WO2021106906A1 - 蛍光体素子、蛍光体デバイスおよび照明装置 - Google Patents

蛍光体素子、蛍光体デバイスおよび照明装置 Download PDF

Info

Publication number
WO2021106906A1
WO2021106906A1 PCT/JP2020/043751 JP2020043751W WO2021106906A1 WO 2021106906 A1 WO2021106906 A1 WO 2021106906A1 JP 2020043751 W JP2020043751 W JP 2020043751W WO 2021106906 A1 WO2021106906 A1 WO 2021106906A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
incident surface
phosphor element
incident
fluorescence
Prior art date
Application number
PCT/JP2020/043751
Other languages
English (en)
French (fr)
Inventor
近藤 順悟
直剛 岡田
山口 省一郎
哲也 江尻
雄一 岩田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021561439A priority Critical patent/JP7305791B2/ja
Priority to DE112020005291.5T priority patent/DE112020005291T5/de
Publication of WO2021106906A1 publication Critical patent/WO2021106906A1/ja
Priority to US17/663,843 priority patent/US11674652B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a phosphor element and a lighting device that emits fluorescence.
  • a white light source that combines a blue laser or an ultraviolet laser and a phosphor.
  • the light density of the excitation light can be increased, and by superimposing and condensing a plurality of laser lights on the phosphor, the light intensity of the excitation light can also be increased.
  • the luminous flux and the brightness can be increased at the same time without changing the light emitting area.
  • a white light source that combines a semiconductor laser and a phosphor is attracting attention as a light source that replaces LEDs.
  • the phosphor glass used for automobile headlights is the phosphor glass "Lumifas" of Nippon Electric Glass Co., Ltd., National Institute for Materials Science, Tamura Corporation, and Koha Co., Ltd.'s YAG single crystal fluorescence. The body is being considered.
  • the width of the phosphor increases from the entrance surface to the exit surface.
  • the inclination angle of the side surface of this phosphor is 15 degrees or more and 35 degrees or less.
  • a metal film is formed so that the phosphor is housed in the resin case and the inner surface of the case functions as a reflector portion.
  • the phosphor is fixed to the bottom surface of the case by a sealing resin, and the side surface of the phosphor is covered with air.
  • the width of the phosphor is widened from the incident surface to the exit surface, and the phosphor is accommodated in the through hole of the heat radiation member, and the through hole is formed.
  • the sides of the hole are bonded to the surface of the through hole by glass paste.
  • Patent Document 3 (WO2013-175706 A1) describes a phosphor element in which a phosphor is housed in a through hole of a heat radiating member and the phosphor is fixed in the through hole (FIGS. 15 to 18).
  • An object of the present invention is to increase the fluorescence intensity of the emitted light and suppress the uneven brightness of the emitted white light when the excitation light is incident on the phosphor portion to generate fluorescence.
  • a fluorescence that includes an incident surface of excitation light, a reflecting surface and a side surface facing the incident surface, converts at least a part of the excitation light incident on the incident surface into fluorescence, and emits the fluorescence from the incident surface. It ’s a body element, The area of the incident surface is larger than the area of the reflecting surface, When viewed in a cross section perpendicular to the incident surface along the longest dividing line that divides the incident surface into two, the inclination angle formed by the side surface with respect to the vertical axis perpendicular to the incident surface is the reflecting surface. It is characterized by having an inclined region that monotonically increases from the entrance surface to the incident surface.
  • the present invention also relates to a phosphor device, which comprises the phosphor element and a reflective film that covers at least a part of the side surface.
  • the present invention also relates to a lighting device including a light source that oscillates a laser beam and the phosphor element.
  • the phosphor element of the present invention we succeeded in improving the fluorescence intensity of the emitted light when the excitation light is incident on the phosphor element to generate fluorescence. That is, we examined a form in which an inclined region is provided in which the inclination angle formed by the side surface with respect to the vertical axis perpendicular to the incident surface monotonically increases from the reflecting surface toward the incident surface. In other words, this means a form in which the width of the phosphor element expands like a skirt from the reflecting surface to the incident surface (see FIG. 1).
  • the fluorescence intensity of the emitted light can be improved and the fluorescence generation efficiency as a whole can be increased, especially in the outer peripheral edge of the incident surface.
  • brightness unevenness sometimes occurred mainly on the outer peripheral edge of the incident surface, but it was found that the increased emission light intensity on the outer peripheral edge eventually suppresses the brightness unevenness.
  • the present invention has been reached.
  • FIG. 1 It is a cross-sectional view which shows the phosphor element 1 which concerns on embodiment of this invention.
  • (A), (b), (c), (d), (e) and (f) are front views showing the contours of the incident surfaces, respectively.
  • FIG. 1 It is a cross-sectional view which shows the phosphor device 25 which concerns on other embodiment of this invention.
  • (A) is a perspective view showing a phosphor plate 21,
  • (b) is a perspective view showing a handle substrate 23, and
  • (c) is a joining of the phosphor plate 21 and the handle substrate 23.
  • (A) shows a state in which a large number of phosphor elements 2 are molded on the handle substrate 23, and (b) provides a low refractive index layer 18 and a reflective film 19 on the surfaces of each phosphor element and the adhesive layer 22.
  • It is an optical photograph which shows the perspective view of the phosphor element of Example 2.
  • FIG. It is a cross-sectional view which shows the phosphor element 31 which concerns on still another Embodiment of this invention.
  • the phosphor element of the present invention includes an incident surface of excitation light, a reflecting surface and a side surface facing the incident surface, converts at least a part of the excitation light incident on the phosphor element into fluorescence, and converts the fluorescence into the incident surface. Is emitted from.
  • the excitation light and fluorescence can be emitted from the incident surface.
  • FIG. 1 is a perspective view showing a phosphor element 1 according to an embodiment of the present invention.
  • the phosphor element 1 has a phosphor element 17 and a reflective film 15.
  • the phosphor element 17 has at least an incident surface 3, a reflecting surface 2, and a side surface 4.
  • the side surface is a surface extending between the entrance surface and the exit surface.
  • the shape of the phosphor element is not particularly limited.
  • the shape of the entrance surface and the exit surface is preferably a convex figure, and more preferably a convex figure composed of curved lines having no corners.
  • the angle of the angle is preferably 108 ° or more.
  • the shape of the entrance surface and the exit surface may be a circle, an ellipse, or a polygon (quadrangle, pentagon, hexagon, octagon).
  • R and C may be provided at the corners of the outer contours of the entrance surface and the exit surface, and there may be a dent due to wall thinning.
  • the incident surface 3 is square or rectangular, in the example of FIG. 2B, the incident surface 3A is circular, and in the example of FIG. 2C, the incident surface 3B is. It is elliptical, and in the example of FIG. 2 (d), the incident surface 3C has a shape in which rounds (R) are provided at the four corners of a square or a rectangle, and in the example of FIG. 2 (e), the incident surface 3D is a pentagon. In the example of FIG. 2 (f), the incident surface 3E is hexagonal. 4 is a side surface. In this example, the reflective film 15 is formed on the reflective surface 2.
  • excitation light is incident like Lin from the incident surface 3 of the phosphor element 1.
  • the excitation light hits the phosphor element in the phosphor element to generate fluorescence. Fluorescence and excitation light are reflected by the reflecting surface 2, propagate through the phosphor element, and emitted from the incident surface 3 like Lout.
  • the area of the incident surface 3 is larger than the area of the reflecting surface 2.
  • the shape of the side surface is devised. That is, as shown in FIGS. 2A to 2F, consider the longest dividing line W that divides the incident surfaces 3 to 3E into two in terms of the area. 4a and 4b indicate the contact points between the dividing line W and the outer contour of the incident surface, respectively.
  • the cross section Z perpendicular to the incident surface along the dividing line W is shown in FIGS. 1 and 3. When viewed in this cross section, it includes an inclined region G in which the inclination angle ⁇ formed by the side surface with respect to the vertical axis P perpendicular to the incident surface 3 monotonically increases from the reflecting surface 2 toward the incident surface 3. ..
  • the degree of monotonous increase in the inclination angle ⁇ is not particularly limited, and may be increased at a constant rate in the thickness direction of the phosphor element. That is, when the distance from the reflecting surface is x, the inclination angle ⁇ x may increase in proportion to x, may increase in proportion to the square of x, or x 1/2 power. May increase in proportion to.
  • the inclined region G may be provided over the entire length from the reflecting surface of the phosphor element to the incident surface, or may be provided in a part of the space between the reflecting surface of the phosphor element and the incident surface. In this case, a region where the inclination angle ⁇ does not monotonically increase can be provided on the reflecting surface side of the phosphor element, or a region where the inclination angle ⁇ does not monotonically increase can be provided on the incident surface side of the phosphor element.
  • the phosphor element can be provided with a plurality of tilt regions in which the tilt angle ⁇ monotonically increases.
  • the number of inclined regions is preferably 2 to 5, and more preferably 2 to 3.
  • the adjacent tilted regions can be made continuous, or a region in which the tilted angle ⁇ is constant may be provided between the adjacent tilted regions. it can.
  • the inclined region reaches the incident surface, whereby the intensity of the emitted light emitted from the incident surface, particularly from the outer peripheral edge portion, can be improved and the brightness unevenness can be reduced. ..
  • the difference between the inclination angle ⁇ t at the end of the reflecting surface 2 side of the inclined region and the inclination angle ⁇ b at the end of the incident surface 3 side of the inclined region is 3 ° or more and 45 ° or less.
  • ⁇ b ⁇ t is more preferably 5 ° or more, and further preferably 40 ° or less.
  • the inclination angle ⁇ t at the end of the inclined region on the reflecting surface side is 20 ° or more and 62 ° or less.
  • ⁇ t is preferably 25 ° or more, and particularly preferably 45 ° or less.
  • the inclination angle ⁇ b at the incident surface side end of the inclined region is preferably 23 ° or more and 65 ° or less.
  • ⁇ b is more preferably 40 ° or more, and further preferably 60 ° or less.
  • the area ratio ((area of the incident surface 3) / (area of the reflecting surface 2)) is preferably 1.5 or more, and more preferably 3 or more. Further, if the area ratio ((area of the incident surface 3) / (area of the reflecting surface 2)) is too large, the emitted light intensity may decrease, so the area ratio ((area of the incident surface 3)) / (Area of reflecting surface 2)) is preferably 35 or less, and more preferably 15 or less.
  • the thickness of the phosphor element is preferably 250 to 1000 ⁇ m, and more preferably 750 ⁇ m or less.
  • FIG. 4 shows a phosphor element 6 according to another embodiment of the present invention.
  • the phosphor element 6 has a phosphor element 17A and a reflective film 15.
  • the phosphor element 17A is the same as that of the phosphor 17 of FIG. 1, but a curved portion Rin can be provided along the outer peripheral edge portion of the reflecting surface 2. This makes it possible to suppress uneven brightness and uneven color of white light when white light is emitted. From the viewpoint of suppressing brightness unevenness and color unevenness, it is also possible to provide a curved portion on the outer peripheral edge portion of the incident surface 3.
  • the phosphor device 16 is manufactured by forming the low refractive index layer 18 and the reflective film 19 described later on the reflecting surface 2 and the side surface 4 of the phosphor 17. .
  • the low refractive index layer 18 has a side surface covering portion 18b and a reflecting surface covering portion 18a.
  • the reflective film 19 has a side surface covering portion 19b on the side surface covering portion 18b and a reflecting surface covering portion 19a on the reflective surface covering portion 18a.
  • fluorescence centers 9 phosphor particles and rare earth element ions
  • fluorescence is oscillated in lumbar cyan in all directions.
  • the fluorescence C1 oscillated relatively toward the incident surface 3 side is reflected on the side surface like C2, and is emitted from the exit surface like C3.
  • the fluorescence oscillated in the lateral direction as shown by arrows A1 and B1 heads toward the incident surface while repeating reflection on the side surface 4 as shown by A2, A3 and B2.
  • the phosphor 1 has a shape in which the phosphor spreads in the vicinity of the incident surface 3.
  • the phosphor element 12 and the phosphor device 13 in the comparative form as shown in FIG. 7 have a trapezoidal contour when viewed in the cross section.
  • the phosphor element 12 has an incident surface 3, a reflecting surface 2, and a side surface 14 between the incident surface and the exit surface.
  • the inclination angle ⁇ of the side surface 14 with respect to the vertical axis P with respect to the incident surface is constant.
  • the low refractive index layer 18 has a side surface covering portion 18b and a reflecting surface covering portion 18a.
  • the reflective film 19 has a side surface covering portion 19b on the side surface covering portion 18b and a reflecting surface covering portion 19a on the reflective surface covering portion 18a.
  • a large number of fluorescent centers 9 are dispersed in the phosphor element 12. From the fluorescence center 9, fluorescence is oscillated in lumbar cyan in all directions. Here, the fluorescence F1 oscillated relatively toward the exit surface 3 side is reflected on the side surface like F2, and is emitted from the exit surface like F3. Such fluorescence is the same as that of the phosphor element 1 of FIG.
  • the fluorescence oscillated in the lateral direction as shown by arrows D1 and E1 heads toward the emitting surface while repeating reflection on the side surface 14 as shown by D2 and E2.
  • the base of the phosphor element is not particularly widened even in the vicinity of the exit surface 3, and the inclination angle ⁇ is constant.
  • the fluorescence E3 totally reflected by the emission surface 3 at the outer peripheral edge of the emission surface 3 further repeats reflection like E4.
  • the fluorescence D2 is reflected by the side surface 14 and is emitted from the exit surface like D3. In such a form, it becomes difficult for fluorescence to be emitted from the outer peripheral edge portion of the exit surface 3, and the fluorescence intensity tends to decrease.
  • a heat radiating substrate can be further provided on the outside of the phosphor element or the phosphor device. That is, in the phosphor device 25 shown in FIG. 8, the low refractive index layer 18 and the reflective film 19 are provided on the side surface of the phosphor element 16, and the heat radiating substrate 26 is further provided on the outside of the reflective film 19. There is. As a result, heat dissipation can be promoted and color unevenness of emitted light can be further reduced.
  • the phosphor element may have a plurality of tilt regions in which the tilt angle ⁇ monotonically increases.
  • FIG. 12 is a cross-sectional view schematically showing the phosphor element 31 according to this embodiment.
  • the phosphor element 31 is similar to the phosphor element 17, but is provided with a plurality of tilt regions in which the tilt angle ⁇ monotonically increases.
  • Excitation light is incident like Lin from the incident surface 3 of the phosphor element 31.
  • the excitation light hits the phosphor in the phosphor element 31 to generate fluorescence. Fluorescence and excitation light are emitted from the incident surface 3 like Lout.
  • the area of the incident surface 3 is larger than the area of the reflecting surface 2.
  • FIG. 12 shows a cross section Z perpendicular to the exit surface along the dividing line W.
  • a plurality of inclined regions G1 in which the inclination angle ⁇ formed by the side surface 4 with respect to the vertical axis P perpendicular to the incident surface 3 monotonically increases from the reflecting surface 2 toward the incident surface 3. It is equipped with G2.
  • the inclined region G1 is provided on the reflection surface 2 side, and the inclined region G2 is provided on the incident surface 3 side.
  • a region L having a constant tilt angle is provided between the tilt region G1 and the tilt region G2.
  • the light returned to the reflecting surface side is reflected by the reflecting surface 2 and travels to the incident surface 3 side again.
  • the inclination angle of the side surface on the reflecting surface 2 side increases monotonically and opens to the emitting side, so that the fluorescent component that advances to the incident surface 3 side without being reflected by the reflecting surface 2 increases.
  • fluorescence can be guided to the incident surface 3 side with a small number of reflections.
  • the substrate thickness may become too thin or the area on the exit side may become too large, so that color unevenness may easily occur. Therefore, if another inclined region is provided on the incident surface side, the substrate thickness and the incident side area can be freely adjusted without causing color unevenness.
  • the inclination angle ⁇ t1 of the side surface of the inclined region G1 on the reflecting surface side at the end on the reflecting surface side is preferably 20 ° or more and 62 ° or less, and more preferably 25 ° or more and 45 ° or less.
  • the inclination angle ⁇ b1 of the side surface at the incident surface side end of the inclination region G1 is preferably 23 ° or more and 65 ° or less, and more preferably 40 ° or more and 60 ° or less.
  • the tilt angle in the region L where the tilt angle is constant is ⁇ t2.
  • the inclination angle ⁇ t2 of the side surface at the end of the inclined region G2 on the incident surface side on the reflecting surface side is preferably 20 ° or more and 62 ° or less, and more preferably 25 ° or more and 45 ° or less.
  • the inclination angle ⁇ b2 of the side surface of the incident surface side inclined region G2 at the incident surface side end is preferably 23 ° or more and 65 ° or less, and more preferably 40 ° or more and 60 ° or less.
  • the phosphor constituting the phosphor element is not limited as long as it can convert the excitation light into fluorescence, but may be phosphor glass, a phosphor single crystal, or a phosphor polycrystal.
  • a scattering material may be added to the phosphor to disperse the excitation light and the fluorescence, or holes may be provided in the phosphor.
  • the scattering angle can be measured by, for example, the scattering measuring device "Mini-Diff" manufactured by Cybernet Systems Co., Ltd.
  • the scattering angle is defined as the full width angle which is 1 / e 2 of the peak value from the transmission spectrum of the emitted light.
  • the scattering angle is preferably 5 degrees or more, and more preferably 10 degrees or more.
  • NA numerical aperture
  • Phosphor glass is a glass in which rare earth element ions are dispersed.
  • the base glass includes glass oxide containing silica, boron oxide, calcium oxide, lanthanum oxide, barium oxide, zinc oxide, phosphorus oxide, aluminum fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and barium chloride. It can be exemplified.
  • the rare earth element ions dispersed in the phosphor glass are preferably Tb, Eu, Ce, and Nd, but may be La, Pr, Sc, Sm, Er, Tm, Dy, Gd, and Lu.
  • Examples of the phosphor single crystal include Y 3 Al 5 O 12 , Ba 5 Si 11 Al 7 N 25 , Tb 3 Al 5 O 12 and YAG (yttrium aluminum garnet). A part of Y (yttrium) of YAG may be replaced with Lu. Rare earth ions are preferable as the doping component to be doped in the phosphor single crystal, and Tb, Eu, Ce, and Nd are particularly preferable, but La, Pr, Sc, Sm, Er, Tm, Dy, Gd, and Lu are used. There may be.
  • Examples of the phosphor polycrystal include TAG (terbium aluminum garnet) type, sialon type, nitride type, BOS (barium orthosilicate) type, and YAG (yttrium aluminum garnet). A part of Y (yttrium) of YAG may be replaced with Lu. Rare earth ions are preferable, and Tb, Eu, Ce, and Nd are particularly preferable as the doping component to be doped in the phosphor polycrystal, but La, Pr, Sc, Sc, Sc, Er, Tm, Dy, Gd, and Lu. May be good.
  • the phosphor element of the present invention may be a non-glazing type phosphor element that does not include a grating (diffraction grating) in the phosphor element, and the grating may be provided in the phosphor element.
  • a grating diffiffraction grating
  • a partially transmissive film can be further provided on the incident surface of the phosphor element.
  • the partially transmissive membrane is a membrane that reflects a part of the excitation light and transmits the rest. Specifically, the reflectance of the partially permeable membrane to the excitation light is 9% or more, preferably 50% or less.
  • Examples of the material of such a partially permeable film include a metal film for a reflective film and a dielectric multilayer film, which will be described later.
  • the heat radiating substrate provided on the side surface of the phosphor element is preferably made of a material having a thermal conductivity (25 ° C.) of 200 W / m ⁇ K or more.
  • a thermal conductivity 25 ° C.
  • the thermal conductivity it is preferably 500 W / m ⁇ K or less, and more preferably 350 W / m ⁇ K or less.
  • the material of the heat radiating substrate gold, silver, copper, aluminum, or an alloy containing these metals is preferable. Further, as the material of the heat radiating substrate, ceramics such as silicon carbide, aluminum nitride, and silicon nitride are preferable. In the case of ceramics, the coefficient of thermal expansion with the phosphor can be adjusted to some extent. Therefore, it is advantageous in terms of improving reliability such as preventing cracks and cracks due to thermal stress.
  • the heat radiating substrate when it is metal, it may be formed of metal plating, thermal spraying, or a sintered joint material.
  • the phosphor element and the heat radiating substrate can be brought into close contact with each other.
  • the type of sintered bonding material include copper and silver.
  • a heat-dissipating substrate can be formed by applying a paste-like metal powder to a phosphor element and sintering it at 200 ° C. to 350 ° C.
  • the sintered bonding material can also be used for filling or fixing a phosphor element in a heat radiating substrate previously made of metal or ceramics.
  • Examples of the material of the low refractive index layer include aluminum oxide, magnesium oxide, aluminum nitride, tantalum oxide, silicon oxide, silicon nitride, aluminum nitride, and silicon carbide.
  • the refractive index of the low refractive index layer is preferably 1.7 or less, more preferably 1.6 or less in the case of a YAG phosphor.
  • the lower limit of the refractive index of the low refractive index layer is not particularly limited and is 1 or more, but it is practical that it is 1.4 or more.
  • the low refractive index layer is preferably made of a material having a lower refractive index than the phosphor. In this way, total reflection due to the difference in refractive index between the phosphor and the low refractive index layer can be utilized, the light component reflected by the reflective film can be reduced, and light is absorbed by the reflection by the reflective film. Can be suppressed. Further, aluminum oxide and magnesium oxide are the best from the viewpoint of heat dissipation.
  • the thickness of the low refractive index layer is preferably 1 ⁇ m or less, which can reduce the influence on heat dissipation. Further, from the viewpoint of bonding force, the thickness of the low refractive index layer is preferably 0.05 ⁇ m or more.
  • the material of the reflective film is not particularly limited as long as it reflects the excitation light and the fluorescence that have passed through the phosphor element.
  • the reflective film does not need to totally reflect the excitation light, and may transmit a part of the excitation light or may transmit the entire excitation light.
  • reflection can be performed by providing a reflective film on the reflective surface of the phosphor element, the reflective film is not always essential.
  • the reflective surface can be formed by providing a reflective structure such as a diffraction grating structure or a moth-eye structure on the reflective surface.
  • the reflective film is a metal film or a dielectric multilayer film.
  • the reflective film is a metal film, it can be reflected in a wide wavelength range, the angle of incidence dependence can be reduced, and it is excellent in durability against temperature and weather resistance.
  • the reflective film is a dielectric multilayer film, since there is no absorption, the incident light can be 100% reflected light without loss, and since it can be composed of an oxide film, it can be combined with the bonding layer. By increasing the adhesion, peeling can be prevented.
  • the reflectance of the excitation light by the reflective film is 80% or more, preferably 95% or more, and may be totally reflected.
  • the dielectric multilayer film is a film in which a high-refractive material and a low-refractive material are alternately laminated.
  • the high refractive material ratio include TiO 2 , Ta 2 O 5 , Ta 2 O 3 , ZnO, Si 3 N 4 , and Nb 2 O 5.
  • examples of the low refraction material include SiO 2 , MgF 2 , and CaF 2 .
  • the number of laminated dielectric multilayer films and the total thickness are appropriately selected according to the wavelength of fluorescence to be reflected.
  • the material of the metal film is preferably as follows. (1) Single-layer film such as Al, Ag, Au (2) Multi-layer film such as Al, Ag, Au
  • the thickness of the metal film is not particularly limited as long as it can reflect fluorescence, but is preferably 0.05 ⁇ m or more, and 0. 1 ⁇ m or more is more preferable. Further, in order to improve the adhesion between the metal film and the base material, it can be formed through a metal film such as Ti, Cr, Ni, or the like.
  • the film forming method for the dielectric multilayer film and the metal film is not particularly limited, but the vapor deposition method, the sputtering method, and the CVD method are preferable. In the case of the thin-film deposition method, ion assist can be added to form a film.
  • the lighting device of the present invention includes a light source that oscillates a laser beam and the phosphor element.
  • a semiconductor laser made of a GaN material having high reliability for exciting a phosphor for illumination is suitable.
  • a light source such as a laser array arranged in a one-dimensional shape can also be realized. It may be a superluminescence diode, a semiconductor optical amplifier (SOA) or an LED. Further, the excitation light from the light source can be incident on the phosphor element through the optical fiber.
  • SOA semiconductor optical amplifier
  • the method for generating white light from the semiconductor laser and the phosphor is not particularly limited, but the following methods can be considered.
  • a method of generating yellow fluorescence with a blue laser and a phosphor to obtain white light A method of generating red and green fluorescence with a blue laser and a phosphor to obtain white light
  • a method of generating red and blue with a phosphor from a blue laser or an ultraviolet laser A method of generating white fluorescence by generating green fluorescence
  • FIG. 9 (a) shows the phosphor plate 21
  • FIG. 9 (b) shows the handle substrate 23.
  • a bonding layer 22 is formed on the handle substrate 23 and faces the phosphor plate 21.
  • the phosphor plate 21 is bonded onto the handle substrate 23.
  • a phosphor element having a required form For example, in the example of FIG. 10A, a large number of phosphor elements 17 having a desired shape are formed on the bonding layer 22. Examples of such processing methods include dicing, slicing, micro grinding machine, laser processing, water jet, and micro blasting.
  • the low refractive index layer 18 and the reflective film 19 are sequentially formed on the phosphor element 17 and the bonding layer 22. Then, by removing the handle substrate 23 and the bonding layer 22, a laminated body can be obtained. By cutting this laminate, a desired phosphor device can be obtained.
  • Example 1 The phosphor element 17 and the phosphor device 25 shown in FIGS. 1, 5, 6 and 8 were manufactured by the method described with reference to FIGS. 9 and 10. Specifically, as shown in FIG. 9, the phosphor plate 21 made of YAG (yttrium aluminum garnet) polycrystal doped with Ce having a thickness of 0.3 mm and a diameter of 4 inches and to which a ceramic scattering material is added is used. A sapphire wafer (handling substrate) 23 having a thickness of 0.3 mm and a diameter of 4 inches was prepared. The two were bonded together using a thermoplastic resin 22 at a high temperature of 100 ° C., and then returned to room temperature to be integrated.
  • YAG yttrium aluminum garnet
  • a setback process was performed by dicing using a blade having a width of 100 ⁇ m and # 1500.
  • the phosphor plate was rotated by 90 ° and setback processing was performed in the same manner by dicing to form a phosphor element.
  • the width of the incident surface of the phosphor element was 2 mm
  • the thickness was 0.3 mm
  • the inclination angle ⁇ b of the side surface with respect to the incident surface was 59 °
  • the inclination angle ⁇ t of the side surface with respect to the reflecting surface was 49 °.
  • the area of the incident surface is 4 mm 2
  • the area of the reflecting surface is 1 mm 2 .
  • the side surface and the reflecting surface of each phosphor element are processed surfaces by dicing, and the arithmetic mean roughness Ra of the side surface and the reflecting surface was estimated to be 0.5 ⁇ m.
  • a low refractive index layer 18 made of Al 2 O 3 is formed on the processed side surface 4 and the reflective surface 2 of the phosphor element 17 by sputtering so as to form a thickness of 0.5 ⁇ m on the side surface. did. Further, a reflective film 19 made of an Ag-based alloy film was formed so as to form a thickness of 0.5 ⁇ m. After the film formation, the substrate was heated to 100 ° C. with a hot plate, the phosphor device 16 as shown in FIGS. 5 and 6 was separated from the handling substrate, and the adhesive was washed with an organic solvent.
  • a copper substrate made of oxygen-free copper having a width of 20 mm, a length of 20 mm, and a thickness of 2 mm was prepared.
  • a groove was formed in the center of the copper substrate, and 1 ⁇ m of silver plating was further formed to form a heat radiating substrate 26.
  • a sintered bonding material manufactured by Nippon Solder Co., Ltd. was filled in the groove of the heat radiation substrate, the phosphor device 16 was embedded, cured at 300 ° C., and mounted to obtain the phosphor device 25 shown in FIG. ..
  • the white light output (average output) represents the time average of the total luminous flux.
  • the total luminous flux measurement is performed by using an integrating sphere (spherical luminous flux meter) to light the light source to be measured and the standard light source to which the total luminous flux is priced at the same position and compare them. Specifically, the measurement was performed using the method specified in JIS C7801.
  • the brightness distribution of the output light was measured by Otsuka Electronics' high-speed near-field light distribution measurement system RH50. If there is a brightness distribution, it can be converted to a color distribution (or light and dark) for observation. From this luminance distribution, the luminance area region Se is defined as 1 / e 2 of the luminance peak value Pmax, and the luminance Pmax ⁇ 0.8 in the area region Seff of 0.5 ⁇ Se from the point of the luminance peak (center of the luminance distribution). When the following portion does not exist, “no uneven brightness” is set, and when there is a brightness smaller than this, "there is uneven brightness”.
  • Example 2 In the phosphor element 17 processed in Example 1, before the low refractive index layer 18 is formed on the side surface 4 and the reflective surface 2, the incident surface and the reflective surface are masked, and ion milling, reactive ion etching, and wet are performed. Etching was performed on the outer peripheral portion of the side surface in combination with etching.
  • FIG. 4 A photograph of the produced phosphor element 17A is shown in FIG.
  • a phosphor device was manufactured in the same manner as in Example 1.
  • the diameters of the incident surface and the reflecting surface were 2.25 mm and 1.25 mm, respectively, the thickness was 0.3 mm, and the area of the incident surface was 4 mm 2 .
  • the area of the reflecting surface was 1.23 mm 2 .
  • the arithmetic mean roughness Ra of the side surface and the reflecting surface of each phosphor element was estimated to be 0.2 ⁇ m.
  • the illumination light was evaluated using a light source with an output of 30 W, which was an array of 10 GaN-based blue lasers with an output of 3 W.
  • the evaluation results of the elements are shown in Table 2.
  • Example 3 The phosphor element processed in Example 1 was etched by the same process as in Example 2 to produce the phosphor element 31 shown in FIG. Table 3 shows the numerical values of each inclination angle.
  • the thickness of the reflection surface side inclined region G1 is 75 ⁇ m
  • the thickness of the region L is 75 ⁇ m
  • the thickness of the incident surface side inclined region G2 is 150 ⁇ m.
  • Example 3 a phosphor device was manufactured in the same manner as in Example 1.
  • the illumination light was evaluated using a GaN-based blue laser having an output of 3 W and a light source having an output of 30 W, which was an array of 10 lasers.
  • the evaluation results of the elements are shown in Table 3.
  • a phosphor device having a shape as shown in FIG. 7 was created. However, unlike Example 1, the inclination angle ⁇ of the side surface of the phosphor with respect to the vertical axis P was constant and was set to 36 °.
  • the manufacturing procedure of the width phosphor device on the incident surface of the phosphor element was the same as in Example 1. Further, the dimensions such as the entrance surface, the exit surface, and the thickness of the phosphor element were the same as those in the first embodiment. That is, the width of the incident surface was set to 2 mm, and the thickness was set to 0.3 mm.
  • the area of the entrance surface is 4 mm 2
  • the area of the reflecting surface is 1.38 mm 2.
  • the arithmetic mean roughness Ra of the side surface and the reflecting surface of the phosphor element was estimated to be 0.5 ⁇ m.
  • the illumination light was evaluated using a GaN-based blue laser with an output of 3 W and a light source with an output of 30 W in which 10 lasers were arrayed.
  • the evaluation results of the elements are shown in Table 4.
  • Example 3 when the excitation light is incident on the phosphor plate to generate fluorescence, the fluorescence intensity of the emitted light is increased and the emitted light is emitted. Color unevenness of white light can be suppressed. Further, by providing a curved portion on the outer peripheral edge portion of the incident surface as in the second embodiment, it is possible to suppress uneven brightness of the emitted white light. Further, by providing a plurality of inclined regions as in the third embodiment, it is possible to further suppress the brightness unevenness and the color unevenness of the emitted white light. In Example 3, the white light emission output was also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】蛍光体素子に対して励起光を入射させて蛍光を発生させるのに際して、出射光の蛍光強度を高くし,出射する白色光の輝度ムラを抑制する。 【解決手段】蛍光体素子17は、励起光の入射面3、入射面3に対向する反射面2および側面4を備えており、入射面3に入射する励起光の少なくとも一部を蛍光に変換し、蛍光を入射面3から出射させる。入射面3の面積が反射面2の面積よりも大きい。入射面3を二分する最長の分割線Wに沿って入射面に垂直な横断面Zで見たとき、入射面3に対して垂直な垂直軸Pに対して側面4がなす傾斜角度θが、反射面から入射面に向かって単調増加する傾斜領域Gを備える。

Description

蛍光体素子、蛍光体デバイスおよび照明装置
 本発明は、蛍光体素子および蛍光を発光する照明装置に関するものである。
 最近、レーザ光源を用いた自動車用ヘッドライトの研究が盛んに行われており、その内の一つに、青色レーザあるいは紫外レーザと蛍光体を組み合わせた白色光源がある。レーザ光を集光することにより、励起光の光密度を高めることができる上に、複数のレーザ光を蛍光体上に重ねて集光することで、励起光の光強度も高めることができる。これによって、発光面積を変えずに光束と輝度とを同時に大きくすることができる。このため、半導体レーザと蛍光体とを組み合わせた白色光源が、LEDに替わる光源として注目されている。例えば、自動車用ヘッドライトに使用する蛍光体ガラスは、日本電気硝子株式会社の蛍光体ガラス「ルミファス」や国立研究開発法人物質・材料研究機構と株式会社タムラ製作所、株式会社光波のYAG単結晶蛍光体が考えられている。
 特許文献1(特許5679435)記載の蛍光体素子では、蛍光体の幅が、入射面から出射面へ向かって拡がっている。この蛍光体の側面の傾斜角度は15度以上、35度以下とされている。そして、樹脂ケースの中に蛍光体を収容し、ケースの内面をリフレクタ部として機能させるために金属膜が形成されている。蛍光体は封止樹脂によってケースの底面に固定されており、蛍光体の側面は空気で覆われている。
 特許文献2(特開2017-85038)に記載の蛍光体素子では、蛍光体の幅が、入射面から出射面へ向かって拡がっており、放熱部材の貫通孔に蛍光体を収容し、貫通孔の側面が貫通孔の表面とガラスペーストによって接着されている。
 特許文献3(WO2013-175706  A1)では、放熱部材の貫通孔内に蛍光体を収容し、貫通孔内に蛍光体を固定する蛍光体素子が記載されている(図15~図18)。
特許5679435 特開2017-85038 WO2013-175706  A1
 しかし、本発明者が検討を進めるうちに、次の問題が明らかになってきた。すなわち、蛍光強度を高くするためには、励起光の強度を高くする必要がある。しかし、励起光強度を上げると、使用時に時間が経過すると蛍光強度が低下し、輝度ムラや色ムラが発生することがあった。このため、出射光の蛍光強度を高く維持するとともに、輝度ムラや色ムラを抑制することが必要である。
 本発明の課題は、蛍光体部に対して励起光を入射させて蛍光を発生させるのに際して、出射光の蛍光強度を高くし,出射する白色光の輝度ムラを抑制することである。
 本発明は、
 励起光の入射面、前記入射面に対向する反射面および側面を備えており、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体素子であって、
 前記入射面の面積が前記反射面の面積よりも大きく、
 前記入射面を二分する最長の分割線に沿って前記入射面に垂直な横断面で見たとき、前記入射面に対して垂直な垂直軸に対して前記側面がなす傾斜角度が、前記反射面から前記入射面に向かって単調増加する傾斜領域を備えていることを特徴とする。
 また、本発明は、前記蛍光体素子、および
 前記側面の少なくとも一部を被覆する反射膜
を備えていることを特徴とする、蛍光体デバイスに係るものである。
 また、本発明は、レーザ光を発振する光源、および前記蛍光体素子を備えることを特徴とする、照明装置に係るものである。
 本発明の蛍光体素子によれば、蛍光体素子に対して励起光を入射させて蛍光を発生させるのに際して、出射光の蛍光強度を向上させることに成功した。すなわち、入射面に対して垂直な垂直軸に対して前記側面がなす傾斜角度が、反射面から入射面に向かって単調増加する傾斜領域を設ける形態を検討した。これは、言い換えると、蛍光体素子の横幅が、反射面から入射面に向かってスカート状に広がるような形態を意味する(図1参照)。
 このような形態を採用することで、特に入射面の主として外周縁部において、出射光の蛍光強度が向上し、全体としての蛍光発生効率を高くできることを見いだした。これに加えて、従来は入射面の主として外周縁部において輝度ムラが生ずることがあったが、外周縁部における出射光強度が高くなることで、結果的に輝度ムラも抑制されることを見いだし、本発明に到達した。
本発明の実施形態に係る蛍光体素子1を示す横断面図である。 (a)、(b)、(c)、(d)、(e)および(f)は、それぞれ、入射面の輪郭を示す正面図である。 図1の蛍光体素子1の斜視図である。 本発明の他の実施形態に係る蛍光体素子6を示す横断面図である。 本発明の実施形態に係る蛍光体デバイス16を示す横断面図である。 蛍光体デバイス16における蛍光の伝搬経路例を示す横断面図である。 参考例に係る蛍光体デバイス13を示す横断面図である。 本発明の他の実施形態に係る蛍光体デバイス25を示す横断面図である。 (a)は、蛍光体板21を示す斜視図であり、(b)は、ハンドル基板23を示す斜視図であり、(c)は、蛍光体板21とハンドル基板23とを接合している状態を示す斜視図である。 (a)は、ハンドル基板23上に多数の蛍光体素子2を成形した状態を示し、(b)は、各蛍光体素子および接着層22の表面に低屈折率層18および反射膜19を設けた状態を示す斜視図である。 実施例2の蛍光体素子の斜視図を示す光学写真である。 本発明の更に他の実施形態に係る蛍光体素子31を示す横断面図である。
 本発明の蛍光体素子は、励起光の入射面、入射面に対向する反射面および側面を備えており、蛍光体素子に入射する励起光の少なくとも一部を蛍光に変換し、蛍光を入射面から出射させる。
 ここで、励起光の全体を蛍光に変換した場合には、蛍光のみが出射面から出射する。あるいは、励起光の一部を蛍光に変換することで、励起光および蛍光を入射面から出射させることができる。
 図1は、本発明の実施形態に係る蛍光体素子1を示す斜視図である。蛍光体素子1は、蛍光体素子17と反射膜15を有する。蛍光体素子17は、入射面3、反射面2および側面4を少なくとも有する。側面とは、入射面と出射面との間に伸びる面である。ここで、蛍光体素子の形状は特に限定されない。入射面、出射面の形状は、好ましくは凸図形であり、更に好ましくは角のない湾曲線からなる凸図形である。あるいは入射面、出射面の外側輪郭に角のある場合には、角の角度が108°以上であることが好ましい。入射面、出射面の形状は、具体的には、円形、楕円形、多角形(四角形、五角形、六角形、八角形)であってよい。また、入射面、出射面の外側輪郭の角にはRやCが設けられていてよく、減肉による凹みがあってもよい。
 例えば図2(a)の例では、入射面3は正方形ないし長方形であり、図2(b)の例では、入射面3Aは円形であり、図2(c)の例では、入射面3Bは楕円形であり、図2(d)の例では、入射面3Cは、正方形ないし長方形の四隅に丸み(R)を設けた形状であり、図2(e)の例では、入射面3Dが五角形であり、図2(f)の例では、入射面3Eが六角形である。4は側面である。なお、本例では、反射面2上に反射膜15を成膜している。
 図1、図3に示すように、蛍光体素子1の入射面3からLinのように励起光を入射させる。励起光は蛍光体素子中で蛍光体素子にあたって蛍光を生じさせる。蛍光および励起光が反射面2で反射され、蛍光体素子中を伝搬し、Loutのように入射面3から出射される。
 ここで、本発明の蛍光体素子では、入射面3の面積が反射面2の面積よりも大きい。その上で、側面の形態が工夫されている。すなわち、図2(a)~(f)に示すように、入射面3~3Eを面積からみて二分する最長の分割線Wを考える。4a、4bは、それぞれ、分割線Wと入射面の外側輪郭との接点を示す。この分割線Wに沿って入射面に垂直な横断面Zを図1、図3に示す。この横断面で見たとき、入射面3に対して垂直な垂直軸Pに対して側面がなす傾斜角度θが、反射面2から入射面3に向かって単調増加する傾斜領域Gを備えている。
 ここで、θが単調増加するとは、数学的に見てθが減少したり、あるいはθが一定値となるような範囲がなく、増加し続けることを意味する。ただし、傾斜角度θの単調増加の度合いは特に限定されるものではなく、蛍光体素子の厚さ方向に向かって一定比率で増加してもよい。すなわち、反射面からの距離をxとしたとき、傾斜角度θxはxに比例して増加してもよいが、xの2 乗に比例して増加してもよく、あるいはxの1/2 乗に比例して増加してもよい。
また、前記傾斜領域Gは、蛍光体素子の反射面から入射面までの全長にわたって設けても良いが、蛍光体素子の反射面から入射面までの間の一部分に設けても良い。この場合には、蛍光体素子の反射面側に傾斜角度θが単調増加しない領域を設けることができ、あるいは蛍光体素子の入射面側に傾斜角度θが単調増加しない領域を設けることもできる。
 更に、蛍光体素子に傾斜角度θが単調増加する傾斜領域を複数個設けることができる。この場合には、傾斜領域の個数は2~5が好ましく、2~3が更に好ましい。また、傾斜角度θが単調増加する傾斜領域を複数有する場合には、隣り合う傾斜領域は連続させることができ、あるいは隣り合う傾斜領域の間に、傾斜角度θが一定である領域を設けることもできる。
 ここで、本発明の観点からは、傾斜領域が入射面まで達していることが好ましく、これによって入射面の特に外周縁部からの出射光強度を向上させ、かつ輝度ムラを低減することができる。
 好適な実施形態においては、傾斜領域の反射面2側末端における傾斜角度θtと傾斜領域の入射面3側末端における傾斜角度θbとの差が3°以上、45°以下である。本発明の観点からは、θb-θtは、5°以上とすることが更に好ましく、また、40°以下とすることが更に好ましい。
 好適な実施形態においては、傾斜領域の反射面側末端における傾斜角度θtが20°以上、62°以下である。θtは、25°以上であることが好ましく、また、45°以下であることが特に好ましい。
 本発明の観点からは、傾斜領域の入射面側末端における傾斜角度θbは、23°以上、65°以下とすることが好ましい。θbは、40°以上とすることが更に好ましく、また、60°以下とすることが更に好ましい。
 本発明においては、前記傾斜領域を設けることから、入射面3の面積を反射面2の面積よりも大きくすることが必要である。ここで、本発明の観点からは、面積比率((入射面3の面積)/(反射面2の面積))は、1.5以上であることが好ましく、3以上であることが更に好ましい。また、面積比率((入射面3の面積)/(反射面2の面積))が大きすぎるとかえって出射光強度が低下してくる可能性があるので、面積比率((入射面3の面積)/(反射面2の面積))は35以下であることが好ましく、15以下であることが更に好ましい。
 蛍光体素子の厚さ(入射面と反射面との間隔)は、本発明の観点からは、250~1000μmであることが好ましく、750μm以下であることが更に好ましい。
 図4は、本発明の他の実施形態に係る蛍光体素子6を示す。
 蛍光体素子6は、蛍光体素子17Aと反射膜15とを有する。蛍光体素子17Aは図1の蛍光体17と同様のものであるが、ただし反射面2の外周縁部に沿って湾曲部Rinを設けることができる。これによって、白色光を出射した場合の白色光の輝度ムラ、色ムラも抑制することが可能になる。輝度ムラ、色ムラを抑制するという観点からは、入射面3の外周縁部に湾曲部を設けることも可能である。
 次いで、図5、図6を参照しつつ、本発明の蛍光体素子の作用効果について更に述べる。
 図5に示すように、本例では、蛍光体17の反射面2および側面4上に後述の低屈折率層18および反射膜19を成膜することによって、蛍光体デバイス16を作製している。ここで、低屈折率層18は、側面被覆部18bと反射面被覆部18aを有する。また、反射膜19は、側面被覆部18b上の側面被覆部19bおよび反射面被覆部18a上の反射面被覆部19aを有する。
 図6に示すように、蛍光体素子17中には多数の蛍光中心9(蛍光体粒子や希土類元素イオン)が分散されている。蛍光中心9からは、全方向に向かってランバーシアンに蛍光が発振される。ここで、比較的入射面3側に向かって発振した蛍光C1は、C2のように側面で反射され、C3のように出射面から出射される。一方、矢印A1、B1のように横方向に向かって発振した蛍光は、A2、A3、B2のように側面4で反射を繰り返しつつ入射面へと向かう。この際、蛍光体1においては入射面3の近傍において蛍光体が広がった形状をしている。この結果、入射面3の外周縁部において入射面3で全反射された蛍光A4、B3は、そのまま広がった外周縁部中を伝搬し、更に入射面の外周縁部に向かって進行し、最終的にA5、B4のように入射面3の外周縁部から出射しやすい。この結果、入射面3の外周縁部からの出射光強度を向上させることができる。
 一方、図7に示すような比較形態の蛍光体素子12および蛍光体デバイス13は、前記横断面で見て台形の輪郭を有している。蛍光体素子12は、入射面3、反射面2および、入射面と出射面との間の側面14を有する。本例では、入射面に対する垂直軸Pに対する側面14の傾斜角度θが一定である。ここで、低屈折率層18は、側面被覆部18bと反射面被覆部18aを有する。また、反射膜19は、側面被覆部18b上の側面被覆部19bおよび反射面被覆部18a上の反射面被覆部19aを有する。
 蛍光体素子12中には多数の蛍光中心9(蛍光体粒子や希土類元素イオン)が分散されている。蛍光中心9からは、全方向に向かってランバーシアンに蛍光が発振される。ここで、比較的出射面3側に向かって発振した蛍光F1は、F2のように側面で反射され、F3のように出射面から出射される。こうした蛍光については、図5の蛍光体素子1と同じである。
 一方、矢印D1、E1のように横方向に向かって発振した蛍光は、D2、E2のように側面14で反射を繰り返しつつ出射面へと向かう。この際、蛍光体素子12においては、出射面3の近傍においても蛍光体素子のすそ野が特に広がった形状をしておらず、傾斜角度θが一定である。この結果、出射面3の外周縁部において出射面3で全反射された蛍光E3は更にE4のように反射を繰り返す。一方、蛍光D2は側面14で反射され、D3のように出射面から出射する。こうした形態であると、出射面3の外周縁部からは蛍光が出射しにくくなり、蛍光強度が低下する傾向がある。
 好適な実施形態においては、蛍光体素子あるいは蛍光体デバイスの外側に更に放熱基板を設けることができる。すなわち、図8に示す蛍光体デバイス25においては、蛍光体素子16の側面上に低屈折率層18および反射膜19が設けられており、反射膜19の外側に更に放熱基板26が設けられている。これによって放熱を促進し、出射光の色むらを更に低減することができる。
 好適な実施形態として、蛍光体素子には、傾斜角度θが単調増加する傾斜領域が複数あってもよい。
 図12は、この実施形態に係る蛍光体素子31を模式的に示す断面図である。蛍光体素子31は、蛍光体素子17と類似したものであるが、しかし傾斜角度θが単調増加する傾斜領域を複数設けてある。
 蛍光体素子31の入射面3からLinのように励起光を入射させる。励起光は蛍光体素子31中で蛍光体にあたって蛍光を生じさせる。蛍光および励起光がLoutのように入射面3から出射される。入射面3の面積が反射面2の面積よりも大きい。
 図12は、分割線Wに沿って出射面に垂直な横断面Zを示す。この横断面で見たとき、入射面3に対して垂直な垂直軸Pに対して側面4がなす傾斜角度θが、反射面2から入射面3に向かって単調増加する複数の傾斜領域G1、G2を備えている。
 これらの傾斜領域のうち、傾斜領域G1は反射面2側に設けられており、傾斜領域G2 は入射面3側に設けられている。そして、傾斜領域G1と傾斜領域G2との間には、傾斜角度が一定である領域Lが設けられている。
 蛍光体内で蛍光体粒子からランバーシアン発光した蛍光の内、反射面側に戻された光は、反射面2で反射されて再び入射面3側へ進行する。このとき、傾斜領域G1では、反射面2側側面の傾斜角が単調増加してより出射側に開くことによって、反射面2で反射することなく入射面3側へ進行する蛍光成分が増加する。また、反射面2で反射した後に少ない反射回数で蛍光を入射面3側に誘導できる。
 傾斜角度が単調増加する傾斜領域が1つしかない場合には、基板厚が薄くなり過ぎることや、出射側の面積が大きくなり過ぎてしまうことで、色ムラが発生しやすくなることもある。このために入射面側に別の傾斜領域を設けてやると、色ムラが発生することなく基板厚や入射側面積を自由に調整することが可能となる。
 反射面側の傾斜領域G1の反射面側末端における側面の傾斜角度θt1は、20°以上、62°以下であることが好ましく、25°以上、45°以下であることが更に好ましい。
 傾斜領域G1の入射面側末端における側面の傾斜角度θb1は、23°以上、65°以下であることが好ましく、40°以上、60°以下であることが更に好ましい。
 傾斜角度が一定の領域Lにおける傾斜角度はθt2となる。
 入射面側の傾斜領域G2の反射面側末端における側面の傾斜角度θt2は、20°以上、62°以下とすることが好ましく、25°以上、45°以下とすることが更に好ましい。
 入射面側の傾斜領域G2の入射面側末端における側面の傾斜角度θb2は、23°以上、65°以下とすることが好ましく、40°以上、60°以下とすることが更に好ましい。
 蛍光体素子を構成する蛍光体は、励起光を蛍光に変換できるものであれば限定されないが、蛍光体ガラス、蛍光体単結晶または蛍光体多結晶であってよい。
 また、蛍光体には、励起光および蛍光を散乱させるために散乱材を添加したり、空孔を設けたりすることができる。この場合、蛍光体に入射する光は、蛍光体内で散乱させるために出射光(励起光および蛍光)は散乱され散乱角は大きくなる。
 散乱角は、例えば、サイバーネットシステム社の散乱測定器「Mini-Diff」によって測定することができる。散乱角は、出射光の透過スペクトルからピーク値の1/eとなる全幅角度と定義する。
 このとき散乱角は5度以上であることが好ましく、10度以上であることが更に好ましい。ただし、蛍光体素子を構成する蛍光体の散乱角の上限は特にないが、出射光の開口数(NA)以下であってよく、実用的な観点からは、80度以下であってよい。
 蛍光体ガラスは、ベースとなるガラス中に希土類元素イオンを分散したものである。
 ベースとなるガラスとしては、シリカ、酸化ホウ素、酸化カルシウム、酸化ランタン、酸化バリウム、酸化亜鉛、酸化リン、フッ化アルミニウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、塩化バリウムを含む酸化ガラスが例示できる。
 蛍光体ガラス中に分散される希土類元素イオンとしては、Tb、Eu、Ce、Ndが好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 蛍光体単結晶としては、YAl12、BaSi11Al25、TbAl12やYAG(イットリウム・アルミニウム・ガーネット)が例示できる。YAGのY(イットリウム)の一部がLuに置換されていてもよい。また、蛍光体単結晶中にドープするドープ成分としては、希土類イオンが好ましく、Tb、Eu、Ce、Ndが特に好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 また、蛍光体多結晶としては、TAG(テルビウム・アルミニウム・ガーネット)系、サイアロン系、窒化物系、BOS(バリウム・オルソシリケート)系、YAG(イットリウム・アルミニウム・ガーネット)が例示できる。YAGのY(イットリウム)の一部がLuに置換されていてもよい。
 蛍光体多結晶中にドープするドープ成分としては、希土類イオンが好ましく、Tb、Eu、Ce、Ndが特に好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 なお、本発明の蛍光体素子は、グレーティング(回折格子)を蛍光体素子内に含んでいない無グレーティング型蛍光体素子であってよく、グレーティングが蛍光体素子中に設けられていてもよい。
 蛍光体素子の入射面上に更に部分透過膜を設けることができる。部分透過膜は、励起光の一部を反射し、残りを透過する膜である。具体的には、部分透過膜の励起光に対する反射率は、9%以上であり、50%以下が好ましい。こうした部分透過膜の材質としては、後述する反射膜用の金属膜や誘電体多層膜を挙げることができる。
 好適な実施形態においては、蛍光体素子の側面上に設けられた放熱基板が、熱伝導率(25℃)が200W /m・K以上の材質からなることが好ましい。この熱伝導率の上限は特にないが、実際的な入手の観点からは、500W/m・K以下とすることが好ましく、350W/m・K以下とすることがさらに好ましい。
 放熱基板の材質としては、金、銀、銅、アルミニウム、あるいは、これらの金属を含む合金が好ましい。
 また放熱基板の材質としては、シリコンカーバイドや窒化アルミニウム、シリコンナイトライドなどのセラミックスが好ましい。セラミックスの場合、蛍光体との熱膨張係数をある程度に合わせることができる。このため熱応力によるクラックや割れを防止すること等の信頼性を向上するという点で有利となる。
 さらに好適な実施形態において、放熱基板が金属の場合、金属メッキ、溶射、焼結型接合材から形成されていてもよい。この場合、蛍光体素子と放熱基板を綿密に接触させることができる。具体的には蛍光体素子に形成される金属膜と放熱基板の金属を金属間結合させることも可能である。したがって、熱抵抗を低減することができ、放熱性を向上させることができる。
 焼結型接合材の種類は、銅、銀が例示できる。焼結接合材は、ペースト状にした金属粉を蛍光体素子に塗布成形して、200℃から350℃で焼結することで放熱基板を形成することができる。
 焼結型接合材は、予め金属やセラミックスで作製した放熱基板に蛍光体素子を充填、あるいは、固定するために使用することもできる。
 前記低屈折率層の材質としては、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、酸化タンタル、酸化ケイ素、窒化ケイ素、窒化アルミニウム、炭化ケイ素を例示できる。また、低屈折率層の屈折率は、蛍光体の屈折率以下が好ましく、YAG蛍光体の場合は1.7以下であることが好ましく、1.6以下であることが更に好ましい。低屈折率層の屈折率の下限は特になく、1以上であるが、1.4以上であることが実用的である。
 低屈折率層が蛍光体部と反射膜の間にある場合、低屈折率層は蛍光体よりも低屈折率の材料からなることが好ましい。このようにすると、蛍光体と低屈折率層の屈折率差による全反射を利用することができ、反射膜での反射する光成分を少なくすることができ、反射膜による反射で光が吸収されることを抑制することができる。さらに、放熱性という観点から酸化アルミニウム、酸化マグネシウムが最も良い。
 低屈折率層の厚みは1μm以下が好ましく、これによって放熱に対する影響を少なくできる。また、接合力の観点からは、低屈折率層の厚みは0.05μm以上が好ましい。
 反射膜の材質は、蛍光体素子を通過してきた励起光と蛍光を反射するものであれば特に制限されない。反射膜は、励起光を全反射する必要はなく、励起光の一部を透過させても良いし、全部を透過するものであっても良い。
 なお、蛍光体素子の反射面には、反射膜を設けることで反射を行うことができるが、反射膜は必ずしも必須ではない。例えば、反射面に回折格子構造やモスアイ構造などの反射構造を設けることによって、反射面を形成することもできる。
 好適な実施形態においては、反射膜が、金属膜または誘電体多層膜である。
 反射膜を金属膜とした場合は、広い波長域で反射することができ、入射角度依存性も小さくすることができ、温度に対する耐久性、耐候性が優れている。一方、反射膜を誘電体多層膜とした場合には、吸収がないため、入射した光は損失なく100%反射光とすることが可能であるし、酸化膜から構成できるので、接合層との密着性を上げることにより、はがれを防止できる。
 反射膜による励起光の反射率は、80%以上とするが、95%以上であることが好ましく、また全反射してもよい。
 誘電体多層膜は、高屈折材料と低屈折材料とを交互に積層した膜である。高屈折材料率としては、TiO、Ta、Ta、ZnO、Si、Nbを例示できる。また、低屈折材料としては、SiO、MgF、CaFを例示できる。誘電体多層膜の積層数や合計厚さは、反射させるべき蛍光の波長によって適宜選択する。
 また、金属膜の材質としては、以下が好ましい。
(1) Al、Ag、Auなどの単層膜
(2) Al、Ag、Auなどの多層膜
 金属膜の厚さは、蛍光を反射できれば特に限定されないが、0.05μm以上が好ましく、0.1μm以上が更に好ましい。また金属膜と基材との密着性を上げるために、Ti、Cr、Ni、等の金属膜を介して形成することもできる。
 誘電体多層膜、金属膜の成膜方法は特に限定されないが、蒸着法、スパッタ法、CVD法が好ましい。蒸着法の場合、イオンアシストを付加して成膜することもできる。
 また、本発明の照明装置は、レーザ光を発振する光源、および前記蛍光体素子を備える。
 光源としては、照明用蛍光体の励起用として高い信頼性を有するGaN材料による半導体レーザが好適である。また、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオード、半導体光アンプ(SOA)やLEDであってもよい。また、光ファイバーを通して光源からの励起光を蛍光体素子に対して入射させることもできる。
 半導体レーザと蛍光体から白色光を発生する方法は、特には限定されないが、以下の方法が考えられる。
 青色レーザと蛍光体により黄色の蛍光を発生し、白色光を得る方法
 青色レーザと蛍光体により赤色と緑色の蛍光を発生し白色光を得る方法
 また青色レーザや紫外レーザから蛍光体により赤色、青色、緑色の蛍光を発生し白色光を得る方法
 青色レーザや紫外レーザから蛍光体により青色と黄色の蛍光を発生し白色光を得る方法
 次に、蛍光体素子および蛍光体デバイスの製法例について述べる。図9(a)は蛍光体板21を示し、図9(b)はハンドル基板23を示す。図9(c)に示すように、ハンドル基板23上に接合層22を形成し、蛍光体板21と対向させる。次いで、ハンドル基板23上に蛍光体板21を接合する。
 次いで、ハンドル基板上の蛍光体板を加工することで、必要な形態を有する蛍光体素子を成形することができる。例えば、図10(a)の例では、接合層22上に、所望形状を有する蛍光体素子17を多数成形している。こうした加工方法としては、ダイシング、スライシング、マイクログラインダー、レーザ加工、ウォータージェット、マイクロブラストを例示できる。
 次いで、好適な実施形態においては、図10(b)に示すように、蛍光体素子17上および接合層22上に、低屈折率層18および反射膜19を順次形成する。次いで、ハンドル基板23および接合層22を除去することによって、積層体を得ることができる。この積層体を切断することによって、所望の蛍光体デバイスを得ることができる。
(実施例1)
 図9、図10を参照しつつ説明した方法により、図1、図5、図6および図8に示す蛍光体素子17および蛍光体デバイス25を製造した。
 具体的には、図9に示すように、厚み0.3mm、直径4インチのCeをドープし、かつセラミック散乱材を添加したYAG(イットリウム・アルミニウム・ガーネット)多結晶からなる蛍光体板21と、厚み0.3mm、直径4インチのサファイアウエハー(ハンドリング基板)23とを用意した。熱可塑性樹脂22を用いて両者を100℃の高温で貼り合わせを行い、その後、常温にもどして一体化した。
 次に、幅100μm、#1500のブレードを使用してダイシングによるセットバック加工を行った。次いで、蛍光体板を90°回転させて同様にダイシングによるセットバック加工を行い、蛍光体素子を形成した。蛍光体素子の入射面の幅を2mmとし、厚さを0.3mmとし、入射面に対する側面の傾斜角度θbを59°とし、反射面に対する側面の傾斜角度θtを49°とした。入射面の面積は4mmであり、反射面の面積は1mmである。各蛍光体素子の側面および反射面はダイシングによる加工面であるが、側面および反射面の算術平均粗さRaは0.5μmと見積もられた。
 その後、蛍光体素子17の加工後の側面4および反射面2に対して、スパッタリングにてAlからなる低屈折率層18を側面に0.5μmの厚みが形成されるように成膜した。さらにAg系の合金膜からなる反射膜19を0.5μmの厚みが形成されるように成膜した。成膜後、ホットプレートで基板を100℃に加熱し、図5、図6に示すような蛍光体デバイス16をハンドリング基板から分離し、有機溶剤にて接着剤を洗浄した。
 次に、幅20mm×長さ20mm、厚み2mmの無酸素銅からなる銅基板を準備した。この銅基板の中央に溝を形成し、さらに銀メッキを1μm形成して放熱基板26とした。その後、この放熱基板の溝に日本ハンダ株式会社製の焼結接合材を充填し、蛍光体デバイス16を埋設し、300℃で硬化させて実装し、図8に示す蛍光体デバイス25を得た。
 出力3WのGaN系青色レーザを10個アレイ化し、出力30Wの光源を得た。この光源からのレーザ光を蛍光体デバイスに対して照射し、照明光の評価を行った。素子の評価結果を表1に示す。
(白色光出力)
 白色光出力(平均出力)は、全光束の時間平均を表す。全光束測定は、積分球(球形光束計)を使用して、被測定光源と全光束が値付けられた標準光源とを同じ位置で点灯し、その比較によって行う。詳細には、JISC7801にて規定されている方法を用いて測定を行った。
(輝度ムラ分布)
 出力した光を大塚電子製高速ニアフィールド配光測定システムRH50にて輝度分布測定を行った。輝度分布がある場合には、色分布(あるいは、明暗)に変換して観測できる。
 この輝度分布から輝度ピーク値Pmaxの1/e2となる輝度の面積領域Seと定義して、輝度ピーク(輝度分布の中心)となる点から0.5 ×Seの面積領域Seffにおいて、輝度Pmax×0.8 以下となる部分が存在しない場合に、「輝度ムラ無し」とし、これよりも小さい輝度が存在する場合は、「輝度ムラ有り」とした。
(色ムラ面内分布)
 出力した光を輝度分布測定装置を用いて色度図で評価を行った。そして、色度図において、中央値x:0.3447±0.005、y:0.3553±0.005の範囲にある場合は「色ムラなし」とし、この範囲外の場合には「色ムラあり」とした。
 これらの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
(実施例2)
 実施例1で加工した蛍光体素子17において、低屈折率層18を側面4および反射面2に成膜する前に、入射面と反射面をマスクして、イオンミリング、反応性イオンエッチングとウェットエッチングを組み合わせて側面外周部のエッチング処理を行った。
 この結果、外周部の角が滑らかになり、図4に示すように、入射面の外周縁部の横断面が円弧に近い湾曲形状の蛍光体素子17Aを作製した。作製した蛍光体素子17Aの写真を図11に示す。
 その後、実施例1と同様にして蛍光体デバイスを製造した。
 ただし、入射面、反射面の直径はそれぞれ2.25mm、1.25mmとし、厚さを0.3mmとして、入射面の面積を4mmとした。反射面の面積は1.23mmとなった。また、各蛍光体素子の側面および反射面の算術平均粗さRaは0.2μmと見積もられた。
 チップ化した蛍光体デバイスは、出力3WのGaN系青色レーザを10個アレイ化した出力30Wの光源を使用して照明光の評価を行った。素子の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
(実施例3)
 実施例1で加工した蛍光体素子において、実施例2と同様なプロセスでエッチング処理を行い、図12に示す蛍光体素子31を作製した。また、各傾斜角度の数値を表3に示す。なお、反射面側傾斜領域G1の厚さは75μmであり、領域Lの厚さは75μmであり、入射面側傾斜領域G2の厚さは150μmである。
 その後、実施例1と同様にして蛍光体デバイスを製造した。
 チップ化した蛍光体デバイスは、出力3WのGaN系青色レーザとこのレーザを10個アレイ化した出力30Wの光源を使用して照明光の評価を行った。素子の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
(参考例)
 図7に示すような形状の蛍光体デバイスを作成した。ただし、実施例1とは異なり、蛍光体の側面の垂直軸Pに対する傾斜角度θは一定とし、36°とした。
 一方、蛍光体素子の入射面の幅蛍光体デバイスの製造手順は実施例1と同様とした。また、蛍光体素子の入射面、出射面、厚さ等の寸法も実施例1と同様とした。すなわち、入射面の幅を2mmとし、厚さを0.3mmとした。入射面の面積は4mmであり、反射面の面積は1.38mmである。蛍光体素子の側面および反射面の算術平均粗さRaは0.5μmと見積もられた。
 チップ化した蛍光体素子は、出力3WのGaN系青色レーザとこのレーザを10個アレイ化した出力30Wの光源を使用して照明光の評価を行った。素子の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 以上の結果から分かるように、本発明の実施例1~3によれば、蛍光体板に対して励起光を入射させて蛍光を発生させるのに際して、出射光の蛍光強度を高くし,出射する白色光の色ムラを抑制することができる。更に実施例2のように入射面の外周縁部に湾曲部を設けることにより、出射する白色光の輝度ムラを抑制することができる。また実施例3のように複数の傾斜領域を設けることにより、出射する白色光の輝度ムラと色ムラをさらに抑制することができる。実施例3については、白色発光出力も向上した。

 

Claims (14)

  1.  励起光の入射面、前記入射面に対向する反射面および側面を備えており、前記入射面に入射する前記励起光の少なくとも一部を蛍光に変換し、前記蛍光を前記入射面から出射させる蛍光体素子であって、
     前記入射面の面積が前記反射面の面積よりも大きく、
     前記入射面を二分する最長の分割線に沿って前記入射面に垂直な横断面で見たとき、前記入射面に対して垂直な垂直軸に対して前記側面がなす傾斜角度が、前記反射面から前記入射面に向かって単調増加する傾斜領域を備えていることを特徴とする、蛍光体素子。
  2.  前記傾斜領域が前記入射面に達していることを特徴とする、請求項1記載の蛍光体素子。
  3.  前記傾斜領域を複数備えていることを特徴とする、請求項1または2記載の蛍光体素子。
  4.  前記傾斜領域の前記反射面側末端における前記傾斜角度と前記傾斜領域の前記入射面側末端における前記傾斜角度との差が3°以上、45°以下であることを特徴とする、請求項1~3のいずれか一つの請求項に記載の蛍光体素子。
  5.  前記傾斜領域の前記反射面側末端における前記傾斜角度が20°以上、62°以下であることを特徴とする、請求項1~4のいずれか一つの請求項に記載の蛍光体素子。
  6.  前記傾斜領域の前記入射面側末端における前記傾斜角度が23°以上、65°以下であることを特徴とする、請求項1~5のいずれか一つの請求項に記載の蛍光体素子。
  7.  前記反射面の外周縁部に湾曲部が設けられていることを特徴とする、請求項1~6のいずれか一つの請求項に記載の蛍光体素子。
  8.  請求項1~7のいずれか一つの請求項に記載の蛍光体素子、および
     前記側面の少なくとも一部を被覆する反射膜
    を備えていることを特徴とする、蛍光体デバイス。
  9.  前記側面と前記反射膜との間に存在する低屈折率層を備えていることを特徴とする、請求項8記載の蛍光体デバイス。
  10.  前記蛍光体部の前記側面上に存在する放熱基板であって、熱伝導率が200W /mK以上の金属からなる放熱基板を備えていることを特徴とする、請求項8または9記載の蛍光体デバイス。
  11.  レーザ光を発振する光源、および請求項1~7のいずれか一つの請求項に記載の蛍光体素子を備えることを特徴とする、照明装置。
  12.  前記側面の少なくとも一部を被覆する反射膜を備えていることを特徴とする、請求項11記載の照明装置。
  13.  前記側面と前記反射膜との間に存在する低屈折率層を備えていることを特徴とする、請求項12記載の照明装置。
  14.  前記蛍光体部の前記側面上に存在する放熱基板であって、熱伝導率が200W /mK以上の金属からなる放熱基板を備えていることを特徴とする、請求項11~13のいずれか一つの請求項に記載の照明装置。

     
PCT/JP2020/043751 2019-11-26 2020-11-25 蛍光体素子、蛍光体デバイスおよび照明装置 WO2021106906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021561439A JP7305791B2 (ja) 2019-11-26 2020-11-25 蛍光体素子、蛍光体デバイスおよび照明装置
DE112020005291.5T DE112020005291T5 (de) 2019-11-26 2020-11-25 Leuchtstoffelement, Leuchtstoffvorrichtung und Beleuchtungseinrichtung
US17/663,843 US11674652B2 (en) 2019-11-26 2022-05-18 Phosphor element, phosphor device, and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-213188 2019-11-26
JP2019213188 2019-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/663,843 Continuation US11674652B2 (en) 2019-11-26 2022-05-18 Phosphor element, phosphor device, and illumination device

Publications (1)

Publication Number Publication Date
WO2021106906A1 true WO2021106906A1 (ja) 2021-06-03

Family

ID=76130537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043751 WO2021106906A1 (ja) 2019-11-26 2020-11-25 蛍光体素子、蛍光体デバイスおよび照明装置

Country Status (4)

Country Link
US (1) US11674652B2 (ja)
JP (1) JP7305791B2 (ja)
DE (1) DE112020005291T5 (ja)
WO (1) WO2021106906A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008425A (ja) * 2000-06-21 2002-01-11 Fujitsu Ltd バックライトユニット
JP2015230760A (ja) * 2014-06-03 2015-12-21 セイコーエプソン株式会社 光源装置、プロジェクター、および光源装置の製造方法
JP2017194706A (ja) * 2012-08-02 2017-10-26 日亜化学工業株式会社 波長変換装置の製造方法
JP2019096872A (ja) * 2017-11-17 2019-06-20 スタンレー電気株式会社 半導体発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655810B2 (en) 2000-06-21 2003-12-02 Fujitsu Display Technologies Corporation Lighting unit
JP5679435B2 (ja) 2011-02-25 2015-03-04 国立大学法人名古屋大学 発光装置
JP5658600B2 (ja) * 2011-03-07 2015-01-28 スタンレー電気株式会社 発光装置
WO2013175706A1 (ja) 2012-05-25 2013-11-28 日本電気株式会社 光学素子、発光装置、及び投影装置
JP6512067B2 (ja) 2015-10-30 2019-05-15 日本電気硝子株式会社 波長変換素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008425A (ja) * 2000-06-21 2002-01-11 Fujitsu Ltd バックライトユニット
JP2017194706A (ja) * 2012-08-02 2017-10-26 日亜化学工業株式会社 波長変換装置の製造方法
JP2015230760A (ja) * 2014-06-03 2015-12-21 セイコーエプソン株式会社 光源装置、プロジェクター、および光源装置の製造方法
JP2019096872A (ja) * 2017-11-17 2019-06-20 スタンレー電気株式会社 半導体発光装置

Also Published As

Publication number Publication date
DE112020005291T5 (de) 2022-09-01
JPWO2021106906A1 (ja) 2021-06-03
JP7305791B2 (ja) 2023-07-10
US11674652B2 (en) 2023-06-13
US20220275919A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6371201B2 (ja) 発光モジュール及びそれを用いた発光装置
US11480316B2 (en) Light conversion package
WO2012014439A1 (ja) 発光モジュール
KR102000323B1 (ko) 변환 소자 및 발광체
KR102470285B1 (ko) 광파장 변환 장치 및 광복합 장치
JP2015050124A (ja) 発光装置
US10544931B2 (en) Wavelength conversion member and light source device having wavelength conversion member
JP7369724B2 (ja) 蛍光体照明システムのための反射色補正
EP2859594A1 (en) Hybrid light bulbs using combinations of remote phosphor leds and direct emitting leds
WO2017043122A1 (ja) 波長変換部材および発光装置
US20210184425A1 (en) Phosphor element and illumination device
US11262046B2 (en) Phosphor element, method for producing same, and lighting device
JP6367515B1 (ja) 蛍光体素子および照明装置
JP6827119B2 (ja) 白色光発生素子および照明装置
WO2021106906A1 (ja) 蛍光体素子、蛍光体デバイスおよび照明装置
WO2021106854A1 (ja) 蛍光体素子、蛍光体デバイスおよび照明装置
US11635189B2 (en) Phosphor element and lighting device
JP2018163816A (ja) 蛍光体素子および照明装置
WO2020066077A1 (ja) 蛍光体素子、その製造方法および照明装置
JP6660484B2 (ja) 蛍光体素子および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561439

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20893929

Country of ref document: EP

Kind code of ref document: A1