WO2021104462A1 - 一种性能优异的带涂层热成形部件及其制造方法 - Google Patents

一种性能优异的带涂层热成形部件及其制造方法 Download PDF

Info

Publication number
WO2021104462A1
WO2021104462A1 PCT/CN2020/132307 CN2020132307W WO2021104462A1 WO 2021104462 A1 WO2021104462 A1 WO 2021104462A1 CN 2020132307 W CN2020132307 W CN 2020132307W WO 2021104462 A1 WO2021104462 A1 WO 2021104462A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated
excellent performance
performance according
thermoformed part
blank
Prior art date
Application number
PCT/CN2020/132307
Other languages
English (en)
French (fr)
Inventor
谭宁
刘俊祥
黄才根
姜磊
王超
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US17/780,620 priority Critical patent/US20230002850A1/en
Priority to EP20891774.0A priority patent/EP4067529A1/en
Priority to JP2022531622A priority patent/JP7326615B2/ja
Publication of WO2021104462A1 publication Critical patent/WO2021104462A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • C23C10/50Aluminising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Definitions

  • the invention relates to a thermoformed component and a manufacturing method thereof, in particular to a coated thermoformed component with excellent performance and a manufacturing method thereof.
  • thermoformed parts In recent years, the application of thermoformed parts in the automotive industry has become very important, especially in terms of automotive safety structural parts, which have irreplaceable advantages in some high-strength, complex-shaped parts.
  • the materials used for hot forming parts are divided into coated and non-coated materials.
  • the coated materials include hot-dip galvanizing, hot-dip galvanizing alloying, hot-dip aluminum, inorganic/organic coating, etc.
  • the main purpose of the coating is to protect the steel plate in hot During the stamping process, the surface of the steel plate is prevented from oxidation and decarburization.
  • the formed parts can be directly painted and welded.
  • the material without coating must be surface shot blasted after hot forming to remove the oxide layer generated on the surface. Otherwise, it will affect subsequent parts painting and welding.
  • the widely used hot forming materials with coatings are mainly aluminum-silicon coating materials. This is because aluminum-silicon coatings have excellent heat resistance, weather resistance and high heat reflectivity. Conventional aluminum-silicon coating hot forming materials are used Freckles often appear during the process, and the color of the local surface is inconsistent.
  • Chinese patent CN104651590A discloses a hot forming material coated with aluminum or aluminum alloy and a manufacturing method. The method specifically controls the thickness of the coating layer and the five-layer structure to ensure the welding performance of the hot formed part.
  • Chinese patent CN108588612A discloses a hot-formed component coated with aluminum or aluminum alloy.
  • the patent reduces the thickness of the coating.
  • the disadvantage is that the protective effect of the coating is reduced.
  • the fluctuation of the hot-forming process can easily affect the surface properties of the component. Affect subsequent performance.
  • Chinese patent CN101583486 discloses hot stamping products and methods for coating steel strips, including heating, transferring and cooling, without involving the hot stamping process, including stamping parameters such as mold clamping speed and holding time, which will result in stamping products
  • stamping parameters such as mold clamping speed and holding time
  • the quality is unstable, such as shrinkage, cracking, etc.
  • the furnace atmosphere is not controlled during the heating process, which causes the furnace atmosphere to change during the heating process, especially the large change in oxygen content, which causes the appearance and color of the product to easily change.
  • Actual production It is found that the appearance and color of the stamped products obtained with the same incoming material under the same process are quite different.
  • Chinese patent CN100370054 discloses a high-strength aluminized or aluminum alloy system steel plate, emphasizing how to control the Cr and Mn content in the coating to be greater than 0.1% and the influence on the corrosion resistance and heat resistance of the product, and does not involve the hot stamping process.
  • the purpose of the present invention is to provide a coated thermoformed part with excellent performance and a manufacturing method.
  • the high-strength thermoformed part has good coating properties and uniformity. Paint film thickness, the ratio of the standard deviation of the paint film thickness to the average value of the paint film thickness satisfies: 0 ⁇ standard deviation of paint film thickness/average value of paint film thickness ⁇ 0.1, excellent paint film adhesion, paint film adhesion evaluation is 0 Grade or level 1, and good weldability.
  • a coated thermoformed part with excellent performance including a substrate and its upper coating; the weight percentage of the substrate composition is: C: 0.01 to 0.8%, Si: 0.05 to 1.0%, Mn: 0.1 to 5%, P: 0.001 ⁇ 0.3%, S: 0.001 ⁇ 0.1%, Al: 0.001 ⁇ 0.3%, Ti: 0.001 ⁇ 0.5%, B: 0.0005 ⁇ 0.1%, optional Cr: 0.15 ⁇ 0.75%, optional Nb: 0.001 ⁇ 0.5 %, optional V: 0.001 to 0.5%, the rest is Fe and unavoidable impurities; the appearance of the thermoformed part has no color difference and no variegation, the surface oxygen content of the thermoformed part is 0.1-20wt.%, and the standard deviation is relative to its surface The ratio of the average value of oxygen content satisfies: 0 ⁇ standard deviation of oxygen content/average value of oxygen content ⁇ 0.3.
  • thermoformed part with excellent performance including a substrate and its upper coating; the weight percentage of the substrate composition is: C: 0.01 to 0.8%, Si: 0.05 to 1.0%, Mn: 0.1 to 5%, P: 0.001 ⁇ 0.3%, S: 0.001 ⁇ 0.1%, Al: 0.001 ⁇ 0.3%, Ti: 0.001 ⁇ 0.5%, B: 0.0005 ⁇ 0.1%, Nb: 0.001 ⁇ 0.5%, V: 0.001 ⁇ 0.5%, the rest is Fe and Inevitable impurities; the appearance of thermoformed parts has no color difference and no mottling.
  • the surface oxygen content of thermoformed parts is 0.1-20wt.%, and the ratio of the standard deviation to the average surface oxygen content satisfies: 0 ⁇ standard deviation of oxygen content/oxygen The average content is less than or equal to 0.3.
  • a coated thermoformed part with excellent performance including a substrate and its upper coating; the weight percentage of the substrate composition is: C: 0.01 to 0.8%, Si: 0.05 to 1.0%, Mn: 0.1 to 5%, P: 0.001 ⁇ 0.3%, S: 0.001 ⁇ 0.1%, Al: 0.001 ⁇ 0.3%, Ti: 0.001 ⁇ 0.5%, B: 0.0005 ⁇ 0.1%, Cr: 0.15 ⁇ 0.75%, and optionally Nb: 0.001 ⁇ 0.5% and Optional V: 0.001 to 0.5%, the rest is Fe and unavoidable impurities; the appearance of the thermoformed part has no color difference and no variegation, the surface oxygen content of the thermoformed part is 0.1-20wt.%, and the standard deviation is relative to the surface oxygen content The ratio of the average value satisfies: 0 ⁇ standard deviation of oxygen content/average value of oxygen content ⁇ 0.3.
  • the P content is 0.01-0.10%.
  • the S content is 0.001-0.05%.
  • the Nb content is 0.001-0.40%.
  • the V content is 0.001-0.40%.
  • the total Nb+V content is ⁇ 0.40%.
  • the composition of the substrate contains at least one, any two or all three of Cr, Nb, and V.
  • the yield strength of the thermoformed part is 400 to 1600 MPa
  • the tensile strength is 500 to 2300 MPa
  • the elongation is ⁇ 4%.
  • the strip steel enters the plating solution to be coated with aluminum silicon to obtain a coated steel sheet; the surface of the coated steel sheet has C, H or O content ⁇ 50mg/m 2 , and the weight of the coating is 30 ⁇ 120g/m 2 Surface, the ratio of the standard deviation of the coating weight to the average value of the coating weight satisfies: 0 ⁇ standard deviation of the coating weight/average value of the coating weight ⁇ 0.3;
  • Billet heat treatment Put the billet into a heating furnace to heat and keep it warm.
  • the temperature of the heating furnace is 680 ⁇ 970°C. No additional gas is introduced into the heating furnace.
  • the air is in a natural state.
  • the dew point in the furnace is lower than 5°C.
  • the total residence time in the heating furnace is 1 to 13 minutes;
  • Blank transfer the heated blank is quickly transferred to the mold for stamping; the transfer time is less than 10 seconds;
  • Hot stamping of blanks cooling and stamping the heated blanks.
  • the total residence time in step 3) is 1.5-13 minutes or 1-10 minutes or 1.5-11 minutes.
  • the temperature in the heating furnace in step 3 is divided into two stages, the low temperature zone is 680-870°C, the high temperature zone is 880-970°C, the residence time of the blank in the low temperature zone is 0.5 to 3 minutes, and the residence time in the high temperature zone is 1 to 10 minute.
  • the starting temperature of the hot stamping of the blank is not lower than 600°C.
  • the blank hot stamping start temperature is in the range of 630-800°C.
  • the pressure-holding quenching is continued for 4-20 seconds, and the pressure-holding pressure applied to the part must be greater than 8 MPa on the surface of the part on average.
  • the holding pressure is in the range of 8-20 MPa.
  • the clamping speed of the upper and lower molds is 50-100 mm/s.
  • the cooling rate of the billet after heating in step 5) between 800 and 400°C is greater than 30°C/s, preferably, the cooling rate is greater than 60°C/s. In some embodiments, the cooling rate is 60-100°C/s.
  • thermoformed part is taken out of the mold after the surface temperature of the mold is lower than 150°C.
  • the coating on the surface of the coated steel plate is mainly aluminum.
  • aluminum diffuses into the substrate while heating to form iron-aluminum alloy.
  • the iron-aluminum alloy is hard and brittle, and has a high melting point.
  • the melting point of aluminum in the coating on the surface is very low, about 600°C.
  • the heating furnace of the present invention is arranged in two sections. The main purpose of the low temperature zone is to allow the coating to fully diffuse in the initial heating stage to prevent melting, and the main purpose of the high temperature zone is to ensure the high strength of the thermoformed parts.
  • the coating layer will gradually diffuse during the heating process to form an iron-aluminum alloy layer with a multi-layer structure.
  • the alloy layer structure and the surface oxide structure will affect the appearance of the product, and local unevenness often leads to chromatic aberrations and mottling in the appearance of the product, which affect the use of the product.
  • the inventors discovered in research that the content and distribution of C, H or O on the surface of the blank product, the uniformity of the coating thickness, and the hot stamping process all have a significant impact on the appearance of the hot formed part.
  • the thickness of the coating is not uniform.
  • the diffusion path of the elements is different, which leads to different diffusion degrees, and the appearance shows uneven color difference.
  • the content of C, H or O is not uniform, the volatilization and decomposition speed of the blank is different during the heating process in the furnace, resulting in uneven heating of the surface of the blank, and different diffusion speed and degree of elements on the surface of the blank, resulting in uneven appearance and color of thermoformed parts.
  • the coated plate of the present invention is preferably not coated with oil.
  • the coated plate of the present invention is preferably not coated with oil, and the heating process will not generate additional water vapor and will not cause the dew point to rise. Therefore, it has a good positive effect on the control of the dew point in the furnace and has a positive effect on the delayed cracking performance of the product. positive effects. Because the water vapor from the heating and decomposition of the oil will inevitably cause the dew point in the furnace to rise, the increase in the dew point will induce hydrogen-induced delayed cracking, leading to hydrogen embrittlement.
  • the coated steel sheet of the present invention is not coated with oil, and there is almost no damage to the heat treatment furnace during the hot stamping process. Because the heating and decomposition of oil products will also produce other trace acid gases, which will inevitably cause certain damages to the heat treatment furnace. Some heat treatment furnaces require special control of the atmosphere in the furnace, otherwise it will easily affect the life and product quality of the heat treatment furnace.
  • the oiling process can be omitted in the manufacturing method of thermoformed parts, and the cost can be reduced.
  • the weight of the coating on the surface of the coated steel sheet of the present invention is uniform, the distance and time of the diffusion of the coating during the hot stamping process are relatively uniform, and the surface element composition of the hot formed part is relatively stable.
  • the heat treatment process is divided into a low temperature zone and a high temperature zone.
  • the low temperature zone can allow the coating to diffuse fully and slowly, prevent the coating from melting, and ensure the integrity of the coating and the uniform surface.
  • Figure 1 is a photograph of the appearance of a coated thermoformed part of Comparative Example 1;
  • Figure 2 is a photograph of the appearance of a coated thermoformed part of Comparative Example 2;
  • Figure 3 is a photograph of the appearance of a coated thermoformed part in Example 1 of the present invention.
  • Table 1 for the composition of the steel sheets of the examples and comparative examples of the present invention.
  • Table 2 shows the manufacturing processes of the examples and comparative examples of the present invention.
  • Table 3 shows the properties of the examples and comparative examples of the invention.
  • the coating weight of each embodiment and comparative example is controlled within 30 ⁇ 120g/m 2 per side. In each example and comparative example, no additional gas was introduced into the heating furnace, the air was in a natural state, and the dew point in the furnace was lower than 5°C.
  • the 1.2mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 0.5%, Fe: 0.5%, the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 680 -950°C, residence time 3.0min, transfer to mold within 5s, clamping speed 70mm/s, stamping start temperature 680°C, holding time 10s, holding pressure 14MPa.
  • the 0.9mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 4%, Fe: 4%, the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 700 -940°C, residence time 5min, stamping start temperature 700°C, transfer to mold within 7s, clamping speed 80mm/s, holding time 13s, holding pressure 15MPa.
  • the 1.0mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating bath consists of Si: 9.0%, Fe: 2.7%, and the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 850 -880°C, residence time 11min, stamping start temperature 650°C, transfer to mold within 8s, clamping speed 70mm/s, holding time 6s, holding pressure 12MPa.
  • the 2.8mm coated steel sheet is cold-rolled to 2.0mm, and laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 8.8%, Fe: 2.7%, and the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace, the heating furnace temperature is 800-920°C, the residence time is 7min, the stamping start temperature is 630°C, and it is transferred to the mold within 8s, the clamping speed is 70mm/s, the holding time is 8s, and the holding pressure is 14MPa.
  • the 1.1mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 14%, Fe: 3.5%, the rest is aluminum and inevitable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 810 -935°C, residence time 5.5min, stamping start temperature 780°C, transfer to mold within 7s, upper and lower mold clamping speed 80mm/s, holding time 10s, holding pressure 15MPa.
  • the 1.5mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating bath consists of Si: 10%, Fe: 3.5%, and the rest is aluminum and inevitable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 870 -960°C, residence time 4min, stamping start temperature 750°C, transfer to mold within 7s, upper and lower mold clamping speed 80mm/s, holding time 15s, holding pressure 17MPa.
  • the 1.8mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 10%, Fe: 3.5%, the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace with a furnace temperature of 800 -945°C, residence time 3.5min, transfer to the mold within 7s, upper and lower mold clamping speed 80mm/s, holding time 20s, holding pressure 18MPa.
  • the 2.0mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating bath consists of Si: 10%, Fe: 3.5%, the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 850 -935°C, residence time 4min, stamping start temperature 720°C, transfer to mold within 7s, upper and lower mold clamping speed 80mm/s, holding time 18s, holding pressure 20MPa.
  • the blank enters the heating furnace, the heating furnace temperature is 870-935°C, the residence time is 5min, the stamping start temperature is 730°C, and it is transferred to the mold within 7s.
  • the upper and lower mold clamping speed is 80mm/s, the holding time is 12s, and the holding pressure is 13MPa.
  • the blank enters the heating furnace, the heating furnace temperature is 800-970°C, the residence time is 3.5min, the stamping start temperature is 760°C, and it is transferred to the mold within 7s.
  • the upper and lower mold clamping speed is 80mm/s, the holding time is 13s, and the holding pressure is 16MPa.
  • the 2.0mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 8.5%, Fe: 2.8%, the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 840 -920°C, residence time 4.5min, stamping start temperature 690°C, transfer to mold within 6s, upper and lower mold clamping speed 70mm/s, holding time 15s, holding pressure 13MPa.
  • the 2.5mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 4.0%, Fe: 2.7%, and the rest is aluminum and inevitable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 700 -900°C, residence time 5min, stamping start temperature 800°C, transfer to mold within 7s, upper and lower mold clamping speed 80mm/s, holding time 10s, holding pressure 15MPa.
  • the 1.0mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: Si: 10%, Fe: 3%, the rest is aluminum and unavoidable impurities.
  • the blank enters the heating furnace and the heating furnace.
  • the temperature is 850-930°C
  • the residence time is 8min
  • the stamping start temperature is 730°C
  • it is transferred to the mold within 6s.
  • the upper and lower mold clamping speed is 70mm/s
  • the holding time is 13s
  • the holding pressure is 9MPa.
  • the blank enters the heating furnace, the heating furnace temperature is 830-910°C, the residence time is 4min, the stamping start temperature is 760°C, and it is transferred to the mold within 7s.
  • the upper and lower mold clamping speed is 80mm/s, the holding time is 13s, and the holding pressure is 16MPa.
  • the 1.8mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 9.5%, Fe: 2.6%, the rest is aluminum and inevitable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 830 -920°C, residence time 6min, stamping start temperature 710°C, transfer to mold within 6s, upper and lower mold clamping speed 80mm/s, holding time 10s, holding pressure 10MPa.
  • the 1.5mm coated steel plate is laser blanked into a blank of a certain size and shape.
  • the hot-dip plating solution consists of Si: 11%, Fe: 2.8%, the rest is aluminum and inevitable impurities.
  • the blank enters the heating furnace, and the heating furnace temperature is 850 -920°C, residence time 7min, stamping start temperature 740°C, transfer to mold within 7s, upper and lower mold clamping speed 70mm/s, holding time 9s, holding pressure 13MPa.
  • the hot-dip plating solution consists of Si: 10%, Fe: 2.8%, the rest is aluminum and unavoidable impurities ,
  • the blank enters the heating furnace, the heating furnace temperature is 935°C, the residence time is 4.5min, the stamping start temperature is 700°C, and it is transferred to the mold within 7s.
  • the upper and lower mold clamping speed is 70mm/s, the holding time is 10s, and the holding pressure is 12MPa.
  • Laser blanking 1.5mm coated steel plate (surface oil amount 1000mg/m 2 ) into a blank of a certain size and shape.
  • the composition of the hot-dip plating solution is Si: 8%, Fe: 2.6%, and the rest is aluminum and unavoidable impurities ,
  • the blank enters the heating furnace, the heating furnace temperature is 935°C, the residence time is 4.5min, the stamping start temperature is 750°C, and it is transferred to the mold within 6s.
  • the upper and lower mold clamping speed is 70mm/s, the holding time is 15s, and the holding pressure is 10MPa.
  • the ratio of the standard deviation of the paint film thickness to the average value of the paint film thickness satisfies: 0 ⁇ Standard deviation of paint film thickness/average value of paint film thickness ⁇ 0.1; paint film adhesion (paint film adhesion measurement method GBT 9286-1998) is evaluated to level 1 or 0; these coated thermoformed parts also have good The weldability.
  • the uneven distribution of the oil surface resulted in mottling or partial color difference in the appearance of the product after thermoforming, uneven paint film thickness, and poor paint film adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种性能优异的带涂层热成形部件及其制造方法,热成形部件所述热成形部件包括基板及其上涂层;基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,Nb:0.001~0.5%,V:0.001~0.5%,其余为Fe及其他不可避免杂质;热成形部件外观无色差、无花斑,热成形部件表面氧含量为0.1~20wt.%,标准偏差相对于其表面氧含量平均值的比满足:0<氧含量标准偏差/氧含量平均值≤0.3。制造方法中热处理、传输和热冲压的带镀层钢板未经涂油处理。

Description

一种性能优异的带涂层热成形部件及其制造方法 技术领域
本发明涉及热成形部件及其制造方法,具体涉及一种性能优异的带涂层热成形部件及其制造方法。
背景技术
近年来,热成形部件在汽车工业中的应用变得很重要,特别是在汽车的安全结构件方面,在一些高强度,形状复杂的零件上具有不可替代的优势。用于热成形部件的材料分为带镀层和不带镀层,带镀层的包括热镀锌、热镀锌合金化、热镀铝、无机/有机涂层等,镀层的主要目的是保护钢板在热冲压成形过程中,防止钢板表面氧化,脱碳,成形后的部件可以直接进行涂装及焊接使用,不带镀层的材料在热成形后必须进行表面喷丸处理以去掉表面产生的氧化物层,否则影响后续的零件涂装及焊接。目前,广泛使用的带镀层的热成形材料主要是铝硅镀层材料,这是因为铝硅镀层具有优良的耐热性、耐候性和高的热反射性,常规的铝硅镀层热成形材料在使用过程中经常会出现花斑,局部表面颜色不一致。
中国专利CN104651590A公开了一种铝或铝合金涂覆的热成形材料及制造方法,该方法针对性控制了涂覆层的厚度及五层结构,从而保证热成形件的焊接性能。
中国专利CN108588612A公开了铝或铝合金涂层的热成形构件,专利降低了涂层的厚度,缺点是降低了涂层的保护作用,热成形工艺的波动对构件的表面性能很容易造成影响,从而影响后续的使用性能。
中国专利CN101583486公开了涂覆钢带材的热冲压产品及方法,包括加热、转移及冷却,而未涉及热冲压过程,包括模具合模速度、保压时间等冲压参数,由此会造成冲压产品质量不稳定,如紧缩、开裂等,对加热过程中炉膛气氛不控制,导致加热过程中炉内气氛发生变化,尤其是氧气含量发生较大变化,带来产品外观颜色很容易发生变化,实际生产发现相同来料在同一工艺下,所得冲压产品外观颜色呈现较大不同。
中国专利CN100370054公开了高强度的镀铝或铝合金体系钢板,强调的是如何控制镀层中Cr,Mn含量大于0.1%及对产品耐蚀性、耐热性的影响,也未涉及热冲压过程。
发明内容
针对现有带涂层热成形部件及方法的不足,本发明的目的在于提出一种性能优异的带涂层热成形部件及制造方法,高强度的热成形部件具有良好的涂装性,均匀的漆膜厚度,漆膜厚度标准偏差相对于漆膜厚度平均值的比满足:0<漆膜厚度标准偏差/漆膜厚度平均值≤0.1,优异的漆膜附着力,漆膜附着力评价为0级或1级,以及良好的焊接性。
为达到上述目的,本发明的技术方案是:
一种性能优异的带涂层热成形部件,包括基板及其上涂层;基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,任选的Cr:0.15~0.75%,任选的Nb:0.001~0.5%,任选的V:0.001~0.5%,其余为Fe及不可避免杂质;热成形部件外观无色差、无花斑,热成形部件表面氧含量为0.1~20wt.%,标准偏差相对于其表面氧含量平均值的比满足:0<氧含量标准偏差/氧含量平均值≤0.3。
一种性能优异的带涂层热成形部件,包括基板及其上涂层;基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,Nb:0.001~0.5%,V:0.001~0.5%,其余为Fe及不可避免杂质;热成形部件外观无色差、无花斑,热成形部件表面氧含量为0.1~20wt.%,标准偏差相对于其表面氧含量平均值的比满足:0<氧含量标准偏差/氧含量平均值≤0.3。
一种性能优异的带涂层热成形部件,包括基板及其上涂层;基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,Cr:0.15~0.75%,和任选的Nb:0.001~0.5%和任选的V:0.001~0.5%,其余为Fe及不可避免杂质;热成形部件外观无色差、无花斑,热成形部件表面氧含量为0.1~20wt.%,标准偏差相对于其表面氧含量平均值的比满足:0<氧含量标准偏差/氧含量平均值≤0.3。
在一些实施方案中,优选地,P含量为0.01-0.10%。
在一些实施方案中,优选地,S含量为0.001-0.05%。
在一些实施方案中,优选地,Nb含量为0.001-0.40%。
在一些实施方案中,优选地,V含量为0.001-0.40%。
在一些实施方案中,优选地,Nb+V总含量≤0.40%。
在一些实施方案中,优选地,所述基板的成分至少含有Cr、Nb和V中的一种、任意两种或全部三种。
优选的,热成形部件的屈服强度为400~1600MPa,抗拉强度500~2300MPa,延伸率≥4%。
本发明所述的性能优异的带涂层热成形部件制造方法,其特征是,包括如下步骤:
1)镀覆铝硅:带钢进入镀液进行镀覆铝硅,得到带镀层钢板;带镀层钢板表面C、H或O含量≤50mg/m 2,镀层的重量为30~120g/m 2单面,镀层重量标准偏差相对于镀层重量平均值的比满足:0<镀层重量标准偏差/镀层重量平均值≤0.3;
2)落料:将带镀层钢板冷轧后或者直接采用冲裁或者激光切割方法加工成零件所需形状的坯料;
3)坯料热处理:将坯料放入加热炉中加热并保温,加热炉温度为680~970℃,加热炉内不额外通入任何气体,空气中自然状态,炉内露点低于5℃,坯料在加热炉中总的停留时间为1~13分钟;
4)坯料传输:将加热后的坯料快速传送至模具中进行冲压;传输时间小于10秒;
5)坯料热冲压:将加热后的坯料冷却、冲压成形。
优选的,步骤3)中总停留时间为1.5~13分钟或1~10分钟或1.5~11分钟。
优选的,步骤3)中加热炉内温度分两段,低温区680~870℃,高温区880~970℃,坯料在低温区的停留时间为0.5~3分钟,高温区停留时间为1~10分钟。
优选的,所述的步骤5)中,坯料热冲压开始温度不低于600℃。在一些实施方案中,坯料热冲压开始温度在630-800℃的范围内。
优选的,所述的步骤5)冲压过程中,模具合模后持续保压淬火4~20s,对零件施加的保压压强平均在零件表面需大于8MPa。在一些实施方案中,保压压强在 8~20MPa的范围内。在一些实施方案中,上下模具合模速度为50-100mm/s。
优选的,所述的步骤5)加热后的坯料在800~400℃之间的冷速大于30℃/s,优选地,冷速大于60℃/s。在一些实施方案中,所述冷速为60~100℃/s。
优选的,冲压成型后,在模具表面温度低于150℃后将热成形部件取出模具。
镀层钢板表面的镀层主要是铝,铝在加热过程中是边加热边向基板扩散形成铁铝合金,铁铝合金硬而脆,熔点很高,文中称热成形部件表面为涂层,而原始钢板表面的镀层中铝的熔点很低,600℃左右,加热初期,如果升温速度过快,镀层中的铝会先融化粘附在加热辊上,从而破坏镀层,影响镀层保护性,进而影响热成形部件的涂装性,耐蚀性,焊接性。本发明所述的加热炉分两段设置,低温区的主要目的就是让镀层在加热初期能充分扩散,防止融化,高温区的主要目的是保证热成形部件的高强度。
镀层钢板在热冲压过程中,镀层在加热过程中会逐渐发生扩散,形成具有多层结构的铁铝合金层,同时表面会存在一层具有多孔结构的氧化物层,热成形部件涂层中的合金层结构及表面氧化物结构都会影响产品的外观,局部不均匀往往导致产品外观出现色差,花斑等,影响产品使用。
本发明人在研究中发现,坯料产品表面的C、H或O含量及分布,镀层厚度均匀性,以及热冲压工艺均对热成形部件的外观有明显影响。镀层厚度不均匀,在相同热处理时间内,元素扩散的路径不同,从而导致扩散程度不同,外观表现出来是色差不均匀。C、H或O含量不均匀,坯料在炉内加热过程中,挥发分解速度不相同,导致坯料表面受热不均匀,坯料表面元素扩散速度和程度不相同,从而导致热成形部件外观颜色不均匀。
本发明人还发现,坯料产品表面的C、H或O主要来自油品,常规镀层钢板在热冲压前均没有脱脂工序,直接进入热处理炉,加热过程中,油品会进一步挥发或分解,影响坯料表面气氛,同时油品分解后会不可避免产生残余灰分,这些最终影响部件表面元素组成,进而影响产品外观和涂装性能,因此本发明所述镀层板优选不涂油。
本发明所述的镀层板优选不涂油,加热过程不会额外产生水蒸汽,不会引起露点升高,因此对炉内露点的管控具有很好的积极作用,同时对产品的延迟开裂性能具有积极作用。因为油品加热分解的水蒸汽势必会引起炉内露点升高,露点升高会 诱发氢致延迟开裂,导致氢脆。
本发明所述的镀层钢板不涂油,在热冲压过程中,对热处理炉的损伤几乎没有。因为油品加热分解还会产生其他微量酸性气体,势必对热处理炉产生一定损害,有的热处理炉需要对炉膛内的气氛进行特殊管控,否则容易影响热处理炉的寿命及产品质量,本发明所述的热成形部件制造方法中可省略涂油工序,降低成本。
本发明所述的镀层钢板表面镀层重量均匀,热冲压过程中,镀层扩散的路程及时间相对均匀,热成形部件表面元素组成相对稳定。
本发明所述的热冲压方法,热处理过程分为低温区和高温区,低温区可以让镀层充分缓慢扩散,防止镀层融化,保证镀层完整及表面均匀。
附图说明
图1是对比实施例1带涂层热成形部件的外观照片;
图2是对比实施例2带涂层热成形部件的外观照片;
图3是本发明实施例1中带涂层热成形部件的外观照片。
具体实施方式
下面结合实施例和附图对本发明做进一步。
本发明实施例和对比例钢板的成分参见表1,表2为本发明实施例和对比例的制造工艺,表3为本发明实施例和对比例的性能。各实施例和对比例镀层重量控制在30~120g/m 2单面。各实施例和对比例中,加热炉内不额外通入任何气体,空气中自然状态,炉内露点低于5℃。
实施例1
将1.2mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:0.5%,Fe:0.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度680-950℃,停留时间3.0min,5s内传输至模具,合模速度70mm/s,冲压开始温度680℃,保压时间10s,保压压力14MPa。
实施例2
将0.9mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:4%,Fe:4%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度700-940℃,停留时间5min,冲压开始温度700℃,7s内传输至模具,合模速度80mm/s,保压时间13s,保压压力15MPa。
实施例3
将1.0mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:9.0%,Fe:2.7%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度850-880℃,停留时间11min,冲压开始温度650℃,8s内传输至模具,合模速度70mm/s,保压时间6s,保压压力12MPa。
实施例4
将2.8mm带镀层钢板经过冷轧轧制至2.0mm,激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:8.8%,Fe:2.7%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度800-920℃,停留时间7min,冲压开始温度630℃,8s内传输至模具,合模速度70mm/s,保压时间8s,保压压力14MPa。
实施例5
将1.1mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:14%,Fe:3.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度810-935℃,停留时间5.5min,冲压开始温度780℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间10s,保压压力15MPa。
实施例6
将1.5mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:10%,Fe:3.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度870-960℃,停留时间4min,冲压开始温度750℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间15s,保压压力17MPa。
实施例7
将1.8mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:10%,Fe:3.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度800-945℃,停留时间3.5min,7s内传输至模具,上下模具合模速度80mm/s,保压时间20s,保压压力18MPa。
实施例8
将2.0mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:10%,Fe:3.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度850-935℃,停留时间4min,冲压开始温度720℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间18s,保压压力20MPa。
实施例9
冷轧2.4mm带镀层钢板,冷轧变形量10%,激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:10%,Fe:3.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度870-935℃,停留时间5min,冲压开始温度730℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间12s,保压压力13MPa。
实施例10
冷轧2.8mm带镀层钢板,冷轧变形量50%,激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:10%,Fe:3.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度800-970℃,停留时间3.5min,冲压开始温度760℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间13s,保压压力16MPa。
实施例11
将2.0mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:8.5%,Fe:2.8%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度840-920℃,停留时间4.5min,冲压开始温度690℃,6s内传输至模具,上下模具合模速度70mm/s,保压时间15s,保压压力13MPa。
实施例12
将2.5mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:4.0%,Fe:2.7%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度700-900℃,停留时间5min,冲压开始温度800℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间10s,保压压力15MPa。
实施例13
将1.0mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:Si:10%,Fe:3%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度850-930℃,停留时间8min,冲压开始温度730℃,6s内传输至模具,上下模具合模速度70mm/s,保压时间13s,保压压力9MPa。
实施例14
冷轧3.0mm带镀层钢板,冷轧变形量40%,激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:11%,Fe:2.5%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度830-910℃,停留时间4min,冲压开始温度760℃,7s内传输至模具,上下模具合模速度80mm/s,保压时间13s,保压压力16MPa。
实施例15
将1.8mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:9.5%,Fe:2.6%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度830-920℃,停留时间6min,冲压开始温度710℃,6s内传输至模具,上下模具合模速度80mm/s,保压时间10s,保压压力10MPa。
实施例16
将1.5mm带镀层钢板激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:11%,Fe:2.8%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度850-920℃,停留时间7min,冲压开始温度740℃,7s内传输至模具,上下模具合模速度70mm/s, 保压时间9s,保压压力13MPa。
对比例1
将1.5mm带镀层钢板(表面涂油量700mg/m 2)激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:10%,Fe:2.8%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度935℃,停留时间4.5min,冲压开始温度700℃,7s内传输至模具,上下模具合模速度70mm/s,保压时间10s,保压压力12MPa。
对比例2
将1.5mm带镀层钢板(表面涂油量1000mg/m 2)激光落料成一定尺寸和形状的坯料,热浸镀镀液组成Si:8%,Fe:2.6%,其余为铝及不可避免杂质,坯料进入加热炉,加热炉温度935℃,停留时间4.5min,冲压开始温度750℃,6s内传输至模具,上下模具合模速度70mm/s,保压时间15s,保压压力10MPa。
图1和图2可以看出,对比例中,镀层板表面涂油后,由于油品表面分布不均匀,导致热成形后产品外观出现花斑或局部色差;图3是本实施例中不涂油产品的外观,外观无色差,花斑。
结果显示,实施例1-14的带涂层热成形部件具有良好的涂装性,涂装后形成均匀的漆膜厚度,漆膜厚度标准偏差相对于漆膜厚度平均值的比满足:0<漆膜厚度标准偏差/漆膜厚度平均值≤0.1;漆膜附着力(漆膜附着力测定法GBT 9286-1998)评价达1级或0级;这些带涂层的热成形部件同时还具有良好的焊接性。而对比例中,镀层板表面涂油后,由于油品表面分布不均匀,导致热成形后产品外观出现花斑或局部色差,漆膜厚度不均匀,漆膜附着力差。
表1
实施例 C Si Mn P S Al Ti B Cr Nb V
1 0.02 0.05 0.90 0.059 0.038 0.09 0.090 0.0005 0.15 - -
2 0.06 0.23 1.19 0.002 0.001 0.04 0.003 0.004 0.27 - -
3 0.19 0.50 2.51 0.024 0.040 0.08 0.027 0.005 0.51 0.002 0.002
4 0.21 0.36 3.00 0.044 0.030 0.07 0.050 0.006 0.71 0.003 0.35
5 0.23 0.48 0.50 0.081 0.020 0.05 0.40 0.007 0.20 - -
6 0.15 0.10 2.90 0.059 0.038 0.15 0.090 0.003 0.15 - -
7 0.25 0.23 1.19 0.015 0.001 0.04 0.030 0.004 0.27 - -
8 0.40 0.50 2.51 0.024 0.040 0.28 0.027 0.005 0.51 0.35 0.008
9 0.30 0.36 4.80 0.044 0.030 0.07 0.050 0.006 0.71 - -
10 0.70 0.90 0.50 0.081 0.020 0.05 0.200 0.091 0.20 - -
11 0.03 0.05 0.80 0.050 0.030 0.15 0.48 0.095 - 0.10 0.20
12 0.78 0.95 0.10 0.10 0.050 0.005 0.005 0.001 - 0.002 0.30
13 0.25 0.33 4.80 0.048 0.033 0.06 0.058 0.006 - 0.32 0.08
14 0.48 0.55 2.80 0.034 0.045 0.28 0.48 0.005 - 0.38 0.008
15 0.28 0.30 4.10 0.043 0.030 0.05 0.052 0.006 0.50 0.32 -
16 0.40 0.45 2.75 0.020 0.040 0.09 0.020 0.03 0.35 - 0.18
对比例1 0.22 0.23 1.19 0.015 0.001 0.04 0.030 0.004 0.17 - -
对比例2 0.24 0.20 1.22 0.015 0.001 0.04 0.030 0.004 0.17 - -
表2
Figure PCTCN2020132307-appb-000001
Figure PCTCN2020132307-appb-000002
表3
Figure PCTCN2020132307-appb-000003
Figure PCTCN2020132307-appb-000004

Claims (15)

  1. 一种性能优异的带涂层热成形部件,其特征是,所述热成形部件包括基板及其上涂层;基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,任选的Cr:0.15~0.75%,任选的Nb:0.001~0.5%,任选的V:0.001~0.5%,其余为Fe及不可避免杂质;热成形部件外观无色差、无花斑,热成形部件表面氧含量为0.1~20wt.%,标准偏差相对于其表面氧含量平均值的比满足:0<氧含量标准偏差/氧含量平均值≤0.3。
  2. 如权利要求1所述的性能优异的带涂层热成形部件,其特征是,所述基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,Nb:0.001~0.5%,V:0.001~0.5%,其余为Fe及不可避免杂质。
  3. 如权利要求1所述的性能优异的带涂层热成形部件,其特征是,所述基板成分重量百分比为:C:0.01~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P:0.001~0.3%,S:0.001~0.1%,Al:0.001~0.3%,Ti:0.001~0.5%,B:0.0005~0.1%,Cr:0.15~0.75%,任选的Nb:0.001~0.5%,任选的V:0.001~0.5%,其余为Fe及不可避免杂质。
  4. 如权利要求1所述的性能优异的带涂层热成形部件,其特征是,所述基板的成分至少含有Cr、Nb和V中的一种、任意两种或全部三种。
  5. 如权利要求1所述的性能优异的带涂层热成形部件,其特征是,Nb+V总含量≤0.40%。
  6. 如权利要求1所述的性能优异的带涂层热成形部件,其特征是,P含量为0.01-0.10%,S含量为0.001-0.05%。
  7. 如权利要求1所述的性能优异的带涂层热成形部件,其特征是,Nb含量为0.001-0.40%,V含量为0.001-0.40%。
  8. 如权利要求1所述的性能优异的带涂层热成形部件制造方法,其特征在于,所述热成形部件的屈服强度为400~1600MPa,抗拉强度500~2300MPa,延伸率≥4%。
  9. 如权利要求1-8中任一项所述的性能优异的带涂层热成形部件制造方法,其特征是,包括如下步骤:
    1)镀覆铝硅:带钢进入镀液进行镀覆铝硅,得到带镀层钢板;带镀层钢板表面C、H或O含量≤50mg/m 2,镀层的重量为30~120g/m 2单面,镀层重量标准偏差相对于镀层重量平均值的比满足:0<镀层重量标准偏差/镀层重量平均值≤0.3;
    2)落料:将带镀层钢板冷轧后或者直接采用冲裁或者激光切割方法加工成零件所需形状的坯料;
    3)坯料热处理:将坯料放入加热炉中加热并保温,加热炉温度为680~970℃,加热炉内不额外通入任何气体,空气中自然状态,炉内露点低于5℃,坯料在加热炉中总的停留时间为1.5~13分钟;
    4)坯料传输:将加热后的坯料快速传送至模具中进行冲压;传输时间小于10秒;
    5)坯料热冲压:将加热后的坯料冷却、冲压成形。
  10. 如权利要求9所述的性能优异的带涂层热成形部件的制造方法,其特征是,步骤3)中加热炉内温度分两段,低温区680~870℃,高温区880~970℃,坯料在低温区的停留时间为0.5~3分钟,高温区停留时间为1~10分钟。
  11. 如权利要求9所述的性能优异的带涂层热成形部件的制造方法,其特征是,所述的步骤5)中,坯料热冲压开始温度不低于600℃,优选为630-800℃。
  12. 如权利要求9所述的性能优异的带涂层热成形部件的制造方法,其特征是,所述的步骤5)冲压过程中,模具合模后持续保压淬火4~20s,对部件施加的保压压强平均在部件表面需大于8MPa。
  13. 如权利要求9所述的性能优异的带涂层热成形部件的制造方法,其特征是,所述的步骤5)加热后的坯料在800~400℃之间的冷速大于30℃/s,优选地,冷速大于60℃/s。
  14. 如权利要求9所述的性能优异的带涂层热成形部件的制造方法,其特征是,所述的步骤5)冲压成型后,在模具表面温度低于150℃后将热成形部件取出模具。
  15. 如权利要求9所述的性能优异的带涂层热成形部件的制造方法,其特征是,进行所述坯料热处理、传输和热冲压的带镀层钢板未经涂油处理。
PCT/CN2020/132307 2019-11-29 2020-11-27 一种性能优异的带涂层热成形部件及其制造方法 WO2021104462A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/780,620 US20230002850A1 (en) 2019-11-29 2020-11-27 High-performance thermoformed component provided with coating, and manufacturing method therefor
EP20891774.0A EP4067529A1 (en) 2019-11-29 2020-11-27 High-performance thermoformed component provided with coating, and manufacturing method therefor
JP2022531622A JP7326615B2 (ja) 2019-11-29 2020-11-27 優れた性能を有するコーティング付き熱成形部品及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911201470.3A CN112877590A (zh) 2019-11-29 2019-11-29 一种性能优异的带涂层热成形部件及其制造方法
CN201911201470.3 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104462A1 true WO2021104462A1 (zh) 2021-06-03

Family

ID=76039061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132307 WO2021104462A1 (zh) 2019-11-29 2020-11-27 一种性能优异的带涂层热成形部件及其制造方法

Country Status (5)

Country Link
US (1) US20230002850A1 (zh)
EP (1) EP4067529A1 (zh)
JP (1) JP7326615B2 (zh)
CN (1) CN112877590A (zh)
WO (1) WO2021104462A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673074A (zh) * 2021-07-28 2023-02-03 宝山钢铁股份有限公司 一种1500MPa以上的铝硅镀层热冲压钢零件制备方法及零件
CN117086249B (zh) * 2023-10-20 2024-01-05 山西金正达金属制品有限公司 一种高强度锻件的加工工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676318A (zh) * 2004-03-31 2005-10-05 新日铁住金不锈钢株式会社 清漆涂装不锈钢钢板
CN100370054C (zh) 2001-06-15 2008-02-20 新日本制铁株式会社 镀有铝合金体系的高强度钢板以及具有优异的耐热性和喷漆后耐腐蚀性的高强度汽车零件
CN101583486A (zh) 2006-10-30 2009-11-18 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
CN102300707A (zh) * 2009-02-02 2011-12-28 安赛乐米塔尔研究发展有限公司 涂覆的冲压部件的制造方法和由其制造的部件
KR20130002214A (ko) * 2011-06-28 2013-01-07 현대제철 주식회사 핫 스탬핑 성형체 및 그 제조 방법
US20130068350A1 (en) 2011-09-15 2013-03-21 Benteler Automobiltechnik Gmbh Method and apparatus for heating a pre-coated plate of steel
CN104651590A (zh) 2008-01-15 2015-05-27 安赛乐米塔尔法国公司 冲压产品的制造方法及由其制造的冲压产品
CN108588612A (zh) 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
CN109518114A (zh) * 2018-08-08 2019-03-26 宝山钢铁股份有限公司 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件
CN109719181A (zh) * 2018-11-16 2019-05-07 唐山钢铁集团有限责任公司 高温热冲压生产镀层高强部件的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006771B3 (de) * 2008-01-30 2009-09-10 Thyssenkrupp Steel Ag Verfahren zur Herstellung eines Bauteils aus einem mit einem Al-Si-Überzug versehenen Stahlprodukt und Zwischenprodukt eines solchen Verfahrens
JP5614496B2 (ja) * 2011-04-01 2014-10-29 新日鐵住金株式会社 塗装後耐食性に優れたホットスタンプ成形された高強度部品およびその製造方法
CN103492600B (zh) * 2011-04-27 2015-12-02 新日铁住金株式会社 热冲压部件用钢板及其制造方法
CN106466697B (zh) * 2016-08-12 2020-01-31 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制热冲压产品及其制造方法
CN108774709B (zh) * 2018-05-31 2019-12-13 马鞍山钢铁股份有限公司 一种对光和热具有优异隔热反射性的热浸镀层钢板及制备方法
CN109371325A (zh) * 2018-11-30 2019-02-22 宝山钢铁股份有限公司 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法
CN110484820A (zh) * 2019-09-05 2019-11-22 首钢集团有限公司 一种高强韧性热冲压用铝硅镀层钢板及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370054C (zh) 2001-06-15 2008-02-20 新日本制铁株式会社 镀有铝合金体系的高强度钢板以及具有优异的耐热性和喷漆后耐腐蚀性的高强度汽车零件
CN1676318A (zh) * 2004-03-31 2005-10-05 新日铁住金不锈钢株式会社 清漆涂装不锈钢钢板
CN101583486A (zh) 2006-10-30 2009-11-18 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
CN104651590A (zh) 2008-01-15 2015-05-27 安赛乐米塔尔法国公司 冲压产品的制造方法及由其制造的冲压产品
CN102300707A (zh) * 2009-02-02 2011-12-28 安赛乐米塔尔研究发展有限公司 涂覆的冲压部件的制造方法和由其制造的部件
KR20130002214A (ko) * 2011-06-28 2013-01-07 현대제철 주식회사 핫 스탬핑 성형체 및 그 제조 방법
US20130068350A1 (en) 2011-09-15 2013-03-21 Benteler Automobiltechnik Gmbh Method and apparatus for heating a pre-coated plate of steel
CN108588612A (zh) 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
CN109518114A (zh) * 2018-08-08 2019-03-26 宝山钢铁股份有限公司 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件
EP3770295A1 (en) 2018-08-08 2021-01-27 Baoshan Iron & Steel Co., Ltd. Manufacturing method for hot stamping component having aluminium-silicon alloy coating, and hot stamping component
CN109719181A (zh) * 2018-11-16 2019-05-07 唐山钢铁集团有限责任公司 高温热冲压生产镀层高强部件的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Fertigungstechnik - Erlangen", 1 January 2015, MEISENBACH, ISBN: 978-3-87525-395-5, article WIELAND MICHAEL: "Entwicklung einer Methode zur Prognose ad-hasiven VerschleiBes an Werkzeugen fur dasdirekte Pressharten", pages: 1 - 185, XP093048403
A. GHIOTTI; S. BRUSCHI; F. BORSETTO;: "Tribological characteristics of high strength steel sheets under hot stamping conditions", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, vol. 211, no. 11, 15 May 2011 (2011-05-15), NL , pages 1694 - 1700, XP028252844, ISSN: 0924-0136, DOI: 10.1016/j.jmatprotec.2011.05.009
HORTLUND HANNA: "Study of the Hydrogen Diffusion Out of Press Hardened Boron Steel", MASTER'S THESIS, LULEA UNIVERSITY OF TECHNOLOGY, 1 January 2009 (2009-01-01), pages 1 - 76, XP093048448, ISSN: 1402-1617
VENEMA JENNY: "TRIBOLOGICAL INTERACTIONS AND MODELLING OF FRICTION IN HOT STAMPING", PHD THESIS, 25 September 2019 (2019-09-25), pages 1 - 124, XP093048426, ISBN: 978-90-36-54817-5, DOI: 10.3990/1.9789036548175

Also Published As

Publication number Publication date
US20230002850A1 (en) 2023-01-05
EP4067529A4 (en) 2022-10-05
JP2023504123A (ja) 2023-02-01
JP7326615B2 (ja) 2023-08-15
EP4067529A1 (en) 2022-10-05
CN112877590A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US20210395854A1 (en) Pre-coated steel sheet
CN106466697B (zh) 一种带铝或者铝合金镀层的钢制热冲压产品及其制造方法
JP5054378B2 (ja) 薄鋼板製造方法
EP3770295B1 (en) Manufacturing method for hot stamping component having aluminium-silicon alloy coating
TWI589709B (zh) 熔融鍍鋅鋼板
WO2021104462A1 (zh) 一种性能优异的带涂层热成形部件及其制造方法
US20110056594A1 (en) Process for producing a component from a steel product provided with an al-si coating and intermediate product of such a process
CN112877592B (zh) 具有优异漆膜附着力的热成形部件及其制造方法
CN111041382A (zh) 一种具有低高温摩擦系数的1800MPa级无镀层热成形钢及其制备方法
EP3177749B1 (en) Method for producing a steel sheet having improved strength, ductility and formability
KR102189424B1 (ko) 프레스 성형-경화된 알루미늄 기반 코팅 강판으로 만들어진 부품 및 이 같은 부품을 생산하기 위한 방법
US20150292075A1 (en) Automotive components formed of sheet metal coated with a non-metallic coating
JP2006291272A (ja) 高強度冷延鋼板、溶融亜鉛めっき鋼板、それらの製造方法
EP4079922A2 (en) Aluminum alloy-plated steel sheet, hot-formed member, and methods for manufacturing aluminum alloy-plated steel sheet and hot-formed member
CN111321341A (zh) 一种具有低高温摩擦系数的1500MPa级无镀层热成形钢及其制备方法
CN110423945B (zh) 一种抗拉强度1800MPa级以上的冷弯性能优良的含锌涂覆层热成形构件及其制备方法
JP2004211147A (ja) 熱間プレス成形性に優れた亜鉛めっき鋼板および該鋼板を用いた熱間プレス成形部材の製法並びに高強度かつめっき外観に優れた熱間プレス成形部材
WO2022247815A1 (zh) 一种带蓝色或淡蓝色铝合金镀层的热成型钢、热成型工艺及热成型零部件
KR102290782B1 (ko) 내구성이 우수한 고강도 코팅강판의 제조방법
JP2017066497A (ja) 熱間プレス鋼部品およびその製造方法
TWI646219B (zh) Hot-dip galvanized steel sheet
KR101928194B1 (ko) Zn-Al-Mg계 도금층을 구비하는 열간 프레스 성형 부품 및 그 제조방법
KR101491100B1 (ko) 마그네슘 판재 및 제조방법
CN112334590A (zh) 用于热成形的分离层
KR20030021423A (ko) 초고성형 자동차용 강판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891774

Country of ref document: EP

Effective date: 20220629