WO2021106747A1 - 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途 - Google Patents

二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途 Download PDF

Info

Publication number
WO2021106747A1
WO2021106747A1 PCT/JP2020/043249 JP2020043249W WO2021106747A1 WO 2021106747 A1 WO2021106747 A1 WO 2021106747A1 JP 2020043249 W JP2020043249 W JP 2020043249W WO 2021106747 A1 WO2021106747 A1 WO 2021106747A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
titanium dioxide
organic solvent
fine particles
dioxide fine
Prior art date
Application number
PCT/JP2020/043249
Other languages
English (en)
French (fr)
Inventor
理人 滝本
加藤 大典
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to US17/775,912 priority Critical patent/US20220403184A1/en
Priority to EP20891684.1A priority patent/EP4067309A4/en
Priority to JP2021515672A priority patent/JP6963202B1/ja
Priority to KR1020227017535A priority patent/KR20220106127A/ko
Priority to CN202080082689.0A priority patent/CN114761358A/zh
Publication of WO2021106747A1 publication Critical patent/WO2021106747A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to an organic solvent dispersion of titanium dioxide fine particles and a method for producing the same, and uses such as a coating composition containing the organic solvent dispersion and a coating film containing the organic solvent dispersion or the coating composition.
  • Titanium dioxide fine particles are useful materials having visible light transmittance, ultraviolet shielding property, high refractive index, etc., and are dispersed in an organic solvent to prepare an organic solvent dispersion or a coating composition, and they are applied to a base material. It is used by forming a film containing the titanium dioxide fine particles by spraying or spraying.
  • Titanium dioxide fine particles are used, for example, to form a hard coat or an ultraviolet shielding film having high visible light transparency (transparency) and high refractive index on the surface of a synthetic resin lens or film.
  • an antireflection film is provided on the display surface of a flat panel display (FPD) such as a liquid crystal display (LCD), a plasma display (PDP), or an electroluminescence display (EL) for the purpose of preventing reflection of a light source or a face.
  • FPD flat panel display
  • LCD liquid crystal display
  • PDP plasma display
  • EL electroluminescence display
  • titanium dioxide fine particles are used for the high refractive index layer.
  • Titanium dioxide fine particles tend to aggregate when dispersed in an organic solvent, and even if a film is formed using a coating composition in which the aggregated titanium dioxide is mixed with a binder resin, visible light transmittance and the like are lowered.
  • An organic solvent dispersion in which titanium dioxide fine particles are highly dispersed has been studied.
  • Patent Document 1 contains titanium dioxide particles having an average primary particle size of 2 to 80 nm and an average secondary particle size of 50 to 150 nm, a nonionic surfactant, and a glycol ether-based organic solvent. The titanium dioxide particle dispersion liquid to be used is described.
  • Patent Document 2 describes titanium dioxide sol particles coated with a hydrated oxide of silicon, a dispersion medium of ethylene glycol or propylene glycol mono- or di-lower alkyl ether, and an amino group having a molecular weight of 5, Clear titanium dioxide organosols containing 000 to 50,000 polymeric dispersants have been described.
  • the present inventors have made it possible to highly disperse titanium dioxide fine particles in an organic solvent by using a specific amount of a silane coupling agent and a dispersant in combination. We found that we could do this, and completed the present invention.
  • the present invention Titanium dioxide fine particles, an organic solvent, a silane coupling agent, and a dispersant having a basic adsorbing group are contained, and the mass ratio of the dispersant to the silane coupling agent is 15% by mass to 75% by mass.
  • An organic solvent dispersion of titanium dioxide fine particles (2) The organic solvent dispersion of titanium dioxide fine particles according to (1), wherein the mass ratio of the total amount of the silane coupling agent and the dispersant to the titanium dioxide fine particles is 10% by mass to 40% by mass.
  • a silane coupling agent and a dispersant having a basic adsorbing group are used in combination in a specific amount to highly disperse the titanium dioxide fine particles in the organic solvent. be able to. According to the present invention, other effects such as the following can be obtained.
  • a film having high visible light transparency (transparency) can be formed. Specifically, a highly transparent high-refractive index layer can be formed, and a more transparent antireflection film can be produced.
  • the organic solvent dispersion of the present invention contains titanium dioxide fine particles.
  • the average primary particle size of the titanium dioxide fine particles is preferably 3 to 200 nm (3 nm or more and 200 nm or less), more preferably 5 to 100 nm (5 nm or more and 100 nm or less), and further preferably 10 to 100 nm (10 nm or more and 100 nm or less).
  • the titanium dioxide fine particles having such an average primary particle size are titanium dioxide particles having a larger average primary particle size (for example, titanium dioxide having an average primary particle size of about 0.2 to 0.5 ⁇ m used for pigment applications). Visible light transmission is higher than that of particles).
  • the average primary particle size of the titanium dioxide fine particles is calculated by measuring the particle size of 200 particles randomly selected under an electron microscope and calculating the average value of the particle size (this is referred to as "electron micrographing method" in the present application). Also called).
  • the shape of the titanium dioxide fine particles is not particularly limited, and any shape such as spherical, rod-shaped, needle-shaped, spindle-shaped, and plate-shaped can be used.
  • the average primary particle diameter for shapes other than spheres is defined by the average length on the minor axis side for rod-shaped, needle-shaped, and spindle-shaped particles, and the average diagonal length of the surface for plate-shaped particles. Specified in.
  • the crystal structure of the titanium dioxide fine particles is not particularly limited, and anatase type, rutile type, brookite type and the like can be used. However, since the rutile type has a lower photocatalytic activity and a higher refractive index than the anatase type, titanium dioxide having a rutile type crystal has a rutile type crystal in order to give the coating a high light resistance and a high refractive index more effectively. It is preferable to use fine particles.
  • the titanium dioxide fine particles may be composed of a compound represented by metatitanium acid (TiO 2 ⁇ nH 2 O) and orthotitanium acid (Ti (OH) 4 ), in addition to titanium dioxide (TiO 2).
  • Titanium dioxide fine particles can be produced by various known methods. For example, a method of neutralizing and hydrolyzing an aqueous solution of titanium tetrachloride with an alkali to calcin the obtained hydrous titanium dioxide (this is also referred to as a "calcination method" in the present application), or a method of hydrolyzing an aqueous solution of titanyl sulfate. A method of heat-treating the obtained hydrous titanium dioxide with sodium hydroxide and heat-aging the obtained reaction product with an acid, or a method of neutralizing and hydrolyzing an aqueous solution of titanium tetrachloride with an alkali (this is referred to as "wet type" in the present application.
  • a method of neutralizing and hydrolyzing an aqueous solution of titanium tetrachloride with an alkali this is referred to as "wet type" in the present application.
  • the firing method can obtain spherical titanium dioxide fine particles
  • the wet method can obtain spindle-shaped titanium dioxide fine particles.
  • both the firing method and the wet method can obtain rutile-type crystalline titanium dioxide fine particles.
  • the spherical titanium dioxide fine particles obtained by the firing method are more preferable because the crystallinity is improved by firing and the photocatalytic activity is suppressed, so that the coating film can have higher light resistance more effectively.
  • the titanium dioxide fine particles obtained by the wet method are usually not dried or fired, but the produced titanium dioxide fine particle aqueous dispersion is dispersed in an organic solvent by solvent substitution, but in the present invention, drying and / or firing is performed. It is more preferable to disperse the titanium dioxide powder directly in the organic solvent. When drying and / or firing is performed, the amount of water contained is reduced and the amount of water adhering to the titanium dioxide fine particles is also reduced, so that it is easy to disperse in an organic solvent.
  • the drying temperature is preferably about 80 to 150 ° C.
  • the firing temperature is preferably about 150 to 400 ° C.
  • the surface of the titanium dioxide fine particles may be coated with other inorganic compounds.
  • Known surface treatment materials can be used for the inorganic compound to be coated, and for example, at least one oxide and / or hydroxide among zinc, titanium, cerium, iron, silicon, and aluminum can be used. it can. It is more preferable that the surface of the titanium dioxide fine particles is coated with an aluminum oxide and / or a hydroxide.
  • the coating amount is preferably 1% to 30% (1% or more and 30% or less) based on the mass of TiO 2.
  • the organic solvent dispersion of the present invention contains an organic solvent.
  • the organic solvent used is not particularly limited, and a known organic solvent can be used. Ketones or (poly) alkylene glycol monoalkyl ethers are preferable from the viewpoints of compatibility with the binder resin, dispersibility of titanium dioxide fine particles, coatability to a substrate, and the like.
  • Ketones include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, 3-heptanone, diacetone alcohol (4-hydroxy-4-methylpentane-2-one), 4-hydroxy-4-methylhexane-2-one. On, etc. can be mentioned.
  • Examples of (poly) alkylene glycol monoalkyl ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol.
  • the organic solvent dispersion of the present invention contains a silane coupling agent.
  • the silane coupling agent refers to an organosilicon compound having both an organic functional group X and a hydrolyzable group OR in one molecule.
  • O in the hydrolyzable group OR is an oxygen atom, and R generally represents a hydrogen atom or an alkyl group having 1 to 22 carbon atoms (1 to 22).
  • the alkyl group may be linear, branched or cyclic.
  • the Rs may be the same or different from each other.
  • the organic functional group X is preferably at least one selected from a methacryl group, an acrylic group, a vinyl group, an epoxy group, an amino group, a mercapto group, a sulfide group, an isocyanate group and the like.
  • the Xs may be the same or different from each other.
  • the silane coupling agent functions as a dispersion aid for facilitating disaggregation of titanium dioxide fine particles in an aggregated state in an organic solvent dispersion.
  • Examples of such a silane coupling agent include methacrylsilane, acrylicsilane, vinylsilane, and epoxysilane. Specifically, as methacrylsilanes, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and methacryoxyoctylli. Examples include methoxysilane. Further, examples of the acrylic silane include 3-acryloxypropyltrimethoxysilane.
  • vinylsilane examples include vinyltrimethoxysilane, vinyltriethoxysilane, and octenyltrimethoxysilane.
  • epoxy silane examples include glycidoxypropyltrimethoxysilane and glycidoxyoctyltrimethoxysilane.
  • the organic solvent dispersion of the present invention contains a dispersant having a basic adsorbent.
  • the dispersant suppresses reaggregation in the organic solvent after deagglomerating the titanium dioxide fine particles in the organic solvent dispersion of the present invention, and maintains (stabilizes) the state in which the titanium dioxide fine particles are dispersed. Contribute.
  • a dispersant having a basic adsorbent is used as the dispersant, and by using the dispersant having a basic adsorbent in combination with a silane coupling agent, the surface of the titanium dioxide fine particles is reliably protected and the dispersion is stable. Can be achieved.
  • Examples of the dispersant having a basic adsorbent group include primary amines, secondary amines, tertiary amines, and quaternary ammonium or salts thereof. These amine-based dispersants include an amino group as a basic adsorbing group, or a partial structure in which one or more hydrogens of the amino group are substituted with an alkyl group or the like.
  • the amine value of the dispersant can be measured by the following method. Those having a value larger than 5 mgKOH / g have sufficiently high basicity, and a desired dispersion effect can be obtained.
  • the amine value is the amount of base per 1 g of solid content excluding the solvent in the dispersant sample expressed by the mass of equivalent KOH (mgKOH / g).
  • the amine value can be measured by a known method specified by ASTM D2074, JIS K 7237, etc., and specifically, it is measured by the following method.
  • Amine value [mgKOH / g] (561 ⁇ V) / (W ⁇ S) [However, W: Dispersant sample weighing amount [g], V: Titration amount at the titration end point [mL], S: Solid content concentration [mass%] of the dispersant sample. ]
  • an amine-based dispersant having an amino group is preferable, and for example, DISPERBYK (registered trademark) -163 (manufactured by Big Chemie), Solsperse (registered trademark) 20000, Solsperse (registered trademark) 39000. , Solsperse (registered trademark) 56000 (manufactured by Lubrizol Japan, Inc.) and the like, 2-diethylaminoethyl methacrylate and the like can be used.
  • the mass ratio of the dispersant having a basic adsorbent to the silane coupling agent is 15% by mass to 75% by mass (15% by mass or more and 75% by mass or less).
  • the titanium dioxide fine particles are disaggregated and dispersed by a silane coupling agent, and the dispersant having a basic adsorbent contributes to maintain (stabilize) the state. Therefore, the dispersant having a basic adsorbent is preferably 15% by mass to 75% by mass in terms of mass ratio with respect to the silane coupling agent.
  • the mass ratio of the dispersant having a basic adsorbent to the silane coupling agent is larger than 75% by mass, the content of the silane coupling agent is reduced, and its function, that is, the aggregated state in the organic solvent The function of facilitating deagglomeration of the titanium dioxide fine particles in the above by wet dispersion or the like tends to be impaired, and the function cannot be fully exhibited.
  • the mass ratio of the dispersant having a basic adsorbent group is smaller than the above-mentioned 15% by mass, the content of the dispersant becomes small and its function cannot be sufficiently exhibited.
  • the mass ratio of the dispersant having a basic adsorbing group to the silane coupling agent is 15% by mass to 75% by mass, and 15% by mass to 70% by mass (15% by mass or more and 70% by mass or less). More preferably, it is 20% by mass to 70% by mass (20% by mass or more and 70% by mass or less).
  • the mass ratio of the total amount of the silane coupling agent and the dispersant to the titanium dioxide fine particles is preferably 10% by mass to 40% by mass (10% by mass or more and 40% by mass or less). ..
  • both the silane coupling agent and the dispersant having a basic adsorbing group are contained in an amount of 10% by mass or more with respect to the titanium dioxide fine particles, the above-mentioned effect can be surely exhibited.
  • the mass ratio of the total amount of the silane coupling agent and the dispersant having a basic adsorbing group to the titanium dioxide fine particles is more preferably 15% by mass to 35% by mass (15% by mass or more and 35% by mass or less). It is more preferably 15% by mass to 30% by mass (15% by mass or more and 30% by mass or less).
  • the organic solvent dispersion of the present invention is prepared by mixing and dispersing the above-mentioned titanium dioxide fine particles, a silane coupling agent and a dispersant having a basic adsorbing group in an organic solvent, and dispersing the titanium dioxide fine particles in the organic solvent. can do.
  • a dispersion aid, a dispersion stabilizer, a defoaming agent, a thickener, inorganic oxide fine particles other than titanium dioxide fine particles, etc. May be added.
  • a known disperser can be used for the above dispersion.
  • a paint shaker, a dissolver, a high-speed stirrer, a kneader, an ultrasonic disperser, a high-pressure homogenizer, a ball mill, a bead mill, a sand mill, a horizontal media mill disperser, a colloid mill and the like can be used.
  • bead media at the time of dispersion.
  • bead media having a diameter of 1 mm or less is preferable
  • bead media having a diameter of 0.5 mm or less is more preferable.
  • the strength of dispersion changes depending on the type of dispersion device and media used. Therefore, the dispersion time may be appropriately adjusted according to the type of the dispersion device and the media.
  • the above dispersion can be performed multiple times. For example, it is preferable to perform the preliminary dispersion and the main dispersion separately. Since the surface of the titanium dioxide fine particles becomes wet by the pre-dispersion and the air layer on the surface is replaced with the organic solvent, the dispersion proceeds rapidly in the subsequent main dispersion. As a result, the dispersibility of the titanium dioxide fine particles in the organic solvent can be effectively enhanced. In this dispersion, it is preferable to use bead media having a diameter smaller than that of the preliminary dispersion. By doing so, the dispersibility of the titanium dioxide fine particles in the organic solvent can be further enhanced.
  • the coating composition of the present invention contains the above-mentioned organic solvent dispersion of titanium dioxide fine particles and a binder resin. Since the organic solvent dispersion of the present invention has a high transmittance, a coating agent composition using this organic solvent dispersion can be used to form a film having high visible light transmittance (transparency).
  • the binder resin used in the coating composition is not particularly limited as long as the stability of the coating obtained from the coating composition, high refractive index, and visible light transmission (transparency) are ensured.
  • the binder resin for example, an alkyd resin, an acrylic resin, a melamine resin, a urethane resin, an epoxy resin, a silicon resin, or the like can be used.
  • polyester resin, polyamic acid resin, polyimide resin, styrene maleic acid resin, styrene maleic anhydride resin and the like can also be used.
  • various acrylic acid-based monomers and acrylate-based monomers can also be applied.
  • Particularly preferable resins and monomers as the binder resin include urethane resin, acrylic resin, acrylic acid monomer, polyamic acid resin, polyimide resin, styrene maleic acid resin, and styrene maleic anhydride resin.
  • the binder resin one type may be used alone, or two or more types may be used in combination.
  • the coating composition may contain various additives in addition to the organic solvent dispersion of titanium dioxide fine particles and the binder resin. Specifically, a dispersant, a pigment, a filler, an aggregate, a thickener, a flow control agent, a leveling agent, a curing agent, a cross-linking agent, a curing catalyst and the like can be blended.
  • the coating composition of the present invention can be prepared by mixing the above-mentioned organic solvent dispersion of titanium dioxide fine particles, a binder resin, and, if necessary, the above-mentioned additives.
  • the mixing step for example, it is preferable to use the above-mentioned dissolver or high-speed stirrer.
  • a film can be formed on the base material by applying the organic solvent dispersion or the coating composition of the present invention to the base material and drying and / or firing as necessary.
  • the base material is not particularly limited, and various materials such as glass, polymer, ceramic, and metal can be used.
  • the coating method is not particularly limited, and a known method can be used. Examples thereof include a method of applying by a spin coater, a dip coater, a die coater, a slit coater, a bar coater, a gravure coater and the like, an LB (Langmuir-Brojet) film method, a self-assembling method, a spray coating method and the like.
  • drying method and firing method there are no particular restrictions on the drying method and firing method, and known methods are used. For example, heat drying under normal pressure or reduced pressure, natural drying and the like can be mentioned.
  • the heating method in heat drying and baking is not particularly limited, and examples thereof include a method of heating using a device such as a hot plate or an oven.
  • the drying temperature is preferably about 80 to 150 ° C.
  • the firing temperature is preferably about 150 to 400 ° C.
  • the thickness of the coating film can be appropriately set depending on the intended use, but is preferably 0.005 ⁇ m to 2 ⁇ m (0.005 ⁇ m or more and 2 ⁇ m or less), and is preferably 0.01 ⁇ m to 1 ⁇ m (0.01 ⁇ m or more and 1 ⁇ m or less). Is more preferable.
  • the visible light transmittance of the coating can be measured as a haze with a haze meter and is affected by the film thickness, but the haze is preferably 5% or less, more preferably 2.5% or less, and 1.5% or less. Is more preferable.
  • the refractive index of the coating film is preferably 1.60 or higher, preferably 1.80 or higher, in order to use the coating film as a high refractive index layer. The refractive index can be measured and calculated by ellipsometry.
  • the coating film formed on the base material may be laminated in multiple layers. In the case of multi-layer lamination, each layer may be a homogeneous coating or a combination of different coatings. Further, by alternately laminating the high refractive index layer and the low refractive index layer on the base material, an antireflection film can be formed on the base material.
  • the antireflection film may have any structure as long as it includes the high refractive index layer. For example, the antireflection film has a high refractive index layer and a low refractive index layer in this order on a base material.
  • it may be an antireflection film having a low refractive index layer, a high refractive index layer, and a low refractive index layer in this order on the base material.
  • a desired antireflection film can be designed by adjusting the film thickness and the refractive index of each layer.
  • TTO-51A which is a titanium dioxide fine particle having an average primary particle size of 20 nm, which is produced by the above-mentioned "firing method", has a rutile type, and is surface-treated with aluminum hydroxide (Al (OH) 3).
  • wet dispersion was carried out for 4 hours using zircon beads having a diameter of 0.1 mm.
  • the obtained dispersion was centrifuged at 2400 G for 13 minutes using a centrifuge (H-19 ⁇ manufactured by Kokusan Co., Ltd.) to settle the coarse particles and recover the supernatant to obtain an organic solvent dispersion of titanium dioxide fine particles.
  • the mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 2 In Example 1, the mass ratio of the amine-based dispersant in the organic solvent dispersion was changed to 66.7% by mass with respect to the silane coupling agent. Specifically, the charging ratio of each material was changed to 5 parts by mass of titanium dioxide fine particles, 0.9 parts by mass of a silane coupling agent, 0.6 parts by mass of an amine-based dispersant, and 93.5 parts by mass of an organic solvent. The wet dispersion time was 3 hours, and the titanium dioxide fine particles used were unfired (powder) described later. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above. The silane coupling agent used for the titanium dioxide fine particles in the organic solvent dispersion was 18% by mass, and the amine-based dispersant was 12% by mass, and the total amount of both was 30% by mass.
  • an aqueous solution of sodium aluminate (0.6 L) was added so as to be 15% by mass of the above-mentioned rutyl-type titanium dioxide in terms of Al 2 O 3, and then neutralized to pH 7.0 with an aqueous sulfuric acid solution (5%).
  • an aluminum hydroxide surface-treated rutile-type titanium dioxide slurry was obtained. The slurry was cooled to room temperature, filtered through a nutche, washed with water, and dried at 150 ° C. to obtain uncalcined titanium dioxide fine particles.
  • Example 3 In Example 1, the organic solvent was changed to propylene glycol monomethyl ether acetate (PGMEA). Further, the charging ratio of each material was changed to 24 parts by mass of titanium dioxide fine particles, 2.88 parts by mass of a silane coupling agent, 0.72 parts by mass of an amine-based dispersant, and 72.4 parts by mass of an organic solvent.
  • An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above.
  • the mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 4 In Example 1, the amine-based dispersant was changed to 2-diethylaminoethyl methacrylate (DEM) (amine valence (theoretical value) 300 mgKOH / g). Further, the charging ratio of each material was changed to 20 parts by mass of titanium dioxide fine particles, 4.8 parts by mass of a silane coupling agent, 1.2 parts by mass of an amine-based dispersant, and 74 parts by mass of an organic solvent. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above. The mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent. The silane coupling agent used for the titanium dioxide fine particles was 24% by mass, and the amine-based dispersant was 6% by mass, and the total amount of both was 30% by mass.
  • DEM 2-diethylaminoethyl methacrylate
  • Example 5 In Example 3, the silane coupling agent was changed to 3-acryloxypropyltrimethoxysilane KBM-5103 (manufactured by Shin-Etsu Silicone Co., Ltd.). Further, the charging ratio of each material was changed to 20 parts by mass of titanium dioxide fine particles, 2.4 parts by mass of a silane coupling agent, 0.6 parts by mass of an amine-based dispersant, and 77 parts by mass of an organic solvent. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 3 except for the above. The mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent. The silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 6 In Example 3, the silane coupling agent was changed to metharoxyoctyltrimethoxysilane KBM-5803 (manufactured by Shin-Etsu Silicone Co., Ltd.). Further, the charging ratio of each material was changed to 20 parts by mass of titanium dioxide fine particles, 2.4 parts by mass of a silane coupling agent, 0.6 parts by mass of an amine-based dispersant, and 77 parts by mass of an organic solvent. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 3 except for the above. The mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent. The silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 7 In Example 3, the silane coupling agent was octenyltrimethoxysilane KBM-1083 (manufactured by Shinetsu Silicone Co., Ltd.), and the amine-based dispersant was DISPERBYK (registered trademark) -163 (manufactured by Big Chemie Co., Ltd., active ingredient 45%, amine value). It was changed to 10 mgKOH / g). Further, the charging ratio of each material was changed to 20 parts by mass of titanium dioxide fine particles, 2.4 parts by mass of a silane coupling agent, 0.6 parts by mass of an amine-based dispersant, and 77 parts by mass of an organic solvent.
  • the silane coupling agent was octenyltrimethoxysilane KBM-1083 (manufactured by Shinetsu Silicone Co., Ltd.)
  • the amine-based dispersant was DISPERBYK (registered trademark) -163 (manufactured by Big Chemie Co
  • An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 3 except for the above.
  • the mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 8 In Example 3, the silane coupling agent was changed to octenyltrimethoxysilane KBM-1083 (manufactured by Shin-Etsu Silicone Co., Ltd.). Further, the charging ratio of each material was changed to 23 parts by mass of titanium dioxide fine particles, 2.8 parts by mass of a silane coupling agent, 0.7 parts by mass of an amine-based dispersant, and 73.5 parts by mass of an organic solvent. The wet dispersion time was 6 hours and 40 minutes. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 3 except for the above. The mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent. The silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 9 In Example 3, the titanium dioxide fine particles were changed to TTO-55B (manufactured by Ishihara Sangyo Co., Ltd.) (powder). Like TTO-51A, TTO-55B is manufactured by a "firing method", has a rutile crystal type, and is surface-treated with aluminum hydroxide (Al (OH) 3 ), and has an average primary order. The particle size is 40 nm. Further, the charging ratio of each material was changed to 23 parts by mass of titanium dioxide fine particles, 2.8 parts by mass of a silane coupling agent, 0.7 parts by mass of an amine-based dispersant, and 73.5 parts by mass of an organic solvent. The wet dispersion time was 6 hours and 40 minutes.
  • An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 3 except for the above.
  • the mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 10 In Example 3, the titanium dioxide fine particles were changed to TTO-55D (manufactured by Ishihara Sangyo Co., Ltd.) (powder). Like TTO-51A, TTO-55D is manufactured by a "firing method" and has a rutile crystal type. It is surfaced with zirconium oxide (ZrO 2 ) in addition to aluminum hydroxide (Al (OH) 3). It is treated and has an average primary particle size of 40 nm. Further, the charging ratio of each material was changed to 23 parts by mass of titanium dioxide fine particles, 2.8 parts by mass of a silane coupling agent, 0.7 parts by mass of an amine-based dispersant, and 73.5 parts by mass of an organic solvent.
  • ZrO 2 zirconium oxide
  • Al (OH) 3 aluminum hydroxide
  • the wet dispersion time was 6 hours and 40 minutes.
  • An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 3 except for the above.
  • the mass ratio of the amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 11 In Example 1, the titanium dioxide fine particles were changed to TTO-51N (manufactured by Ishihara Sangyo Co., Ltd.). Like TTO-51A, TTO-51N is produced by a "calcination method", has a rutile type crystal form, and has an average primary particle size of 20 nm. The difference from TTO-51A is that the surface treatment of aluminum hydroxide (Al (OH) 3) is omitted. Propylene glycol monomethyl ether (PGME) was used as the organic solvent, and the charging ratio of each material was 26.3 parts by weight of titanium dioxide fine particles, 4.4 parts by weight of the silane coupling agent, and 0. 8 parts by weight and 68.5 parts by weight of the organic solvent were used.
  • Al (OH) 3 aluminum hydroxide
  • PGME Propylene glycol monomethyl ether
  • the wet dispersion time was 8 hours.
  • a dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above.
  • the mass ratio of the amine-based dispersant in this organic solvent dispersion was 18% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 17% by mass, and the amine-based dispersant was 3% by mass, and the total amount of both was 20%.
  • Example 1 In Example 1, the addition of the amine-based dispersant was omitted. That is, the charging ratio of each material was changed to 20 parts by mass of titanium dioxide fine particles, 3 parts by mass of silane coupling agent, and 77 parts by mass of organic solvent. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above. The mass ratio of the amine-based dispersant in this organic solvent dispersion was 0% by mass with respect to the silane coupling agent. The amount of the silane coupling agent used with respect to the titanium dioxide fine particles was 15% by mass.
  • Example 2 (Comparative Example 2) In Example 1, instead of the amine-based dispersant, BYK®-111 (Big Chemie), which is a (non-amine-based) dispersant having substantially no basic adsorbent and an amine value of less than 1. Made).
  • An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above. The mass ratio of the non-amine-based dispersant in this organic solvent dispersion was 25% by mass with respect to the silane coupling agent.
  • the silane coupling agent used for the titanium dioxide fine particles was 12% by mass, and the non-amine-based dispersant was 3% by mass, and the total amount of both was 15% by mass.
  • Example 3 In Example 1, the mass ratio of the amine-based dispersant in the organic solvent dispersion was changed to 100% by mass with respect to the silane coupling agent. Specifically, DISPERBYK (registered trademark) -142 (manufactured by Big Chemie, active ingredient 60% by mass, amine value 43 mgKOH / g) was used as the amine-based dispersant, and the charging ratio of each material was set to the titanium dioxide fine particles. It was changed to 20 parts by mass, 1.5 parts by mass of the silane coupling agent, 1.5 parts by mass of the amine-based dispersant, and 77 parts by mass of the organic solvent. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above. The silane coupling agent used for the titanium dioxide fine particles in the organic solvent dispersion was 7.5% by mass, and the amine-based dispersant was 7.5% by mass, and the total amount of both was 15% by mass. ..
  • Example 4 In Example 1, the addition of the silane coupling agent was omitted. That is, the charging ratio of each material was changed to 20 parts by mass of titanium dioxide fine particles, 1 part by mass of an amine-based dispersant, and 79 parts by mass of an organic solvent. An organic solvent dispersion of titanium dioxide fine particles was obtained in the same manner as in Example 1 except for the above. The mass ratio of the amine-based dispersant in this organic solvent dispersion was infinite with respect to the silane coupling agent. The amine-based dispersant used for the titanium dioxide fine particles was 5% by mass.
  • the silane coupling agent and the dispersant having a basic adsorbing group are contained together, and the mass ratio of the dispersant to the silane coupling agent is appropriate. By setting it in a range (15% by mass to 75% by mass), high dispersibility is exhibited, and the average value of the transmittance of the organic solvent dispersion at a wavelength of 380 to 780 nm is also high. You can see that.
  • the coating liquids of Production Examples 1, 2 and 4 were applied to a glass substrate, pre-dried at 80 ° C. for 5 minutes, and then cured by irradiating with a high-pressure mercury lamp to form three coatings having different film thicknesses. .. Further, the coating liquid of Production Example 3 is applied to a PET film (A4100 manufactured by Toyobo Co., Ltd.) by spin coating, pre-dried at 80 ° C. for 5 minutes, and then cured by irradiating with a high-pressure mercury lamp to obtain three film thicknesses. A replacement film was formed.
  • the haze of the obtained coating film was measured with a haze meter (NDH-5000 manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the film thickness of the coating film and the refractive index at the measurement wavelength of 589 nm were measured with an ellipsometer (manufactured by SmartSE Horiba, Ltd.). The results are shown in Table 2.
  • a film having a small haze and a large refractive index can be formed. Specifically, a film having a haze of 1.5% or less and a refractive index of 1.6 or more at a measurement wavelength of 589 nm could be formed.
  • a film having high visible light transparency can be formed.
  • a hard coat, an ultraviolet shielding film, or the like having high visible light transmittance (transparency) and a high refractive index can be formed on the surface of a synthetic resin lens or film. Further, it can be suitably used for manufacturing a high refractive index layer, an antireflection film and the like used for a liquid crystal display (LCD), a flat panel display (FPD) and the like, which require more transparency.
  • LCD liquid crystal display
  • FPD flat panel display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

二酸化チタン微粒子を有機溶剤に高度に分散させた分散体及びその製造方法を提供する。 二酸化チタン微粒子と、有機溶剤と、シランカップリング剤と、塩基性吸着基を有する分散剤とを少なくとも含み、前記シランカップリング剤に対する前記分散剤の質量比が15質量%~75質量%である。また、前記シランカップリング剤と前記分散剤との総量の質量比が二酸化チタン微粒子に対して10質量%~40質量%が好ましい。二酸化チタン微粒子と、上記所定量のシランカップリング剤と塩基性吸着基を有する分散剤とを、有機溶剤に分散させて製造する。

Description

二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途
 本発明は、二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びに、前記有機溶剤分散体を含むコーティング組成物、前記有機溶剤分散体又はコーティング組成物を含む被膜等の用途に関する。
 二酸化チタン微粒子は、可視光透過性、紫外線遮蔽性、高屈折率等を有する有用な材料であり、有機溶剤に分散させて有機溶剤分散体やコーティング組成物を作製し、それらを基材に塗布したり吹き付けたりして、当該二酸化チタン微粒子を含む被膜に形成して用いられている。
 二酸化チタン微粒子は、例えば、合成樹脂製レンズやフィルムの表面に高い可視光透過性(透明性)と高屈折率を有するハードコートや紫外線遮蔽膜等を形成するために用いられている。また、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(EL)等のフラットパネルディスプレイ(FPD)の表示面には、光源や顔の映り込み防止等の目的で反射防止膜が設けられるが、その高屈折率層に二酸化チタン微粒子が用いられている。
 二酸化チタン微粒子は、有機溶剤に分散させると凝集し易く、その凝集した二酸化チタンをバインダー樹脂に配合したコーティング組成物を用いて被膜を形成しても可視光透過性等が低下してしまうため、二酸化チタン微粒子を高度に分散した有機溶剤分散体が検討されている。例えば、特許文献1には、平均一次粒子径が2~80nmであり、平均二次粒子径が50~150nmである二酸化チタン粒子と、非イオン界面活性剤と、グリコールエーテル系有機溶剤とを含有する、二酸化チタン粒子分散液が記載されている。また、特許文献2には、ケイ素の水和酸化物で被覆された二酸化チタンゾル粒子と、エチレングリコール又はプロピレングリコールのモノ-又はジ-低級アルキルエーテルの分散媒と、アミノ基を有し分子量5,000~50,000の高分子系分散剤を含む透明二酸化チタンオルガノゾルが記載されている。
国際公開第2014/132607号パンフレット 特開2009-227500号公報
 前記の従来技術等では、二酸化チタン微粒子の分散性が改善されているものの、例えば、レンズ等の光学用途、各種ディスプレイの電子機器用途等に二酸化チタン微粒子を含む被膜を用いる際には十分とはいえず、更なる高い可視光透過性(透明性)を有する被膜が求められる。こうした状況下、高度の分散性を有する二酸化チタン微粒子の有機溶剤分散体が依然として求められている。
 本発明者らは、上述の課題を解決すべく、鋭意検討を重ねた結果、シランカップリング剤と分散剤とを特定量併用することによって、二酸化チタン微粒子を有機溶剤中で高度に分散させることができることを見出し、本発明を完成した。
 すなわち、本発明は、
(1) 二酸化チタン微粒子と、有機溶剤と、シランカップリング剤と、塩基性吸着基を有する分散剤とを含み、前記シランカップリング剤に対する前記分散剤の質量比が15質量%~75質量%である、二酸化チタン微粒子の有機溶剤分散体、
(2) 前記二酸化チタン微粒子に対する前記シランカップリング剤と前記分散剤との総量の質量比が10質量%~40質量%である、(1)に記載の二酸化チタン微粒子の有機溶剤分散体、
(3) 前記二酸化チタン微粒子の表面にアルミニウムの酸化物及び/又は水酸化物を被覆している、(1)又は(2)に記載の二酸化チタン微粒子の有機溶剤分散体、
(4) 前記二酸化チタン微粒子はルチル型結晶を有する、(1)乃至(3)の何れか一項に記載の二酸化チタン微粒子の有機溶剤分散体、
(5) 二酸化チタン微粒子と、シランカップリング剤と、塩基性吸着基を有する分散剤とを、有機溶剤に分散させる、二酸化チタン微粒子の有機溶剤分散体の製造方法、
(6) 前記シランカップリング剤に対する前記塩基性吸着基を有する分散剤の質量比が15質量%~75質量%である、(5)に記載の製造方法、
(7) 前記分散はビーズメディアを用いた湿式分散である、(5)又は(6)に記載の製造方法、
(8) (1)乃至(4)の何れか一項に記載の二酸化チタン微粒子の有機溶剤分散体とバインダー樹脂とを少なくとも含む、コーティング組成物、
(9) (1)乃至(4)の何れか一項に記載の二酸化チタン微粒子の有機溶剤分散体又は(8)に記載のコーティング組成物を含む被膜、
などである。
 本発明によれば、二酸化チタン微粒子と有機溶剤を含む分散体として、シランカップリング剤と塩基性吸着基を有する分散剤を特定量併用することにより、二酸化チタン微粒子を有機溶剤に高度に分散させることができる。
 本発明によれば、その他、例えば、以下の効果を奏することもできる。
 この有機溶剤分散体を用いると、高い可視光透過性(透明性)を有する被膜を形成することができる。具体的には、透明性の高い高屈折率層を形成することができ、より透明性の高い反射防止膜を製造することができる。
 本発明の有機溶剤分散体は二酸化チタン微粒子を含む。二酸化チタン微粒子の平均一次粒子径は3~200nm(3nm以上200nm以下)が好ましく、5~100nm(5nm以上100nm以下)がより好ましく、10~100nm(10nm以上100nm以下)が更に好ましい。一般に、このような平均一次粒子径を有する二酸化チタン微粒子は、平均一次粒子径がより大きな二酸化チタン粒子(例えば、顔料用途に用いられる平均一次粒子径が0.2~0.5μm程度の二酸化チタン粒子)に比べて可視光透過性が高い。従って、上記の平均一次粒子径を有する二酸化チタン微粒子を用いることで、より透過率の高い有機溶剤分散体を製造できる。二酸化チタン微粒子の平均一次粒子径は、電子顕微鏡下でランダムに選択した200個の粒子の粒子径を計測し、その粒子径の平均値として算出する(これを、本願では「電子顕微鏡写真法」とも称する)。
 二酸化チタン微粒子の形状は特に限定されず、球状、棒状、針状、紡錘状、板状等の任意の形状のものを用いることができる。球状以外の形状の場合の上記平均一次粒子径については、棒状、針状、紡錘状粒子の場合は短軸側の長さの平均で規定し、板状の場合は面の対角線長さの平均で規定する。
 二酸化チタン微粒子の結晶構造についても特に限定されず、アナターゼ型、ルチル型、ブルッカイト型等のものを用いることができる。もっとも、ルチル型はアナターゼ型に比べて光触媒活性が低く、屈折率が高いことから、被膜に高い耐光性、及び高屈折率をより効果的に持たせるためには、ルチル型結晶を有する二酸化チタン微粒子を用いることが好ましい。二酸化チタン微粒子は、二酸化チタン(TiO)のほかに、メタチタン酸(TiO・nHO)、オルトチタン酸(Ti(OH))で表される化合物で構成されていてもよい。
 二酸化チタン微粒子は、各種公知の方法によって製造することができる。例えば、四塩化チタン水溶液をアルカリで中和加水分解し、得られた含水二酸化チタンを焼成する方法(これを、本願では「焼成法」とも称する。)や、硫酸チタニル水溶液を加水分解して得られた含水二酸化チタンを水酸化ナトリウムで加熱処理し、得られた反応生成物を酸で加熱熟成する方法、又は四塩化チタン水溶液をアルカリで中和加水分解する方法(これを、本願では「湿式法」とも称する。)等を用いることができる。一般に、上記焼成法では球状の二酸化チタン微粒子を得ることができ、上記湿式法では紡錘状の二酸化チタン微粒子を得ることができる。また、焼成法、湿式法ともに、ルチル型結晶の二酸化チタン微粒子を得ることができる。
 焼成法で得られる球状の二酸化チタン微粒子は、焼成によって結晶性が向上し、光触媒活性が抑制されるので、被膜により高い耐光性をより効果的に持たせることができるため、より好ましい。また、湿式法で得られる二酸化チタン微粒子は、通常は乾燥又は焼成を行わずに、製造した二酸化チタン微粒子水系分散体を溶媒置換により有機溶剤に分散させるが、本発明では、乾燥及び/又は焼成を行って二酸化チタン粉末を直接有機溶媒に分散させるのがより好ましい。乾燥及び/又は焼成を行うと、含有する水が少なくなるとともに、二酸化チタン微粒子に付着する水分も少なくなるため、有機溶剤に分散し易くなる。乾燥温度は80~150℃程度が好ましく、焼成温度は150~400℃程度が好ましい。
 二酸化チタン微粒子は、その粒子表面をその他の無機化合物で被覆してもよい。被覆する無機化合物には公知の表面処理材料を用いることができ、例えば、亜鉛、チタン、セリウム、鉄、珪素、及びアルミニウムの内の少なくとも一種の酸化物及び/又は水酸化物等を用いることができる。二酸化チタン微粒子の表面にアルミニウムの酸化物及び/又は水酸化物を被覆しているのがより好ましい。被覆量は、TiOの質量基準で1%~30%(1%以上30%以下)が好ましい。無機化合物を被覆することで二酸化チタンの光触媒活性をより効果的に抑えることができ、当該被膜により高い耐光性を持たせることができる。
 本発明の有機溶剤分散体は有機溶剤を含む。使用する有機溶剤は特に限定されず、公知の有機溶剤を用いることができる。バインダー樹脂との相溶性、二酸化チタン微粒子の分散性、及び基材への塗布性等の観点から、ケトン類又は(ポリ)アルキレングリコールモノアルキルエーテル類が好ましい。
 ケトン類としては、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン、ジアセトンアルコール(4-ヒドロキシ-4-メチルペンタン-2-オン)、4-ヒドロキシ-4-メチルヘキサン-2-オン等が挙げられる。
 (ポリ)アルキレングリコールモノアルキルエーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル等が挙げられる。
 本発明の有機溶剤分散体はシランカップリング剤を含む。シランカップリング剤とは、有機官能基Xと加水分解性基ORとの両方を、一つの分子中に併せ持つ有機ケイ素化合物をいう。加水分解性基ORにおけるOは酸素原子であり、Rは、一般には、水素原子又は炭素原子数1~22(1以上22以下)のアルキル基を表す。アルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよい。シランカップリング剤の分子中に加水分解性基ORが複数存在する場合、Rは同一であってもよいし、互いに異なっていてもよい。有機官能基Xは、一般には、メタクリル基、アクリル基、ビニル基、エポキシ基、アミノ基、メルカプト基、スルフィド基、イソシアネート基等から選択される少なくとも一種が好ましい。シランカップリング剤の分子中に有機官能基Xが複数存在する場合、Xは同一であってもよいし、互いに異なっていてもよい。
 シランカップリング剤は、有機溶剤分散体において、凝集状態にある二酸化チタン微粒子を解凝集させ易くするための分散助剤として機能する。
 このようなシランカップリング剤としては、メタクリルシランやアクリルシラン、ビニルシラン、エポキシシラン等が挙げられる。具体的には、メタクリルシランとして、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシオクチルトリメトキシシランが挙げられる。また、アクリルシランとして、3-アクリロキシプロピルトリメトキシシランが挙げられる。また、ビニルシランとして、ビニルトリメトキシシラン、ビニルトリエトキシシラン、オクテニルトリメトキシシランが挙げられる。エポキシシランとして、グリシドキシプロピルトリメトキシシラン、グリシドキシオクチルトリメトキシシランが挙げられる。
 本発明の有機溶剤分散体は塩基性吸着基を有する分散剤を含む。分散剤は、本発明の有機溶剤分散体において、二酸化チタン微粒子を解凝集した後の有機溶剤中での再凝集を抑制して、二酸化チタン微粒子を分散した状態を維持(安定化)するのに寄与する。本発明では、分散剤として、塩基性吸着基を有する分散剤を用い、塩基性吸着基を有する分散剤とシランカップリング剤と併用することで、二酸化チタン微粒子表面を確実に保護し、分散安定化を図ることができる。
 塩基性吸着基を有する分散剤としては、1級アミン、2級アミン、3級アミン、及び四級アンモニウム又はその塩等が挙げられる。これらのアミン系分散剤は、塩基性吸着基としてアミノ基、又はアミノ基の一つもしくは複数の水素がアルキル基等で置換された部分構造などを含む。分散剤がこれらの塩基性吸着基を有している場合、下記の方法で分散剤のアミン価を測定することができる。その値が5mgKOH/gより大きいものは、十分高い塩基性を有し、所望の分散効果を得ることができる。アミン価は、分散剤試料中の溶剤を除いた固形分1gあたりの塩基量を当量のKOHの質量(mgKOH/g)で表したものである。アミン価は、ASTM D2074やJIS K 7237等で規定された公知の方法で測定することができ、具体的に下記の方法で測定する。
(アミン価の測定方法)
 100mLのビーカーに分散剤試料の0.5~1.5gを精秤し、50mLの酢酸で溶解する。pH電極を備えた自動滴定装置を使って、この溶液を0.1mol/LのHClO(過塩素酸)酢酸溶液にて中和滴定する。滴定pH曲線の変曲点を滴定終点とし次式によりアミン価を求める。
 アミン価[mgKOH/g]=(561×V)/(W×S)
〔但し、W:分散剤試料秤取量[g]、V:滴定終点での滴定量[mL]、S:分散剤試料の固形分濃度[質量%]を表す。〕
 塩基性吸着基を有する分散剤としては、アミノ基を有するアミン系分散剤が好ましく、例えば、DISPERBYK(登録商標)-163(ビックケミー社製)、ソルスパース(登録商標)20000、ソルスパース(登録商標)39000、ソルスパース(登録商標)56000(日本ルブリゾール社製)等の市販品や、2-ジエチルアミノエチルメタクリレート等を用いることができる。
 本発明の有機溶剤分散体では、シランカップリング剤に対する塩基性吸着基を有する分散剤の質量比が15質量%~75質量%(15質量%以上75質量%以下)である。シランカップリング剤により二酸化チタン微粒子を解凝集させて分散した状態とし、塩基性吸着基を有する分散剤はその状態を維持(安定化)するために寄与する。このため、塩基性吸着基を有する分散剤は、シランカップリング剤に対して質量比で15質量%~75質量%とするのがよい。一方で、シランカップリング剤に対する塩基性吸着基を有する分散剤の質量比が75質量%より大きくなると、シランカップリング剤の含有量が少なくなって、その機能、すなわち、有機溶剤中で凝集状態にある二酸化チタン微粒子を湿式分散等によって解凝集させ易くする機能が損なわれる傾向があり、その機能が十分に発揮できなくなる。塩基性吸着基を有する分散剤の質量比が前記の15質量%より小さくなると、分散剤の含有量が少なくなって、その機能が十分発揮できなくなる。このことから、シランカップリング剤に対する塩基性吸着基を有する分散剤の質量比は、15質量%~75質量%であり、15質量%~70質量%(15質量%以上70質量%以下)がより好ましく、20質量%~70質量%(20質量%以上70質量%以下)が更に好ましい。
 本発明の有機溶剤分散体では、二酸化チタン微粒子に対するシランカップリング剤と分散剤との総量の質量比が、10質量%~40質量%(10質量%以上40質量%以下)であることが好ましい。二酸化チタン微粒子に対して、シランカップリング剤と塩基性吸着基を有する分散剤との両方が10質量%以上含まれていることで、上述の効果を確実に発揮することができる。一方で、40質量%より多く含まれていても、上述の効果は頭打ちとなり、また、シランカップリング剤や塩基性吸着基を有する分散剤の有機化合物の含有量が多くなると、被膜の硬度が弱くなったり、屈折率が低下したりするため40質量%以下が好ましい。このことから、二酸化チタン微粒子に対するシランカップリング剤と塩基性吸着基を有する分散剤との総量の質量比は、15質量%~35質量%(15質量%以上35質量%以下)がより好ましく、15質量%~30質量%(15質量%以上30質量%以下)が更に好ましい。
 本発明の有機溶剤分散体は、上述の二酸化チタン微粒子、シランカップリング剤及び塩基性吸着基を有する分散剤を有機溶剤に混合し分散して、二酸化チタン微粒子を有機溶剤に分散させることにより調製することができる。この分散の際に、シランカップリング剤、塩基性吸着基を有する分散剤のほかに、分散助剤、分散安定化剤、消泡剤、増粘剤や二酸化チタン微粒子以外の無機酸化物微粒子等を加えてもよい。
 上記分散には、公知の分散機を用いることができる。例えば、ペイントシェーカーやディゾルバー、高速撹拌機、混錬機、超音波分散機、高圧ホモジナイザー、ボールミルやビーズミル、サンドミル、横型メディアミル分散機、コロイドミル等が使用できる。分散性の観点から、分散時にビーズメディアを用いることが好ましい。ビーズミルを用いる場合、直径1mm以下のビーズメディアが好ましく、直径0.5mm以下のビーズメディアがより好ましい。上記分散では、用いる分散装置やメディアの種類によって分散の強度が変化する。従って、分散時間は、分散装置やメディアの種類に応じて適宜調整すればよい。
 上記分散は、複数回行うこともできる。例えば、予備分散と本分散とに分けて行うことが好ましい。予備分散によって二酸化チタン微粒子の表面が濡れ、表面の空気層が有機溶剤と置き換えられるため、その後の本分散で速やかに分散が進行する。その結果、二酸化チタン微粒子の有機溶剤中での分散性を効果的に高めることができる。本分散では、予備分散よりも直径の小さなビーズメディアを用いることが好ましい。こうすることで、二酸化チタン微粒子の有機溶剤中での分散性をより高めることができる。
 本発明のコーティング組成物は、上記の二酸化チタン微粒子の有機溶剤分散体とバインダー樹脂とを含む。本発明の有機溶剤分散体は高い透過率を有するので、この有機溶剤分散体を用いたコーティング剤組成物を用いることで、可視光透過性(透明性)の高い被膜を形成することができる。
 コーティング組成物に用いられるバインダー樹脂としては、コーティング組成物より得られる被膜の安定性、高屈折率、及び可視光透過性(透明性)が確保される限り、特に限定されない。バインダー樹脂としては、例えばアルキッド系樹脂、アクリル系樹脂、メラミン系樹脂、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂等を使用することができる。また、ポリエステル系樹脂、ポリアミド酸系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等も使用することができる。更に、各種のアクリル酸系モノマー、アクリレート系モノマーも適用可能である。バインダー樹脂として特に好ましい樹脂、モノマーとしては、ウレタン系樹脂、アクリル系樹脂、アクリル酸系モノマー、ポリアミド酸系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂が挙げられる。バインダー樹脂は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 更に、コーティング組成物は、二酸化チタン微粒子の有機溶剤分散体及びバインダー樹脂に加え各種の添加剤を配合してもよい。具体的には、分散剤、顔料、充填剤、骨材、増粘剤、フローコントロール剤、レベリング剤、硬化剤、架橋剤、硬化用触媒等を配合することができる。
 本発明のコーティング組成物は、上述の二酸化チタン微粒子の有機溶剤分散体及びバインダー樹脂、更には必要に応じて上記添加剤を混合することにより、調製することができる。混合工程では、例えば、上述のディゾルバーや高速撹拌機を用いるのが好ましい。
 本発明の有機溶剤分散体又はコーティング組成物を基材に塗布し、必要に応じて乾燥及び/又は焼成することで、基材上に被膜を形成することができる。基材は特に限定されず、ガラス、ポリマー、セラミック、金属等の種々の材質を用いることができる。塗布方法は特に制限されず、公知の方法を使用することが可能である。例えば、スピンコーター、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB(ラングミュア-ブロジェット)膜法、自己組織化法、スプレー塗布等の方法が挙げられる。
 乾燥方法、焼成方法についても特に制限なく、公知の方法が用いられる。例えば、常圧下や減圧下での加熱乾燥、自然乾燥等が挙げられる。加熱乾燥、焼成における加熱方法としても特に限定されず、例えば、ホットプレート、オーブン等の装置を用いて加熱する方法が挙げられる。乾燥温度は80~150℃程度が好ましく、焼成温度は150~400℃程度が好ましい。
 被膜の厚みは用途に応じて適宜設定することができるが、例えば、0.005μm~2μm(0.005μm以上2μm以下)であることが好ましく、0.01μm~1μm(0.01μm以上1μm以下)がより好ましい。被膜の可視光透過率はヘーズとしてヘーズメーターにて測定することができ、膜厚にも影響されるが、ヘーズは5%以下が好ましく、2.5%以下がより好ましく、1.5%以下が更に好ましい。また、被膜の屈折率は、被膜を高屈折率層として用いるには1.60以上が好ましく、1.80以上が好ましい。屈折率はエリプソメトリーによって測定して算出することができる。
 基材に形成した被膜は、多層に積層してもよい。多層積層の場合、各層は同質の被膜でも異なる被膜の組合せでもよい。また、基材上に上記高屈折率層と低屈折率層とを交互に積層することで、基材上に反射防止膜を形成することができる。反射防止膜は、上記高屈折率層を含む限りどのような構成としてもよく、例えば、基材上に、高屈折率層と、低屈折率層とをこの順で有する反射防止膜であってもよいし、基材上に、低屈折率層と、高屈折率層と、低屈折率層とをこの順で有する反射防止膜であってもよい。このような層構成において、各層の膜厚及び屈折率を調整することにより、所望の反射防止膜を設計することができる。
 以下の実施例、比較例により本発明をより詳しく説明するが、本発明は当該実施例に限定されるものではない。
(実施例1)
 上述の「焼成法」によって製造され、結晶型がルチル型であり、水酸化アルミニウム(Al(OH))で表面処理された、平均一次粒子径が20nmの二酸化チタン微粒子であるTTO-51A(石原産業社製)(粉末)20質量部と、シランカップリング剤である3-メタクリロキシプロピルトリエトキシシラン KBM-503(信越シリコーン社製)2.4質量部と、アミン系分散剤であるソルスパース(登録商標)20000(日本ルブリゾール社製、アミン価32mgKOH/g)0.6質量部と、有機溶剤であるメチルエチルケトン(MEK)77質量部とを混合容器に入れ、ペイントシェーカー(レッドデビル社製 1400-0H)にて、直径0.1mmのジルコンビーズを用いて4時間、湿式分散した。得られた分散液を遠心分離機(コクサン社製 H-19α)にて2400Gで13分間遠心分離し、粗粒を沈降させて上澄みを回収し、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例2)
 実施例1において、有機溶剤分散体中のアミン系分散剤の質量比をシランカップリング剤に対して66.7質量%に変更した。具体的には、各材料の仕込み比を、二酸化チタン微粒子5質量部、シランカップリング剤0.9質量部、アミン系分散剤0.6質量部、有機溶剤93.5質量部に変更した。湿式分散時間は3時間とし、二酸化チタン微粒子には後述の未焼成のもの(粉末)を用いた。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中の二酸化チタン微粒子に対して使用したシランカップリング剤は18質量%、アミン系分散剤は12質量%であり、その両者の総量は30質量%であった。
 実施例2で用いた二酸化チタン微粒子は、以下のようにして製造した。
 四塩化チタン水溶液を四塩化スズ水溶液に対しSnO/TiO=1の割合となるように添加し、100℃で1時間加熱加水分解することで、スズ含有ルチル型酸化チタン(33g/L)のスラリーを得た(スズ含有ルチル型酸化チタンとして150g)。次いでこのスラリーを80℃まで冷却しながら水酸化ナトリウム水溶液(20%)で中和し、pH10.0に調整した。次いで、Al換算で上記のルチル型二酸化チタンの15質量%となるようにアルミン酸ナトリウム水溶液(0.6L)を添加し、次いで硫酸水溶液(5%)でpH7.0まで中和して水酸化アルミニウムを析出させることで水酸化アルミニウム表面処理ルチル型二酸化チタンスラリーを得た。このスラリーを室温まで冷却したのちヌッチェでろ過及び水洗後150℃で乾燥し、未焼成の二酸化チタン微粒子を得た。
(実施例3)
 実施例1において、有機溶剤をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に変更した。また、各材料の仕込み比を、二酸化チタン微粒子24質量部、シランカップリング剤2.88質量部、アミン系分散剤0.72質量部、有機溶剤72.4質量部に変更した。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例4)
 実施例1において、アミン系分散剤を2-ジエチルアミノエチルメタクリレート(DEM)(アミン価(理論値)300mgKOH/g)に変更した。また、各材料の仕込み比を、二酸化チタン微粒子20質量部、シランカップリング剤4.8質量部、アミン系分散剤1.2質量部、有機溶剤74質量部に変更した。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は24質量%、アミン系分散剤は6質量%であり、その両者の総量は30質量%であった。
(実施例5)
 実施例3において、シランカップリング剤を3-アクリロキシプロピルトリメトキシシランKBM-5103(信越シリコーン社製)に変更した。また、各材料の仕込み比を、二酸化チタン微粒子20質量部、シランカップリング剤2.4質量部、アミン系分散剤0.6質量部、有機溶剤77質量部に変更した。それ以外は実施例3と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例6)
 実施例3において、シランカップリング剤をメタクリロキシオクチルトリメトキシシランKBM―5803(信越シリコーン社製)に変更した。また、各材料の仕込み比を、二酸化チタン微粒子20質量部、シランカップリング剤2.4質量部、アミン系分散剤0.6質量部、有機溶剤77質量部に変更した。それ以外は実施例3と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例7)
 実施例3において、シランカップリング剤をオクテニルトリメトキシシランKBM―1083(信越シリコーン社製)に、アミン系分散剤をDISPERBYK(登録商標)-163(ビックケミー社製、有効成分45%、アミン価10mgKOH/g)に変更した。また、各材料の仕込み比を、二酸化チタン微粒子20質量部、シランカップリング剤2.4質量部、アミン系分散剤0.6質量部、有機溶剤77質量部に変更した。それ以外は実施例3と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例8)
 実施例3において、シランカップリング剤をオクテニルトリメトキシシランKBM―1083(信越シリコーン社製)に変更した。また、各材料の仕込み比を、二酸化チタン微粒子23質量部、シランカップリング剤2.8質量部、アミン系分散剤0.7質量部、有機溶剤73.5質量部に変更した。湿式分散時間は6時間40分とした。それ以外は実施例3と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例9)
 実施例3において、二酸化チタン微粒子をTTO-55B(石原産業社製)(粉末)に変更した。尚、TTO-55Bは、TTO-51Aと同様に「焼成法」によって製造され、結晶型がルチル型であり、水酸化アルミニウム(Al(OH))で表面処理されたものであり、平均一次粒子径は40nmである。また、各材料の仕込み比を、二酸化チタン微粒子23質量部、シランカップリング剤2.8質量部、アミン系分散剤0.7質量部、有機溶剤73.5質量部に変更した。湿式分散時間は6時間40分とした。それ以外は実施例3と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例10)
 実施例3において、二酸化チタン微粒子をTTO-55D(石原産業社製)(粉末)に変更した。尚、TTO-55Dは、TTO-51Aと同様に「焼成法」によって製造され、結晶型がルチル型であり、水酸化アルミニウム(Al(OH))に加えて酸化ジルコニウム(ZrO)で表面処理されたものであり、平均一次粒子径は40nmである。また、各材料の仕込み比を、二酸化チタン微粒子23質量部、シランカップリング剤2.8質量部、アミン系分散剤0.7質量部、有機溶剤73.5質量部に変更した。湿式分散時間は6時間40分とした。それ以外は実施例3と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(実施例11)
 実施例1において、二酸化チタン微粒子をTTO-51N(石原産業社製)に変更した。尚、TTO-51Nは、TTO-51Aと同様に「焼成法」によって製造され、結晶型がルチル型であり、平均一次粒子径は20nmである。TTO-51Aとの違いは、水酸化アルミニウム(Al(OH))の表面処理が省略されている点にある。
 また、有機溶媒にはプロピレングリコールモノメチルエーテル(PGME)を用いることとし、各材料の仕込み比は、二酸化チタン微粒子26.3重量部、シランカップリング剤4.4重量部、アミン系分散剤0.8重量部、有機溶媒を68.5重量部とした。湿式分散時間は8時間とした。それ以外は実施例1と同様にして、二酸化チタン微粒子の分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して18質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は17質量%、アミン系分散剤は3質量%であり、その両者の総量は20%であった。
(比較例1)
 実施例1において、アミン系分散剤の添加を省略した。すなわち、各材料の仕込み比を、二酸化チタン微粒子20質量部、シランカップリング剤3質量部、有機溶剤77質量部に変更した。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して0質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は15質量%であった。
(比較例2)
 実施例1において、アミン系分散剤の代わりに、実質的に塩基性吸着基を有さず、アミン価が1未満の(非アミン系)分散剤であるBYK(登録商標)-111(ビックケミー社製)に変更した。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中の非アミン系分散剤の質量比はシランカップリング剤に対して25質量%であった。また、二酸化チタン微粒子に対して使用したシランカップリング剤は12質量%、非アミン系分散剤は3質量%であり、その両者の総量は15質量%であった。
(比較例3)
 実施例1において、有機溶剤分散体中のアミン系分散剤の質量比をシランカップリング剤に対して100質量%に変更した。具体的には、アミン系分散剤としては、DISPERBYK(登録商標)-142(ビックケミー社製、有効成分60質量%、アミン価43mgKOH/g)を用いて、各材料の仕込み比を、二酸化チタン微粒子20質量部、シランカップリング剤1.5質量部、アミン系分散剤1.5質量部、有機溶剤77質量部に変更した。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中の二酸化チタン微粒子に対して使用したシランカップリング剤は7.5質量%、アミン系分散剤は7.5質量%であり、その両者の総量は15質量%であった。
(比較例4)
 実施例1において、シランカップリング剤の添加を省略した。すなわち、各材料の仕込み比を、二酸化チタン微粒子20質量部、アミン系分散剤1質量部、有機溶剤79質量部に変更した。それ以外は実施例1と同様にして、二酸化チタン微粒子の有機溶剤分散体を得た。
 この有機溶剤分散体中のアミン系分散剤の質量比はシランカップリング剤に対して無限大であった。また、二酸化チタン微粒子に対して使用したアミン系分散剤は5質量%であった。
<分散性の評価>
 上述の実施例及び比較例の有機溶剤分散体の製造において、湿式分散後の遠心分離で粗粒を沈降させて上澄みを回収する際、遠心分離前の分散液の固形分濃度と、遠心分離後の分散液(有機溶剤分散体)の固形分濃度とを比較した。両者の固形分濃度の差異がほとんどない場合(具体的には、遠心分離後の分散液(有機溶剤分散体)の固形分濃度が、遠心分離前の分散液の固形分濃度の80%以上の場合)を、分散性に優れている(「〇」)と評価し、遠心分離後の分散液(有機溶剤分散体)の固形分濃度が、遠心分離前の分散液の固形分濃度の80%未満となる場合を、分散性が不足している(「×」)と評価した。評価結果を表1に示す。
<有機溶剤分散体の透過率の評価>
 実施例及び比較例の有機溶剤分散体について、分散媒と同じ有機溶剤を用いて、フィラー濃度12g/Lとなるよう希釈した。これを測定用サンプルとして光路長1mmのセルに仕込み、分光光度計(V-770:日本分光社製)で透過率を測定した。透過率は、波長380-780nmでの透過率の平均値について測定した。測定結果を表1に示す。尚、比較例1~4の有機溶剤分散体はいずれも沈降により濃度調整ができず、透過率は測定不能であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、シランカップリング剤に対する塩基性吸着基を有する分散剤の質量比が15質量%~75質量%の範囲内にある実施例1~11ではいずれも、当該範囲を充足していない比較例1~4のいずれと比べても、有機溶剤中での二酸化チタン微粒子の分散性が高く、また、波長380-780nmでの透過率の平均値も高い値を示すことが分かった。例えば、二酸化チタン微粒子の有機溶剤分散体では、シランカップリング剤と塩基性吸着基を有する分散剤を一緒に含有する場合であっても、シランカップリング剤に対する分散剤の質量比が上記範囲よりも大きい場合(比較例3)には、有機溶剤中での二酸化チタン微粒子の分散が困難であることが分かった。
 また、表1に示すように、塩基性吸着基を有する分散剤を欠く比較例1又はシランカップリング剤を欠く比較例4の、二酸化チタン微粒子の有機溶剤分散体では、有機溶剤中での二酸化チタン微粒子の分散が困難であった。また、塩基性吸着基を有する分散剤の代わりに、塩基性吸着基を有しない分散剤を用いた比較例2も同様に分散が困難であった。
 上述のとおり、本実施例の二酸化チタン微粒子の有機溶剤分散体では、シランカップリング剤と塩基性吸着基を有する分散剤を一緒に含有させ、しかもシランカップリング剤に対する分散剤の質量比が適切な範囲(15質量%~75質量%)になるように設定することで、高い分散性を示すとともに、有機溶剤分散体の波長380-780nmでの透過率の平均値についても、高い値を示すことが分かる。
<コーティング組成物の調製>
(製造例1)
 実施例8の二酸化チタン微粒子の有機溶剤分散体(固形分21.8%):86.6質量部、ジペンタエリスリトールヘキサアクリレート(東亞合成社製M-405):8.9質量部、IRGACURE(登録商標)-184とOmnirad(登録商標) TPOのPGMEA溶液(それぞれの濃度が3質量%):4.5質量部を混合し紫外線硬化性コーティング組成物を調製した。
(製造例2)
 実施例9の二酸化チタン微粒子の有機溶剤分散体(固形分22.0%):86.3質量部、ジペンタエリスリトールヘキサアクリレート(東亞合成社製M-405):9.1質量部、IRGACURE(登録商標)-184とOmnirad(登録商標) TPOのPGMEA溶液(それぞれの濃度が3質量%):4.6質量部を混合し紫外線硬化性コーティング組成物を調製した。
(製造例3)
 実施例10の二酸化チタン微粒子の有機溶剤分散体(固形分21.3%):87.3質量部、ジペンタエリスリトールヘキサアクリレート(東亞合成社製M-405):8.5質量部、IRGACURE(登録商標)-184とOmnirad(登録商標) TPOのPGMEA溶液(それぞれの濃度が3質量%):4.2質量部を混合し紫外線硬化性コーティング組成物を調製した。
(製造例4)
 実施例11の二酸化チタン微粒子の有機溶剤分散体(固形分29.7%):45.9重量部、ジペンタエリスリトールヘキサアクリレート(東亞合成社製M-405):20.3重量部、IRGACURE(登録商標)-184のイソプロパノール溶液(10質量%):10.1重量部、PGME:23.6重量部を混合し、紫外線硬化性コーティング組成物を調製した。
<被膜の屈折率等の測定>
 上記製造例1、2、4のコーティング液をガラス基板に塗布し、80℃5分で予備乾燥した後、高圧水銀灯を照射して硬化させ、それぞれ3個の膜厚を代えた被膜を形成した。 また、上記製造例3のコーティング液をPETフィルム(東洋紡社製A4100)にスピンコートで塗布し、80℃5分で予備乾燥した後、高圧水銀灯を照射して硬化させ、3個の膜厚を代えた被膜を形成した。
 得られた被膜のヘーズをヘーズメーター(NDH-5000 日本電色工業社製)にて測定し、被膜の膜厚及び測定波長589nmでの屈折率をエリプソメーター(SmartSE 堀場製作所製)で測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、本発明のコーティング組成物を用いると、ヘーズが小さく、屈折率の大きな被膜を形成することができる。具体的には、ヘーズが1.5%以下であり、測定波長589nmでの屈折率が1.6以上の被膜を形成することができた。
 本発明の二酸化チタン微粒子の有機溶剤分散体を用いれば、可視光透過性(透明性)の高い被膜を形成することができる。具体的には、合成樹脂製レンズやフィルムの表面に高い可視光透過性(透明性)と高屈折率を有するハードコートや紫外線遮蔽膜等を形成することができる。また、より透明性が求められる液晶ディスプレイ(LCD)やフラットパネルディスプレイ(FPD)等に用いられる高屈折率層、反射防止膜の製造等に、好適に用いることができる。
 

Claims (9)

  1.  二酸化チタン微粒子と、有機溶剤と、シランカップリング剤と、塩基性吸着基を有する分散剤とを含み、前記シランカップリング剤に対する前記分散剤の質量比が15質量%~75質量%である、二酸化チタン微粒子の有機溶剤分散体。
  2.  前記二酸化チタン微粒子に対する前記シランカップリング剤と前記塩基性吸着基を有する分散剤との総量の質量比が10質量%~40質量%である、請求項1に記載の二酸化チタン微粒子の有機溶剤分散体。
  3.  前記二酸化チタン微粒子の表面にアルミニウムの酸化物及び/又は水酸化物を被覆している、請求項1又は請求項2に記載の二酸化チタン微粒子の有機溶剤分散体。
  4.  前記二酸化チタン微粒子はルチル型結晶を有する、請求項1乃至請求項3の何れか一項に記載の二酸化チタン微粒子の有機溶剤分散体。
  5.  二酸化チタン微粒子と、シランカップリング剤と、塩基性吸着基を有する分散剤とを、有機溶剤に分散させる、二酸化チタン微粒子の有機溶剤分散体の製造方法。
  6.  前記シランカップリング剤に対する前記塩基性吸着基を有する分散剤の質量比が15質量%~75質量%である、請求項5に記載の製造方法。
  7.  前記分散はビーズメディアを用いた湿式分散である、請求項5又は6に記載の製造方法。
  8.  請求項1乃至請求項4の何れか一項に記載の二酸化チタン微粒子の有機溶剤分散体とバインダー樹脂とを少なくとも含む、コーティング組成物。
  9.  請求項1乃至請求項4の何れか一項に記載の二酸化チタン微粒子の有機溶剤分散体又は請求項8に記載のコーティング組成物を含む被膜。
PCT/JP2020/043249 2019-11-29 2020-11-19 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途 WO2021106747A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/775,912 US20220403184A1 (en) 2019-11-29 2020-11-19 Dispersion of titanium dioxide microparticles in organic solvent, method for producing same, and use of same
EP20891684.1A EP4067309A4 (en) 2019-11-29 2020-11-19 DISPERSION OF TITANIUM DIOXIDE MICROPARTICLES IN ORGANIC SOLVENTS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
JP2021515672A JP6963202B1 (ja) 2019-11-29 2020-11-19 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途
KR1020227017535A KR20220106127A (ko) 2019-11-29 2020-11-19 이산화티탄 미립자의 유기 용제 분산체 및 그 제조 방법, 그리고 그 용도
CN202080082689.0A CN114761358A (zh) 2019-11-29 2020-11-19 二氧化钛微粒的有机溶剂分散体及其制造方法、以及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216316 2019-11-29
JP2019-216316 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106747A1 true WO2021106747A1 (ja) 2021-06-03

Family

ID=76129479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043249 WO2021106747A1 (ja) 2019-11-29 2020-11-19 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途

Country Status (7)

Country Link
US (1) US20220403184A1 (ja)
EP (1) EP4067309A4 (ja)
JP (1) JP6963202B1 (ja)
KR (1) KR20220106127A (ja)
CN (1) CN114761358A (ja)
TW (1) TW202130582A (ja)
WO (1) WO2021106747A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227500A (ja) * 2008-03-21 2009-10-08 Tayca Corp 透明酸化チタンオルガノゾルおよびそれを配合したコーティング組成物,光学基材
JP2012149197A (ja) * 2011-01-21 2012-08-09 Canon Chemicals Inc 光学素子用内面反射防止黒色塗料
JP2012158664A (ja) * 2011-01-31 2012-08-23 Canon Chemicals Inc 光学素子用の内面反射防止黒色塗料
WO2013031799A1 (ja) * 2011-08-31 2013-03-07 住友大阪セメント株式会社 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
JP2013203929A (ja) * 2012-03-29 2013-10-07 Ishihara Sangyo Kaisha Ltd 無機物粒子分散体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833587B2 (ja) * 2005-06-03 2011-12-07 日立化成工業株式会社 遮熱塗料組成物及びその塗膜を有する構築物
JP2007139091A (ja) * 2005-11-18 2007-06-07 Jtekt Corp 伸縮自在シャフト
WO2007139091A1 (ja) * 2006-06-01 2007-12-06 Sakata Inx Corp. 可視光応答型酸化チタン系光触媒分散組成物およびその製造方法
JP5505726B2 (ja) * 2009-10-28 2014-05-28 ナガセケムテックス株式会社 複合樹脂組成物
JP5484025B2 (ja) * 2009-12-15 2014-05-07 キヤノン株式会社 酸化チタンゾル、それを用いた樹脂組成物、光学材料および光学素子
JP6061097B2 (ja) * 2011-08-08 2017-01-18 セイコーエプソン株式会社 水性インク用顔料、それを含有する水性インク組成物、およびその画像または印刷物
CN104245778B (zh) * 2012-03-13 2017-03-01 三菱瓦斯化学株式会社 树脂组合物、预浸料以及覆金属箔层叠板
JP6347368B2 (ja) 2013-02-27 2018-06-27 パナソニックIpマネジメント株式会社 酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227500A (ja) * 2008-03-21 2009-10-08 Tayca Corp 透明酸化チタンオルガノゾルおよびそれを配合したコーティング組成物,光学基材
JP2012149197A (ja) * 2011-01-21 2012-08-09 Canon Chemicals Inc 光学素子用内面反射防止黒色塗料
JP2012158664A (ja) * 2011-01-31 2012-08-23 Canon Chemicals Inc 光学素子用の内面反射防止黒色塗料
WO2013031799A1 (ja) * 2011-08-31 2013-03-07 住友大阪セメント株式会社 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
JP2013203929A (ja) * 2012-03-29 2013-10-07 Ishihara Sangyo Kaisha Ltd 無機物粒子分散体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067309A4 *

Also Published As

Publication number Publication date
EP4067309A1 (en) 2022-10-05
JP6963202B1 (ja) 2021-11-05
EP4067309A4 (en) 2023-12-06
JPWO2021106747A1 (ja) 2021-12-09
KR20220106127A (ko) 2022-07-28
US20220403184A1 (en) 2022-12-22
TW202130582A (zh) 2021-08-16
CN114761358A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
EP2724984B1 (en) Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
JP5182533B2 (ja) 金属酸化物複合ゾル、コーティング組成物及び光学部材
JP5754943B2 (ja) 高屈折率金属酸化物微粒子を含む塗料組成物および該塗料組成物を基材上に塗布して得られる硬化性塗膜
JP5182532B2 (ja) 変性金属酸化物複合ゾル、コーティング組成物及び光学部材
CN110809561B (zh) 含铁金红石型氧化钛微粒分散液的制造方法、含铁金红石型氧化钛微粒及其用途
EP2138462A1 (en) Sol of surface-coated titanium oxide, process for producing the same, and coating composition containing the same
US11820917B2 (en) Coating composition containing silane compound having nitrogen-containing ring
JP5514487B2 (ja) 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
JP2011132484A (ja) 高屈折率金属酸化物微粒子を含む水分散ゾルの調製方法、該方法から得られる水分散ゾルおよび前記微粒子を含む有機溶媒分散ゾル並びに塗料組成物
WO2021200135A9 (ja) ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途
JP2012031353A (ja) コーティング組成物及び光学部材
JP6963202B1 (ja) 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途
US11920057B2 (en) Inorganic oxide particles coated with silane compound having nitrogen-containing ring and coating composition
JP2023097934A (ja) 被覆二酸化チタン微粒子及びその製造方法並びにそれを含む有機溶媒分散体、コーティング組成物、塗膜
TW202337833A (zh) ZrO分散液

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021515672

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891684

Country of ref document: EP

Effective date: 20220629