が、下記式(I)で表わされる、請求項10から13のいずれか一項に記載の核酸分子。
    Figure JPOXMLDOC01-appb-C000001
    前記式中、
    X1およびX2は、それぞれ独立して、H2、O、SまたはNHであり;
    Y1およびY2は、それぞれ独立して、単結合、CH2、NH、OまたはSであり;
    R3は、環A上のC-3、C-4、C-5またはC-6に結合する水素原子または置換基であり;
    L1は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORa、NH2、NHRa、NRaRb、SH、もしくはSRaで置換されても置換されていなくてもよく、または、
    L1は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
    ただし、Y1が、NH、OまたはSの場合、Y1に結合するL1の原子は炭素であり、OR1に結合するL1の原子は炭素であり、酸素原子同士は隣接せず;
    L2は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、ORc、NH2、NHRc、NRcRd、SHもしくはSRcで置換されても置換されていなくてもよく、または、
    L2は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
    ただし、Y2が、NH、OまたはSの場合、Y2に結合するL2の原子は炭素であり、OR2に結合するL2の原子は炭素であり、酸素原子同士は隣接せず;
    Ra、Rb、RcおよびRdは、それぞれ独立して、置換基または保護基であり;
    lは、1または2であり;
    mは、0~30の範囲の整数であり;
    nは、0~30の範囲の整数であり;
    環Aは、前記環A上のC-2以外の1個の炭素原子が、窒素、酸素または硫黄で置換されてもよく、
    前記環A内に、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよく、前記領域(Xc)および前記領域(X)は、それぞれ、-OR1-または-OR2-を介して、前記リンカー領域(Lx)に結合し、
    ここで、R1およびR2は、存在しても存在しなくてもよく、存在する場合、R1およびR2は、それぞれ独立して、ヌクレオチド残基または前記構造(I)である。
    The nucleic acid molecule according to any one of claims 10 to 13, wherein the linker region (Lx) is represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    In the above formula,
    X 1 and X 2 are independently H 2 , O, S or NH;
    Y 1 and Y 2 are independently single bonds, CH 2 , NH, O or S;
    R 3 is a hydrogen atom or substituent attached to C-3, C-4, C-5 or C-6 on ring A;
    L 1 is an alkylene chain consisting of n atoms, where the hydrogen atom on the alkylene carbon atom is replaced with OH, OR a , NH 2 , NHR a , NR a R b , SH, or SR a. It may or may not have been replaced, or
    L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with oxygen atoms.
    However, if Y 1 is NH, O or S, the atom of L 1 bonded to Y 1 is carbon, the atom of L 1 bonded to OR 1 is carbon, and the oxygen atoms are not adjacent to each other;
    L 2 is an alkylene chain consisting of m atoms, where the hydrogen atom on the alkylene carbon atom is replaced by OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c. It does not have to be replaced, or
    L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are replaced with oxygen atoms.
    However, if Y 2 is NH, O or S, the atom of L 2 bonded to Y 2 is carbon, the atom of L 2 bonded to OR 2 is carbon, and the oxygen atoms are not adjacent to each other;
    R a , R b , R c and R d are independent substituents or protecting groups;
    l is 1 or 2;
    m is an integer in the range 0-30;
    n is an integer in the range 0-30;
    In ring A, one carbon atom other than C-2 on the ring A may be replaced with nitrogen, oxygen or sulfur.
    A carbon-carbon double bond or a carbon-nitrogen double bond may be contained in the ring A, and the region (Xc) and the region (X) are via -OR 1- or -OR 2-, respectively. To bind to the linker region (Lx)
    Here, R 1 and R 2 may or may not be present, and if present, R 1 and R 2 are independently nucleotide residues or the structure (I), respectively.
  15.  前記リンカー領域(Lx)が、下記式(I-4a)または(I-6a)で表わされる、請求項10から14のいずれか一項に記載の核酸分子。
    Figure JPOXMLDOC01-appb-C000002
    The nucleic acid molecule according to any one of claims 10 to 14, wherein the linker region (Lx) is represented by the following formula (I-4a) or (I-6a).
    Figure JPOXMLDOC01-appb-C000002
  16.  RNA分子である、請求項10から15のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 10 to 15, which is an RNA molecule.
  17.  少なくとも1つの修飾された残基を含む、請求項10から16のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 10 to 16, which comprises at least one modified residue.
  18.  標識物質を含む、請求項10から17のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 10 to 17, which comprises a labeling substance.
  19.  安定同位体を含む、請求項10から18のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 10 to 18, which contains a stable isotope.
  20.  塩基数の合計が、38塩基以上である、請求項10から19のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 10 to 19, wherein the total number of bases is 38 bases or more.
  21.  下記配列番号19から27、29、36、49、53、54で表されるいずれかの塩基配列からなる、請求項10から20のいずれか一項に記載の核酸分子。
    (配列番号19)
     5’- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3’
    (配列番号20)
     5’- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3’
    (配列番号21)
     5’- GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3’
    (配列番号22)
     5’- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3’
    (配列番号23)
     5’- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3’
    (配列番号24)
     5’- GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3’
    (配列番号25)
     5’- CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3’
    (配列番号26)
     5’- UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3’
    (配列番号27)
     5’- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3’
    (配列番号29)
     5’- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3’
    (配列番号36)
     5’- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3’
    (配列番号49)
     5’- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3’
    (配列番号53)
     5’- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3’
    (配列番号54)
     5’- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3’
    The nucleic acid molecule according to any one of claims 10 to 20, which comprises any of the base sequences represented by the following SEQ ID NOs: 19 to 27, 29, 36, 49, 53 and 54.
    (SEQ ID NO: 19)
    5'- CGUCUGUGCCUUCUCAUCUUCCC-Lx-GGGAAGAUGAGAAGGCACAGACGGG -3'
    (SEQ ID NO: 20)
    5'- GCUGGUGGCUCCAGUUCAGGACC-Lx-GGUCCUGAACUGGAGCCACCAGCAG -3'
    (SEQ ID NO: 21)
    5'-GCUCCUUCCCAAUCAGAAAACCC-Lx-GGGUUUUCUGAUUGGGAAGGAGCAU -3'
    (SEQ ID NO: 22)
    5'- CUCCAGAAGCCCAAGGAUUAGCC-Lx-GGCUAAUCCUUGGGCUUCUGGAGUG -3'
    (SEQ ID NO: 23)
    5'- GGCCAGAAGCAGUGAAGUAUACC-Lx-GGUAUACUUCACUGCUUCUGGCCUA -3'
    (SEQ ID NO: 24)
    5'-GCACAAACGUACACACACAGGCC-Lx-GGCCUGUGUGUGUACGUUUGUGCCU -3'
    (SEQ ID NO: 25)
    5'-CUACAGAGGCACAAACGUACACC-Lx-GGUGUACGUUUGUGCCUCUGUAGCU -3'
    (SEQ ID NO: 26)
    5'-UGUAGGAGCAGGAGAGAAAGGCC-Lx-GGCCUUUCUCUCCUGCUCCUACAAC -3'
    (SEQ ID NO: 27)
    5'- GGGAAGAUGCAGAGAUGAAGCCC-Lx-GGGCUUCAUCUCUGCAUCUUCCCAA -3'
    (SEQ ID NO: 29)
    5'- CGUCUGUGCCUUCUCAUCUUCU-Lx-AGAAGAUGAGAAGGCACAGACGGG -3'
    (SEQ ID NO: 36)
    5'- CGUCUGUGCCUUCUCAUCUUCAU-Lx-AUGAAGAUGAGAAGGCACAGACGGG -3'
    (SEQ ID NO: 49)
    5'- CGUCUGUGCCUUCUCAUCUGCU-Lx-AGCAGAUGAGAAGGCACAGACGGG -3'
    (SEQ ID NO: 53)
    5'- CGUCUGUGCCUUCUCAUCUGCAU-Lx-AUGCAGAUGAGAAGGCACAGACGGG -3'
    (SEQ ID NO: 54)
    5'- CGUCUGUGCCUUCUCAUCUGCCC-Lx-GGGCAGAUGAGAAGGCACAGACGGG -3'
  22.  請求項1から21のいずれか一項に記載の核酸分子を含む、B型肝炎ウイルス遺伝子DNAの増幅抑制剤。 An amplification inhibitor for hepatitis B virus gene DNA containing the nucleic acid molecule according to any one of claims 1 to 21.
  23.  請求項1から21のいずれか一項に記載の核酸分子を含む医薬。 A drug containing the nucleic acid molecule according to any one of claims 1 to 21.
  24.  請求項1から21のいずれか一項に記載の核酸分子を含む、B型肝炎の治療剤。 A therapeutic agent for hepatitis B containing the nucleic acid molecule according to any one of claims 1 to 21.
  25.  請求項1から21のいずれか一項に記載の核酸分子を含む、肝硬変または肝臓がんの治療剤。 A therapeutic agent for liver cirrhosis or liver cancer, which comprises the nucleic acid molecule according to any one of claims 1 to 21.
PCT/JP2020/044231 2019-11-28 2020-11-27 Nucleic acid molecule for hepatitis b treatment use WO2021107097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-215848 2019-11-28
JP2019215848 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021107097A1 true WO2021107097A1 (en) 2021-06-03

Family

ID=76130583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044231 WO2021107097A1 (en) 2019-11-28 2020-11-27 Nucleic acid molecule for hepatitis b treatment use

Country Status (1)

Country Link
WO (1) WO2021107097A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039955A (en) * 1996-07-01 2000-03-21 Larreacorp, Ltd. Nontoxic extract of Larrea tridentata and method of making the same
JP2008522951A (en) * 2004-07-19 2008-07-03 ベイラー・カレツジ・オブ・メデイシン Regulation of cytokine signaling regulators and application for immunotherapy
US20130267575A1 (en) * 2012-03-07 2013-10-10 The Texas A&M University System Cancer treatment targeting non-coding rna overexpression
WO2013159109A1 (en) * 2012-04-20 2013-10-24 Isis Pharmaceuticals, Inc. Modulation of hepatitis b virus (hbv) expression
JP2014513954A (en) * 2011-04-21 2014-06-19 アイシス ファーマシューティカルズ, インコーポレーテッド Regulation of hepatitis B virus (HBV) expression
CN107050469A (en) * 2017-01-18 2017-08-18 中国科学院昆明动物研究所 The purposes of people's NCAPH genes
JP2017534290A (en) * 2014-11-10 2017-11-24 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Hepatitis D virus (HDV) iRNA composition and method of use thereof
JP2018520685A (en) * 2015-07-17 2018-08-02 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. Composition and drug for hepatitis B virus and use thereof
WO2018195165A1 (en) * 2017-04-18 2018-10-25 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (hbv) infection
WO2018199338A1 (en) * 2017-04-27 2018-11-01 国立大学法人広島大学 Nucleic acid molecule for treatment of hepatitis b
WO2019128611A1 (en) * 2017-12-29 2019-07-04 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
CN110496222A (en) * 2019-09-27 2019-11-26 中国科学院昆明动物研究所 The purposes of people's NCAPH gene

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039955A (en) * 1996-07-01 2000-03-21 Larreacorp, Ltd. Nontoxic extract of Larrea tridentata and method of making the same
JP2008522951A (en) * 2004-07-19 2008-07-03 ベイラー・カレツジ・オブ・メデイシン Regulation of cytokine signaling regulators and application for immunotherapy
JP2014513954A (en) * 2011-04-21 2014-06-19 アイシス ファーマシューティカルズ, インコーポレーテッド Regulation of hepatitis B virus (HBV) expression
US20130267575A1 (en) * 2012-03-07 2013-10-10 The Texas A&M University System Cancer treatment targeting non-coding rna overexpression
WO2013159109A1 (en) * 2012-04-20 2013-10-24 Isis Pharmaceuticals, Inc. Modulation of hepatitis b virus (hbv) expression
JP2017534290A (en) * 2014-11-10 2017-11-24 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Hepatitis D virus (HDV) iRNA composition and method of use thereof
JP2018520685A (en) * 2015-07-17 2018-08-02 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. Composition and drug for hepatitis B virus and use thereof
CN107050469A (en) * 2017-01-18 2017-08-18 中国科学院昆明动物研究所 The purposes of people's NCAPH genes
WO2018195165A1 (en) * 2017-04-18 2018-10-25 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (hbv) infection
WO2018199338A1 (en) * 2017-04-27 2018-11-01 国立大学法人広島大学 Nucleic acid molecule for treatment of hepatitis b
WO2019128611A1 (en) * 2017-12-29 2019-07-04 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
CN110496222A (en) * 2019-09-27 2019-11-26 中国科学院昆明动物研究所 The purposes of people's NCAPH gene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GE, DONGXIA ET AL.: "LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to IL -6-induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling", THE PROSTATE, vol. 72, 2012, pages 1306 - 1316, XP055391181, DOI: 10.1002/pros.22479 *
VERRIER, ELOI R. ET AL.: "A dual screening approach identifies estrogen receptor 1 as a host factor for hepatitis delta virus infection and a target for antiviral therapy", HEPATOLOGY, vol. 64, no. 1, 2016, pages 302A - 303A *

Similar Documents

Publication Publication Date Title
TWI527901B (en) A single stranded nucleic acid molecule used to control gene expression
WO2018199338A1 (en) Nucleic acid molecule for treatment of hepatitis b
WO2015093495A1 (en) Single-stranded nucleic acid molecule for controlling expression of tgf-β1 gene
JP2017079776A (en) SINGLE-STRANDED RNAi AGENTS CONTAINING AN INTERNAL NON-NUCLEIC ACID SPACER
JP6882741B2 (en) Single-stranded nucleic acid molecule that suppresses the expression of prorenin gene or prorenin receptor gene and its use
WO2013133393A1 (en) Single-stranded nucleic acid molecule for inhibiting vegf gene expression
CN110996969B (en) Therapeutic agent for fibrotic diseases
WO2021241040A1 (en) Nucleic acid molecule inhibiting sars-cov-2 gene expression and use thereof
WO2021107097A1 (en) Nucleic acid molecule for hepatitis b treatment use
WO2021132648A1 (en) Antisense oligonucleotide for inhibiting recql expression, and application for same
WO2013147140A1 (en) Nucleic acid molecule capable of inhibiting expression of periostin gene, method for inhibiting expression of periostin gene, and use of said nucleic acid molecule
JP7241098B2 (en) Anti-fibrosis agent
JP2017046596A (en) SINGLE-STRANDED NUCLEIC ACID MOLECULE FOR REGULATION OF TGF-β1 GENE EXPRESSION
JP7427227B2 (en) KRAS antisense oligonucleotide that reduces tumor cell survival and its uses
WO2021132660A1 (en) SINGLE-STRANDED NUCLEIC ACID MOLECULE FOR SUPPRESSING EXPRESSION OF TGF-β1 GENE
JP2018191580A (en) NUCLEIC ACID MOLECULE FOR INHIBITING FUNCTIONS OF U11 snRNA AND USE THEREFOR
US10337009B2 (en) Single-stranded nucleic acid molecule for inhibiting TGF-β1 expression
JP2020198784A (en) Nucleic acid molecule for regulating immune function and use thereof
JP2021112174A (en) Dffa antisense oligonucleotides that reduce tumor cell survival and uses thereof
WO2020009151A1 (en) Oligonucleotides for controlling tau splicing, and uses thereof
JP2022541984A (en) EPH2A aptamers and uses thereof
JP2014140341A (en) Nucleic acid molecule for inhibiting expression of rpn2 gene, method for repressing expression of rpn2 gene, and use thereof
JP2015182988A (en) EXPRESSION INHIBITOR OF NF-κB RELA GENE, PHARMACEUTICALS FOR ALLERGIC DERMATITIS AND APPLICATIONS THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP