WO2021132648A1 - Antisense oligonucleotide for inhibiting recql expression, and application for same - Google Patents

Antisense oligonucleotide for inhibiting recql expression, and application for same Download PDF

Info

Publication number
WO2021132648A1
WO2021132648A1 PCT/JP2020/048964 JP2020048964W WO2021132648A1 WO 2021132648 A1 WO2021132648 A1 WO 2021132648A1 JP 2020048964 W JP2020048964 W JP 2020048964W WO 2021132648 A1 WO2021132648 A1 WO 2021132648A1
Authority
WO
WIPO (PCT)
Prior art keywords
recql
nucleotide sequence
nucleotide
cells
seq
Prior art date
Application number
PCT/JP2020/048964
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 秀昭
高尾 鈴木
香代子 山田
Original Assignee
ルクサナバイオテク株式会社
株式会社ジーンケア研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルクサナバイオテク株式会社, 株式会社ジーンケア研究所 filed Critical ルクサナバイオテク株式会社
Publication of WO2021132648A1 publication Critical patent/WO2021132648A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a novel antisense oligonucleotide capable of strongly inhibiting the expression of RecQ-like helicase-1 (hereinafter referred to as "RECQL" in the present specification) and its use. More specifically, the present invention presents an antisense nucleotide that hybridizes with a specific region of RECQL mRNA and inhibits its expression, as well as inhibition of RECQL expression using the same, suppression of proliferation of cells that highly express RECQL, and / Or related to cell death induction, cancer treatment and / or prevention, etc.
  • RECQL RecQ-like helicase-1
  • DNA helicase is an enzyme that has the activity of unwinding double-stranded DNA into a single strand.
  • the RecQ helicase family which shows homology with the E. coli RecQ gene product, is ubiquitous from microorganisms to higher animals and plants, and it has been suggested that it plays an important role in maintaining the stabilization of the genome.
  • RECQL, WRN, BLM, RTS, and RecQ5 have been identified, of which abnormalities in WRN, BLM, and RTS are known to cause autosomal recessive inheritance with progeria and frequent cancers. ing.
  • RECQL and RecQ5 have not been reported to be associated with genetic diseases, and have not played a leading role in helicase research so far.
  • RECQL is highly expressed in cancer cells and actively proliferating cells, while its expression level is low in telogen cells.
  • Futami et al. Show that inhibition of RECQL expression by siRNA causes mitotic catastrophe in many cancer cells, and that administration of RECQL siRNA to cancer-bearing model animals shows remarkable antitumor activity. Found (see, eg, Patent Documents 1 and 2). It is thought that these are because the cell cycle progresses without the DNA damage caused by DNA replication being repaired by RECQL, and as a result, it reaches the M phase and causes mitotic death. They also report that RNAi activity is enhanced by modifying nucleotides at specific positions constituting RECQL siRNA, such as 2'-methoxyation (Patent Document 3).
  • IONIS of the United States has an antisense oligonucleotide that targets RECQL mRNA or primary transcript (hereinafter sometimes abbreviated as "ASO"), especially with a central gap region consisting of 10 DNAs.
  • a "5-10-5" type gapmer ASO consisting of 5'- and 3'-wing regions consisting of 5 nucleotides adjacent to each other, with 2'-nucleotides in both wing regions.
  • ASO modified with O-methoxyethyl (2'-MOE) and all nucleoside linkages replaced with phosphorothioate (PS) binding was comprehensively synthesized for the RECQL gene sequence to express the RECQL gene.
  • a specific ASO group that significantly decreases has been identified (Patent Document 4).
  • the conventional RECQL target 2'-MOE-modified ASO is insufficiently effective in terms of RECQL expression inhibitory activity and in vivo stability, and may require high-dose administration to achieve a therapeutic effect. However, it may cause adverse events from ASO chemistry. Therefore, the development of ASO for RECQL, which is more powerful and stable, is desired.
  • an object of the present invention is to provide an ASO for RECQL which is superior in RECQL expression inhibitory activity and / or in vivo stability to a conventionally known 2'-MOE-modified ASO, and the RECQL gene is used using the ASO. It is to provide a novel means for treating and / or preventing hyperproliferative diseases such as cancer by inhibiting the expression of.
  • 2', 4'-crosslink modified ASO showed higher RECQL expression inhibitory activity than 2'-MOE modified ASO when the target regions overlapped. Based on these findings, we found that 2', 4'-crosslink-modified ASOs targeting specific regions of RECQL mRNA have high RECQL expression inhibitory activity and low in vivo stability and / or low. Since it has toxicity, it is concluded that it can be a therapeutic and / or preventive agent for hyperproliferative diseases such as cancer accompanied by overexpression of RECQL, and the present invention has been completed.
  • a single-stranded oligonucleotide that inhibits the expression of the RECQL gene consist of the nucleotide sequence represented by SEQ ID NO: 1. Containing a nucleotide sequence complementary to 10 or more contiguous nucleotide sequences in a target region consisting of any of the nucleotide sequences selected from the group consisting of The length of the single-stranded oligonucleotide is 10 to 30 nucleotides.
  • the sugar moiety of at least one nucleoside constituting the single-stranded oligonucleotide is modified by cross-linking between the 2'position and the 4'position of the sugar.
  • the target region is the 356 to 370th, 836 to 851st, 1100 to 1114th, 1312-1328th, 2753 to 2964th, 3157 to 3274th and 3386th to the nucleotide sequence represented by SEQ ID NO: 1.
  • the single-stranded oligonucleotide according to [1] which comprises any nucleotide sequence selected from the group consisting of the 3663th nucleotide sequence and a nucleotide sequence in the vicinity thereof.
  • the target region is selected from the group consisting of the 836 to 851th, 1100 to 1114th, 1312 to 1328th, 2753 to 2769th, and 2950 to 3663th nucleotide sequences in the nucleotide sequence represented by SEQ ID NO: 1.
  • the single-stranded oligonucleotide according to [1] which comprises one of the nucleotide sequences to be used and a nucleotide sequence in the vicinity thereof.
  • the target region is the 356 to 370th, 836 to 851st, 1100 to 1114th, 1312-1328th, 2753 to 2769th, 2814 to 2828th, 2950 to the nucleotide sequence represented by SEQ ID NO: 1.
  • each nucleoside constituting the region (3) is not sugar-modified, and the sugar portion of at least one nucleoside constituting the regions (1) and (2) is at the 4'position and the 2'position of the sugar.
  • Modified by cross-linking between Region (1) and region (2) are 2-5 nucleotides in length and region (3) is 7-10 nucleotides in length.
  • the single-stranded oligonucleotide according to any one of [1] to [4].
  • [6] The one according to any one of [1] to [5], wherein the modification by cross-linking between the 4'-position and the 2'-position of the sugar is selected from the group consisting of LNA, AmNA, GuNA and ScpBNA. Main chain oligonucleotide.
  • [7] The single-stranded oligonucleotide according to any one of [1] to [6], wherein at least one of the bonds between adjacent nucleosides is a phosphorothioate bond.
  • [8] The single-stranded oligonucleotide according to any one of [1] to [7], which has a nucleotide length of 15.
  • [9] The single-stranded oligonucleotide according to any one of [1] to [8], which comprises a nucleotide sequence represented by any of the SEQ ID NOs: selected from the group consisting of SEQ ID NOs: 2 to 20.
  • the agent according to [10] which suppresses the proliferation of cells highly expressing RECQL and / or induces cell death.
  • the agent according to [10] or [11] which is used for treating and / or preventing cancer.
  • [15] A method for inhibiting the expression of RECQL, which comprises contacting a subject with high expression of RECQL with the single-stranded oligonucleotide according to any one of [1] to [9].
  • [16] Suppressing the proliferation of RECQL-expressing cells and / or cells, including contacting RECQL-expressing cells with the single-stranded oligonucleotide according to any one of [1] to [9]. How to induce death.
  • a method for treating and / or preventing hyperproliferative diseases which comprises administering an effective amount of the single-stranded oligonucleotide according to any one of [1] to [9] to a mammal.
  • the expression of the RECQL gene can be strongly and stably inhibited, the dose, the number of administrations, and the production cost can be reduced, and the expression of adverse events can be suppressed while suppressing the expression of the RECQL gene.
  • highly expressed cells eg, cancer cells
  • cell death it becomes possible to treat and prevent hyperproliferative diseases such as cancer.
  • FIG. 1 It is a figure which shows the expression inhibitory effect of RECQL mRNA when various antisense oligonucleotides (ASO) (20 nM) designed for RECQL mRNA are introduced into cancer cells by the lipofection method.
  • the expression level of RECQL mRNA is shown as a relative value with the expression level in the control without ASO introduced as 1.
  • ASO antisense oligonucleotide
  • inhibiting the expression of the RECQL gene means that, as a result, when ASO and cells are brought into contact with each other, the expression level of RECQL protein is reduced and the activity of RECQL helicase is increased as compared with the case where ASO is not brought into contact with cells. It is used in the sense of including any aspect of reducing, and includes, for example, degradation of a target RNA by RNase H (eg, by gapmer) and inhibition of protein synthesis by specific and stable hybrid formation with the target RNA.
  • RNase H eg, by gapmer
  • the degree of inhibition of expression is not particularly limited as long as it is statistically significant, but is, for example, 20% or more, preferably 50% or more, more preferably 75%, as compared with the case where cells are not brought into contact with ASO.
  • the ASO can be considered to have the expression inhibitory activity of the RECQL gene.
  • the ASO of the present invention is characterized in that it specifically hybridizes to a specific region of RECQL mRNA.
  • the nucleotide sequence of RECQL mRNA is the nucleotide sequence of human RECQL mRNA represented by SEQ ID NO: 1 (registered as Accession No. NM_002907.3 in the NCBI database) or its non-human mammalian ortholog (for example, mouse RECQL).
  • the nucleotide sequence of mRNA is registered in the NCBI database as Accession No. NM_023042.3), or its gene polymorphism. In the present specification, unless otherwise specified, the nucleotide position, the range of the nucleotide sequence, etc.
  • nucleotide sequence of human RECQL mRNA represented by SEQ ID NO: 1. In that case, the gene is described.
  • Corresponding nucleotides and nucleotide sequences in polymorphisms and non-human mammalian orthologs are also included in the description.
  • the ASO of the present invention is the 2750th to 3663th, 80th to 3663th in the RECQL mRNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 (however, "t” in the nucleotide sequence is read as “u”).
  • Targets a region consisting of any of the nucleotide sequences selected from the group consisting of the 300th, 330th to 500th, 800th to 930th, 1000th to 1350th, and 2250th to 2500th nucleotide sequences, and is continuous in the region.
  • the RECQL mRNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 (however, "t” in the nucleotide sequence is read as “u"), the 2750th to 3663th, the 800th to 930th and the 1000th to 1350th.
  • a region consisting of any of the nucleotide sequences selected from the group consisting of nucleotide sequences is targeted and contains a nucleotide sequence complementary to 10 or more consecutive nucleotide sequences in the region.
  • complementary means not only a sequence that is completely complementary to the target sequence (that is, hybridizes without mismatch), but also as long as it can be hubridized with RECQL mRNA under the physiological conditions of mammalian cells. It may be a sequence containing a mismatch of to a number (eg, 1, 2, 3, 4, 5) nucleotides, preferably 1 or 2 nucleotides. For example, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, and most preferably 100% identical to the complementary strand sequence of the target nucleotide sequence in RECQL mRNA. Examples include sex sequences.
  • complementarity in individual bases is not limited to forming Watson-Crick base pairs with target bases, but forms Hoogsteen base pairs and Wobble base pairs. Including to do.
  • the "complementary nucleotide sequence” is a nucleotide sequence that hybridizes with the target sequence under stringent conditions.
  • the “stringent condition” is, for example, the condition described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, for example, 6 ⁇ SSC (sodium chloride / sodium citrate). ) / Hybridization at 45 ° C, followed by 0.2 ⁇ SSC / 0.1% SDS / one or more washings at 50-65 ° C. Hybridization conditions can be appropriately selected.
  • the regions in the RECQL mRNA targeted by the ASO of the present invention are positions 356 to 370, 836 to 851, 1100-1114, 1312-1328 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of any nucleotide sequence selected from the group consisting of nucleotide sequences 2753 to 2964, 3157 to 3274, and 3386 to 3663, and a nucleotide sequence in the vicinity thereof.
  • the region in the RECQL mRNA targeted by the ASO of the present invention is the nucleotides 836 to 851, 1312-1328, 2753 to 2964 and 3157 to 3274 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of any nucleotide sequence selected from the group consisting of sequences and nucleotide sequences in the vicinity thereof.
  • the term "nucleotide sequence in the vicinity" refers to 50 nucleotides or less, preferably 30 nucleotides or less, more preferably 10 nucleotides or less, adjacent to the 5'- and 3'-terminals of each of the regions defined by the nucleotide number. More preferably, it means a nucleotide sequence of 5 nucleotides or less. The same applies to the following.
  • the regions in the RECQL mRNA targeted by the ASO of the present invention are positions 836 to 851, 1100-1114, 1312-1328, 2753 to 2769 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of one of the nucleotide sequences selected from the group consisting of the 2950th to 3663th nucleotide sequences and the nucleotide sequence in the vicinity thereof. More preferably, the region in the RECQL mRNA targeted by the ASO of the present invention is from the group consisting of the nucleotide sequences 836 to 851, 1312-1328 and 2950 to 3663 in the nucleotide sequence represented by SEQ ID NO: 1.
  • a region consisting of one of the selected nucleotide sequences and a nucleotide sequence in the vicinity thereof.
  • the RECQL expression inhibitory activity was low or the ASO was low in the gapmer type ASO in which the wing region described in Patent Document 4 (International Publication No. 02/068590) was modified with 2'-MOE. Corresponds to the undesigned area.
  • the regions in the RECQL mRNA targeted by the ASO of the present invention are positions 356-370, 836-851, 1100-1114, 1312-in the nucleotide sequence represented by SEQ ID NO: 1.
  • the region in the RECQL mRNA targeted by the ASO of the present invention is the nucleotides 836 to 851, 1312-1328, 2950 to 2964 and 3157 to 3400 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of any nucleotide sequence selected from the group consisting of sequences and nucleotide sequences in the vicinity thereof.
  • the ASOs of the present invention are 10 or more consecutive (eg, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), preferably 15 in any of the above-mentioned target regions.
  • a sequence consisting of one or more nucleotides is used as a target sequence, and a nucleotide sequence complementary thereto is included.
  • the length of the ASO of the present invention is not particularly limited, but is, for example, 10 to 30 nucleotides in length, preferably 12 to 30 nucleotides in length, and more preferably 15 to 25 nucleotides in length.
  • Examples of the constituent units of ASO of the present invention include ribonucleotides and deoxyribonucleotides. These nucleotides may be modified (modified nucleotide residues may be referred to as “modified nucleotide residues") or unmodified (unmodified nucleotide residues are referred to as "unmodified nucleotides”. Sometimes referred to as "residue").
  • the nucleotide residue contains sugar, base and phosphoric acid as components.
  • Ribonucleotides have a ribose residue as a sugar and are replaced by adenine (A), guanine (G), cytosine (C), 5-methylcytosine (mC) and uracil (U) (thymine (T)) as bases.
  • the deoxyribonucleotide residue has a deoxyribose residue as a sugar and as bases adenine (dA), guanine (dG), cytosine (dC), 5-methylcytosine (dmC) and Has thymine (dT) (which can also be replaced with uracil (dU)).
  • nucleotides having adenine, guanine, (5-methyl) cytosine, uracil, and thymine may be referred to as adenine nucleotide, guanine nucleotide, (5-methyl) cytosine nucleotide, uracil nucleotide, and thymine nucleotide, respectively.
  • the unmodified nucleotide residues are such that each of the components is, for example, the same or substantially the same as naturally occurring, preferably the same or substantially the same as naturally occurring in the human body. ..
  • the modified nucleotide residue may be modified by, for example, any of the components of the unmodified nucleotide residue.
  • “modification” includes, for example, substitution, addition and / or deletion of the component, substitution, addition and / or deletion of an atom and / or functional group in the component.
  • the modified nucleotide residue include naturally occurring nucleotide residues, artificially modified nucleotide residues, and the like.
  • the naturally occurring modified nucleotide residue for example, Limbach et al. (1994, Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183 to 2196) can be referred to.
  • examples of the modified nucleotide residue include residues that are substitutes for the nucleotide.
  • Modification of the nucleotide residue includes, for example, modification of a sugar-phosphate skeleton (the skeleton also includes a base) (hereinafter, sugar phosphate skeleton).
  • the ribose residue when the sugar is ribose, for example, the ribose residue can be modified.
  • the ribose residue can modify, for example, the 2'carbon, and specifically, for example, the hydroxyl group bonded to the 2'carbon can be modified with a methyl group, or the hydroxyl group can be replaced with a halogen such as hydrogen or fluoro. .. Further, by substituting the hydroxyl group of the 2'carbon with hydrogen, the ribose residue can be replaced with deoxyribose.
  • the ribose residue can be replaced with, for example, a stereoisomer, and may be replaced with, for example, an arabinose residue.
  • nucleic acid in which the hydroxyl group bonded to the 2'carbon of the sugar is modified with a methoxy group as described above may be referred to as a 2'-O-methyl modified nucleic acid.
  • nucleic acid includes nucleic acid monomers such as nucleotides.
  • the sugar phosphate skeleton may be replaced, for example, with a non-ribose phosphate skeleton having non-ribose residues (including non-deoxyribose residues) and / or non-phosphate, such substitutions. Is also included in the modification of the sugar phosphate skeleton.
  • examples of the non-ribose phosphate skeleton include uncharged compounds of the sugar phosphate skeleton.
  • Substitutes for the nucleotides substituted with the non-ribos phosphate skeleton include, for example, morpholino, cyclobutyl, pyrrolidine and the like.
  • Other examples of the alternative include artificial nucleic acids.
  • BNA crosslinked artificial nucleic acid
  • BNA Bridged Nucleic Acid
  • BNA Locked artificial nucleic acid
  • AmNA in the following formula (I)
  • R is a methyl group
  • GuNA scpBNA
  • ENA S-cEt
  • the specific structure (nucleoside moiety) of BNA that can be used in the present invention is shown below.
  • R is a hydrogen atom, an alkyl group having 1 to 7 carbon atoms which may form a branched or ring, an alkenyl group having 2 to 7 carbon atoms which may form a branched or ring, Represents an aryl group having 3 to 12 carbon atoms which may contain a heteroatom, an aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may contain a heteroatom, or a protective group of an amino group for nucleic acid synthesis.
  • R is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, or a benzyl group, and more preferably, R is a hydrogen atom or a methyl group.
  • B or Base represents a base.
  • These artificial nucleic acids can be synthesized by referring to, for example, JP-A-2002-241393, JP-A-2000-297097, and the like.
  • the ASO of the present invention is characterized in that the sugar portion of at least one nucleoside is modified by cross-linking between the 2'position and the 4'position of the sugar.
  • the 2', 4'-crosslink modification can increase the binding force to the target RNA and the metabolic stability (nuclease resistance) in vivo due to its crosslink structure.
  • LNA, AmNA, GuNA, and scpBNA are preferable, and AmNA, GuNA, and scpBNA are more preferable because they are superior in nuclease resistance and have low toxicity.
  • the ASO of the present invention comprises two or more crosslinked artificial nucleic acid residues (eg, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more).
  • the position of the crosslinked artificial nucleic acid residue is not particularly limited as long as it does not adversely affect the RECQL expression inhibitory activity.
  • the wing region Nucleotide residues are modified with crosslinked artificial nucleic acids.
  • a phosphate group can be modified.
  • the phosphate group closest to the sugar residue is called an ⁇ -phosphate group.
  • the ⁇ -phosphate group is negatively charged, and the charge is uniformly distributed over two oxygen atoms unbonded to sugar residues.
  • the two oxygen atoms that are unbonded to the sugar residue in the phosphodiester bond between the nucleotide residues are hereinafter also referred to as “non-linking oxygen”.
  • linking oxygen the two oxygen atoms bonded to the sugar residue are hereinafter referred to as "linking oxygen”. It is preferable that the ⁇ -phosphate group is modified so that it becomes uncharged or the charge distribution in the unbound oxygen becomes asymmetrical, for example.
  • the phosphoric acid group may replace, for example, the unbound oxygen.
  • the oxygen is, for example, any one of S (sulfur), Se (sulfur), B (boron), C (carbon), H (hydrogen), N (nitrogen) and OR (R is an alkyl group or an aryl group). Can be replaced with an atom of, preferably with S.
  • the unbound oxygen may be substituted with either or both, preferably any one or both.
  • the modified phosphate groups include, for example, phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoramidate, alkyl or arylphosphonate, and. Examples thereof include phosphotriesters, and phosphorothioates and phosphorodithioates are preferable.
  • the phosphoric acid group may be replaced with a phosphorus-free linker.
  • the linker include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioform acetal, form acetal, oxime, methylene imino, methylene methyl imino, methylene hydrazo, and methylene. Examples thereof include dimethylhydrazo and methyleneoxymethylimino, and preferably methylenecarbonylamino group and methylenemethylimino group.
  • the phosphoric acid group may be replaced with another phosphoric acid-free linker. Examples of such a linker include those described in “Med. Chem. Communi., 2014, 5, 1454-1471”.
  • 1/2 or more, more preferably 2/3 or more of the phosphate groups contained in the ASO of the present invention are modified with one or more of the above phosphate groups, and even more preferably. All phosphate groups are modified.
  • All phosphate groups are modified.
  • 8 or more, preferably 10 or more, more preferably all phosphate groups are, for example, phosphorothioated, phosphorodithioated or the like. Substitution of unbound oxygen at the phosphodiester bond with sulfur atoms is important for improving nuclease resistance and in the tissue distribution of ASO.
  • nuclease resistance is improved because one or more constituent nucleotides are replaced with crosslinked artificial nucleic acids. Therefore, in the ASO of the present invention, desired in vivo stability may be obtained without converting all phosphate groups into PS.
  • At least one nucleotide residue at the 3'end and the 5'end may be modified.
  • the modification may be, for example, either one of the 3'ends and the 5'end, or both.
  • the modification is, for example, as described above, and is preferably performed on the terminal phosphate group.
  • the phosphoric acid group may, for example, modify the whole, or may modify one or more atoms in the phosphoric acid group. In the former case, for example, the entire phosphate group may be substituted or deleted.
  • Modification of the terminal nucleotide residue includes, for example, addition of another molecule.
  • the other molecule include a labeling substance described later and a functional molecule such as a protecting group.
  • the protecting group include S (sulfur), Si (silicon), B (boron), and ester-containing groups.
  • Functional molecules such as the labeling substance can be used, for example, for detecting ASO of the present invention.
  • the other molecule may be added to the phosphate group of the nucleotide residue, or may be added to the phosphate group or the sugar residue via a spacer, for example.
  • the terminal atom of the spacer can be added or substituted, for example, to the bound oxygen of the phosphate group or O, N, S or C of a sugar residue.
  • the binding site of the sugar residue is preferably, for example, C at the 3'position or C at the 5'position, or an atom that binds to these.
  • the spacer can also be added or substituted, for example, to the terminal atom of a nucleotide substitute such as PNA.
  • the spacer is not particularly limited, and is, for example,-(CH 2 ) n -,-(CH 2 ) n N-,-(CH 2 ) n O-,-(CH 2 ) n S-, O (CH 2).
  • CH 2 O) n CH 2 CH 2 OH non-basic sugar, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, morpholino, etc., as well as biotin and fluorescein reagents, etc. Good.
  • the molecule added to the terminal includes, for example, a dye, an intercalating agent (for example, acrydin), a cross-linking agent (for example, solarene, mitomycin C), porphyrin (TPPC4, texaphyllin, sapphirine), and a polycyclic type.
  • an intercalating agent for example, acrydin
  • a cross-linking agent for example, solarene, mitomycin C
  • porphyrin texaphyllin, sapphirine
  • a polycyclic type for example, a dye, an intercalating agent (for example, acrydin), a cross-linking agent (for example, solarene, mitomycin C), porphyrin (TPPC4, texaphyllin, sapphirine), and a polycyclic type.
  • Aromatic hydrocarbons eg phenazine, dihydrophenazine
  • artificial endonucleases eg EDTA
  • lipophilic carriers eg cholesterol, cholic acid, adamantan acetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis- O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoic) lithocholic acid, O3- (oleoyl) Cholic acid, dimethoxytrityl, or phenoxazine) and peptide complexes (eg, antennapedia peptide, Tat peptide), alkylating agents, phosphates, amino, mercapto, PEG (e
  • the 5'end may be modified with, for example, a phosphate group or a phosphate group analog.
  • the phosphoric acid group is, for example, 5'monophosphoric acid ((HO) 2 (O) PO-5'), 5'diphosphoric acid ((HO) 2 (O) POP (HO) (O) -O- 5'), 5'triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-guanosine cap (7-methylated or Unmethylated, 7m-GO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-adenosine cap (Appp), optional Modified or unmodified nucleotide cap structure (NO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'monothiophosphate (phosphoroth
  • the base is not particularly limited, and may be, for example, a natural base or a non-natural base.
  • the base may be, for example, naturally derived or synthetic.
  • As the base for example, a general base, a modified analog thereof, a universal base, or the like can be used.
  • Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, 5-methylcytosine, uracil and thymine.
  • Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine and the like.
  • the base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyl uracil and 5-propynylcitosine; 6 -Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-halogenation, amination, Thiolization, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N -6, and O-6 substituted purines (including
  • modified nucleotide residue may include, for example, a residue lacking a base, that is, a base-free sugar phosphate skeleton.
  • modified nucleotide residue for example, the residue described in International Publication No. 2004/080406 can be used, and the present invention can refer to these documents.
  • the ASO of the present invention may be labeled with, for example, a labeling substance.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, and isotopes.
  • the fluorescent substance include fluorescent groups such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye.
  • the dye include Alexa dyes such as Alexa 488.
  • the isotope include stable isotopes and radioactive isotopes, and stable isotopes are preferable. For example, the stable isotope has a low risk of exposure and does not require a dedicated facility, so that it is easy to handle and the cost can be reduced.
  • the stable isotope does not change the physical properties of the labeled compound, and is excellent in properties as a tracer.
  • the stable isotope is not particularly limited, and examples thereof include 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S and 36 S.
  • the ASO of the present invention sets any of the following nucleotide sequences as a sequence complementary to the target sequence in RECQL mRNA (indicated by the position in the nucleotide sequence represented by SEQ ID NO: 1). Including.
  • tgattaactttccgg (SEQ ID NO: 2) (Target sequence: 356-370) acgttaatagtttca (SEQ ID NO: 3) (target sequence: 836-850) tacgttaatagtttc (SEQ ID NO: 4) (target sequence: 837-851) gtcacataaatcagc (SEQ ID NO: 5) (target sequence: 1100-1114) cgtgatttgttgcag (SEQ ID NO: 6) (Target sequence: 1312-1326) aacgtgatttgttgc (SEQ ID NO: 7) (Target sequence: 1314-1328) cgattgtatgaactt (SEQ ID NO: 8) (Target sequence: 2753-2767) gacgattgtatgaac (SEQ ID NO: 9) (target sequence: 2755-2769) aagatagttatgtca (SEQ ID NO: 10) (
  • the ASO of the present invention is a nucleic acid consisting of any of the above nucleotide sequences.
  • the ASO of the present invention is a nucleic acid consisting of the nucleotide sequence represented by SEQ ID NO: 4, 6, 11, 13 or 14.
  • the ASO of the present invention is: (1) 5'wing region located at the 5'end; A gapmer-type nucleic acid comprising (2) a 3'wing region located at the 3'end; and a deoxygap region located between (3) regions (1) and (2).
  • Gapmer-type ASO is a nucleic acid (wing region) having DNA (deoxygap region) and nucleic acids having been modified or cross-linked on both sides thereof, and the DNA strand is used as the main chain to form the main chain. It forms a heteroduplex nucleic acid with a complementary target RNA, which is degraded by RNase H, which is endogenous to the cell.
  • the constituent nucleotides of the wing region may be RNA or DNA.
  • the 5'and 3'wing regions of the gapmer type ASO of the present invention are independently 2 to 5 nucleotides in length, preferably 3 to 5 nucleotides in length, and more preferably 3 nucleotides in length.
  • the length of the deoxygap region of the gapmer type ASO of the present invention is 7 to 10 nucleotides, preferably 8 to 10 nucleotides, and more preferably 9 nucleotides.
  • the total length of the gapmer type ASO of the present invention is, for example, 12 to 30 nucleotides in length, preferably 12 to 25 nucleotides in length. Therefore, the gapmer type ASO of the present invention can be appropriately adjusted by those skilled in the art under conditions that satisfy all the specified ranges of the wing region length, the deoxy gap region length, and the total length.
  • the gapmer type ASO of the present invention is, for example, a 15-nucleotide length "3-9-3” type gapmer, a "3-10-2” type gapmer, or a “2-10-3” type.
  • Gapmer "4-9-2" type gapmer; 16 nucleotide length "3-10-3” type gapmer, "4-9-3” type gapmer; 17 nucleotide length "4-10-3” type gapmer "4-9-4" type gapmer; 18 nucleotide length "4-10-4" type gapmer, "5-9-4" type gapmer; 19 nucleotide length "5-10” type gapmer It is preferably a "-4" type gapmer, a "5-9-5" type gapmer; or a 20 nucleotide length "5-10-5" type gapmer.
  • the sugar portion of at least one nucleoside constituting the 5'and 3'wing regions is modified by cross-linking between the 4'position and the 2'position of the sugar. ..
  • the cross-linking modification include the above-mentioned modification with the cross-linked artificial nucleic acid. It is preferably LNA, AmNA, GuNA and scpBNA, and more preferably AmNA, GuNA and scpBNA.
  • the Gapmer-type ASO of the present invention is an artificial nucleic acid in which two or more (eg, 2, 3, 4, 5) nucleotide residues constituting each of the 5'and 3'wing regions are crosslinked. It has been replaced.
  • the DNA residues constituting the deoxygap region of the gapmer type ASO of the present invention are not sugar-modified.
  • the gapmer type ASO of the present invention may be modified with a base of at least one nucleoside constituting the 5'and 3'wing regions.
  • Examples of the base modification include any of the above modifications.
  • gapmer type ASO of the present invention can be subjected to base modification of the deoxygap region and dual modification of the wing region in order to reduce toxicity. Such modifications are described, for example, in WO 2018/155450.
  • the Gapmer-type ASO of the present invention is a nucleic acid having the nucleotide sequence shown in Table 1 and a sugar, base or phosphate group modification (in the nucleotide sequence below, T is U). May be good).
  • the ASO of the present invention can be produced by a chemical synthesis method known per se.
  • the phosphoramidite method and the H-phosphonate method can be mentioned.
  • the chemical synthesis method can be carried out using, for example, a commercially available automatic nucleic acid synthesizer, and when amidite is used, for example, as a commercially available amidite, RNA Phosphoramidites (2'-O-TBDMSi, trade name, 3) Senri Pharmaceutical Co., Ltd.), ACE amidite and TOM amidite, CEE amidite, CEM amidite, TEM amidite and the like can be used.
  • ASO of the present invention can specifically hybridize to RECQL mRNA and inhibit the expression of the RECQL gene. Therefore, the present invention also provides an expression inhibitor of the RECQL gene, which comprises the ASO of the present invention.
  • the RECQL gene expression inhibitor of the present invention is introduced into a subject having a high expression of RECQL, for example, by contacting the ASO of the present invention alone or with a pharmacologically acceptable carrier. be able to.
  • the contact step can be performed by administering the RECQL gene expression inhibitor of the present invention to the animal.
  • the subject is a culture of cells, tissues or organs derived from animals, this can be carried out by adding the RECQL gene expression inhibitor of the present invention to the medium of the culture.
  • the expression inhibitor of the RECQL gene of the present invention may further contain a reagent for introducing a nucleic acid.
  • the reagents for introducing nucleic acids include atelocollagen; liposomes; nanoparticles; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI). ) And the like can be used.
  • the ASO of the present invention can be introduced into target cells by, for example, a calcium ion enrichment (CEM) method in which calcium chloride is added to a medium.
  • CEM calcium ion enrichment
  • the present invention also provides an agent for suppressing cell proliferation and / or inducing cell death of cells highly expressing the RECQL gene containing the ASO of the present invention.
  • the cell proliferation inhibitor and / or cell death inducer of the present invention can be brought into contact with a subject highly expressing RECQL in the same manner as described above.
  • the drug containing the ASO of the present invention as an active ingredient can be used for the treatment and / or prevention of hyperproliferative diseases.
  • hyperproliferative diseases include cancer and the like.
  • the cancer is not particularly limited as long as RECQL is highly expressed, and may be, for example, a cancer derived from epithelial cells, but may be a non-epithelial sarcoma or a blood cancer.
  • gastrointestinal cancer eg, esophageal cancer, gastric cancer, duodenal cancer, colon cancer (colon cancer, rectal cancer), liver cancer (hepatocellular carcinoma, bile duct cancer) Cancer), bile sac cancer, bile duct cancer, pancreatic cancer, anal cancer
  • urinary cancer eg, kidney cancer, urinary tract cancer, bladder cancer, prostate cancer, penis cancer, testis (Testicle) cancer
  • chest cancer eg, breast cancer, lung cancer (non-small cell lung cancer, small cell lung cancer)
  • genital cancer eg, uterine cancer (cervical cancer, uterine body cancer)
  • Ovarian cancer vulgar cancer, vaginal cancer
  • head and neck cancer eg, maxillary cancer, pharyngeal cancer, laryngeal cancer, tongue cancer, thyroid cancer
  • skin cancer eg, (Bass cell carcinoma, spinous cell carcinoma
  • the ASO of the present invention may be used alone or may be formulated as a pharmaceutical composition together with a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include, for example, excipients such as sucrose and starch, binders such as cellulose and methyl cellulose, disintegrants such as starch and carboxymethyl cellulose, lubricants such as magnesium stearate and aerodyl, citric acid, etc.
  • Fragrances such as menthol, preservatives such as sodium benzoate and sodium hydrogen sulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolidone, dispersants such as surfactants, water, physiology Diluting agents such as saline solution, base wax and the like can be mentioned, but the present invention is not limited thereto.
  • the reagent of the present invention may further contain a reagent for introducing a nucleic acid.
  • a nucleic acid introduction reagent the same reagents as those described above can be used.
  • the medicament of the present invention may be a pharmaceutical composition in which the ASO of the present invention is encapsulated in liposomes.
  • Liposomes are microclosed vesicles having an internal phase surrounded by one or more lipid bilayers, which can usually retain water-soluble substances in the internal phase and fat-soluble substances in the lipid bilayer.
  • the ASO of the present invention may be retained in the liposome internal phase or in the lipid bilayer.
  • the liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected in the range of, for example, 10 to 1000 nm, preferably 50 to 300 nm. Considering the deliverability to the target tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
  • Examples of the method for encapsulating a water-soluble compound such as an oligonucleotide in liposomes include a lipid film method (vortex method), a reverse phase evaporation method, a surfactant removal method, a freeze-thaw method, and a remote loading method. Any known method can be appropriately selected without limitation.
  • the medicament of the present invention can be administered orally or parenterally to mammals (eg, humans, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys). However, it is desirable to administer it parenterally.
  • mammals eg, humans, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys.
  • Suitable formulations for parenteral administration include aqueous and non-aqueous isotonic sterile injections.
  • This may contain an antioxidant, a buffer, an antibacterial agent, an isotonic agent, and the like.
  • examples thereof include aqueous and non-aqueous sterile suspensions, which may include suspending agents, solubilizing agents, thickeners, stabilizers, preservatives and the like.
  • the pharmaceutical product can be encapsulated in a container in a unit dose or a plurality of doses like an ampoule or a vial.
  • the active ingredient and a pharmaceutically acceptable carrier can be freeze-dried and stored in a state where it can be dissolved or suspended in a suitable sterile vehicle immediately before use.
  • the content of ASO of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the entire pharmaceutical composition.
  • the dose of the medicament of the present invention varies depending on the purpose of administration, the administration method, the type and severity of the target disease, and the situation of the administration target (gender, age, weight, etc.).
  • the single dose of ASO of the present invention is 2 nmol / kg or more and 50 nmol / kg or less, and in the case of local administration, 1 pmol / kg or more and 10 nmol / kg or less is desirable.
  • Such amounts can be administered at intervals of, for example, 1 to 6 months, preferably 2 to 4 months, more preferably about 3 months.
  • the ASO of the present invention is remarkably superior in RECQL expression inhibitory activity and in vivo stability as compared with the conventionally known ASO for RECQL, it can exert a therapeutic and / or preventive effect with a small dose and number of administrations. It is possible to improve the QOL of patients, reduce medical expenses, and suppress the occurrence of adverse events.
  • the medicament of the present invention may contain other active ingredients as long as the combination with the ASO of the present invention does not cause an unfavorable interaction.
  • active ingredients for example, various compounds having a therapeutic effect on cancer can be appropriately blended.
  • other active ingredients include alkylating agents (eg, mustards, nitrosoureas), metabolic antagonists (eg, folic acid, pyrimidines, purines), anti-neoplastic antibiotics (eg, anthracyclines), Even if it contains hormone-like drugs (eg, anti-estrogen drugs, anti-androgens, LH-RH agonists, progesterone, estradiol), platinum preparations, topoisomerase inhibitors (eg, topoisomerase I inhibitors, topoisomerase II inhibitors), etc.
  • alkylating agents eg, mustards, nitrosoureas
  • metabolic antagonists eg, folic acid, pyrimidines, purines
  • concomitant agents can be formulated together with the drug of the present invention and administered as a single preparation, or they can be formulated separately from the drug of the present invention and the same as or by a different route from the drug of the present invention. , Can be administered simultaneously or at different times.
  • the dose of these concomitant drugs may be the amount normally used when the drug is administered alone, or may be reduced from the amount normally used.
  • the amide BNA (AmNA) represented by the formula (a) was used as the sugar-modified nucleoside.
  • Base is 5-methylcytosine-1-yl group, thymine-1-yl group, adenine-9-yl group or guanine-9-yl group, and Me is methyl.
  • Oligonucleotides containing amide BNA were synthesized with reference to the method described in WO 2011/052436.
  • Oligonucleotides containing amide BNA were synthesized on a 0.2 ⁇ mol scale using an automatic nucleic acid synthesizer (nS-8 type, manufactured by GeneDesign, Inc.). Chain length extension Height is standard phosphoramidite protocol (solid carrier: CPG, sulfurization for phosphorothioatetization (PS) skeleton formation is DDTT (((dimethylamino-methylidene) amino) -3H-1,2,4 -It was carried out using dithiazaoline-3-thione) etc.).
  • Oligonucleotides containing amide BNA are those in which the terminal 5'-hydroxyl group is not protected by DMTr (4,4'-dimethoxytrityl) groups and the 3'-position is supported on the solid phase. Obtained. Subsequently, the target product was cut out from the solid phase carrier by base treatment, the solvent was distilled off, and the obtained crude product was purified by reverse phase HPLC to obtain the target product. The purity and structure of each of the obtained oligonucleotides were confirmed by LC-MS (manufactured by Waters).
  • Example 2 Design of antisense oligonucleotide
  • the antisense oligonucleotide was designed to target the mRNA of human RECQL (hRECQL) (GenBank: NM_002907.3 (SEQ ID NO: 1)).
  • a region such as a loop structure that is easily accessible to antisense oligonucleotides was selected based on the prediction of the secondary structure of mRNA in which thermodynamically stable complementary binding was calculated from the primary sequence of mRNA.
  • Inversely complementary sequences of mRNA were selected in this region, and sequences containing CG, TCC, and TGC sequences expressing toxicity with antisense were excluded from those sequences.
  • a candidate sequence was selected by evaluating the homology between the sequence and genes other than hRECQL using GGGenome (GGGenome: gggenome.dbcls.jp/).
  • An oligonucleotide having a base sequence complementary to the candidate sequence selected as described above was designed as an antisense oligonucleotide.
  • the antisense oligonucleotide was made into a 15-mer, and an artificial nucleic acid region containing a sugar-modified nucleoside was provided at the 5'end and 3'end, and a natural nucleic acid region containing a natural nucleoside (DNA) was provided at the center. More specifically, 3 bases on the 5'end side (5'wing region) are sugar-modified nucleosides, then 9 bases (gap region) are natural nucleosides (DNA), and then 3 bases on the 3'end side (3'wings).
  • a 3-9-2-1 type gapmer was designed in which two bases on the central side of the region) are sugar-modified nucleosides and one base at the 3'end is DNA.
  • the designed and prepared antisense oligonucleotides are listed in Tables 2-1 and 2-2.
  • Table 2 shows the names of the antisense oligonucleotides (“oligonucleotide names”) along with the 5'end and 3'end of the sequence of the target region (each indicated by the base position of SEQ ID NO: 1).
  • hRECQL-268-AmNA is a 15-mer antisense oligonucleotide containing AmNA in which the 268th position of the nucleotide sequence of SEQ ID NO: 1 is the 5'end of the target region.
  • hRECQL-pn L
  • p is the number of the base position corresponding to the 5'end of the target region in SEQ ID NO: 1.
  • N is a sugar-modified nucleoside (artificial nucleic acid) ("AmNA” in Table 1)
  • AmNA artificial nucleic acid
  • L is the length of the antisense oligonucleotide.
  • the 836 position of the base sequence of SEQ ID NO: 1 is the 5'end of the target region, contains AmNA, and is a 15-mer.
  • the sequence of the antisense oligonucleotide is represented in the direction from 5'to 3'(5' ⁇ 3'), for example, when the antisense oligonucleotide is 15 meters long in hRECQL-836, the nucleotide sequence of SEQ ID NO: 1 In the target mRNA sequence based on 5'-tgaaactattaacgt-3'(SEQ ID NO: 97), which is the DNA base sequence from the 836 position to the 850 position of SEQ ID NO: 1, which is extended from the 836 position to the 3'terminal side of 15 bases.
  • the nucleotide sequence (5'-acgttaatagtttca-3') (SEQ ID NO: 3) of the antisense oligonucleotide hRECQL-836-AmNA (15) designed in this way is the region from position 836 to position 850 of SEQ ID NO: 1.
  • the sequence is complementary to the base sequence (5'-tgaaactattaacgt-3') (SEQ ID NO: 97).
  • Example 3 Suppression of hRECQL mRNA expression in human cervical cancer cells
  • Example 2 mRNA expression suppression analysis of various antisense oligonucleotides
  • the antisense oligonucleotide prepared in Example 2 was examined for the mRNA expression inhibitory activity of hRECQL in vitro in human cervical cancer cells.
  • the antisense oligonucleotides that were prepared and whose expression was suppressed were appropriately numbered (reference numbers LX-A0050 to LX-A0065 and LX-A0254 to LX-A0312; Tables 2-1 and 2-2, respectively. reference). Those to which no oligonucleotide was added were used as controls.
  • negative control oligonucleotides containing AmNA also referred to as Negative Control; NC: 5 (Y) ⁇ A (Y) ⁇ T (Y) ⁇ t ⁇ t ⁇ c ⁇ g ⁇ a ⁇ a ⁇ g ⁇ t ⁇ a ⁇ 5 (Y) ⁇ T (Y) ⁇ c (LX-A0030; array Number 99); 5 (Y) ⁇ A (Y) ⁇ T (Y) ⁇ t ⁇ a ⁇ g ⁇ c ⁇ t ⁇ a ⁇ g ⁇ t ⁇ a ⁇ 5 (Y) ⁇ T (Y) ⁇ c (LX-A0069; array Number 100); and 5 (Y) ⁇ A (Y) ⁇ T (Y) ⁇ t ⁇ t ⁇ a ⁇ g ⁇ a ⁇ g ⁇ t ⁇ c ⁇ 5 (Y) ⁇ T (Y) ⁇ T (Y) ⁇
  • RecQL siRNA (QL-19 described in WO 2017/022650): Sense strand GU (M) U (M) C (M) AGC CACU (M) U (M) C (M) AGC (M) U (M) U (M) tt (SEQ ID NO: 102) Antisense strand AAGCUGAAGUGGU (M) CU (M) GAAC (M) tt (SEQ ID NO: 103) (In the above sequence, t indicates deoxythymidine and (M) indicates 2'-methoxy form.) was also used for comparison.
  • HeLa-S3 cells (American Type Culture Collection: ATCC) were used as human cervical cancer cells. Each antisense oligonucleotide is incorporated into HeLa-S3 cells using a commercially available transfection reagent (ThermoFisher Scientific, lipofectamine RNAiMAX), and the mRNA expression level is measured by the qRT-PCR method to measure the knockdown activity (knockdown activity). Suppression of mRNA expression) was investigated. The procedure is shown below. HeLa-S3 cells in logarithmic growth phase at 3.0 ⁇ 10 4 cells / well in 24-well plate wells (including Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS)). Sown.
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fetal bovine serum
  • each antisense oligonucleotide was added into the wells to a final concentration of 20 nM and incubated for 24 hours. After incubation, cells were harvested and total RNA was extracted using an RNA extraction reagent (MACHEREY-NAGEL, Nucleo ZOL).
  • a reverse transcription reaction and a PCR amplification reaction were carried out using a nucleic acid amplification reaction reagent (QIAGEN, QuantiFast Probe RT-PCR kit) using the corresponding total RNA as a template.
  • the nucleic acid amplification reaction was carried out by temperature cycling at 50 ° C. for 10 minutes ⁇ 95 ° C. for 5 minutes ⁇ [(95 ° C. for 10 seconds ⁇ 60 ° C.
  • the amount of human actin mRNA in the housekeeping gene was also quantified at the same time, and the amount of hRECQL mRNA relative to the amount of actin mRNA was evaluated.
  • the amount of mRNA by each antisense oligonucleotide or oligonucleotide is shown as a relative value when the amount of mRNA of the oligonucleotide-free cell is 1.
  • primer sets used are as follows: (Primer set for hRECQL detection) TaqMan Gene Expression Assay Hs00262956_m1_4331182 (ThermoFisher Scientific) (Primer set for detecting human actin) Pre-Developed TaqMan Assay Reagents Human ACTB (applied biosystems)
  • FIGS. 1, 2 and 3 The results of the mRNA expression suppression analysis are shown in FIGS. 1, 2 and 3. Antisense oligonucleotides were found that had lower mRNA levels than oligonucleotide-free cells (“control”) and Negative Control-supplemented cells, i.e., suppressed mRNA expression. Table 1 summarizes the antisense oligonucleotides that showed high knockdown activity (inhibition of mRNA expression).
  • HeLa-S3 cells are used as human cervical cancer cells, and each antisense oligonucleotide is incorporated into HeLa-S3 cells using a commercially available transfection reagent (ThermoFisher Scientific, lipofectamine RNAiMAX), and the qRT-PCR method is used. The expression level of mRNA was measured in 1 and the knockdown activity (inhibition of mRNA expression) was examined. The amount of antisense oligonucleotide added to HeLa-S3 cells was set to either 1 nM, 5 nM or 20 nM. In FIG.
  • HeLa-S3 cells were used as human cervical cancer cells, and each antisense oligonucleotide was used by the CEM method (“Ca 2+ enrichment for medium” method using calcium ion enriched medium: Nucleic Acids Research, 2015, Vol.43, It was incorporated into human cervical cancer cells using e128), the expression level of mRNA was measured by the qRT-PCR method, and the knockdown activity (suppression of mRNA expression) was examined. The procedure is shown below. HeLa-S3 cells in logarithmic growth phase at 4.0 ⁇ 10 4 cells / well containing Dulbecco's Modified Eagle's Medium (DMEM) (low glucose) containing 24-well plate wells (10% fetal bovine serum (FBS)).
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fetal bovine serum
  • each oligonucleotide was added into the wells with 9 mM calcium chloride to a final concentration of 100 nM, 500 nM or 2000 nM and incubated for 48 hours. After incubation, cells were harvested and total RNA was extracted using an RNA extraction reagent (MACHEREY-NAGEL, Nucleo ZOL).
  • a reverse transcription reaction and a PCR amplification reaction were carried out using a nucleic acid amplification reaction reagent (QIAGEN, QuantiFast Probe RT-PCR kit) using the corresponding total RNA as a template. The nucleic acid amplification reaction was carried out by temperature cycling at 50 ° C. for 10 minutes ⁇ 95 ° C.
  • FIGS. 8 and 9 the results of 500 nM and 2000 nM are shown in order from the left side for various antisense oligonucleotides.
  • antisense oligonucleotide-supplemented cells showed dose-dependent knockdown activity (inhibition of mRNA expression) of antisense oligonucleotides. ..
  • the antisense oligonucleotide showed higher suppression of mRNA expression than RECQL siRNA when added at any concentration.
  • Example 4 Human ovarian cancer cells (ES-2 cells, SK-OV-3 cells, TOV-112D cells, OVCAR-3 cells), human colon cancer cells (LoVo cells, HCT-15 cells), humans In vitro suppression of hRECQL mRNA expression in gastric cancer cells (MKN45 cells))
  • About antisense oligonucleotides of hRECQL-837-AmNA (15), hRECQL-1312-AmNA (15), hRECQL-2950-AmNA (15), hRECQL-3158-AmNA (15) and hRECQL-3260-AmNA (15) Human ovarian cancer cells, human colon cancer cells, and human gastric cancer cells were examined for knockdown activity (inhibition of mRNA expression).
  • ES-2 cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells.
  • a 24-well plate of wells (McCoy'5A medium containing 10% fetal bovine serum (FBS) (modified)) at 3.0 x 10 4 cells / well in the logarithmic growth phase. (Including) sown in.
  • FBS fetal bovine serum
  • each antisense oligonucleotide was incorporated into ES-2 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method.
  • Knockdown activity (inhibition of mRNA expression) was investigated.
  • the amount of antisense oligonucleotide added to ES-2 cells was 20 nM. The results are shown in FIG.
  • SK-OV-3 cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. SK-OV-3 cells in logarithmic growth phase at 3.0 x 10 4 cells / well in 24-well plate wells (McCoy '5A medium containing 10% fetal bovine serum (FBS) (modified)) ) Including). After 24 hours, each antisense oligonucleotide was incorporated into SK-OV-3 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the expression level of mRNA was determined by qRT-PCR. The knockdown activity (inhibition of mRNA expression) was examined by measurement. The amount of antisense oligonucleotide added to the SK-OV-3 cells was 20 nM. The results are shown in FIG.
  • TOV-112D cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. Logarithmic growth phase TOV-112D cells at 3.0 x 10 4 cells / well in 24-well plate wells (including Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS)) Sown. After 24 hours, each antisense oligonucleotide was incorporated into TOV-112D cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to TOV-112D cells was 20 nM. The results are shown in FIG.
  • OVCAR-3 cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. At 4.0 x 10 4 cells / well of logarithmic growth phase OVCAR-3 cells in 24-well plate wells (Roswell Park Memorial Institute 1640 medium (RPMI-1640) containing 10% fetal bovine serum (FBS)). (Including) sown in. After 24 hours, each antisense oligonucleotide was incorporated into OVCAR-3 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to OVCAR-3 cells was 20 nM. The results are shown in FIG.
  • LoVo cells (National Institute of Physical and Chemical Research: RIKEN) were used as human colorectal cancer cells. LoVo cells in the logarithmic growth phase were seeded at 4.0 ⁇ 10 4 cells / well in 24-well plate wells (including Eagle's Minimal Essential Medium (EMEM) containing 10% fetal bovine serum (FBS)). After 24 hours, each antisense oligonucleotide was incorporated into LoVo cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), the expression level of mRNA was measured by qRT-PCR, and knocking was performed. The down activity (inhibition of mRNA expression) was examined. The amount of antisense oligonucleotide added to LoVo cells was 20 nM. The results are shown in FIG.
  • HCT-15 cells (American Type Culture Collection: ATCC) were used as human colorectal cancer cells. At 4.0 x 10 4 cells / well of logarithmic growth phase HCT-15 cells in 24-well plate wells (Roswell Park Memorial Laboratory 1640 medium (RPMI-1640) containing 10% fetal bovine serum (FBS)). (Including) sown in. After 24 hours, each antisense oligonucleotide was incorporated into HCT-15 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to HCT-15 cells was 20 nM. The results are shown in FIG.
  • MKN45 cells Human Science Promotion Foundation: JCRB
  • JCRB Human Science Promotion Foundation
  • 4.0 x 10 4 cells / well of logarithmic growth phase, 24-well plate wells (including RPMI-1640 medium containing 10% fetal bovine serum (FBS)) Sown inside.
  • FBS fetal bovine serum
  • each antisense oligonucleotide was incorporated into MKN45 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), the expression level of mRNA was measured by qRT-PCR, and knocking was performed. The down activity (inhibition of mRNA expression) was examined.
  • the amount of antisense oligonucleotide added to MKN45 cells was 20 nM. The results are shown in FIG.
  • FIG. 10-16 shows the results of 20 nM for various antisense oligonucleotides.
  • knockdown activity inhibition of mRNA expression was observed in antisense oligonucleotide-added cells as compared with oligonucleotide-free cells (“control”) and Negative Control-added cells.
  • hRECQL-837-AmNA (15) (LX-A0051), hRECQL-1312-AmNA (15) (LX-A0059), hRECQL-2950-AmNA (15) (LX-A0292), hRECQL-3158-AmNA ( 15) (LX-A0299) and hRECQL-3260-AmNA (15) (LX-A0300) showed higher mRNA expression inhibitory activity than RECQL siRNA.
  • the RECQL is highly expressed in actively proliferating cells such as cancer cells and contributes to the maintenance of genome stabilization of the cells.
  • the expression of the RECQL gene is inhibited in these cells, the genome is impaired. It is thought to stabilize and induce mitotic and mitotic cell death. Therefore, the antisense oligonucleotide of the present invention having high RECQL expression inhibitory activity and excellent in vivo stability can be used for the treatment and / or prevention of hyperproliferative diseases such as cancer. , Extremely useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides a single-strand oligonucleotide for inhibiting expression of the RECQL gene, the single-strand oligonucleotide including a nucleotide sequence that is complementary to a continuous sequence of 10 or more nucleotides in a target region comprising any nucleotide sequence selected from the group consisting of positions 2750-3663, positions 80-300, positions 330-500, positions 800-930, positions 1000-1350, and positions 2250-2500 in a nucleic acid which comprises the nucleotide sequence represented by SEQ ID NO: 1 and which codes for RECQL, the length of the single-strand oligonucleotide being 10-30 nucleotides, and the sugar portion of at least one nucleotide constituting the single-strand oligonucleotide being modified by crosslinking between the 2' position and the 4' position of the sugar.

Description

RECQLの発現を阻害するアンチセンスオリゴヌクレオチド及びその用途Antisense oligonucleotides that inhibit RECQL expression and their uses
 本発明は、RecQ-like helicase-1(本明細書において、以下「RECQL」と表記する。)の発現を強力に阻害し得る新規なアンチセンスオリゴヌクレオチド及びその用途に関する。より詳細には、本発明は、RECQL mRNAの特定の領域とハイブリダイズして、その発現を阻害するアンチセンスヌクレオチド、並びにそれを用いたRECQLの発現阻害、RECQLを高発現する細胞の増殖抑制及び/又は細胞死誘導、がんの治療及び/又は予防等に関する。 The present invention relates to a novel antisense oligonucleotide capable of strongly inhibiting the expression of RecQ-like helicase-1 (hereinafter referred to as "RECQL" in the present specification) and its use. More specifically, the present invention presents an antisense nucleotide that hybridizes with a specific region of RECQL mRNA and inhibits its expression, as well as inhibition of RECQL expression using the same, suppression of proliferation of cells that highly express RECQL, and / Or related to cell death induction, cancer treatment and / or prevention, etc.
 DNAヘリカーゼは、二本鎖DNAを一本鎖に巻き戻す活性を有する酵素である。大腸菌RecQ遺伝子産物と相同性を示すRecQヘリカーゼファミリーは、微生物から高等動植物に至るまで普遍的に存在し、ゲノムの安定化維持に重要な役割を果たすことが示唆されている。ヒトでは、RECQL、WRN、BLM、RTS、RecQ5の5種類が同定されており、そのうちWRN、BLM、RTSの異常は、早老症やがん多発を伴う常染色体劣性遺伝病を引き起こすことが知られている。一方、RECQL及びRecQ5については遺伝病との関連は報告されておらず、これまでヘリカーゼ研究の主役を演じることはなかった。 DNA helicase is an enzyme that has the activity of unwinding double-stranded DNA into a single strand. The RecQ helicase family, which shows homology with the E. coli RecQ gene product, is ubiquitous from microorganisms to higher animals and plants, and it has been suggested that it plays an important role in maintaining the stabilization of the genome. In humans, five types, RECQL, WRN, BLM, RTS, and RecQ5, have been identified, of which abnormalities in WRN, BLM, and RTS are known to cause autosomal recessive inheritance with progeria and frequent cancers. ing. On the other hand, RECQL and RecQ5 have not been reported to be associated with genetic diseases, and have not played a leading role in helicase research so far.
 しかし、近年、RECQLのゲノム維持に関する研究が急速に進み、DNA修復・複製における重要な役割が明らかになるとともに、がんの創薬標的としても注目されている。RECQLは、がん細胞や活発に増殖している細胞で高発現する一方、休止期にある細胞での発現レベルは低い。 However, in recent years, research on the maintenance of the RECQL genome has progressed rapidly, and the important role in DNA repair and replication has been clarified, and it is also attracting attention as a drug discovery target for cancer. RECQL is highly expressed in cancer cells and actively proliferating cells, while its expression level is low in telogen cells.
 二見らは、siRNAによりRECQLの発現を阻害すると、多くのがん細胞は分裂死(mitotic catastrophe)を引き起こすこと、担がんモデル動物にRECQL siRNAを投与すると、顕著な抗腫瘍活性を示すことを見出した(例えば、特許文献1及び2を参照)。これらは、DNA複製に伴って生じるDNA障害がRECQLによって修復されないまま細胞周期が進み、その結果、M期に至って分裂死を引き起こすためと考えられている。彼らはまた、RECQL siRNAを構成する特定の位置のヌクレオチドに2’-メトキシ化等の修飾を施すと、RNAi活性が増強されることを報告している(特許文献3)。 Futami et al. Show that inhibition of RECQL expression by siRNA causes mitotic catastrophe in many cancer cells, and that administration of RECQL siRNA to cancer-bearing model animals shows remarkable antitumor activity. Found (see, eg, Patent Documents 1 and 2). It is thought that these are because the cell cycle progresses without the DNA damage caused by DNA replication being repaired by RECQL, and as a result, it reaches the M phase and causes mitotic death. They also report that RNAi activity is enhanced by modifying nucleotides at specific positions constituting RECQL siRNA, such as 2'-methoxyation (Patent Document 3).
 一方、米国IONIS社は、RECQLのmRNA又は一次転写産物を標的とするアンチセンスオリゴヌクレオチド(以下、「ASO」と略記する場合がある。)、特に、10個のDNAからなる中央のギャップ領域と、その両端に隣接する各5個のヌクレオチドからなる5’-及び3’-ウイング領域とからなる「5-10-5」型のギャップマーASOであって、両ウイング領域のヌクレオチドが2’-O-メトキシエチル(2’-MOE)修飾され、かつすべてのヌクレオシド間結合がホスホロチオエート(PS)結合で置換されたASOを、RECQLの遺伝子配列に対して網羅的に合成し、RECQL遺伝子の発現を顕著に低下させる特定のASO群を同定している(特許文献4)。 On the other hand, IONIS of the United States has an antisense oligonucleotide that targets RECQL mRNA or primary transcript (hereinafter sometimes abbreviated as "ASO"), especially with a central gap region consisting of 10 DNAs. , A "5-10-5" type gapmer ASO consisting of 5'- and 3'-wing regions consisting of 5 nucleotides adjacent to each other, with 2'-nucleotides in both wing regions. ASO modified with O-methoxyethyl (2'-MOE) and all nucleoside linkages replaced with phosphorothioate (PS) binding was comprehensively synthesized for the RECQL gene sequence to express the RECQL gene. A specific ASO group that significantly decreases has been identified (Patent Document 4).
 しかし、従来のRECQL標的2’-MOE修飾ASOは、RECQL発現阻害活性や生体内安定性の面で効果は不十分であり、治療効果を奏するためには高用量投与を必要とする可能性があるが、ASOケミストリー由来の有害事象を惹起するおそれがある。
 そのため、より強力かつ安定性の高いRECQLに対するASOの開発が望まれている。
However, the conventional RECQL target 2'-MOE-modified ASO is insufficiently effective in terms of RECQL expression inhibitory activity and in vivo stability, and may require high-dose administration to achieve a therapeutic effect. However, it may cause adverse events from ASO chemistry.
Therefore, the development of ASO for RECQL, which is more powerful and stable, is desired.
国際公開第2004/100990号公報International Publication No. 2004/100990 国際公開第2006/054625号公報International Publication No. 2006/0546525 国際公開第2017/022650号公報International Publication No. 2017/0226 50 国際公開第02/068590号公報International Publication No. 02/068590
 従って、本発明の目的は、従来公知の2’-MOE修飾ASOよりもRECQL発現阻害活性及び/又は生体内安定性に優れたRECQLに対するASOを提供することであり、当該ASOを用いてRECQL遺伝子の発現を阻害することにより、がんをはじめとする過剰増殖性疾患を治療及び/又は予防する新規手段を提供することである。 Therefore, an object of the present invention is to provide an ASO for RECQL which is superior in RECQL expression inhibitory activity and / or in vivo stability to a conventionally known 2'-MOE-modified ASO, and the RECQL gene is used using the ASO. It is to provide a novel means for treating and / or preventing hyperproliferative diseases such as cancer by inhibiting the expression of.
 本発明者らは、RECQL mRNAの5’-UTR、コーディング領域及び3’-UTRに対して相補的なASOを設計し、それらの構成ヌクレオチドの一部を、糖の2’位と4’位との間の架橋により修飾したものを合成して、培養細胞に導入したところ、これらの2’,4’-架橋修飾ASOのうち、RECQL mRNAの特定の領域に相補的なASOは、顕著に優れたRECQL遺伝子の発現阻害活性を有することを見出した。一部の高活性2’,4’-架橋修飾ASOは、2’-MOE修飾ASOにおいてRECQL発現阻害活性が低いと報告されている領域を標的としていた。また、標的領域が重複する場合、2’,4’-架橋修飾ASOは2’-MOE修飾ASOよりも高いRECQL発現阻害活性を示した。
 本発明者らは、これらの知見に基づいて、RECQL mRNAの特定の領域を標的配列とする2’,4’-架橋修飾ASOは、高いRECQL発現阻害活性と、生体内安定性及び/又は低毒性とを併せ持つことから、RECQLの過剰発現を伴うがん等の過剰増殖性疾患の治療及び/又は予防薬となり得るものと結論し、本発明を完成するに至った。
We designed ASOs that are complementary to the 5'-UTR, coding region and 3'-UTR of RECQL mRNA, and some of their constituent nucleotides are at the 2'and 4'positions of the sugar. When those modified by cross-linking with and were synthesized and introduced into cultured cells, among these 2', 4'-cross-linked modified ASOs, the ASO complementary to a specific region of RECQL mRNA was remarkable. It was found that it has an excellent RECQL gene expression inhibitory activity. Some highly active 2', 4'-crosslink modified ASOs targeted regions reported to have low RECQL expression inhibitory activity in 2'-MOE modified ASOs. In addition, 2', 4'-crosslink modified ASO showed higher RECQL expression inhibitory activity than 2'-MOE modified ASO when the target regions overlapped.
Based on these findings, we found that 2', 4'-crosslink-modified ASOs targeting specific regions of RECQL mRNA have high RECQL expression inhibitory activity and low in vivo stability and / or low. Since it has toxicity, it is concluded that it can be a therapeutic and / or preventive agent for hyperproliferative diseases such as cancer accompanied by overexpression of RECQL, and the present invention has been completed.
 すなわち、本発明は以下のものを提供する。
[1]RECQL遺伝子の発現を阻害する一本鎖オリゴヌクレオチドであって、
配列番号1で表されるヌクレオチド配列からなる、RECQLをコードする核酸における2750~3663番目、80~300番目、330~500番目、800~930番目、1000~1350番目及び2250~2500番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列からなる標的領域中の、連続する10個以上のヌクレオチド配列と相補的なヌクレオチド配列を含み、
前記一本鎖オリゴヌクレオチドの長さは、10~30ヌクレオチドであり、
前記一本鎖オリゴヌクレオチドを構成する少なくとも一つのヌクレオシドの糖部が、糖の2’位と4’位との間の架橋により修飾されている、
一本鎖オリゴヌクレオチド。
[2]前記標的領域が、配列番号1で表されるヌクレオチド配列における356~370番目、836~851番目、1100~1114番目、1312~1328番目、2753~2964番目、3157~3274番目及び3386~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる、[1]記載の一本鎖オリゴヌクレオチド。
[3]前記標的領域が、配列番号1で表されるヌクレオチド配列における836~851番目、1100~1114番目、1312~1328番目、2753~2769番目、2950~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる、[1]記載の一本鎖オリゴヌクレオチド。
[4]前記標的領域が、配列番号1で表されるヌクレオチド配列における356~370番目、836~851番目、1100~1114番目、1312~1328番目、2753~2769番目、2814~2828番目、2950~2964番目、3157~3400番目、3507~3522番目、及び3527~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる、[1]記載の一本鎖オリゴヌクレオチド。
[5]5’末端に位置する5’ウイング領域(1);3’末端に位置する3’ウイング領域(2);および領域(1)および領域(2)の間に位置するデオキシギャップ領域(3);を含み、
ここで、領域(3)を構成する各ヌクレオシドは糖修飾されておらず、領域(1)および(2)を構成する少なくとも一つのヌクレオシドの糖部が、糖の4’位と2’位との間の架橋により修飾されており、
領域(1)および領域(2)は、2~5ヌクレオチド長であり、領域(3)は、7~10ヌクレオチド長である、
[1]~[4]のいずれかに記載の一本鎖オリゴヌクレオチド。
[6]糖の4’位と2’位との間の架橋による修飾が、LNA、AmNA、GuNA及びScpBNAからなる群より選択される、[1]~[5]のいずれかに記載の一本鎖オリゴヌクレオチド。
[7]隣接するヌクレオシド間の結合の少なくとも一つがホスホロチオエート結合である、[1]~[6]のいずれかに記載の一本鎖オリゴヌクレオチド。
[8]ヌクレオチド長が15である、[1]~[7]のいずれかに記載の一本鎖オリゴヌクレオチド。
[9]配列番号2~20からなる群より選択されるいずれかの配列番号で表されるヌクレオチド配列からなる、[1]~[8]のいずれかに記載の一本鎖オリゴヌクレオチド。
[10][1]~[9]のいずれかに記載の一本鎖オリゴヌクレオチドを含有してなる、RECQL遺伝子の発現阻害剤。
[11]RECQLを高発現する細胞の増殖を抑制及び/又は細胞死を誘導する、[10]記載の剤。
[12]がんの治療及び/又は予防用である、[10]又は[11]記載の剤。
[13]過剰増殖性疾患の治療及び/又は予防に使用するための、[1]~[9]のいずれかに記載の一本鎖オリゴヌクレオチド。
[14]過剰増殖性疾患が、がんである、[13]記載の一本鎖オリゴヌクレオチド。
[15]RECQLを高発現する対象に、[1]~[9]のいずれかに記載の一本鎖オリゴヌクレオチドを接触させることを含む、RECQLの発現阻害方法。
[16]RECQLを高発現する細胞に、[1]~[9]のいずれかに記載の一本鎖オリゴヌクレオチドを接触させることを含む、RECQLを高発現する細胞の増殖を抑制及び/又は細胞死を誘導する方法。
[17][1]~[9]のいずれかに記載の一本鎖オリゴヌクレオチドの有効量を哺乳動物に投与することを含む、過剰増殖性疾患の治療及び/又は予防方法。
[18]過剰増殖性疾患が、がんである、[17]記載の方法。
That is, the present invention provides the following.
[1] A single-stranded oligonucleotide that inhibits the expression of the RECQL gene.
Nucleotide sequences 2750 to 3663, 80 to 300, 330 to 500, 800 to 930, 1000 to 1350, and 2250 to 2500 in the nucleic acid encoding RECQL, which consist of the nucleotide sequence represented by SEQ ID NO: 1. Containing a nucleotide sequence complementary to 10 or more contiguous nucleotide sequences in a target region consisting of any of the nucleotide sequences selected from the group consisting of
The length of the single-stranded oligonucleotide is 10 to 30 nucleotides.
The sugar moiety of at least one nucleoside constituting the single-stranded oligonucleotide is modified by cross-linking between the 2'position and the 4'position of the sugar.
Single-stranded oligonucleotide.
[2] The target region is the 356 to 370th, 836 to 851st, 1100 to 1114th, 1312-1328th, 2753 to 2964th, 3157 to 3274th and 3386th to the nucleotide sequence represented by SEQ ID NO: 1. The single-stranded oligonucleotide according to [1], which comprises any nucleotide sequence selected from the group consisting of the 3663th nucleotide sequence and a nucleotide sequence in the vicinity thereof.
[3] The target region is selected from the group consisting of the 836 to 851th, 1100 to 1114th, 1312 to 1328th, 2753 to 2769th, and 2950 to 3663th nucleotide sequences in the nucleotide sequence represented by SEQ ID NO: 1. [1] The single-stranded oligonucleotide according to [1], which comprises one of the nucleotide sequences to be used and a nucleotide sequence in the vicinity thereof.
[4] The target region is the 356 to 370th, 836 to 851st, 1100 to 1114th, 1312-1328th, 2753 to 2769th, 2814 to 2828th, 2950 to the nucleotide sequence represented by SEQ ID NO: 1. The one according to [1], which comprises any nucleotide sequence selected from the group consisting of nucleotide sequences of positions 2964, 3157 to 3400, 3507 to 3522, and 3527 to 3663, and nucleotide sequences in the vicinity thereof. Main chain oligonucleotide.
[5] 5'wing region (1) located at the 5'end;3'wing region (2) located at the 3'end; and deoxygap region (1) located between regions (1) and region (2) ( 3); including;
Here, each nucleoside constituting the region (3) is not sugar-modified, and the sugar portion of at least one nucleoside constituting the regions (1) and (2) is at the 4'position and the 2'position of the sugar. Modified by cross-linking between
Region (1) and region (2) are 2-5 nucleotides in length and region (3) is 7-10 nucleotides in length.
The single-stranded oligonucleotide according to any one of [1] to [4].
[6] The one according to any one of [1] to [5], wherein the modification by cross-linking between the 4'-position and the 2'-position of the sugar is selected from the group consisting of LNA, AmNA, GuNA and ScpBNA. Main chain oligonucleotide.
[7] The single-stranded oligonucleotide according to any one of [1] to [6], wherein at least one of the bonds between adjacent nucleosides is a phosphorothioate bond.
[8] The single-stranded oligonucleotide according to any one of [1] to [7], which has a nucleotide length of 15.
[9] The single-stranded oligonucleotide according to any one of [1] to [8], which comprises a nucleotide sequence represented by any of the SEQ ID NOs: selected from the group consisting of SEQ ID NOs: 2 to 20.
[10] An inhibitor of the expression of the RECQL gene, which comprises the single-stranded oligonucleotide according to any one of [1] to [9].
[11] The agent according to [10], which suppresses the proliferation of cells highly expressing RECQL and / or induces cell death.
[12] The agent according to [10] or [11], which is used for treating and / or preventing cancer.
[13] The single-stranded oligonucleotide according to any one of [1] to [9] for use in the treatment and / or prevention of hyperproliferative diseases.
[14] The single-stranded oligonucleotide according to [13], wherein the hyperproliferative disease is cancer.
[15] A method for inhibiting the expression of RECQL, which comprises contacting a subject with high expression of RECQL with the single-stranded oligonucleotide according to any one of [1] to [9].
[16] Suppressing the proliferation of RECQL-expressing cells and / or cells, including contacting RECQL-expressing cells with the single-stranded oligonucleotide according to any one of [1] to [9]. How to induce death.
[17] A method for treating and / or preventing hyperproliferative diseases, which comprises administering an effective amount of the single-stranded oligonucleotide according to any one of [1] to [9] to a mammal.
[18] The method according to [17], wherein the hyperproliferative disease is cancer.
 本発明のASOによれば、強力かつ安定にRECQL遺伝子の発現を阻害することができ、投与量、投与回数、さらには製造コストを低減し、かつ有害事象の発現を抑制しつつ、RECQL遺伝子を高発現する細胞(例、がん細胞)の増殖を抑制し、細胞死を誘導して、がんをはじめとする過剰増殖性疾患の治療及び予防が可能となる。 According to the ASO of the present invention, the expression of the RECQL gene can be strongly and stably inhibited, the dose, the number of administrations, and the production cost can be reduced, and the expression of adverse events can be suppressed while suppressing the expression of the RECQL gene. By suppressing the proliferation of highly expressed cells (eg, cancer cells) and inducing cell death, it becomes possible to treat and prevent hyperproliferative diseases such as cancer.
RECQL mRNAに対して設計された各種アンチセンスオリゴヌクレオチド(ASO)(20 nM)をがん細胞にリポフェクション法にて導入した場合のRECQL mRNAの発現阻害効果を示す図である。RECQL mRNAの発現量を、ASOを導入していないコントロールにおける発現量を1として相対値で示す。It is a figure which shows the expression inhibitory effect of RECQL mRNA when various antisense oligonucleotides (ASO) (20 nM) designed for RECQL mRNA are introduced into cancer cells by the lipofection method. The expression level of RECQL mRNA is shown as a relative value with the expression level in the control without ASO introduced as 1. RECQL mRNAに対して設計された各種アンチセンスオリゴヌクレオチド(ASO)(20 nM)をがん細胞にリポフェクション法にて導入した場合のRECQL mRNAの発現阻害効果を示す図である。RECQL mRNAの発現量を、ASOを導入していないコントロールにおける発現量を1として相対値で示す。It is a figure which shows the expression inhibitory effect of RECQL mRNA when various antisense oligonucleotides (ASO) (20 nM) designed for RECQL mRNA are introduced into cancer cells by the lipofection method. The expression level of RECQL mRNA is shown as a relative value with the expression level in the control without ASO introduced as 1. RECQL mRNAに対して設計された各種アンチセンスオリゴヌクレオチド(ASO)(20 nM)をがん細胞にリポフェクション法にて導入した場合のRECQL mRNAの発現阻害効果を示す図である。RECQL mRNAの発現量を、ASOを導入していないコントロールにおける発現量を1として相対値で示す。It is a figure which shows the expression inhibitory effect of RECQL mRNA when various antisense oligonucleotides (ASO) (20 nM) designed for RECQL mRNA are introduced into cancer cells by the lipofection method. The expression level of RECQL mRNA is shown as a relative value with the expression level in the control without ASO introduced as 1. 一次スクリーニングで高いRECQL発現阻害活性を示したASOについて、濃度依存性をリポフェクション法にて調べた結果を示す図である。It is a figure which shows the result of having examined the concentration dependence by the lipofection method for ASO which showed high RECQL expression inhibitory activity in the primary screening. 一次スクリーニングで高いRECQL発現阻害活性を示したASOについて、濃度依存性をリポフェクション法にて調べた結果を示す図である。It is a figure which shows the result of having examined the concentration dependence by the lipofection method for ASO which showed high RECQL expression inhibitory activity in the primary screening. 一次スクリーニングで高いRECQL発現阻害活性を示したASOについて、濃度依存性をリポフェクション法にて調べた結果を示す図である。It is a figure which shows the result of having examined the concentration dependence by the lipofection method for ASO which showed high RECQL expression inhibitory activity in the primary screening. 一次スクリーニングで高いRECQL発現阻害活性を示したASOについて、濃度依存性をリポフェクション法にて調べた結果を示す図である。It is a figure which shows the result of having examined the concentration dependence by the lipofection method for ASO which showed high RECQL expression inhibitory activity in the primary screening. 一次スクリーニングで高いRECQL発現阻害活性を示したASOについて、濃度依存性をCEM法にて調べた結果を示す図である。It is a figure which shows the result of having examined the concentration dependence by the CEM method for ASO which showed high RECQL expression inhibitory activity in the primary screening. 一次スクリーニングで高いRECQL発現阻害活性を示したASOについて、濃度依存性をCEM法にて調べた結果を示す図である。It is a figure which shows the result of having examined the concentration dependence by the CEM method for ASO which showed high RECQL expression inhibitory activity in the primary screening. 5種のASOについて、ヒト卵巣がん細胞(ES-2細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human ovarian cancer cells (ES-2 cells) for 5 kinds of ASOs. 5種のASOについて、ヒト卵巣がん細胞(SK-OV-3細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human ovarian cancer cells (SK-OV-3 cells) for 5 kinds of ASOs. 5種のASOについて、ヒト卵巣がん細胞(TOV-112D細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human ovarian cancer cells (TOV-112D cells) for 5 kinds of ASOs. 5種のASOについて、ヒト卵巣がん細胞(OVCAR-3細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human ovarian cancer cells (OVCAR-3 cells) for 5 kinds of ASOs. 5種のASOについて、ヒト大腸がん細胞(LoVo細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human colon cancer cells (LoVo cells) for 5 kinds of ASOs. 5種のASOについて、ヒト大腸がん細胞(HCT-15細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human colon cancer cells (HCT-15 cells) about 5 kinds of ASOs. 5種のASOについて、ヒト胃がん細胞(MKN45細胞)におけるノックダウン活性(mRNAの発現抑制)を調べた結果を示す図である。It is a figure which shows the result of having investigated the knockdown activity (inhibition of mRNA expression) in human gastric cancer cells (MKN45 cells) for 5 kinds of ASOs.
1.RECQL遺伝子の発現を阻害する一本鎖オリゴヌクレオチド
 本発明はRECQL遺伝子の発現を阻害する活性を有するアンチセンスオリゴヌクレオチド(ASO)(以下、「本発明のASO」ともいう。)を提供する。ここで「アンチセンスオリゴヌクレオチド(ASO)」とは、標的となる核酸中の連続する10個以上のヌクレオチドからなる配列と特異的にハイブリダイズする一本鎖オリゴヌクレオチドを意味する。
 また、「RECQL遺伝子の発現を阻害する」とは、結果として、ASOと細胞とを接触させた場合に、接触させない場合と比較して、RECQLタンパク質の発現量を低減させ、RECQLヘリカーゼの活性を低下させる任意の態様を包含する意味で用いられ、例えば、RNase Hによる標的RNAの分解(例えば、ギャップマーによる)や、標的RNAとの特異的かつ安定したハイブリッド形成によるタンパク質合成阻害を含む。発現の阻害の程度は、統計学的に有意であれば特に制限されないが、例えば、細胞とASOとを接触させない場合と比較して、20%以上、好ましくは50%以上、より好ましくは75%以上、RECQL mRNA又はタンパク質の発現量を低下させた場合に、当該ASOはRECQL遺伝子の発現阻害活性を有するとみなすことができる。
1. 1. Single-stranded oligonucleotide that inhibits the expression of the RECQL gene The present invention provides an antisense oligonucleotide (ASO) (hereinafter, also referred to as “ASO of the present invention”) having an activity of inhibiting the expression of the RECQL gene. Here, the "antisense oligonucleotide (ASO)" means a single-stranded oligonucleotide that specifically hybridizes with a sequence consisting of 10 or more consecutive nucleotides in a target nucleic acid.
In addition, "inhibiting the expression of the RECQL gene" means that, as a result, when ASO and cells are brought into contact with each other, the expression level of RECQL protein is reduced and the activity of RECQL helicase is increased as compared with the case where ASO is not brought into contact with cells. It is used in the sense of including any aspect of reducing, and includes, for example, degradation of a target RNA by RNase H (eg, by gapmer) and inhibition of protein synthesis by specific and stable hybrid formation with the target RNA. The degree of inhibition of expression is not particularly limited as long as it is statistically significant, but is, for example, 20% or more, preferably 50% or more, more preferably 75%, as compared with the case where cells are not brought into contact with ASO. As described above, when the expression level of RECQL mRNA or protein is reduced, the ASO can be considered to have the expression inhibitory activity of the RECQL gene.
 本発明のASOは、RECQL mRNAの特定の領域を標的として特異的にハイブリダイズすることを特徴とする。RECQL mRNAのヌクレオチド配列としては、配列番号1で表されるヒトRECQL mRNAのヌクレオチド配列(NCBIデータベースに、Accession No. NM_002907.3として登録されている)もしくはその非ヒト哺乳動物オルソログ(例えば、マウスRECQL mRNAのヌクレオチド配列は、NCBIデータベースに、Accession No. NM_023042.3として登録されている)、又はその遺伝子多型が挙げられる。本明細書においては、以下、特にことわらない限り、配列番号1で表されるヒトRECQL mRNAのヌクレオチド配列に基づいて、ヌクレオチドの位置やヌクレオチド配列の範囲等を記載するが、その場合、その遺伝子多型や非ヒト哺乳動物オルソログにおける対応するヌクレオチドやヌクレオチド配列も、当該記載内容に包含されるものである。 The ASO of the present invention is characterized in that it specifically hybridizes to a specific region of RECQL mRNA. The nucleotide sequence of RECQL mRNA is the nucleotide sequence of human RECQL mRNA represented by SEQ ID NO: 1 (registered as Accession No. NM_002907.3 in the NCBI database) or its non-human mammalian ortholog (for example, mouse RECQL). The nucleotide sequence of mRNA is registered in the NCBI database as Accession No. NM_023042.3), or its gene polymorphism. In the present specification, unless otherwise specified, the nucleotide position, the range of the nucleotide sequence, etc. are described based on the nucleotide sequence of human RECQL mRNA represented by SEQ ID NO: 1. In that case, the gene is described. Corresponding nucleotides and nucleotide sequences in polymorphisms and non-human mammalian orthologs are also included in the description.
 具体的には、本発明のASOは、配列番号1で表されるヌクレオチド配列からなるRECQL mRNA(但し、該ヌクレオチド配列中「t」は「u」と読み替える。)における2750~3663番目、80~300番目、330~500番目、800~930番目、1000~1350番目及び2250~2500番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列からなる領域を標的とし、該領域中の連続する10個以上のヌクレオチド配列と相補的なヌクレオチド配列を含む。好ましくは、配列番号1で表されるヌクレオチド配列からなるRECQL mRNA(但し、該ヌクレオチド配列中「t」は「u」と読み替える。)における2750~3663番目、800~930番目及び1000~1350番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列からなる領域を標的とし、該領域中の連続する10個以上のヌクレオチド配列と相補的なヌクレオチド配列を含む。ここで「相補的」とは、標的配列に対して完全相補的な(即ち、ミスマッチなくハイブリダイズする)配列だけでなく、哺乳動物細胞の生理的条件下でRECQL mRNAとハブリダイズし得る限り、1ないし数(例、1、2、3、4、5)ヌクレオチド、好ましくは、1又は2ヌクレオチドのミスマッチを含む配列であってもよい。例えば、RECQL mRNA中の標的ヌクレオチド配列の相補鎖配列に対して、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、99%以上、最も好ましくは100%の同一性を有する配列が挙げられる。本発明における「ヌクレオチド配列の同一性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。また、個々の塩基における相補性は、対象となる塩基とワトソン・クリック型塩基対を形成することに限定されるものではなく、フーグスティーン型塩基対やゆらぎ塩基対(Wobble base pair)を形成することも含む。 Specifically, the ASO of the present invention is the 2750th to 3663th, 80th to 3663th in the RECQL mRNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 (however, "t" in the nucleotide sequence is read as "u"). Targets a region consisting of any of the nucleotide sequences selected from the group consisting of the 300th, 330th to 500th, 800th to 930th, 1000th to 1350th, and 2250th to 2500th nucleotide sequences, and is continuous in the region. Contains a nucleotide sequence complementary to 10 or more nucleotide sequences. Preferably, in the RECQL mRNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 (however, "t" in the nucleotide sequence is read as "u"), the 2750th to 3663th, the 800th to 930th and the 1000th to 1350th. A region consisting of any of the nucleotide sequences selected from the group consisting of nucleotide sequences is targeted and contains a nucleotide sequence complementary to 10 or more consecutive nucleotide sequences in the region. Here, "complementary" means not only a sequence that is completely complementary to the target sequence (that is, hybridizes without mismatch), but also as long as it can be hubridized with RECQL mRNA under the physiological conditions of mammalian cells. It may be a sequence containing a mismatch of to a number (eg, 1, 2, 3, 4, 5) nucleotides, preferably 1 or 2 nucleotides. For example, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, and most preferably 100% identical to the complementary strand sequence of the target nucleotide sequence in RECQL mRNA. Examples include sex sequences. For "nucleic acid sequence identity" in the present invention, the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) is used, and the following conditions (expected value = 10; gap is allowed; filtering = ON; It can be calculated with match score = 1; mismatch score = -3). In addition, complementarity in individual bases is not limited to forming Watson-Crick base pairs with target bases, but forms Hoogsteen base pairs and Wobble base pairs. Including to do.
 あるいは、「相補的なヌクレオチド配列」とは、標的配列とストリンジェントな条件下でハイブリダイズするヌクレオチド配列である。ここで「ストリンジェントな条件」とは、例えば、Current Protocols in Molecular Biology, John Wiley & Sons,6.3.1-6.3.6,1999に記載される条件、例えば、6×SSC(sodium chloride/sodium citrate)/45℃でのハイブリダイゼーション、次いで0.2×SSC/0.1% SDS/50~65℃での一回以上の洗浄等が挙げられるが、当業者であれば、これと同等のストリンジェンシーを与えるハイブリダイゼーションの条件を適宜選択することができる。 Alternatively, the "complementary nucleotide sequence" is a nucleotide sequence that hybridizes with the target sequence under stringent conditions. Here, the “stringent condition” is, for example, the condition described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, for example, 6 × SSC (sodium chloride / sodium citrate). ) / Hybridization at 45 ° C, followed by 0.2 × SSC / 0.1% SDS / one or more washings at 50-65 ° C. Hybridization conditions can be appropriately selected.
 好ましい実施態様において、本発明のASOが標的とするRECQL mRNA中の領域は、配列番号1で表されるヌクレオチド配列における356~370番目、836~851番目、1100~1114番目、1312~1328番目、2753~2964番目、3157~3274番目及び3386~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる領域である。より好ましくは、本発明のASOが標的とするRECQL mRNA中の領域は、配列番号1で表されるヌクレオチド配列における836~851番目、1312~1328番目、2753~2964番目及び3157~3274番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる領域である。ここで「その近傍のヌクレオチド配列」とは、ヌクレオチド番号で規定された前記各領域の5’-及び3’-末端に隣接する50ヌクレオチド以下、好ましくは30ヌクレオチド以下、より好ましくは10ヌクレオチド以下、さらに好ましくは5ヌクレオチド以下のヌクレオチド配列を意味する。以下も同様である。 In a preferred embodiment, the regions in the RECQL mRNA targeted by the ASO of the present invention are positions 356 to 370, 836 to 851, 1100-1114, 1312-1328 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of any nucleotide sequence selected from the group consisting of nucleotide sequences 2753 to 2964, 3157 to 3274, and 3386 to 3663, and a nucleotide sequence in the vicinity thereof. More preferably, the region in the RECQL mRNA targeted by the ASO of the present invention is the nucleotides 836 to 851, 1312-1328, 2753 to 2964 and 3157 to 3274 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of any nucleotide sequence selected from the group consisting of sequences and nucleotide sequences in the vicinity thereof. Here, the term "nucleotide sequence in the vicinity" refers to 50 nucleotides or less, preferably 30 nucleotides or less, more preferably 10 nucleotides or less, adjacent to the 5'- and 3'-terminals of each of the regions defined by the nucleotide number. More preferably, it means a nucleotide sequence of 5 nucleotides or less. The same applies to the following.
 別の好ましい実施態様において、本発明のASOが標的とするRECQL mRNA中の領域は、配列番号1で表されるヌクレオチド配列における836~851番目、1100~1114番目、1312~1328番目、2753~2769番目、2950~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる領域である。より好ましくは、本発明のASOが標的とするRECQL mRNA中の領域は、配列番号1で表されるヌクレオチド配列における836~851番目、1312~1328番目および2950~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる領域である。これらの領域は、上記特許文献4(国際公開第02/068590号公報)に記載されるウイング領域が2’-MOE修飾されたギャップマー型ASOにおいて、RECQL発現阻害活性が低かったか、あるいはASOが設計されなかった領域に相当する。 In another preferred embodiment, the regions in the RECQL mRNA targeted by the ASO of the present invention are positions 836 to 851, 1100-1114, 1312-1328, 2753 to 2769 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of one of the nucleotide sequences selected from the group consisting of the 2950th to 3663th nucleotide sequences and the nucleotide sequence in the vicinity thereof. More preferably, the region in the RECQL mRNA targeted by the ASO of the present invention is from the group consisting of the nucleotide sequences 836 to 851, 1312-1328 and 2950 to 3663 in the nucleotide sequence represented by SEQ ID NO: 1. A region consisting of one of the selected nucleotide sequences and a nucleotide sequence in the vicinity thereof. In these regions, the RECQL expression inhibitory activity was low or the ASO was low in the gapmer type ASO in which the wing region described in Patent Document 4 (International Publication No. 02/068590) was modified with 2'-MOE. Corresponds to the undesigned area.
 さらに別の好ましい実施態様において、本発明のASOが標的とするRECQL mRNA中の領域は、配列番号1で表されるヌクレオチド配列における356~370番目、836~851番目、1100~1114番目、1312~1328番目、2753~2769番目、2814~2828番目、2950~2964番目、3157~3400番目、3507~3522番目、及び3527~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる領域である。より好ましくは、本発明のASOが標的とするRECQL mRNA中の領域は、配列番号1で表されるヌクレオチド配列における836~851番目、1312~1328番目、2950~2964番目および3157~3400番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる領域である。 In yet another preferred embodiment, the regions in the RECQL mRNA targeted by the ASO of the present invention are positions 356-370, 836-851, 1100-1114, 1312-in the nucleotide sequence represented by SEQ ID NO: 1. Any nucleotide sequence selected from the group consisting of the 1328th, 2753-2769th, 2814-2828th, 2950-2964th, 3157-3400th, 3507-3522th, and 3527-3663th nucleotide sequences, and It is a region consisting of a nucleotide sequence in the vicinity thereof. More preferably, the region in the RECQL mRNA targeted by the ASO of the present invention is the nucleotides 836 to 851, 1312-1328, 2950 to 2964 and 3157 to 3400 in the nucleotide sequence represented by SEQ ID NO: 1. It is a region consisting of any nucleotide sequence selected from the group consisting of sequences and nucleotide sequences in the vicinity thereof.
 本発明のASOは、上記したいずれかの標的領域中の連続する10個以上(例、10、11、12、13、14、15、16、17、18、19、20個)、好ましくは15個以上のヌクレオチドからなる配列を標的配列とし、それと相補的なヌクレオチド配列を含む。 The ASOs of the present invention are 10 or more consecutive (eg, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), preferably 15 in any of the above-mentioned target regions. A sequence consisting of one or more nucleotides is used as a target sequence, and a nucleotide sequence complementary thereto is included.
 本発明のASOの長さは特に限定されないが、例えば10~30ヌクレオチド長であり、好ましくは12~30ヌクレオチド長であり、さらに好ましくは15~25ヌクレオチド長である。 The length of the ASO of the present invention is not particularly limited, but is, for example, 10 to 30 nucleotides in length, preferably 12 to 30 nucleotides in length, and more preferably 15 to 25 nucleotides in length.
 本発明のASOの構成単位としては、例えば、リボヌクレオチド及びデオキシリボヌクレオチドが挙げられる。これらのヌクレオチドは、修飾されていても(修飾されたヌクレオチド残基を「修飾ヌクレオチド残基」と称する場合がある)、非修飾であってもよい(非修飾のヌクレオチド残基を「非修飾ヌクレオチド残基」と称する場合がある)。 Examples of the constituent units of ASO of the present invention include ribonucleotides and deoxyribonucleotides. These nucleotides may be modified (modified nucleotide residues may be referred to as "modified nucleotide residues") or unmodified (unmodified nucleotide residues are referred to as "unmodified nucleotides". Sometimes referred to as "residue").
 前記ヌクレオチド残基は、構成要素として、糖、塩基及びリン酸を含む。リボヌクレオチドは、糖としてリボース残基を有し、塩基として、アデニン(A)、グアニン(G)、シトシン(C)、5-メチルシトシン(mC)及びウラシル(U)(チミン(T)に置き換えることもできる)を有し、デオキシリボヌクレオチド残基は、糖としてデオキシリボース残基を有し、塩基として、アデニン(dA)、グアニン(dG)、シトシン(dC)、5-メチルシトシン(dmC)及びチミン(dT)(ウラシル(dU)に置き換えることもできる)を有する。以下では、アデニン、グアニン、(5-メチル)シトシン、ウラシル、チミンを有するヌクレオチドをそれぞれ、アデニンヌクレオチド、グアニンヌクレオチド、(5-メチル)シトシンヌクレオチド、ウラシルヌクレオチド、チミンヌクレオチドと称する場合がある。 The nucleotide residue contains sugar, base and phosphoric acid as components. Ribonucleotides have a ribose residue as a sugar and are replaced by adenine (A), guanine (G), cytosine (C), 5-methylcytosine (mC) and uracil (U) (thymine (T)) as bases. The deoxyribonucleotide residue has a deoxyribose residue as a sugar and as bases adenine (dA), guanine (dG), cytosine (dC), 5-methylcytosine (dmC) and Has thymine (dT) (which can also be replaced with uracil (dU)). Hereinafter, nucleotides having adenine, guanine, (5-methyl) cytosine, uracil, and thymine may be referred to as adenine nucleotide, guanine nucleotide, (5-methyl) cytosine nucleotide, uracil nucleotide, and thymine nucleotide, respectively.
 前記非修飾ヌクレオチド残基は、前記各構成要素が、例えば、天然に存在するものと同一又は実質的に同一であり、好ましくは、人体において天然に存在するものと同一又は実質的に同一である。 The unmodified nucleotide residues are such that each of the components is, for example, the same or substantially the same as naturally occurring, preferably the same or substantially the same as naturally occurring in the human body. ..
 前記修飾ヌクレオチド残基は、例えば、前記非修飾ヌクレオチド残基の構成要素のいずれが修飾されてもよい。本発明において、「修飾」には、例えば、前記構成要素の置換、付加及び/又は欠失、前記構成要素における原子及び/又は官能基の置換、付加及び/又は欠失が挙げられる。前記修飾ヌクレオチド残基としては、例えば、天然に存在するヌクレオチド残基、人工的に修飾したヌクレオチド残基等が挙げられる。前記天然由来の修飾ヌクレオチド残基としては、例えば、リンバックら(Limbach et al.、1994、Summary:the modified nucleosides of RNA、Nucleic Acids Res.22:2183~2196)を参照できる。また、前記修飾ヌクレオチド残基としては、例えば、前記ヌクレオチドの代替物の残基が挙げられる。 The modified nucleotide residue may be modified by, for example, any of the components of the unmodified nucleotide residue. In the present invention, "modification" includes, for example, substitution, addition and / or deletion of the component, substitution, addition and / or deletion of an atom and / or functional group in the component. Examples of the modified nucleotide residue include naturally occurring nucleotide residues, artificially modified nucleotide residues, and the like. As the naturally occurring modified nucleotide residue, for example, Limbach et al. (1994, Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183 to 2196) can be referred to. In addition, examples of the modified nucleotide residue include residues that are substitutes for the nucleotide.
 前記ヌクレオチド残基の修飾は、例えば、糖-リン酸骨格(該骨格には、塩基も含まれる)(以下、糖リン酸骨格)の修飾が挙げられる。 Modification of the nucleotide residue includes, for example, modification of a sugar-phosphate skeleton (the skeleton also includes a base) (hereinafter, sugar phosphate skeleton).
 前記糖リン酸骨格において、糖がリボースの場合、例えば、リボース残基を修飾できる。前記リボース残基は、例えば、2’位炭素を修飾でき、具体的には、例えば、2’位炭素に結合する水酸基をメチル基で修飾、あるいは該水酸基を水素又はフルオロ等のハロゲンに置換できる。また、前記2’位炭素の水酸基を水素に置換することで、リボース残基をデオキシリボースに置換できる。前記リボース残基は、例えば、立体異性体に置換でき、例えば、アラビノース残基に置換してもよい。以下では、前記のように糖の2’位炭素に結合する水酸基をメトキシ基で修飾した核酸を2'-O-メチル修飾核酸と称することがある。また、本発明において、「核酸」にはヌクレオチドなどの核酸モノマーが包含される。 In the sugar phosphate skeleton, when the sugar is ribose, for example, the ribose residue can be modified. The ribose residue can modify, for example, the 2'carbon, and specifically, for example, the hydroxyl group bonded to the 2'carbon can be modified with a methyl group, or the hydroxyl group can be replaced with a halogen such as hydrogen or fluoro. .. Further, by substituting the hydroxyl group of the 2'carbon with hydrogen, the ribose residue can be replaced with deoxyribose. The ribose residue can be replaced with, for example, a stereoisomer, and may be replaced with, for example, an arabinose residue. Hereinafter, the nucleic acid in which the hydroxyl group bonded to the 2'carbon of the sugar is modified with a methoxy group as described above may be referred to as a 2'-O-methyl modified nucleic acid. Further, in the present invention, "nucleic acid" includes nucleic acid monomers such as nucleotides.
 前記糖リン酸骨格は、例えば、非リボース残基(非デオキシリボース残基も包含されるものとする)及び/又は非リン酸を有する非リボースリン酸骨格に置換してもよく、このような置換も糖リン酸骨格の修飾に包含される。前記非リボースリン酸骨格は、例えば、前記糖リン酸骨格の非荷電体が挙げられる。前記非リボースリン酸骨格に置換された、前記ヌクレオチドの代替物は、例えば、モルホリノ、シクロブチル、ピロリジン等が挙げられる。前記代替物は、この他に、例えば、人工核酸が挙げられる。具体例として、例えば、PNA(ペプチド核酸)、架橋構造型人工核酸(BNA:Bridged Nucleic Acid)などが挙げられる。BNAとしては、例えば、ロックト人工核酸(LNA)、AmNA(下記式(I)中、Rがメチル基)、GuNA、scpBNA、ENA、S-cEtなどが挙げられる。以下に、本発明に用いることができるBNAの具体的な構造(ヌクレオシド部分)を示す。 The sugar phosphate skeleton may be replaced, for example, with a non-ribose phosphate skeleton having non-ribose residues (including non-deoxyribose residues) and / or non-phosphate, such substitutions. Is also included in the modification of the sugar phosphate skeleton. Examples of the non-ribose phosphate skeleton include uncharged compounds of the sugar phosphate skeleton. Substitutes for the nucleotides substituted with the non-ribos phosphate skeleton include, for example, morpholino, cyclobutyl, pyrrolidine and the like. Other examples of the alternative include artificial nucleic acids. Specific examples include PNA (peptide nucleic acid) and crosslinked artificial nucleic acid (BNA: Bridged Nucleic Acid). Examples of BNA include Locked artificial nucleic acid (LNA), AmNA (in the following formula (I), R is a methyl group), GuNA, scpBNA, ENA, S-cEt and the like. The specific structure (nucleoside moiety) of BNA that can be used in the present invention is shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、ヘテロ原子を含んでいてもよい炭素数3から12のアリール基、ヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表す。好ましくは、Rは、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、またはベンジル基であり、より好ましくは、Rは、水素原子またはメチル基である。また、上記各式中、B又はBaseは塩基を表す。 In formula (I), R is a hydrogen atom, an alkyl group having 1 to 7 carbon atoms which may form a branched or ring, an alkenyl group having 2 to 7 carbon atoms which may form a branched or ring, Represents an aryl group having 3 to 12 carbon atoms which may contain a heteroatom, an aralkyl group having an aryl moiety having 3 to 12 carbon atoms which may contain a heteroatom, or a protective group of an amino group for nucleic acid synthesis. Preferably, R is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, or a benzyl group, and more preferably, R is a hydrogen atom or a methyl group. Further, in each of the above formulas, B or Base represents a base.
 これらの人工核酸は、例えば、特開2002-241393、特開2000-297097等を参照して合成することができる。 These artificial nucleic acids can be synthesized by referring to, for example, JP-A-2002-241393, JP-A-2000-297097, and the like.
 本発明のASOは、少なくとも一つのヌクレオシドの糖部が、糖の2’位と4’位との間の架橋により修飾されていることを特徴とする。2’,4’-架橋修飾は、その架橋構造により標的RNAへの結合力と生体内での代謝安定性(ヌクレアーゼ耐性)を増すことができる。上記の架橋型人工核酸のうち、LNA、AmNA、GuNA、scpBNAが好ましく、ヌクレアーゼ耐性により優れ、低毒性であること等から、AmNA、GuNA、scpBNAがより好ましい。好ましくは、本発明のASOは、架橋型人工核酸残基を2個以上(例:2、3、4、5、6、7、8、9又は10個以上)含む。架橋型人工核酸残基の位置は、RECQL発現阻害活性に悪影響を及ぼさない限り特に制限はないが、例えば、本発明のASOが後述のギャップマー型の場合、好ましい一実施態様においては、ウイング領域のヌクレオチド残基が架橋型人工核酸で修飾される。 The ASO of the present invention is characterized in that the sugar portion of at least one nucleoside is modified by cross-linking between the 2'position and the 4'position of the sugar. The 2', 4'-crosslink modification can increase the binding force to the target RNA and the metabolic stability (nuclease resistance) in vivo due to its crosslink structure. Among the above-mentioned crosslinked artificial nucleic acids, LNA, AmNA, GuNA, and scpBNA are preferable, and AmNA, GuNA, and scpBNA are more preferable because they are superior in nuclease resistance and have low toxicity. Preferably, the ASO of the present invention comprises two or more crosslinked artificial nucleic acid residues (eg, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more). The position of the crosslinked artificial nucleic acid residue is not particularly limited as long as it does not adversely affect the RECQL expression inhibitory activity. For example, when the ASO of the present invention is of the gapmer type described later, in one preferred embodiment, the wing region Nucleotide residues are modified with crosslinked artificial nucleic acids.
 前記糖リン酸骨格において、例えば、リン酸基を修飾できる。前記糖リン酸骨格において、糖残基に最も隣接するリン酸基は、αリン酸基と呼ばれる。前記αリン酸基は、負に荷電し、その電荷は、糖残基に非結合の2つの酸素原子にわたって、均一に分布している。前記αリン酸基における4つの酸素原子のうち、ヌクレオチド残基間のホスホジエステル結合において、糖残基と非結合である2つの酸素原子は、以下、「非結合(non-linking)酸素」ともいう。他方、前記ヌクレオチド残基間のホスホジエステル結合において、糖残基と結合している2つの酸素原子は、以下、「結合(linking)酸素」という。前記αリン酸基は、例えば、非荷電となる修飾、又は、前記非結合酸素における電荷分布が非対称型となる修飾を行うことが好ましい。 In the sugar phosphate skeleton, for example, a phosphate group can be modified. In the glycophosphate skeleton, the phosphate group closest to the sugar residue is called an α-phosphate group. The α-phosphate group is negatively charged, and the charge is uniformly distributed over two oxygen atoms unbonded to sugar residues. Of the four oxygen atoms in the α-phosphate group, the two oxygen atoms that are unbonded to the sugar residue in the phosphodiester bond between the nucleotide residues are hereinafter also referred to as “non-linking oxygen”. Say. On the other hand, in the phosphodiester bond between the nucleotide residues, the two oxygen atoms bonded to the sugar residue are hereinafter referred to as "linking oxygen". It is preferable that the α-phosphate group is modified so that it becomes uncharged or the charge distribution in the unbound oxygen becomes asymmetrical, for example.
 前記リン酸基は、例えば、前記非結合酸素を置換してもよい。前記酸素は、例えば、S(硫黄)、Se(セレン)、B(ホウ素)、C(炭素)、H(水素)、N(窒素)及びOR(Rは、アルキル基又はアリール基)のいずれかの原子で置換でき、好ましくは、Sで置換される。前記非結合酸素は、いずれか一方又は両方が置換されていてもよく、好ましくは、いずれか一方又は両方がSで置換される。より具体的には、前記修飾リン酸基として、例えば、ホスホロチオエート、ホスホロジチオエート、ホスホロセレネート、ボラノホスフェート、ボラノホスフェートエステル、ホスホネート水素、ホスホロアミデート、アルキル又はアリールホスホネート、及びホスホトリエステル等が挙げられ、ホスホロチオエート、ホスホロジチオエートが好ましい。 The phosphoric acid group may replace, for example, the unbound oxygen. The oxygen is, for example, any one of S (sulfur), Se (sulfur), B (boron), C (carbon), H (hydrogen), N (nitrogen) and OR (R is an alkyl group or an aryl group). Can be replaced with an atom of, preferably with S. The unbound oxygen may be substituted with either or both, preferably any one or both. More specifically, the modified phosphate groups include, for example, phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoramidate, alkyl or arylphosphonate, and. Examples thereof include phosphotriesters, and phosphorothioates and phosphorodithioates are preferable.
 また、前記リン酸基はリン非含有のリンカーに置換してもよい。当該リンカーとしては、例えば、シロキサン、カーボネート、カルボキシメチル、カルバメート、アミド、チオエーテル、エチレンオキサイドリンカー、スルホネート、スルホンアミド、チオホルムアセタール、ホルムアセタール、オキシム、メチレンイミノ、メチレンメチルイミノ、メチレンヒドラゾ、メチレンジメチルヒドラゾ、及びメチレンオキシメチルイミノなどが挙げられ、好ましくは、メチレンカルボニルアミノ基及びメチレンメチルイミノ基が挙げられる。あるいは、前記リン酸基は他のリン酸非含有のリンカーに置換してもよい。このようなリンカーとしては、例えば、“Med. Chem. Commun., 2014, 5, 1454-1471”に記載されたもの等が挙げられる。 Further, the phosphoric acid group may be replaced with a phosphorus-free linker. Examples of the linker include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioform acetal, form acetal, oxime, methylene imino, methylene methyl imino, methylene hydrazo, and methylene. Examples thereof include dimethylhydrazo and methyleneoxymethylimino, and preferably methylenecarbonylamino group and methylenemethylimino group. Alternatively, the phosphoric acid group may be replaced with another phosphoric acid-free linker. Examples of such a linker include those described in “Med. Chem. Communi., 2014, 5, 1454-1471”.
 好ましい実施態様において、本発明のASOに含まれるリン酸基の1/2以上、より好ましくは2/3以上が、上記のうちの1以上のリン酸基修飾を受けており、さらに好ましくは、すべてのリン酸基が修飾を受けている。例えば、15merのASOであれば、8個以上、好ましくは10個以上、より好ましくはすべてのリン酸基が、例えばホスホロチオエート化、ホスホロジチオエート化等されている。リン酸ジエステル結合部の非結合酸素の硫黄原子による置換は、ヌクレアーゼ耐性の向上やASOの組織内分布において重要である。 In a preferred embodiment, 1/2 or more, more preferably 2/3 or more of the phosphate groups contained in the ASO of the present invention are modified with one or more of the above phosphate groups, and even more preferably. All phosphate groups are modified. For example, in the case of 15 mer ASO, 8 or more, preferably 10 or more, more preferably all phosphate groups are, for example, phosphorothioated, phosphorodithioated or the like. Substitution of unbound oxygen at the phosphodiester bond with sulfur atoms is important for improving nuclease resistance and in the tissue distribution of ASO.
 一方で、ホスホロチオエート(PS)化等のリン酸基の修飾は毒性を引き起こす可能性がある。本発明のASOは、1以上の構成ヌクレオチドが架橋型人工核酸で置換されているため、ヌクレアーゼ耐性が向上している。そのため、本発明のASOでは、すべてのリン酸基をPS化しなくとも、所望の生体内安定性が得られる場合があり得る。 On the other hand, modification of phosphate groups such as phosphorothioate (PS) formation may cause toxicity. In the ASO of the present invention, nuclease resistance is improved because one or more constituent nucleotides are replaced with crosslinked artificial nucleic acids. Therefore, in the ASO of the present invention, desired in vivo stability may be obtained without converting all phosphate groups into PS.
 本発明のASOは、例えば、3’末端及び5’末端の少なくとも一方のヌクレオチド残基が修飾されてもよい。前記修飾は、例えば、3’末端及び5’末端のいずれか一方でもよいし、両方でもよい。前記修飾は、例えば、前述のとおりであり、好ましくは、末端のリン酸基に行うことが好ましい。前記リン酸基は、例えば、全体を修飾してもよいし、前記リン酸基における1つ以上の原子を修飾してもよい。前者の場合、例えば、リン酸基全体の置換でもよいし、欠失でもよい。 In the ASO of the present invention, for example, at least one nucleotide residue at the 3'end and the 5'end may be modified. The modification may be, for example, either one of the 3'ends and the 5'end, or both. The modification is, for example, as described above, and is preferably performed on the terminal phosphate group. The phosphoric acid group may, for example, modify the whole, or may modify one or more atoms in the phosphoric acid group. In the former case, for example, the entire phosphate group may be substituted or deleted.
 前記末端のヌクレオチド残基の修飾は、例えば、他の分子の付加が挙げられる。前記他の分子としては、例えば、後述する標識物質や、保護基等の機能性分子が挙げられる。前記保護基としては、例えば、S(硫黄)、Si(ケイ素)、B(ホウ素)、エステル含有基等が挙げられる。前記標識物質等の機能性分子は、例えば、本発明のASOの検出等に利用できる。 Modification of the terminal nucleotide residue includes, for example, addition of another molecule. Examples of the other molecule include a labeling substance described later and a functional molecule such as a protecting group. Examples of the protecting group include S (sulfur), Si (silicon), B (boron), and ester-containing groups. Functional molecules such as the labeling substance can be used, for example, for detecting ASO of the present invention.
 前記他の分子は、例えば、前記ヌクレオチド残基のリン酸基に付加してもよいし、スペーサーを介して、前記リン酸基又は前記糖残基に付加してもよい。前記スペーサーの末端原子は、例えば、前記リン酸基の前記結合酸素、又は、糖残基のO、N、SもしくはCに、付加又は置換できる。前記糖残基の結合部位は、例えば、3’位のCもしくは5’位のC、又はこれらに結合する原子が好ましい。前記スペーサーは、例えば、前記PNA等のヌクレオチド代替物の末端原子に、付加又は置換することもできる。 The other molecule may be added to the phosphate group of the nucleotide residue, or may be added to the phosphate group or the sugar residue via a spacer, for example. The terminal atom of the spacer can be added or substituted, for example, to the bound oxygen of the phosphate group or O, N, S or C of a sugar residue. The binding site of the sugar residue is preferably, for example, C at the 3'position or C at the 5'position, or an atom that binds to these. The spacer can also be added or substituted, for example, to the terminal atom of a nucleotide substitute such as PNA.
 前記スペーサーは、特に制限されず、例えば、-(CH2)n-、-(CH2)nN-、-(CH2)nO-、-(CH2)nS-、O(CH2CH2O)nCH2CH2OH、無塩基糖、アミド、カルボキシ、アミン、オキシアミン、オキシイミン、チオエーテル、ジスルフィド、チオ尿素、スルホンアミド、及びモルホリノ等、ならびに、ビオチン試薬及びフルオレセイン試薬等を含んでもよい。前記式において、nは、正の整数であり、n=3又は6が好ましい。 The spacer is not particularly limited, and is, for example,-(CH 2 ) n -,-(CH 2 ) n N-,-(CH 2 ) n O-,-(CH 2 ) n S-, O (CH 2). CH 2 O) n CH 2 CH 2 OH, non-basic sugar, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, morpholino, etc., as well as biotin and fluorescein reagents, etc. Good. In the above equation, n is a positive integer, preferably n = 3 or 6.
 前記末端に付加する分子は、これらの他に、例えば、色素、インターカレート剤(例えば、アクリジン)、架橋剤(例えば、ソラレン、マイトマイシンC)、ポルフィリン(TPPC4、テキサフィリン、サッフィリン)、多環式芳香族炭化水素(例えば、フェナジン、ジヒドロフェナジン)、人工エンドヌクレアーゼ(例えば、EDTA)、親油性担体(例えば、コレステロール、コール酸、アダマンタン酢酸、1-ピレン酪酸、ジヒドロテストステロン、1,3-ビス-O(ヘキサデシル)グリセロール、ゲラニルオキシヘキシル基、ヘキサデシルグリセロール、ボルネオール、メントール、1,3-プロパンジオール、ヘプタデシル基、パルミチン酸、ミリスチン酸、O3-(オレオイル)リトコール酸、O3-(オレオイル)コール酸、ジメトキシトリチル、又はフェノキサジン)及びペプチド複合体(例えば、アンテナペディアペプチド、Tatペプチド)、アルキル化剤、リン酸、アミノ、メルカプト、PEG(例えば、PEG-40K)、MPEG、[MPEG]2、ポリアミノ、アルキル、置換アルキル、放射線標識マーカー、酵素、ハプテン(例えば、ビオチン)、輸送/吸収促進剤(例えば、アスピリン、ビタミンE、葉酸)、合成リボヌクレアーゼ(例えば、イミダゾール、ビスイミダゾール、ヒスタミン、イミダゾールクラスター、アクリジン-イミダゾール複合体、テトラアザマクロ環のEu3+複合体)等が挙げられる。 In addition to these, the molecule added to the terminal includes, for example, a dye, an intercalating agent (for example, acrydin), a cross-linking agent (for example, solarene, mitomycin C), porphyrin (TPPC4, texaphyllin, sapphirine), and a polycyclic type. Aromatic hydrocarbons (eg phenazine, dihydrophenazine), artificial endonucleases (eg EDTA), lipophilic carriers (eg cholesterol, cholic acid, adamantan acetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis- O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoic) lithocholic acid, O3- (oleoyl) Cholic acid, dimethoxytrityl, or phenoxazine) and peptide complexes (eg, antennapedia peptide, Tat peptide), alkylating agents, phosphates, amino, mercapto, PEG (eg, PEG-40K), MPEG, [MPEG] 2 , polyamino, alkyl, substituted alkyl, radiolabeling markers, enzymes, haptens (eg biotin), transport / absorption enhancers (eg aspirin, vitamin E, folic acid), synthetic ribonucleases (eg imidazole, bisimidazole, histamine, etc.) Examples thereof include an imidazole cluster, an aclysine-imidazole complex, and an Eu 3+ complex of a tetraaza macro ring).
 本発明のASOは、前記5’末端が、例えば、リン酸基又はリン酸基アナログで修飾されてもよい。前記リン酸基は、例えば、5’一リン酸((HO)2(O)P-O-5’)、5’二リン酸((HO)2(O)P-O-P(HO)(O)-O-5’)、5’三リン酸((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-グアノシンキャップ(7-メチル化又は非メチル化、7m-G-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-アデノシンキャップ(Appp)、任意の修飾又は非修飾ヌクレオチドキャップ構造(N-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’一チオリン酸(ホスホロチオエート:(HO)2(S)P-O-5’)、5’一ジチオリン酸(ホスホロジチオエート:(HO)(HS)(S)P-O-5’)、5’-ホスホロチオール酸((HO)2(O)P-S-5’)、硫黄置換の一リン酸、二リン酸及び三リン酸(例えば、5’-α-チオ三リン酸、5’-γ-チオ三リン酸等)、5’-ホスホルアミデート((HO)2(O)P-NH-5’、(HO)(NH2)(O)P-O-5’)、5’-アルキルホスホン酸(例えば、RP(OH)(O)-O-5’、(OH)2(O)P-5’-CH2、Rはアルキル(例えば、メチル、エチル、イソプロピル、プロピル等))、5’-アルキルエーテルホスホン酸(例えば、RP(OH)(O)-O-5’、Rはアルキルエーテル(例えば、メトキシメチル、エトキシメチル等))等が挙げられる。 In the ASO of the present invention, the 5'end may be modified with, for example, a phosphate group or a phosphate group analog. The phosphoric acid group is, for example, 5'monophosphoric acid ((HO) 2 (O) PO-5'), 5'diphosphoric acid ((HO) 2 (O) POP (HO) (O) -O- 5'), 5'triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-guanosine cap (7-methylated or Unmethylated, 7m-GO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-adenosine cap (Appp), optional Modified or unmodified nucleotide cap structure (NO-5'-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'monothiophosphate (phosphorothioate: ( HO) 2 (S) PO-5'), 5'monodithiophosphate (phosphologithioate: (HO) (HS) (S) PO-5'), 5'-phosphorothiolate ((HO) 2) (O) PS-5'), sulfur-substituted monophosphate, diphosphate and triphosphate (eg, 5'-α-thiotriphosphate, 5'-γ-thiotriphosphate, etc.), 5' -Phosphoramidate ((HO) 2 (O) P-NH-5', (HO) (NH 2 ) (O) PO-5'), 5'-alkylphosphonic acid (eg, RP (OH) ( O) -O-5', (OH) 2 (O) P-5'-CH 2 , R is alkyl (eg, methyl, ethyl, isopropyl, propyl, etc.), 5'-alkyl ether phosphoric acid (eg, eg, methyl, ethyl, isopropyl, propyl, etc.) RP (OH) (O) -O-5', R is alkyl ether (for example, methoxymethyl, ethoxymethyl, etc.)) and the like.
 前記ヌクレオチド残基において、前記塩基は、特に制限されず、例えば、天然の塩基でもよいし、非天然の塩基でもよい。前記塩基は、例えば、天然由来でもよいし、合成品でもよい。前記塩基として、例えば、一般的な塩基、その修飾アナログ、ユニバーサル塩基などが使用できる。 In the nucleotide residue, the base is not particularly limited, and may be, for example, a natural base or a non-natural base. The base may be, for example, naturally derived or synthetic. As the base, for example, a general base, a modified analog thereof, a universal base, or the like can be used.
 前記塩基としては、例えば、アデニン及びグアニン等のプリン塩基、シトシン、5-メチルシトシン、ウラシル及びチミン等のピリミジン塩基が挙げられる。前記塩基としては、この他に、イノシン、チミン、キサンチン、ヒポキサンチン、ヌバラリン(nubularine)、イソグアニシン(isoguanisine)、ツベルシジン(tubercidine)等が挙げられる。前記塩基は、例えば、2-アミノアデニン、6-メチル化プリン等のアルキル誘導体;2-プロピル化プリン等のアルキル誘導体;5-ハロウラシル及び5-ハロシトシン;5-プロピニルウラシル及び5-プロピニルシトシン;6-アゾウラシル、6-アゾシトシン及び6-アゾチミン;5-ウラシル(プソイドウラシル)、4-チオウラシル、5-ハロウラシル、5-(2-アミノプロピル)ウラシル、5-アミノアリルウラシル;8-ハロ化、アミノ化、チオール化、チオアルキル化、ヒドロキシル化及び他の8-置換プリン;5-トリフルオロメチル化及び他の5-置換ピリミジン;7-メチルグアニン;5-置換ピリミジン;6-アザピリミジン;N-2、N-6、及びO-6置換プリン(2-アミノプロピルアデニンを含む);5-プロピニルウラシル及び5-プロピニルシトシン;ジヒドロウラシル;3-デアザ-5-アザシトシン;2-アミノプリン;5-アルキルウラシル;7-アルキルグアニン;5-アルキルシトシン;7-デアザアデニン;N6,N6-ジメチルアデニン;2,6-ジアミノプリン;5-アミノ-アリル-ウラシル;N3-メチルウラシル;置換1,2,4-トリアゾール;2-ピリジノン;5-ニトロインドール;3-ニトロピロール;5-メトキシウラシル;ウラシル-5-オキシ酢酸;5-メトキシカルボニルメチルウラシル;5-メチル-2-チオウラシル;5-メトキシカルボニルメチル-2-チオウラシル;5-メチルアミノメチル-2-チオウラシル;3-(3-アミノ-3-カルボキシプロピル)ウラシル;3-メチルシトシン; N4-アセチルシトシン;2-チオシトシン;N6-メチルアデニン;N6-イソペンチルアデニン;2-メチルチオ-N6-イソペンテニルアデニン;N-メチルグアニン;O-アルキル化塩基等が挙げられる。また、プリン及びピリミジンは、例えば、米国特許第3,687,808号、「Concise Encyclopedia Of Polymer Science And Engineering」、858~859頁、クロシュビッツ ジェー アイ(Kroschwitz J.I.)編、John Wiley & Sons、1990、及びイングリッシュら(Englischら)、Angewandte Chemie、International Edition、1991、30巻、p.613に開示されるものが含まれる。 Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, 5-methylcytosine, uracil and thymine. Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine and the like. The base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyl uracil and 5-propynylcitosine; 6 -Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-halogenation, amination, Thiolization, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N -6, and O-6 substituted purines (including 2-aminopropyl uracil); 5-propynyl uracil and 5-propynyl uracil; dihydro uracil; 3-deaza-5-azacitosin; 2-aminopurine; 5-alkyl uracil; 7-alkylguanine; 5-alkylcytosine; 7-deazaadenine; N6, N6-dimethyladenine; 2,6-diaminopurine; 5-amino-allyl-uracil; N3-methyluracil; substitution 1,2,4-triazole; 2-pyridinone; 5-nitroindole; 3-nitropyrrole; 5-methoxyuracil; uracil-5-oxyacil; 5-methoxycarbonylmethyluracil; 5-methyl-2-thiouracil; 5-methoxycarbonylmethyl-2-thiouracil 5-Methylaminomethyl-2-thiouracil; 3- (3-amino-3-carboxypropyl) uracil; 3-methylcytosine; N4-acetylcitosine; 2-thiocitosine; N6-methyladenine; N6-isopentyladenine; Examples thereof include 2-methylthio-N6-isopentenyladenine; N-methylguanine; O-alkylated base. For example, US Pat. No. 3,687,808, "Concise Encyclopedia Of Polymer Science And Engineering", pp. 858-859, edited by Kroschwitz JI, John Wiley & Sons, 1990, and English et al. (Englisch et al.), Angewandte Chemie, International Edition, 1991, Vol. 30, p. 613.
 前記修飾ヌクレオチド残基は、これらの他に、例えば、塩基を欠失する残基、すなわち、無塩基の糖リン酸骨格を含んでもよい。また、前記修飾ヌクレオチド残基は、例えば、国際公開第2004/080406号に記載された残基が使用でき、本発明は、これらの文献を援用できる。 In addition to these, the modified nucleotide residue may include, for example, a residue lacking a base, that is, a base-free sugar phosphate skeleton. Further, as the modified nucleotide residue, for example, the residue described in International Publication No. 2004/080406 can be used, and the present invention can refer to these documents.
 本発明のASOは、例えば、標識物質で標識化されてもよい。前記標識物質は特に制限されず、例えば、蛍光物質、色素、同位体等が挙げられる。前記蛍光物質としては、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素等の蛍光団が挙げられる。前記色素としては、例えば、Alexa488等のAlexa色素等が挙げられる。前記同位体としては、例えば、安定同位体及び放射性同位体が挙げられ、好ましくは安定同位体である。前記安定同位体は、例えば、被ばくの危険性が少なく、専用の施設も不要であることから取り扱い性に優れ、また、コストも低減できる。また、前記安定同位体は、例えば、標識した化合物の物性変化がなく、トレーサーとしての性質にも優れる。前記安定同位体は、特に制限されず、例えば、2H、13C、15N、17O、18O、33S、34S及び36Sが挙げられる。 The ASO of the present invention may be labeled with, for example, a labeling substance. The labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, and isotopes. Examples of the fluorescent substance include fluorescent groups such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye. Examples of the dye include Alexa dyes such as Alexa 488. Examples of the isotope include stable isotopes and radioactive isotopes, and stable isotopes are preferable. For example, the stable isotope has a low risk of exposure and does not require a dedicated facility, so that it is easy to handle and the cost can be reduced. Further, the stable isotope does not change the physical properties of the labeled compound, and is excellent in properties as a tracer. The stable isotope is not particularly limited, and examples thereof include 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S and 36 S.
 特に好ましい実施態様において、本発明のASOは、以下のいずれかのヌクレオチド配列を、RECQL mRNA中の標的配列(配列番号1で表されるヌクレオチド配列中の位置で表示する)に相補的な配列として含む。
tgattaactttccgg(配列番号2)(標的配列:356-370)
acgttaatagtttca(配列番号3)(標的配列:836-850)
tacgttaatagtttc(配列番号4)(標的配列:837-851)
gtcacataaatcagc(配列番号5)(標的配列:1100-1114)
cgtgatttgttgcag(配列番号6)(標的配列:1312-1326)
aacgtgatttgttgc(配列番号7)(標的配列:1314-1328)
cgattgtatgaactt(配列番号8)(標的配列:2753-2767)
gacgattgtatgaac(配列番号9)(標的配列:2755-2769)
aagatagttatgtca(配列番号10)(標的配列:2814-2828)
atattttatgtgcgg(配列番号11)(標的配列:2950-2964)
agtgaacctctgtca(配列番号12)(標的配列:3157-3171)
cagtgaacctctgtc(配列番号13)(標的配列:3158-3172)
catattttatgtgcg(配列番号14)(標的配列:3260-3274)
acgggtctaatgcag(配列番号15)(標的配列:3386-3400)
atagagatgtagcaa(配列番号16)(標的配列:3507-3521)
aatagagatgtagca(配列番号17)(標的配列:3508-3522)
tcggttgtattttac(配列番号18)(標的配列:3527-3541)
tatggtttcaggaac(配列番号19)(標的配列:3549-3563)
cttgtgatttagctt(配列番号20)(標的配列:3649-3663)
(但し、tはuに置き換えてもよく、cは5-メチルシトシン(mC)に置き換えてもよい。)
 より好ましくは、本発明のASOは、配列番号4、6、11、13または14で表されるヌクレオチド配列を、RECQL mRNA中の標的配列(配列番号1で表されるヌクレオチド配列中の位置で表示する)に相補的な配列として含む。
 よりさらに好ましくは、本発明のASOは、上記のいずれかのヌクレオチド配列からなる核酸である。
 特に好ましくは、本発明のASOは、配列番号4、6、11、13または14で表されるヌクレオチド配列からなる核酸である。
In a particularly preferred embodiment, the ASO of the present invention sets any of the following nucleotide sequences as a sequence complementary to the target sequence in RECQL mRNA (indicated by the position in the nucleotide sequence represented by SEQ ID NO: 1). Including.
tgattaactttccgg (SEQ ID NO: 2) (Target sequence: 356-370)
acgttaatagtttca (SEQ ID NO: 3) (target sequence: 836-850)
tacgttaatagtttc (SEQ ID NO: 4) (target sequence: 837-851)
gtcacataaatcagc (SEQ ID NO: 5) (target sequence: 1100-1114)
cgtgatttgttgcag (SEQ ID NO: 6) (Target sequence: 1312-1326)
aacgtgatttgttgc (SEQ ID NO: 7) (Target sequence: 1314-1328)
cgattgtatgaactt (SEQ ID NO: 8) (Target sequence: 2753-2767)
gacgattgtatgaac (SEQ ID NO: 9) (target sequence: 2755-2769)
aagatagttatgtca (SEQ ID NO: 10) (target sequence: 2814-2828)
atattttatgtgcgg (SEQ ID NO: 11) (Target sequence: 2950-2964)
agtgaacctctgtca (SEQ ID NO: 12) (Target sequence: 3157-3171)
cagtgaacctctgtc (SEQ ID NO: 13) (Target sequence: 3158-3172)
catattttatgtgcg (SEQ ID NO: 14) (target sequence: 3260-3274)
acgggtctaatgcag (SEQ ID NO: 15) (target sequence: 3386-3400)
atagagatgtagcaa (SEQ ID NO: 16) (target sequence: 3507-3521)
aatagagatgtagca (SEQ ID NO: 17) (Target sequence: 3508-3522)
tcggttgtattttac (SEQ ID NO: 18) (target sequence: 3527-3541)
tatggtttcaggaac (SEQ ID NO: 19) (target sequence: 3549-3563)
cttgtgatttagctt (SEQ ID NO: 20) (Target sequence: 3649-3663)
(However, t may be replaced with u, and c may be replaced with 5-methylcytosine (mC).)
More preferably, the ASO of the present invention displays the nucleotide sequence represented by SEQ ID NO: 4, 6, 11, 13 or 14 at a position in the target sequence in RECQL mRNA (the position in the nucleotide sequence represented by SEQ ID NO: 1). Included as a complementary sequence to).
Even more preferably, the ASO of the present invention is a nucleic acid consisting of any of the above nucleotide sequences.
Particularly preferably, the ASO of the present invention is a nucleic acid consisting of the nucleotide sequence represented by SEQ ID NO: 4, 6, 11, 13 or 14.
 好ましい実施態様において、本発明のASOは、
(1)5’末端に位置する5’ウイング領域;
(2)3’末端に位置する3’ウイング領域;及び
(3)領域(1)および領域(2)の間に位置するデオキシギャップ領域
を含む、ギャップマー型の核酸である。ギャップマー型のASOとは、DNA(デオキシギャップ領域)と、その両側に、修飾や架橋が導入された核酸とを有する核酸(ウイング領域)であり、該DNA鎖を主鎖として、主鎖に相補的な標的RNAとヘテロ2本鎖核酸を形成し、標的RNAは、細胞に内在するRNase Hにより分解される。ウイング領域の構成ヌクレオチドはRNAであってもDNAであってもよい。
In a preferred embodiment, the ASO of the present invention is:
(1) 5'wing region located at the 5'end;
A gapmer-type nucleic acid comprising (2) a 3'wing region located at the 3'end; and a deoxygap region located between (3) regions (1) and (2). Gapmer-type ASO is a nucleic acid (wing region) having DNA (deoxygap region) and nucleic acids having been modified or cross-linked on both sides thereof, and the DNA strand is used as the main chain to form the main chain. It forms a heteroduplex nucleic acid with a complementary target RNA, which is degraded by RNase H, which is endogenous to the cell. The constituent nucleotides of the wing region may be RNA or DNA.
 本発明のギャップマー型ASOの5’及び3’ウイング領域は、それぞれ独立して2~5ヌクレオチド長であり、好ましくは3~5ヌクレオチド長であり、より好ましくは3ヌクレオチド長である。また、本発明のギャップマー型ASOのデオキシギャップ領域の長さは、7~10ヌクレオチドであり、好ましくは8~10ヌクレオチドであり、より好ましくは9ヌクレオチドである。また本発明のギャップマー型ASOの全長は、例えば12~30ヌクレオチド長であり、好ましくは12~25ヌクレオチド長である。したがって、本発明のギャップマー型ASOは、上記ウイング領域長、デオキシギャップ領域長、全長の規定範囲を全て満足する条件において、当業者が適宜調整することができる。 The 5'and 3'wing regions of the gapmer type ASO of the present invention are independently 2 to 5 nucleotides in length, preferably 3 to 5 nucleotides in length, and more preferably 3 nucleotides in length. The length of the deoxygap region of the gapmer type ASO of the present invention is 7 to 10 nucleotides, preferably 8 to 10 nucleotides, and more preferably 9 nucleotides. The total length of the gapmer type ASO of the present invention is, for example, 12 to 30 nucleotides in length, preferably 12 to 25 nucleotides in length. Therefore, the gapmer type ASO of the present invention can be appropriately adjusted by those skilled in the art under conditions that satisfy all the specified ranges of the wing region length, the deoxy gap region length, and the total length.
 より具体的には、本発明のギャップマー型ASOは、例えば15ヌクレオチド長の「3-9-3」型ギャップマー、「3-10-2」型ギャップマー、「2-10-3」型ギャップマー、「4-9-2」型ギャップマー;16ヌクレオチド長の「3-10-3」型ギャップマー、「4-9-3」型ギャップマー;17ヌクレオチド長の「4-10-3」型ギャップマー、「4-9-4」型ギャップマー;18ヌクレオチド長の「4-10-4」型ギャップマー、「5-9-4」型ギャップマー;19ヌクレオチド長の「5-10-4」型ギャップマー、「5-9-5」型ギャップマー;又は20ヌクレオチド長の「5-10-5」型ギャップマーであることが好ましい。 More specifically, the gapmer type ASO of the present invention is, for example, a 15-nucleotide length "3-9-3" type gapmer, a "3-10-2" type gapmer, or a "2-10-3" type. Gapmer, "4-9-2" type gapmer; 16 nucleotide length "3-10-3" type gapmer, "4-9-3" type gapmer; 17 nucleotide length "4-10-3" type gapmer "4-9-4" type gapmer; 18 nucleotide length "4-10-4" type gapmer, "5-9-4" type gapmer; 19 nucleotide length "5-10" type gapmer It is preferably a "-4" type gapmer, a "5-9-5" type gapmer; or a 20 nucleotide length "5-10-5" type gapmer.
 本発明のギャップマー型ASOは、5’及び3’ウイング領域を構成する少なくとも一つのヌクレオシドの糖部が、糖の4’位と2’位との間の架橋により修飾されていることが好ましい。当該架橋修飾としては、前記した架橋型人工核酸による修飾が挙げられる。好ましくは、LNA、AmNA、GuNA、scpBNAであり、より好ましくは、AmNA、GuNA、scpBNAである。好ましい実施態様において、本発明のギャップマー型ASOは、5’及び3’の各ウイング領域を構成する2以上(例、2、3、4、5個)のヌクレオチド残基が架橋型人工核酸で置換されている。 In the gapmer type ASO of the present invention, it is preferable that the sugar portion of at least one nucleoside constituting the 5'and 3'wing regions is modified by cross-linking between the 4'position and the 2'position of the sugar. .. Examples of the cross-linking modification include the above-mentioned modification with the cross-linked artificial nucleic acid. It is preferably LNA, AmNA, GuNA and scpBNA, and more preferably AmNA, GuNA and scpBNA. In a preferred embodiment, the Gapmer-type ASO of the present invention is an artificial nucleic acid in which two or more (eg, 2, 3, 4, 5) nucleotide residues constituting each of the 5'and 3'wing regions are crosslinked. It has been replaced.
 好ましい実施態様において、本発明のギャップマー型ASOのデオキシギャップ領域を構成するDNA残基は、糖修飾されていない。 In a preferred embodiment, the DNA residues constituting the deoxygap region of the gapmer type ASO of the present invention are not sugar-modified.
 一実施態様において、本発明のギャップマー型ASOは、5’及び3’ウイング領域を構成する少なくとも一つのヌクレオシドの塩基が修飾されていてもよい。当該塩基修飾としては、前記のいずれかの修飾が挙げられる。 In one embodiment, the gapmer type ASO of the present invention may be modified with a base of at least one nucleoside constituting the 5'and 3'wing regions. Examples of the base modification include any of the above modifications.
 また、本発明のギャップマー型ASOは、毒性を低減するために、デオキシギャップ領域の塩基修飾やウイング領域のデュアル修飾を施すことができる。そのような修飾は、例えば、国際公開第2018/155450号公報に記載されている。 Further, the gapmer type ASO of the present invention can be subjected to base modification of the deoxygap region and dual modification of the wing region in order to reduce toxicity. Such modifications are described, for example, in WO 2018/155450.
 特に好ましい実施態様において、本発明のギャップマー型ASOは、表1に記載されるヌクレオチド配列と糖、塩基又はリン酸基修飾とを有する核酸である(下記ヌクレオチド配列において、TはUであってもよい)。 In a particularly preferred embodiment, the Gapmer-type ASO of the present invention is a nucleic acid having the nucleotide sequence shown in Table 1 and a sugar, base or phosphate group modification (in the nucleotide sequence below, T is U). May be good).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中、「5」は5-メチルシトシン(mC)を表し、A(Y),G(Y),5(Y),T(Y)は、AmNAヌクレオチドであることを表し、a,g,c,tは、DNAであることを表し、「^」は、ホスホロチオエート結合を表す。また、「標的配列」の数字は、配列番号1で表されるRECQL mRNA配列中の位置を示す。 In Table 1, "5" represents 5-methylcytosine (mC), and A (Y), G (Y), 5 (Y), and T (Y) represent AmNA nucleotides, and a, g. , C, t represent DNA, and "^" represents phosphorothioate binding. The number of the "target sequence" indicates the position in the RECQL mRNA sequence represented by SEQ ID NO: 1.
 本発明のASOは、自体公知の化学合成法により製造することができる。例えば、ホスホロアミダイト法及びH-ホスホネート法等が挙げられる。当該化学合成法は、例えば、市販の自動核酸合成機を用いて実施することができ、アミダイトを使用する場合、例えば、市販のアミダイトとして、RNA Phosphoramidites(2’-O-TBDMSi、商品名、三千里製薬)、ACEアミダイト及びTOMアミダイト、CEEアミダイト、CEMアミダイト、TEMアミダイト等を用いることができる。 The ASO of the present invention can be produced by a chemical synthesis method known per se. For example, the phosphoramidite method and the H-phosphonate method can be mentioned. The chemical synthesis method can be carried out using, for example, a commercially available automatic nucleic acid synthesizer, and when amidite is used, for example, as a commercially available amidite, RNA Phosphoramidites (2'-O-TBDMSi, trade name, 3) Senri Pharmaceutical Co., Ltd.), ACE amidite and TOM amidite, CEE amidite, CEM amidite, TEM amidite and the like can be used.
2.本発明のASOの用途
 本発明のASOは、RECQL mRNAに特異的にハイブリダイズし、RECQL遺伝子の発現を阻害することができる。従って、本発明はまた、本発明のASOを含有してなるRECQL遺伝子の発現阻害剤を提供する。
2. Uses of ASO of the present invention The ASO of the present invention can specifically hybridize to RECQL mRNA and inhibit the expression of the RECQL gene. Therefore, the present invention also provides an expression inhibitor of the RECQL gene, which comprises the ASO of the present invention.
 本発明のRECQL遺伝子の発現阻害剤は、例えば、RECQLを高発現する対象に、本発明のASOを単独で、あるいは薬理学的に許容される担体とともに接触させることにより、該対象内に導入することができる。当該接触工程は、対象が動物個体の場合、本発明のRECQL遺伝子の発現阻害剤を該動物に投与することにより行うことができる。また、対象が動物由来の細胞、組織又は器官の培養物である場合には、該培養物の培地に本発明のRECQL遺伝子の発現阻害剤を添加することにより実施することができる。 The RECQL gene expression inhibitor of the present invention is introduced into a subject having a high expression of RECQL, for example, by contacting the ASO of the present invention alone or with a pharmacologically acceptable carrier. be able to. When the subject is an individual animal, the contact step can be performed by administering the RECQL gene expression inhibitor of the present invention to the animal. When the subject is a culture of cells, tissues or organs derived from animals, this can be carried out by adding the RECQL gene expression inhibitor of the present invention to the medium of the culture.
 本発明のASOの標的細胞内への導入を促進するために、本発明のRECQL遺伝子の発現阻害剤は、核酸導入用試薬をさらに含んでいてもよい。該核酸導入用試薬として、アテロコラーゲン;リポソーム;ナノパーティクル;リポフェクチン、リポフェクトアミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質等を用いることができる。また、本発明のASOの標的細胞内への導入は、例えば、塩化カルシウムを培地に添加するカルシウムイオン富化(CEM)法により行うこともできる。 In order to promote the introduction of the ASO of the present invention into the target cell, the expression inhibitor of the RECQL gene of the present invention may further contain a reagent for introducing a nucleic acid. The reagents for introducing nucleic acids include atelocollagen; liposomes; nanoparticles; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI). ) And the like can be used. In addition, the ASO of the present invention can be introduced into target cells by, for example, a calcium ion enrichment (CEM) method in which calcium chloride is added to a medium.
 RECQLは、がん細胞をはじめとする活発に増殖している細胞で高発現し、これらの細胞におけるゲノム安定化維持に寄与していると考えられている。これらの細胞でRECQL遺伝子の発現を阻害すると、分裂死や分裂期細胞死が誘導される。従って、本発明はまた、本発明のASOを含有してなるRECQL遺伝子を高発現する細胞の細胞増殖の抑制及び/又は細胞死誘導剤を提供する。 RECQL is highly expressed in actively proliferating cells such as cancer cells, and is thought to contribute to the maintenance of genome stabilization in these cells. Inhibition of RECQL gene expression in these cells induces mitotic and mitotic cell death. Therefore, the present invention also provides an agent for suppressing cell proliferation and / or inducing cell death of cells highly expressing the RECQL gene containing the ASO of the present invention.
 本発明の細胞増殖抑制及び/又は細胞死誘導剤は、RECQLを高発現する対象に、上記と同様にして接触させることができる。 The cell proliferation inhibitor and / or cell death inducer of the present invention can be brought into contact with a subject highly expressing RECQL in the same manner as described above.
 RECQL遺伝子の過剰発現は、がんをはじめとする過剰増殖性の疾患を引き起こす。従って、本発明のASOを有効成分とする医薬は、過剰増殖性疾患の治療及び/又は予防に用いることができる。過剰増殖性疾患としては、例えば、がん等が挙げられる。がんとしては、RECQLを高発現する限り特に制限はないが、例えば、上皮細胞由来の癌であり得るが、非上皮性の肉腫や血液がんであってもよい。より具体的には、例えば、消化器のがん(例えば、食道がん、胃がん、十二指腸がん、大腸がん(結腸がん、直腸がん)、肝がん(肝細胞がん、胆管細胞がん)、胆嚢がん、胆管がん、膵がん、肛門がん)、泌尿器のがん(例えば、腎がん、尿管がん、膀胱がん、前立腺がん、陰茎がん、精巣(睾丸)がん)、胸部のがん(例えば、乳がん、肺がん(非小細胞肺がん、小細胞肺がん))、生殖器のがん(例えば、子宮がん(子宮頸がん、子宮体がん)、卵巣がん、外陰がん、膣がん)、頭頸部のがん(例えば、上顎がん、咽頭がん、喉頭がん、舌がん、甲状腺がん)、皮膚のがん(例えば、基底細胞がん、有棘細胞がん)を含むが、これらに限定されない。 Overexpression of the RECQL gene causes cancer and other overproliferative diseases. Therefore, the drug containing the ASO of the present invention as an active ingredient can be used for the treatment and / or prevention of hyperproliferative diseases. Examples of hyperproliferative diseases include cancer and the like. The cancer is not particularly limited as long as RECQL is highly expressed, and may be, for example, a cancer derived from epithelial cells, but may be a non-epithelial sarcoma or a blood cancer. More specifically, for example, gastrointestinal cancer (eg, esophageal cancer, gastric cancer, duodenal cancer, colon cancer (colon cancer, rectal cancer), liver cancer (hepatocellular carcinoma, bile duct cancer) Cancer), bile sac cancer, bile duct cancer, pancreatic cancer, anal cancer), urinary cancer (eg, kidney cancer, urinary tract cancer, bladder cancer, prostate cancer, penis cancer, testis (Testicle) cancer), chest cancer (eg, breast cancer, lung cancer (non-small cell lung cancer, small cell lung cancer)), genital cancer (eg, uterine cancer (cervical cancer, uterine body cancer)) , Ovarian cancer, vulgar cancer, vaginal cancer), head and neck cancer (eg, maxillary cancer, pharyngeal cancer, laryngeal cancer, tongue cancer, thyroid cancer), skin cancer (eg, (Bass cell carcinoma, spinous cell carcinoma), but not limited to these.
 本発明のASOは単独で用いてよいし、あるいは医薬上許容される担体とともに、医薬組成物として製剤化してもよい。
 医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリドン等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。
The ASO of the present invention may be used alone or may be formulated as a pharmaceutical composition together with a pharmaceutically acceptable carrier.
Pharmaceutically acceptable carriers include, for example, excipients such as sucrose and starch, binders such as cellulose and methyl cellulose, disintegrants such as starch and carboxymethyl cellulose, lubricants such as magnesium stearate and aerodyl, citric acid, etc. Fragrances such as menthol, preservatives such as sodium benzoate and sodium hydrogen sulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolidone, dispersants such as surfactants, water, physiology Diluting agents such as saline solution, base wax and the like can be mentioned, but the present invention is not limited thereto.
 本発明のASOの標的細胞内への導入を促進するために、本発明の医薬は核酸導入用試薬をさらに含んでいてもよい。該核酸導入用試薬としては、上述したものと同様のものを用いることができる。 In order to promote the introduction of the ASO of the present invention into the target cell, the reagent of the present invention may further contain a reagent for introducing a nucleic acid. As the nucleic acid introduction reagent, the same reagents as those described above can be used.
 また、本発明の医薬は、本発明のASOがリポソームに封入されてなる医薬組成物であってもよい。リポソームは、1以上の脂質二重層により包囲された内相を有する微細閉鎖小胞であり、通常は水溶性物質を内相に、脂溶性物質を脂質二重層内に保持することができる。本明細書において「封入」という場合には、本発明のASOはリポソーム内相に保持されてもよいし、脂質二重層内に保持されてもよい。本発明に用いられるリポソームは単層膜であっても多層膜であってもよく、また、粒子径は、例えば10~1000nm、好ましくは50~300nmの範囲で適宜選択できる。標的組織への送達性を考慮すると、粒子径は、例えば200nm以下、好ましくは100nm以下であり得る。 Further, the medicament of the present invention may be a pharmaceutical composition in which the ASO of the present invention is encapsulated in liposomes. Liposomes are microclosed vesicles having an internal phase surrounded by one or more lipid bilayers, which can usually retain water-soluble substances in the internal phase and fat-soluble substances in the lipid bilayer. When referred to as "encapsulation" herein, the ASO of the present invention may be retained in the liposome internal phase or in the lipid bilayer. The liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected in the range of, for example, 10 to 1000 nm, preferably 50 to 300 nm. Considering the deliverability to the target tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
 オリゴヌクレオチドのような水溶性化合物のリポソームへの封入法としては、リピドフィルム法(ボルテックス法)、逆相蒸発法、界面活性剤除去法、凍結融解法、リモートローディング法等が挙げられるが、これらに限定されず、任意の公知の方法を適宜選択することができる。 Examples of the method for encapsulating a water-soluble compound such as an oligonucleotide in liposomes include a lipid film method (vortex method), a reverse phase evaporation method, a surfactant removal method, a freeze-thaw method, and a remote loading method. Any known method can be appropriately selected without limitation.
 本発明の医薬は、経口的に又は非経口的に、哺乳動物(例:ヒト、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル)に対して投与することが可能であるが、非経口的に投与するのが望ましい。 The medicament of the present invention can be administered orally or parenterally to mammals (eg, humans, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys). However, it is desirable to administer it parenterally.
 非経口的な投与(例えば、皮下注射、筋肉注射、局所注入(例:脳室内投与)、腹腔内投与など)に好適な製剤としては、水性及び非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性及び非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分及び医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解又は懸濁すればよい状態で保存することもできる。 Suitable formulations for parenteral administration (eg, subcutaneous injection, intramuscular injection, topical injection (eg, intraventricular administration), intraperitoneal administration, etc.) include aqueous and non-aqueous isotonic sterile injections. , This may contain an antioxidant, a buffer, an antibacterial agent, an isotonic agent, and the like. Examples thereof include aqueous and non-aqueous sterile suspensions, which may include suspending agents, solubilizing agents, thickeners, stabilizers, preservatives and the like. The pharmaceutical product can be encapsulated in a container in a unit dose or a plurality of doses like an ampoule or a vial. In addition, the active ingredient and a pharmaceutically acceptable carrier can be freeze-dried and stored in a state where it can be dissolved or suspended in a suitable sterile vehicle immediately before use.
 医薬組成物中の本発明のASOの含有量は、例えば、医薬組成物全体の約0.1ないし100重量%である。 The content of ASO of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the entire pharmaceutical composition.
 本発明の医薬の投与量は、投与の目的、投与方法、対象疾患の種類、重篤度、投与対象の状況(性別、年齢、体重など)によって異なるが、例えば、成人に全身投与する場合、通常、本発明のASOの一回投与量として2 nmol/kg以上50 nmol/kg以下、局所投与する場合、1 pmol/kg以上10 nmol/kg以下が望ましい。かかる量を、例えば1~6か月、好ましくは2~4か月、より好ましくは約3か月の間隔で投与することができる。
 本発明のASOは、従来公知のRECQLに対するASOと比較して、顕著にRECQL発現阻害活性及び生体内安定性に優れているので、少ない投与量・投与回数で治療及び/又は予防効果を奏することができ、患者のQOL改善、医療費の削減、有害事象の発現抑制が可能となる。
The dose of the medicament of the present invention varies depending on the purpose of administration, the administration method, the type and severity of the target disease, and the situation of the administration target (gender, age, weight, etc.). Usually, the single dose of ASO of the present invention is 2 nmol / kg or more and 50 nmol / kg or less, and in the case of local administration, 1 pmol / kg or more and 10 nmol / kg or less is desirable. Such amounts can be administered at intervals of, for example, 1 to 6 months, preferably 2 to 4 months, more preferably about 3 months.
Since the ASO of the present invention is remarkably superior in RECQL expression inhibitory activity and in vivo stability as compared with the conventionally known ASO for RECQL, it can exert a therapeutic and / or preventive effect with a small dose and number of administrations. It is possible to improve the QOL of patients, reduce medical expenses, and suppress the occurrence of adverse events.
 本発明の医薬は、本発明のASOとの配合により好ましくない相互作用を生じない限り他の活性成分を含有してもよい。他の活性成分としては、例えば、がんに対して治療効果を有する種々の化合物を適宜配合することができる。例えば、他の活性成分として、アルキル化薬(例、マスタード類、ニトロソウレア類)、代謝拮抗薬(例、葉酸系、ピリミジン系、プリン系)、抗腫瘍性抗生物質(例、アントラサイクリン)、ホルモン類似薬(例、抗エストロゲン薬、抗アンドロゲン薬、LH-RHアゴニスト、プロゲステロン、エストラジオール)、白金製剤、トポイソメラーゼ阻害薬(例、トポイソメラーゼI阻害薬、トポイソメラーゼII阻害薬)などを含有していてもよい。これらの併用薬剤は、本発明の医薬とともに製剤化して単一の製剤として投与することもできるし、あるいは、本発明の医薬とは別個に製剤化して、本発明の医薬と同一もしくは別ルートで、同時もしくは時間差をおいて投与することもできる。また、これらの併用薬剤の投与量は、該薬剤を単独投与する場合に通常用いられる量であってよく、あるいは通常用いられる量より減量することもできる。 The medicament of the present invention may contain other active ingredients as long as the combination with the ASO of the present invention does not cause an unfavorable interaction. As other active ingredients, for example, various compounds having a therapeutic effect on cancer can be appropriately blended. For example, other active ingredients include alkylating agents (eg, mustards, nitrosoureas), metabolic antagonists (eg, folic acid, pyrimidines, purines), anti-neoplastic antibiotics (eg, anthracyclines), Even if it contains hormone-like drugs (eg, anti-estrogen drugs, anti-androgens, LH-RH agonists, progesterone, estradiol), platinum preparations, topoisomerase inhibitors (eg, topoisomerase I inhibitors, topoisomerase II inhibitors), etc. Good. These concomitant agents can be formulated together with the drug of the present invention and administered as a single preparation, or they can be formulated separately from the drug of the present invention and the same as or by a different route from the drug of the present invention. , Can be administered simultaneously or at different times. In addition, the dose of these concomitant drugs may be the amount normally used when the drug is administered alone, or may be reduced from the amount normally used.
 以下、実施例等により、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and the like, but the present invention is not limited thereto.
(実施例1:オリゴヌクレオチド合成)
本発明に関連するオリゴヌクレオチドは、Tetrahedron Letters 22, 1859-1862(1981)、国際公開第2011/052436号等に記載される方法によって合成した。
(Example 1: Oligonucleotide synthesis)
Oligonucleotides related to the present invention were synthesized by the methods described in Tetrahedron Letters 22, 1859-1862 (1981), WO 2011/052436, etc.
 糖修飾ヌクレオシドとして、式(a)で示されるアミドBNA(AmNA)を用いた。 The amide BNA (AmNA) represented by the formula (a) was used as the sugar-modified nucleoside.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Baseは5-メチルシトシン-1-イル基、チミン-1-イル基、アデニン-9-イル基またはグアニン-9-イル基であり、Meはメチルである。) (In the formula, Base is 5-methylcytosine-1-yl group, thymine-1-yl group, adenine-9-yl group or guanine-9-yl group, and Me is methyl.)
 アミドBNA(AmNA)を含むオリゴヌクレオチドは、国際公開第2011/052436号に記載の方法を参照して合成した。 Oligonucleotides containing amide BNA (AmNA) were synthesized with reference to the method described in WO 2011/052436.
 アミドBNA(AmNA)を含むオリゴヌクレオチドは、核酸自動合成機(nS-8型、株式会社ジーンデザイン製)を用いて、0.2 μmolスケールで合成した。鎖長の伸長身長は標準的なホスホロアミダイトプロトコール(固相担体:CPG、ホスホロチオエート化(PS)骨格形成のための硫化はDDTT(((dimethylamino-methylidene)amino)-3H-1,2,4-dithiazaoline-3-thione)等を使用)にて実施した。アミドBNA(AmNA)を含むオリゴヌクレオチドは、末端の5’位の水酸基がDMTr(4,4’-ジメトキシトリチル)基で保護されておらず、かつ3’位が固相に担持されたものを得た。続いて塩基処理することにより、目的物を固相担体から切り出した後に溶媒を留去し、得られた粗生成物を逆相HPLCにて精製することにより目的物を得た。
 得られた各オリゴヌクレオチドの純度および構造をLC-MS(Waters社製)により確認した。
Oligonucleotides containing amide BNA (AmNA) were synthesized on a 0.2 μmol scale using an automatic nucleic acid synthesizer (nS-8 type, manufactured by GeneDesign, Inc.). Chain length extension Height is standard phosphoramidite protocol (solid carrier: CPG, sulfurization for phosphorothioatetization (PS) skeleton formation is DDTT (((dimethylamino-methylidene) amino) -3H-1,2,4 -It was carried out using dithiazaoline-3-thione) etc.). Oligonucleotides containing amide BNA (AmNA) are those in which the terminal 5'-hydroxyl group is not protected by DMTr (4,4'-dimethoxytrityl) groups and the 3'-position is supported on the solid phase. Obtained. Subsequently, the target product was cut out from the solid phase carrier by base treatment, the solvent was distilled off, and the obtained crude product was purified by reverse phase HPLC to obtain the target product.
The purity and structure of each of the obtained oligonucleotides were confirmed by LC-MS (manufactured by Waters).
(実施例2:アンチセンスオリゴヌクレオチドの設計)
 アンチセンスオリゴヌクレオチドを、ヒトRECQL(hRECQL)(GenBank:NM_002907.3(配列番号1))のmRNAを標的とするよう設計した。
(Example 2: Design of antisense oligonucleotide)
The antisense oligonucleotide was designed to target the mRNA of human RECQL (hRECQL) (GenBank: NM_002907.3 (SEQ ID NO: 1)).
 標的領域の選定のため、mRNAの一次配列から熱力学的に安定な相補結合を計算したmRNAの二次構造予測に基づき、ループ構造などのアンチセンスオリゴヌクレオチドがアクセスしやすい領域を選定した。この領域内でmRNAの逆相補の配列(アンチセンスの配列)を選定し、それらの配列からアンチセンスで毒性発現するCG、TCC、TGCの配列を含む配列を除外した。GGGenome (GGGenome:gggenome.dbcls.jp/) を用いて配列とhRECQL以外の遺伝子との相同性を評価して候補配列を選定した。
 上記のように選定した候補配列に相補的な塩基配列からなるオリゴヌクレオチドを、アンチセンスオリゴヌクレオチドとして設計した。アンチセンスオリゴヌクレオチドは、15量体とし、5’末端および3’末端に糖修飾ヌクレオシドを含む人工核酸領域を、そして中央部に天然ヌクレオシド(DNA)を含む天然核酸領域を設けた。より詳細には、5’末端側の3塩基(5’ウイング領域)を糖修飾ヌクレオシドとし、次いで9塩基(ギャップ領域)を天然ヌクレオシド(DNA)、次いで3’末端側の3塩基(3’ウイング領域)のうち中央側の2塩基を糖修飾ヌクレオシド、そして3’末端の1塩基をDNAとする、3-9-2-1型ギャップマーを設計した。
 設計、調製したアンチセンスオリゴヌクレオチドを表2-1~2-2に列挙する。表2には、アンチセンスオリゴヌクレオチドの名称(「オリゴヌクレオチド名」)を、その標的領域の配列の5’末端および3’末端(各々、配列番号1の塩基位置にて示す)と共に示す。例えば、hRECQL-268-AmNA(15)であれば、配列番号1の塩基配列の268位が標的領域の5’末端とするAmNAを含む15量体のアンチセンスオリゴヌクレオチドである。
In order to select the target region, a region such as a loop structure that is easily accessible to antisense oligonucleotides was selected based on the prediction of the secondary structure of mRNA in which thermodynamically stable complementary binding was calculated from the primary sequence of mRNA. Inversely complementary sequences of mRNA (antisense sequences) were selected in this region, and sequences containing CG, TCC, and TGC sequences expressing toxicity with antisense were excluded from those sequences. A candidate sequence was selected by evaluating the homology between the sequence and genes other than hRECQL using GGGenome (GGGenome: gggenome.dbcls.jp/).
An oligonucleotide having a base sequence complementary to the candidate sequence selected as described above was designed as an antisense oligonucleotide. The antisense oligonucleotide was made into a 15-mer, and an artificial nucleic acid region containing a sugar-modified nucleoside was provided at the 5'end and 3'end, and a natural nucleic acid region containing a natural nucleoside (DNA) was provided at the center. More specifically, 3 bases on the 5'end side (5'wing region) are sugar-modified nucleosides, then 9 bases (gap region) are natural nucleosides (DNA), and then 3 bases on the 3'end side (3'wings). A 3-9-2-1 type gapmer was designed in which two bases on the central side of the region) are sugar-modified nucleosides and one base at the 3'end is DNA.
The designed and prepared antisense oligonucleotides are listed in Tables 2-1 and 2-2. Table 2 shows the names of the antisense oligonucleotides (“oligonucleotide names”) along with the 5'end and 3'end of the sequence of the target region (each indicated by the base position of SEQ ID NO: 1). For example, hRECQL-268-AmNA (15) is a 15-mer antisense oligonucleotide containing AmNA in which the 268th position of the nucleotide sequence of SEQ ID NO: 1 is the 5'end of the target region.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2-1及び表2-2中、「5」は5-メチルシトシン(mC)を表し、A(Y),G(Y),5(Y),T(Y)は、AmNAヌクレオチドであることを表し、a,g,c,tは、DNAであることを表し、「^」は、ホスホロチオエート結合を表す。 In Table 2-1 and Table 2-2, "5" represents 5-methylcytosine (mC), and A (Y), G (Y), 5 (Y), and T (Y) are AmNA nucleotides. , A, g, c, t represent DNA, and "^" represents phosphorothioate binding.
 表2-1及び表2-2中のアンチセンスオリゴヌクレオチドの表記であるhRECQL-p-n(L)において、「p」は、配列番号1におけるその標的領域の5’末端にあたる塩基位置の番号に該当し、「n」は、糖修飾ヌクレオシド(人工核酸)であり(表1では「AmNA」)、そして「L」は、アンチセンスオリゴヌクレオチドの長さである。例えば、hRECQL-836-AmNA(15)であれば、配列番号1の塩基配列の836位が標的領域の5’末端となり、AmNAを含み、そして15量体である。アンチセンスオリゴヌクレオチドの配列を5’から3’の方向(5’→3’)で表す場合、例えば、hRECQL-836でアンチセンスオリゴヌクレオチドが15マーの長さの場合、配列番号1の塩基配列の836位から15塩基分3’末端側に伸ばした、すなわち配列番号1の836位から850位までのDNA塩基配列である5’-tgaaactattaacgt-3’(配列番号97)に基づく標的mRNA配列である5’-ugaaacuauuaacgu-3’(配列番号98)に相補する塩基配列(5’-acgttaatagtttca-3’)(配列番号3)として設計した。このように設計されたアンチセンスオリゴヌクレオチドhRECQL-836-AmNA(15)の塩基配列(5’-acgttaatagtttca-3’)(配列番号3)は、配列番号1の836位から850位までの領域の塩基配列(5’-tgaaactattaacgt-3’)(配列番号97)に対して相補的な配列となる。 In hRECQL-pn (L), which is the notation of antisense oligonucleotides in Tables 2-1 and 2-2, "p" is the number of the base position corresponding to the 5'end of the target region in SEQ ID NO: 1. , "N" is a sugar-modified nucleoside (artificial nucleic acid) ("AmNA" in Table 1), and "L" is the length of the antisense oligonucleotide. For example, in the case of hRECQL-836-AmNA (15), the 836 position of the base sequence of SEQ ID NO: 1 is the 5'end of the target region, contains AmNA, and is a 15-mer. When the sequence of the antisense oligonucleotide is represented in the direction from 5'to 3'(5'→ 3'), for example, when the antisense oligonucleotide is 15 meters long in hRECQL-836, the nucleotide sequence of SEQ ID NO: 1 In the target mRNA sequence based on 5'-tgaaactattaacgt-3'(SEQ ID NO: 97), which is the DNA base sequence from the 836 position to the 850 position of SEQ ID NO: 1, which is extended from the 836 position to the 3'terminal side of 15 bases. It was designed as a base sequence (5'-acgttaatagtttca-3') (SEQ ID NO: 3) complementary to a certain 5'-ugaaacuauuaacgu-3' (SEQ ID NO: 98). The nucleotide sequence (5'-acgttaatagtttca-3') (SEQ ID NO: 3) of the antisense oligonucleotide hRECQL-836-AmNA (15) designed in this way is the region from position 836 to position 850 of SEQ ID NO: 1. The sequence is complementary to the base sequence (5'-tgaaactattaacgt-3') (SEQ ID NO: 97).
(実施例3:ヒト子宮頸がん細胞におけるインビトロでの hRECQL の mRNA 発現抑制)
(3-1:種々のアンチセンスオリゴヌクレオチドの mRNA 発現抑制解析)
 実施例2で調製したアンチセンスオリゴヌクレオチドについて、ヒト子宮頸がん細胞におけるインビトロでのhRECQLのmRNA発現抑制活性を調べた。調製しかつ発現抑制を調べたアンチセンスオリゴヌクレオチドには、それぞれ適宜、参照番号を付した(参照番号LX-A0050~LX-A0065及びLX-A0254~LX-A0312;表2-1及び2-2参照)。オリゴヌクレオチドを添加しなかったものをコントロールとした。また、比較のために、AmNAを含むネガティブコントロールのオリゴヌクレオチド(Negative Control; NCとも称する):
 5(Y)^A(Y)^T(Y)^t^t^c^g^a^a^g^t^a^5(Y)^T(Y)^c(LX-A0030;配列番号99);
 5(Y)^A(Y)^T(Y)^t^a^g^c^t^a^g^t^a^5(Y)^T(Y)^c(LX-A0069;配列番号100);及び
 5(Y)^A(Y)^T(Y)^t^t^a^g^a^a^g^t^c^5(Y)^T(Y)^c(LX-A0070;配列番号101)
(上記配列中、記号は表2-1及び2-2と同義である。)
を用いた。さらに、RecQL siRNA(WO 2017/022650に記載のQL-19):
 センス鎖 GU(M)U(M)C(M)AGACCACU(M)U(M)C(M)AGC(M)U(M)U(M)tt(配列番号102)
 アンチセンス鎖 AAGCUGAAGUGGU(M)CU(M)GAAC(M)tt(配列番号103)
(上記配列中、tはデオキシチミジンを示し、(M)は2’-メトキシ体を示す。)
もまた、比較のために用いた。
(Example 3: Suppression of hRECQL mRNA expression in human cervical cancer cells)
(3-1: mRNA expression suppression analysis of various antisense oligonucleotides)
The antisense oligonucleotide prepared in Example 2 was examined for the mRNA expression inhibitory activity of hRECQL in vitro in human cervical cancer cells. The antisense oligonucleotides that were prepared and whose expression was suppressed were appropriately numbered (reference numbers LX-A0050 to LX-A0065 and LX-A0254 to LX-A0312; Tables 2-1 and 2-2, respectively. reference). Those to which no oligonucleotide was added were used as controls. Also, for comparison, negative control oligonucleotides containing AmNA (also referred to as Negative Control; NC):
5 (Y) ^ A (Y) ^ T (Y) ^ t ^ t ^ c ^ g ^ a ^ a ^ g ^ t ^ a ^ 5 (Y) ^ T (Y) ^ c (LX-A0030; array Number 99);
5 (Y) ^ A (Y) ^ T (Y) ^ t ^ a ^ g ^ c ^ t ^ a ^ g ^ t ^ a ^ 5 (Y) ^ T (Y) ^ c (LX-A0069; array Number 100); and 5 (Y) ^ A (Y) ^ T (Y) ^ t ^ t ^ a ^ g ^ a ^ a ^ g ^ t ^ c ^ 5 (Y) ^ T (Y) ^ c ( LX-A0070; SEQ ID NO: 101)
(In the above sequence, the symbols are synonymous with Tables 2-1 and 2-2.)
Was used. In addition, RecQL siRNA (QL-19 described in WO 2017/022650):
Sense strand GU (M) U (M) C (M) AGC CACU (M) U (M) C (M) AGC (M) U (M) U (M) tt (SEQ ID NO: 102)
Antisense strand AAGCUGAAGUGGU (M) CU (M) GAAC (M) tt (SEQ ID NO: 103)
(In the above sequence, t indicates deoxythymidine and (M) indicates 2'-methoxy form.)
Was also used for comparison.
 ヒト子宮頸がん細胞として、HeLa-S3細胞(American Type Culture Collection:ATCC)を用いた。各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いてHeLa-S3細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。以下に手順を示す。
 対数増殖期のHeLa-S3細胞を3.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むダルベッコ変法イーグル培地(DMEM)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを最終濃度が20nMとなるようにウェル内に添加し、24時間インキュベートした。
 インキュベート後、細胞を回収し、RNA抽出試薬(MACHEREY-NAGEL社, Nucleo ZOL)を用いて、total RNAを抽出した。該当total RNAを鋳型として、核酸増幅反応用試薬(QIAGEN社, QuantiFast Probe RT-PCR kit)を用いて逆転写反応とPCR増幅反応を行った。核酸増幅反応は、50℃ 10分→95℃ 5分→[(95℃ 10秒→60℃ 30秒)×40サイクル]の温度サイクリングで行った。リアルタイムPCRでは、ハウスキーピング遺伝子のヒトアクチンのmRNA量も同時に定量し、アクチンのmRNA量に対するhRECQLのmRNA量を評価した。各アンチセンスオリゴヌクレオチドまたはオリゴヌクレオチドによるmRNA量は、オリゴヌクレオチド無添加細胞のmRNA量を1とした場合の相対値にて示す。
 用いたプライマーセットは、下記のとおりである:
(hRECQL検出用プライマーセット)
TaqMan Gene Expression Assay Hs00262956_m1_4331182(ThermoFisher Scientific社)
(ヒトアクチン検出用プライマーセット)
Pre-Developed TaqMan Assay Reagents Human ACTB (applied biosystems社)
HeLa-S3 cells (American Type Culture Collection: ATCC) were used as human cervical cancer cells. Each antisense oligonucleotide is incorporated into HeLa-S3 cells using a commercially available transfection reagent (ThermoFisher Scientific, lipofectamine RNAiMAX), and the mRNA expression level is measured by the qRT-PCR method to measure the knockdown activity (knockdown activity). Suppression of mRNA expression) was investigated. The procedure is shown below.
HeLa-S3 cells in logarithmic growth phase at 3.0 × 10 4 cells / well in 24-well plate wells (including Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS)). Sown. After 24 hours, each antisense oligonucleotide was added into the wells to a final concentration of 20 nM and incubated for 24 hours.
After incubation, cells were harvested and total RNA was extracted using an RNA extraction reagent (MACHEREY-NAGEL, Nucleo ZOL). A reverse transcription reaction and a PCR amplification reaction were carried out using a nucleic acid amplification reaction reagent (QIAGEN, QuantiFast Probe RT-PCR kit) using the corresponding total RNA as a template. The nucleic acid amplification reaction was carried out by temperature cycling at 50 ° C. for 10 minutes → 95 ° C. for 5 minutes → [(95 ° C. for 10 seconds → 60 ° C. for 30 seconds) × 40 cycles]. In real-time PCR, the amount of human actin mRNA in the housekeeping gene was also quantified at the same time, and the amount of hRECQL mRNA relative to the amount of actin mRNA was evaluated. The amount of mRNA by each antisense oligonucleotide or oligonucleotide is shown as a relative value when the amount of mRNA of the oligonucleotide-free cell is 1.
The primer sets used are as follows:
(Primer set for hRECQL detection)
TaqMan Gene Expression Assay Hs00262956_m1_4331182 (ThermoFisher Scientific)
(Primer set for detecting human actin)
Pre-Developed TaqMan Assay Reagents Human ACTB (applied biosystems)
 mRNA発現抑制解析の結果を図1、図2および図3に示す。オリゴヌクレオチド無添加細胞(「コントロール」)および Negative Control 添加細胞よりもmRNA量が低くなる、すなわちmRNA発現を抑制するアンチセンスオリゴヌクレオチドが見出された。高いノックダウン活性(mRNAの発現抑制)を示したアンチセンスオリゴヌクレオチドを表1にまとめた。 The results of the mRNA expression suppression analysis are shown in FIGS. 1, 2 and 3. Antisense oligonucleotides were found that had lower mRNA levels than oligonucleotide-free cells (“control”) and Negative Control-supplemented cells, i.e., suppressed mRNA expression. Table 1 summarizes the antisense oligonucleotides that showed high knockdown activity (inhibition of mRNA expression).
(3-2:アンチセンスオリゴヌクレオチドの発現抑制に関する濃度依存性のリポフェクション法による検討)
 上記3-1において高いノックダウン活性(mRNAの発現抑制)がみられたhRECQL-836-AmNA(15)、hRECQL-837-AmNA(15)、hRECQL-1100-AmNA(15)、hRECQL-1312-AmNA(15)、hRECQL-1314-AmNA(15)、hRECQL-356-AmNA(15)、hRECQL-2753-AmNA(15)、hRECQL-2755-AmNA(15)、hRECQL-2814-AmNA(15)、hRECQL-2950-AmNA(15)、hRECQL-3157-AmNA(15)、hRECQL-3158-AmNA(15)、hRECQL-3260-AmNA(15)、hRECQL-3386-AmNA(15)、hRECQL-3507-AmNA(15)、hRECQL-3508-AmNA(15)、hRECQL-3527-AmNA(15)、hRECQL-3549-AmNA(15)、hRECQL-3649-AmNA(15)を含む27種のアンチセンスオリゴヌクレオチドについて、それらのhRECQLのmRNA発現抑制に関する濃度依存性をリポフェクション法により調べた。
(3-2: Examination by concentration-dependent lipofection method for suppression of expression of antisense oligonucleotide)
High knockdown activity (inhibition of mRNA expression) was observed in 3-1 above, hRECQL-836-AmNA (15), hRECQL-837-AmNA (15), hRECQL-1100-AmNA (15), hRECQL-1312- AmNA (15), hRECQL-1314-AmNA (15), hRECQL-356-AmNA (15), hRECQL-2753-AmNA (15), hRECQL-2755-AmNA (15), hRECQL-2814-AmNA (15), hRECQL-2950-AmNA (15), hRECQL-3157-AmNA (15), hRECQL-3158-AmNA (15), hRECQL-3260-AmNA (15), hRECQL-3386-AmNA (15), hRECQL-3507-AmNA About 27 kinds of antisense oligonucleotides including (15), hRECQL-3508-AmNA (15), hRECQL-3527-AmNA (15), hRECQL-3549-AmNA (15), hRECQL-3649-AmNA (15) The concentration dependence of hRECQL on the suppression of mRNA expression was investigated by the lipofection method.
 ヒト子宮頸がん細胞としてHeLa-S3細胞を用い、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いてHeLa-S3細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。HeLa-S3細胞へのアンチセンスオリゴヌクレオチドの添加量を1nM、5nMまたは20nMのいずれかとした。図4-7において、各種アンチセンスオリゴヌクレオチドについて左側から順に、1nM、5nMおよび20nMの結果を示す。アンチセンスオリゴヌクレオチドを低濃度で添加した場合でもノックダウン活性(mRNAの発現抑制)を確認することができた。特に、hRECQL-836-AmNA(15)(LX-A0050)および hRECQL-837-AmNA(15)(LX-A0051)は、いずれの添加濃度においてもRECQLsiRNAよりも高いmRNAの発現抑制活性が見られた。 HeLa-S3 cells are used as human cervical cancer cells, and each antisense oligonucleotide is incorporated into HeLa-S3 cells using a commercially available transfection reagent (ThermoFisher Scientific, lipofectamine RNAiMAX), and the qRT-PCR method is used. The expression level of mRNA was measured in 1 and the knockdown activity (inhibition of mRNA expression) was examined. The amount of antisense oligonucleotide added to HeLa-S3 cells was set to either 1 nM, 5 nM or 20 nM. In FIG. 4-7, the results of 1 nM, 5 nM and 20 nM are shown in order from the left side for various antisense oligonucleotides. Knockdown activity (inhibition of mRNA expression) could be confirmed even when the antisense oligonucleotide was added at a low concentration. In particular, hRECQL-836-AmNA (15) (LX-A0050) and hRECQL-837-AmNA (15) (LX-A0051) showed higher mRNA expression inhibitory activity than RECQLsiRNA at any of the added concentrations. ..
(3-3:アンチセンスオリゴヌクレオチドの発現抑制に関する濃度依存性の CEM 法による検討)
 上記3-1において高いノックダウン活性(mRNAの発現抑制)がみられたhRECQL-836-AmNA(15)、hRECQL-837-AmNA(15)、hRECQL-1100-AmNA(15)、hRECQL-1312-AmNA(15)、hRECQL-1314-AmNA(15)、hRECQL-356-AmNA(15)、hRECQL-2753-AmNA(15)、hRECQL-2755-AmNA(15)、hRECQL-2814-AmNA(15)、hRECQL-2950-AmNA(15)、hRECQL-3157-AmNA(15)、hRECQL-3158-AmNA(15)、hRECQL-3260-AmNA(15)、hRECQL-3386-AmNA(15)、hRECQL-3507-AmNA(15)、hRECQL-3508-AmNA(15)、hRECQL-3527-AmNA(15)、hRECQL-3549-AmNA(15)、hRECQL-3649-AmNA(15)のアンチセンスオリゴヌクレオチドについて、それらのhRECQLのmRNA発現抑制に関する濃度依存性を CEM 法により調べた。
(3-3: Concentration-dependent CEM method study on suppression of antisense oligonucleotide expression)
High knockdown activity (inhibition of mRNA expression) was observed in 3-1 above, hRECQL-836-AmNA (15), hRECQL-837-AmNA (15), hRECQL-1100-AmNA (15), hRECQL-1312- AmNA (15), hRECQL-1314-AmNA (15), hRECQL-356-AmNA (15), hRECQL-2753-AmNA (15), hRECQL-2755-AmNA (15), hRECQL-2814-AmNA (15), hRECQL-2950-AmNA (15), hRECQL-3157-AmNA (15), hRECQL-3158-AmNA (15), hRECQL-3260-AmNA (15), hRECQL-3386-AmNA (15), hRECQL-3507-AmNA (15), hRECQL-3508-AmNA (15), hRECQL-3527-AmNA (15), hRECQL-3549-AmNA (15), hRECQL-3649-AmNA (15) antisense oligonucleotides of those hRECQL The concentration dependence on mRNA expression suppression was investigated by the CEM method.
 ヒト子宮頸がん細胞としてHeLa-S3細胞を用い、各アンチセンスオリゴヌクレオチドを CEM 法(「Ca2+ enrichment for medium」カルシウムイオン富化培地を用いた方法:Nucleic Acids Research, 2015, Vol.43, e128)を用いてヒト子宮頸がん細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。以下に手順を示す。
 対数増殖期のHeLa-S3細胞を4.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むダルベッコ改変イーグル培地(DMEM)(低グルコース)を含む)中に播いた。24時間後、各オリゴヌクレオチドを最終濃度が100nM、500nMまたは2000nMとなるように、9mMの塩化カルシウムと共にウェル内に添加し、48時間インキュベートした。
 インキュベート後、細胞を回収し、RNA抽出試薬(MACHEREY-NAGEL社, Nucleo ZOL)を用いて、total RNAを抽出した。該当total RNAを鋳型として、核酸増幅反応用試薬(QIAGEN社, QuantiFast Probe RT-PCR kit)を用いて逆転写反応とPCR増幅反応を行った。核酸増幅反応は、50℃ 10分→95℃ 5分→[(95℃ 10秒→60℃ 30秒)×40サイクル]の温度サイクリングで行った。リアルタイムPCRでは、ハウスキーピング遺伝子のヒトアクチンのmRNA量も同時に定量し、アクチンのmRNA量に対するhRECQLのmRNA量を評価した。結果を図8及び図9に示す。各アンチセンスオリゴヌクレオチドまたはオリゴヌクレオチドによるmRNA量は、オリゴヌクレオチド無添加細胞のmRNA量を1とした場合の相対値にて示す。
HeLa-S3 cells were used as human cervical cancer cells, and each antisense oligonucleotide was used by the CEM method (“Ca 2+ enrichment for medium” method using calcium ion enriched medium: Nucleic Acids Research, 2015, Vol.43, It was incorporated into human cervical cancer cells using e128), the expression level of mRNA was measured by the qRT-PCR method, and the knockdown activity (suppression of mRNA expression) was examined. The procedure is shown below.
HeLa-S3 cells in logarithmic growth phase at 4.0 × 10 4 cells / well containing Dulbecco's Modified Eagle's Medium (DMEM) (low glucose) containing 24-well plate wells (10% fetal bovine serum (FBS)). ) Sown in. After 24 hours, each oligonucleotide was added into the wells with 9 mM calcium chloride to a final concentration of 100 nM, 500 nM or 2000 nM and incubated for 48 hours.
After incubation, cells were harvested and total RNA was extracted using an RNA extraction reagent (MACHEREY-NAGEL, Nucleo ZOL). A reverse transcription reaction and a PCR amplification reaction were carried out using a nucleic acid amplification reaction reagent (QIAGEN, QuantiFast Probe RT-PCR kit) using the corresponding total RNA as a template. The nucleic acid amplification reaction was carried out by temperature cycling at 50 ° C. for 10 minutes → 95 ° C. for 5 minutes → [(95 ° C. for 10 seconds → 60 ° C. for 30 seconds) × 40 cycles]. In real-time PCR, the amount of human actin mRNA in the housekeeping gene was also quantified at the same time, and the amount of hRECQL mRNA relative to the amount of actin mRNA was evaluated. The results are shown in FIGS. 8 and 9. The amount of mRNA by each antisense oligonucleotide or oligonucleotide is shown as a relative value when the amount of mRNA of the oligonucleotide-free cell is 1.
 図8および図9において、各種アンチセンスオリゴヌクレオチドについて左側から順に、500nMおよび2000nMの結果を示す。オリゴヌクレオチド無添加細胞(「コントロール」)および Negative Control 添加細胞と比較して、アンチセンスオリゴヌクレオチド添加細胞では、アンチセンスオリゴヌクレオチドの用量依存的なノックダウン活性(mRNAの発現抑制)が見られた。また、いずれの濃度で添加した場合でも、アンチセンスオリゴヌクレオチドはRECQL siRNAよりも高いmRNAの発現抑制を示した。 In FIGS. 8 and 9, the results of 500 nM and 2000 nM are shown in order from the left side for various antisense oligonucleotides. Compared with oligonucleotide-free cells (“control”) and Negative Control-supplemented cells, antisense oligonucleotide-supplemented cells showed dose-dependent knockdown activity (inhibition of mRNA expression) of antisense oligonucleotides. .. In addition, the antisense oligonucleotide showed higher suppression of mRNA expression than RECQL siRNA when added at any concentration.
(実施例4:ヒト卵巣がん細胞(ES-2細胞、SK-OV-3細胞、TOV-112D細胞、OVCAR-3細胞)、ヒト大腸がん細胞(LoVo細胞、HCT-15細胞)、ヒト胃がん細胞(MKN45細胞)におけるインビトロでのhRECQLのmRNA発現抑制)
 hRECQL-837-AmNA(15)、hRECQL-1312-AmNA(15)、hRECQL-2950-AmNA(15)、hRECQL-3158-AmNA(15)およびhRECQL-3260-AmNA(15)のアンチセンスオリゴヌクレオチドについて、ヒト卵巣がん細胞、ヒト大腸がん細胞およびヒト胃がん細胞におけるノックダウン活性(mRNAの発現抑制)を調べた。
(Example 4: Human ovarian cancer cells (ES-2 cells, SK-OV-3 cells, TOV-112D cells, OVCAR-3 cells), human colon cancer cells (LoVo cells, HCT-15 cells), humans In vitro suppression of hRECQL mRNA expression in gastric cancer cells (MKN45 cells))
About antisense oligonucleotides of hRECQL-837-AmNA (15), hRECQL-1312-AmNA (15), hRECQL-2950-AmNA (15), hRECQL-3158-AmNA (15) and hRECQL-3260-AmNA (15) , Human ovarian cancer cells, human colon cancer cells, and human gastric cancer cells were examined for knockdown activity (inhibition of mRNA expression).
 ヒト卵巣がん細胞としてES-2細胞(American Type Culture Collection:ATCC)を用いた。対数増殖期のES-2細胞を3.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むマッコイ5A培地(変法)(McCoy’5A)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、ES-2細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。ES-2細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図10に示す。 ES-2 cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. A 24-well plate of wells (McCoy'5A medium containing 10% fetal bovine serum (FBS) (modified)) at 3.0 x 10 4 cells / well in the logarithmic growth phase. (Including) sown in. After 24 hours, each antisense oligonucleotide was incorporated into ES-2 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to ES-2 cells was 20 nM. The results are shown in FIG.
 ヒト卵巣がん細胞としてSK-OV-3細胞(American Type Culture Collection:ATCC)を用いた。対数増殖期のSK-OV-3細胞を3.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むマッコイ5A培地(変法)(McCoy’5A)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、SK-OV-3細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。SK-OV-3細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図11に示す。 SK-OV-3 cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. SK-OV-3 cells in logarithmic growth phase at 3.0 x 10 4 cells / well in 24-well plate wells (McCoy '5A medium containing 10% fetal bovine serum (FBS) (modified)) ) Including). After 24 hours, each antisense oligonucleotide was incorporated into SK-OV-3 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the expression level of mRNA was determined by qRT-PCR. The knockdown activity (inhibition of mRNA expression) was examined by measurement. The amount of antisense oligonucleotide added to the SK-OV-3 cells was 20 nM. The results are shown in FIG.
 ヒト卵巣がん細胞としてTOV-112D細胞(American Type Culture Collection:ATCC)を用いた。対数増殖期のTOV-112D細胞を3.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むダルベッコ変法イーグル培地(DMEM)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、TOV-112D細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。TOV-112D細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図12に示す。 TOV-112D cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. Logarithmic growth phase TOV-112D cells at 3.0 x 10 4 cells / well in 24-well plate wells (including Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS)) Sown. After 24 hours, each antisense oligonucleotide was incorporated into TOV-112D cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to TOV-112D cells was 20 nM. The results are shown in FIG.
 ヒト卵巣がん細胞としてOVCAR-3細胞(American Type Culture Collection:ATCC)を用いた。対数増殖期のOVCAR-3細胞を4.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むロズウェルパーク記念研究所1640培地(RPMI-1640)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、OVCAR-3細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。OVCAR-3細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図13に示す。 OVCAR-3 cells (American Type Culture Collection: ATCC) were used as human ovarian cancer cells. At 4.0 x 10 4 cells / well of logarithmic growth phase OVCAR-3 cells in 24-well plate wells (Roswell Park Memorial Institute 1640 medium (RPMI-1640) containing 10% fetal bovine serum (FBS)). (Including) sown in. After 24 hours, each antisense oligonucleotide was incorporated into OVCAR-3 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to OVCAR-3 cells was 20 nM. The results are shown in FIG.
 ヒト大腸がん細胞としてLoVo細胞(国立研究開発法人理化学研究所:RIKEN)を用いた。対数増殖期のLoVo細胞を4.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むイーグル最小必須培地(EMEM)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、LoVo細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。LoVo細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図14に示す。 LoVo cells (National Institute of Physical and Chemical Research: RIKEN) were used as human colorectal cancer cells. LoVo cells in the logarithmic growth phase were seeded at 4.0 × 10 4 cells / well in 24-well plate wells (including Eagle's Minimal Essential Medium (EMEM) containing 10% fetal bovine serum (FBS)). After 24 hours, each antisense oligonucleotide was incorporated into LoVo cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), the expression level of mRNA was measured by qRT-PCR, and knocking was performed. The down activity (inhibition of mRNA expression) was examined. The amount of antisense oligonucleotide added to LoVo cells was 20 nM. The results are shown in FIG.
 ヒト大腸がん細胞としてHCT-15細胞(American Type Culture Collection:ATCC)を用いた。対数増殖期のHCT-15細胞を4.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むロズウェルパーク記念研究所1640培地(RPMI-1640)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、HCT-15細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。HCT-15細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図15に示す。 HCT-15 cells (American Type Culture Collection: ATCC) were used as human colorectal cancer cells. At 4.0 x 10 4 cells / well of logarithmic growth phase HCT-15 cells in 24-well plate wells (Roswell Park Memorial Laboratory 1640 medium (RPMI-1640) containing 10% fetal bovine serum (FBS)). (Including) sown in. After 24 hours, each antisense oligonucleotide was incorporated into HCT-15 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), and the mRNA expression level was measured by the qRT-PCR method. , Knockdown activity (inhibition of mRNA expression) was investigated. The amount of antisense oligonucleotide added to HCT-15 cells was 20 nM. The results are shown in FIG.
 ヒト胃がん細胞としてMKN45細胞(ヒューマンサイエンス振興財団:JCRB)を用いた。対数増殖期のMKN45細胞を4.0×104個/ウェルにて、24ウェルプレートのウェル(10%ウシ胎児血清(FBS)を含むロズウェルパーク記念研究所1640培地(RPMI-1640)を含む)中に播いた。24時間後、各アンチセンスオリゴヌクレオチドを市販のトランスフェクション試薬(ThermoFisher Scientific社,リポフェクトアミンRNAiMAX)を用いて、MKN45細胞に取り込ませ、qRT-PCR法にてmRNAの発現量を測定し、ノックダウン活性(mRNAの発現抑制)を調べた。MKN45細胞へのアンチセンスオリゴヌクレオチドの添加量は20nMとした。結果を図16に示す。 MKN45 cells (Human Science Promotion Foundation: JCRB) were used as human gastric cancer cells. 4.0 x 10 4 cells / well of logarithmic growth phase, 24-well plate wells (including RPMI-1640 medium containing 10% fetal bovine serum (FBS)) Sown inside. After 24 hours, each antisense oligonucleotide was incorporated into MKN45 cells using a commercially available transfection reagent (ThermoFisher Scientific, Lipofectamine RNAiMAX), the expression level of mRNA was measured by qRT-PCR, and knocking was performed. The down activity (inhibition of mRNA expression) was examined. The amount of antisense oligonucleotide added to MKN45 cells was 20 nM. The results are shown in FIG.
 図10-16において、各種アンチセンスオリゴヌクレオチドについて20nMの結果を示す。いずれの細胞種においても、オリゴヌクレオチド無添加細胞(「コントロール」)およびNegative Control添加細胞と比較して、アンチセンスオリゴヌクレオチド添加細胞では、ノックダウン活性(mRNAの発現抑制)が見られた。さらに、hRECQL-837-AmNA(15)(LX-A0051)、hRECQL-1312-AmNA(15)(LX-A0059)、hRECQL-2950-AmNA(15)(LX-A0292)、hRECQL-3158-AmNA(15)(LX-A0299)およびhRECQL-3260-AmNA(15)(LX-A0300)は、RECQL siRNAよりも高いmRNAの発現抑制活性が見られた。 FIG. 10-16 shows the results of 20 nM for various antisense oligonucleotides. In all cell types, knockdown activity (inhibition of mRNA expression) was observed in antisense oligonucleotide-added cells as compared with oligonucleotide-free cells (“control”) and Negative Control-added cells. In addition, hRECQL-837-AmNA (15) (LX-A0051), hRECQL-1312-AmNA (15) (LX-A0059), hRECQL-2950-AmNA (15) (LX-A0292), hRECQL-3158-AmNA ( 15) (LX-A0299) and hRECQL-3260-AmNA (15) (LX-A0300) showed higher mRNA expression inhibitory activity than RECQL siRNA.
 RECQLは、がん細胞をはじめとする活発に増殖している細胞において高発現し、当該細胞のゲノム安定化維持に寄与しており、これらの細胞においてRECQL遺伝子の発現を阻害すると、ゲノムが不安定化し、分裂死や分裂期細胞死が誘導されると考えられている。従って、高いRECQL発現阻害活性を有し、かつ生体内安定性に優れた本発明のアンチセンスオリゴヌクレオチドは、がんをはじめとする過剰増殖性疾患の治療及び/又は予防に利用することができ、極めて有用である。 RECQL is highly expressed in actively proliferating cells such as cancer cells and contributes to the maintenance of genome stabilization of the cells. When the expression of the RECQL gene is inhibited in these cells, the genome is impaired. It is thought to stabilize and induce mitotic and mitotic cell death. Therefore, the antisense oligonucleotide of the present invention having high RECQL expression inhibitory activity and excellent in vivo stability can be used for the treatment and / or prevention of hyperproliferative diseases such as cancer. , Extremely useful.
 本出願は、日本でされた特願2019-239823(出願日 : 2019年12月27日)を基礎としており、その内容は本明細書にすべて包含されるものである。 This application is based on Japanese Patent Application No. 2019-239823 (Filing date: December 27, 2019), the contents of which are all included in the present specification.

Claims (12)

  1.  RECQL遺伝子の発現を阻害する一本鎖オリゴヌクレオチドであって、
    配列番号1で表されるヌクレオチド配列からなる、RECQLをコードする核酸における2750~3663番目、80~300番目、330~500番目、800~930番目、1000~1350番目及び2250~2500番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列からなる標的領域中の、連続する10個以上のヌクレオチド配列と相補的なヌクレオチド配列を含み、
    前記一本鎖オリゴヌクレオチドの長さは、10~30ヌクレオチドであり、
    前記一本鎖オリゴヌクレオチドを構成する少なくとも一つのヌクレオシドの糖部が、糖の2’位と4’位との間の架橋により修飾されている、
    一本鎖オリゴヌクレオチド。
    A single-stranded oligonucleotide that inhibits the expression of the RECQL gene.
    Nucleotide sequences 2750 to 3663, 80 to 300, 330 to 500, 800 to 930, 1000 to 1350, and 2250 to 2500 in the nucleic acid encoding RECQL, which consist of the nucleotide sequence represented by SEQ ID NO: 1. Containing a nucleotide sequence complementary to 10 or more contiguous nucleotide sequences in a target region consisting of any of the nucleotide sequences selected from the group consisting of
    The length of the single-stranded oligonucleotide is 10 to 30 nucleotides.
    The sugar moiety of at least one nucleoside constituting the single-stranded oligonucleotide is modified by cross-linking between the 2'position and the 4'position of the sugar.
    Single-stranded oligonucleotide.
  2.  前記標的領域が、配列番号1で表されるヌクレオチド配列における356~370番目、836~851番目、1100~1114番目、1312~1328番目、2753~2964番目、3157~3274番目及び3386~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる、請求項1記載の一本鎖オリゴヌクレオチド。 The target regions are 356 to 370th, 836 to 851st, 1100 to 1114th, 1312-1328th, 2753 to 2964th, 3157 to 3274th and 3386 to 3663th in the nucleotide sequence represented by SEQ ID NO: 1. The single-stranded oligonucleotide according to claim 1, which comprises any nucleotide sequence selected from the group consisting of nucleotide sequences and a nucleotide sequence in the vicinity thereof.
  3.  前記標的領域が、配列番号1で表されるヌクレオチド配列における836~851番目、1100~1114番目、1312~1328番目、2753~2769番目、2950~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる、請求項1記載の一本鎖オリゴヌクレオチド。 The target region is selected from the group consisting of the nucleotide sequences 836 to 851, 1100 to 1114, 1312-1328, 2753 to 2769, and 2950 to 3663 in the nucleotide sequence represented by SEQ ID NO: 1. The single-stranded oligonucleotide according to claim 1, which comprises the nucleotide sequence and a nucleotide sequence in the vicinity thereof.
  4.  前記標的領域が、配列番号1で表されるヌクレオチド配列における356~370番目、836~851番目、1100~1114番目、1312~1328番目、2753~2769番目、2814~2828番目、2950~2964番目、3157~3400番目、3507~3522番目、及び3527~3663番目のヌクレオチド配列からなる群より選択されるいずれかのヌクレオチド配列と、その近傍のヌクレオチド配列とからなる、請求項1記載の一本鎖オリゴヌクレオチド。 The target region is 356 to 370th, 836 to 851st, 1100 to 1114th, 1312-1328th, 2753 to 2769th, 2814 to 2828th, 2950 to 2964th in the nucleotide sequence represented by SEQ ID NO: 1. The single-stranded oligo according to claim 1, which comprises any nucleotide sequence selected from the group consisting of nucleotide sequences 3157 to 3400, 3507 to 3522, and 3527 to 3663, and nucleotide sequences in the vicinity thereof. nucleotide.
  5.  5’末端に位置する5’ウイング領域(1);3’末端に位置する3’ウイング領域(2);および領域(1)および領域(2)の間に位置するデオキシギャップ領域(3);を含み、
    ここで、領域(3)を構成する各ヌクレオシドは糖修飾されておらず、領域(1)および(2)を構成する少なくとも一つのヌクレオシドの糖部が、糖の4’位と2’位との間の架橋により修飾されており、
    領域(1)および領域(2)は、2~5ヌクレオチド長であり、領域(3)は、7~10ヌクレオチド長である、
    請求項1~4のいずれか1項に記載の一本鎖オリゴヌクレオチド。
    The 5'wing region (1) located at the 5'end; the 3'wing region (2) located at the 3'end; and the deoxygap region (3) located between the regions (1) and (2); Including
    Here, each nucleoside constituting the region (3) is not sugar-modified, and the sugar portion of at least one nucleoside constituting the regions (1) and (2) is at the 4'position and the 2'position of the sugar. Modified by cross-linking between
    Region (1) and region (2) are 2-5 nucleotides in length and region (3) is 7-10 nucleotides in length.
    The single-stranded oligonucleotide according to any one of claims 1 to 4.
  6.  糖の4’位と2’位との間の架橋による修飾が、LNA、AmNA、GuNA及びScpBNAからなる群より選択される、請求項1~5のいずれか1項に記載の一本鎖オリゴヌクレオチド。 The single-stranded oligo according to any one of claims 1 to 5, wherein the modification by cross-linking between the 4'-position and the 2'-position of the sugar is selected from the group consisting of LNA, AmNA, GuNA and ScpBNA. nucleotide.
  7.  隣接するヌクレオシド間の結合の少なくとも一つがホスホロチオエート結合である、請求項1~6のいずれか1項に記載の一本鎖オリゴヌクレオチド。 The single-stranded oligonucleotide according to any one of claims 1 to 6, wherein at least one of the bonds between adjacent nucleosides is a phosphorothioate bond.
  8.  ヌクレオチド長が15である、請求項1~7のいずれか1項に記載の一本鎖オリゴヌクレオチド。 The single-stranded oligonucleotide according to any one of claims 1 to 7, which has a nucleotide length of 15.
  9.  配列番号2~20からなる群より選択されるいずれかの配列番号で表されるヌクレオチド配列からなる、請求項1~8のいずれか1項に記載の一本鎖オリゴヌクレオチド。 The single-stranded oligonucleotide according to any one of claims 1 to 8, which comprises a nucleotide sequence represented by any of the SEQ ID NOs: selected from the group consisting of SEQ ID NOs: 2 to 20.
  10.  請求項1~9のいずれか1項に記載の一本鎖オリゴヌクレオチドを含有してなる、RECQL遺伝子の発現阻害剤。 An RECQL gene expression inhibitor comprising the single-stranded oligonucleotide according to any one of claims 1 to 9.
  11.  RECQLを高発現する細胞の増殖を抑制及び/又は細胞死を誘導する、請求項10記載の剤。 The agent according to claim 10, which suppresses the proliferation of cells highly expressing RECQL and / or induces cell death.
  12.  がんの治療及び/又は予防用である、請求項10又は11記載の剤。 The agent according to claim 10 or 11, which is used for treating and / or preventing cancer.
PCT/JP2020/048964 2019-12-27 2020-12-25 Antisense oligonucleotide for inhibiting recql expression, and application for same WO2021132648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239823 2019-12-27
JP2019239823 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132648A1 true WO2021132648A1 (en) 2021-07-01

Family

ID=76573109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048964 WO2021132648A1 (en) 2019-12-27 2020-12-25 Antisense oligonucleotide for inhibiting recql expression, and application for same

Country Status (1)

Country Link
WO (1) WO2021132648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004779A1 (en) * 2022-06-30 2024-01-04 株式会社ジーンケア研究所 Sirna targeting recql1 helicase gene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068590A2 (en) * 2001-02-23 2002-09-06 Isis Pharmaceuticals, Inc. Antisense modulation of recql expression
WO2004100990A1 (en) * 2003-05-19 2004-11-25 Genecare Research Institute Co., Ltd. Apoptosis inducer for cancer cell
WO2006054625A1 (en) * 2004-11-19 2006-05-26 Genecare Research Institute Co., Ltd. Cancer-cell-specific cytostatic agent
WO2010150159A1 (en) * 2009-06-25 2010-12-29 International Centre For Genetic Engineering And Biotechnology (Icgeb) Anticancer agent specific for brain tumors with mechanism of recq1 suppression
WO2011052436A1 (en) * 2009-10-29 2011-05-05 国立大学法人大阪大学 Bridged artificial nucleoside and nucleotide
JP2012219085A (en) * 2011-04-13 2012-11-12 Shiga Univ Of Medical Science Anticancer agent for head and neck cancer and esophageal cancer, and potentiator
JP2016521753A (en) * 2013-06-12 2016-07-25 オンコイミューニン,インコーポレイティド Systemic in-vivo delivery of oligonucleotides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068590A2 (en) * 2001-02-23 2002-09-06 Isis Pharmaceuticals, Inc. Antisense modulation of recql expression
WO2004100990A1 (en) * 2003-05-19 2004-11-25 Genecare Research Institute Co., Ltd. Apoptosis inducer for cancer cell
WO2006054625A1 (en) * 2004-11-19 2006-05-26 Genecare Research Institute Co., Ltd. Cancer-cell-specific cytostatic agent
WO2010150159A1 (en) * 2009-06-25 2010-12-29 International Centre For Genetic Engineering And Biotechnology (Icgeb) Anticancer agent specific for brain tumors with mechanism of recq1 suppression
WO2011052436A1 (en) * 2009-10-29 2011-05-05 国立大学法人大阪大学 Bridged artificial nucleoside and nucleotide
JP2012219085A (en) * 2011-04-13 2012-11-12 Shiga Univ Of Medical Science Anticancer agent for head and neck cancer and esophageal cancer, and potentiator
JP2016521753A (en) * 2013-06-12 2016-07-25 オンコイミューニン,インコーポレイティド Systemic in-vivo delivery of oligonucleotides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004779A1 (en) * 2022-06-30 2024-01-04 株式会社ジーンケア研究所 Sirna targeting recql1 helicase gene

Similar Documents

Publication Publication Date Title
EP3004350B1 (en) Hydrophobically modified antisense oligonucleotides comprising a ketal group
JP7307417B2 (en) Antisense oligonucleotide that regulates expression level of TDP-43 and use thereof
KR102589803B1 (en) Products and Compositions
CN113164768B (en) Nucleic acids and iron chelators for inhibiting TMPRSS6 expression
JP2023539341A (en) Dux4 inhibitors and methods of use thereof
AU2016382055C1 (en) Single-stranded nucleic acid molecule inhibiting expression of prorenin gene or prorenin receptor gene, and use thereof
US20190078090A1 (en) Downregulating mir-132 for the treatment of lipid related disorders
WO2021132648A1 (en) Antisense oligonucleotide for inhibiting recql expression, and application for same
WO2021241040A1 (en) Nucleic acid molecule inhibiting sars-cov-2 gene expression and use thereof
JP7241098B2 (en) Anti-fibrosis agent
JP7427227B2 (en) KRAS antisense oligonucleotide that reduces tumor cell survival and its uses
EP3047852A1 (en) Drug for disease caused by expression of periostin except eye disease, and use thereof
JP7427228B2 (en) DFFA antisense oligonucleotide that reduces tumor cell survival and its uses
WO2021132660A1 (en) SINGLE-STRANDED NUCLEIC ACID MOLECULE FOR SUPPRESSING EXPRESSION OF TGF-β1 GENE
WO2021107097A1 (en) Nucleic acid molecule for hepatitis b treatment use
EP3235906B1 (en) Single-stranded nucleic acid molecule for inhibiting tgf- beta 1 expression
JP2020198784A (en) Nucleic acid molecule for regulating immune function and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP