WO2021104374A1 - 一种终端设备壳体的合金材料及其制备方法、终端设备 - Google Patents

一种终端设备壳体的合金材料及其制备方法、终端设备 Download PDF

Info

Publication number
WO2021104374A1
WO2021104374A1 PCT/CN2020/131778 CN2020131778W WO2021104374A1 WO 2021104374 A1 WO2021104374 A1 WO 2021104374A1 CN 2020131778 W CN2020131778 W CN 2020131778W WO 2021104374 A1 WO2021104374 A1 WO 2021104374A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
alloy material
terminal device
preparation
cooling rate
Prior art date
Application number
PCT/CN2020/131778
Other languages
English (en)
French (fr)
Inventor
陈景琪
蔡明�
胡邦红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021104374A1 publication Critical patent/WO2021104374A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/04Metal casings

Definitions

  • This application relates to the field of material technology, and in particular to an alloy material of a terminal device housing and a preparation method thereof, and a terminal device.
  • the main means to improve the strength of the material is to increase the degree of alloying of the material (for mainstream 6-series aluminum alloys, it is mainly to increase the alloy content of magnesium, silicon, and copper in the alloy).
  • the mirror light-colored anode effect is widely welcomed by the market.
  • the light-colored mirror anode effect and the large flat design have strict restrictions on the alloy composition of the aluminum alloy substrate, such as low magnesium, low silicon, and low copper.
  • the present application provides an alloy material of a terminal device shell, a preparation method thereof, and a terminal device, so as to improve the strength of the shell and the anodizing effect.
  • an alloy material for a terminal device housing includes the following materials in mass fractions: magnesium: 0.82wt% to 1.22wt%, silicon: 0.52wt% to 1.22wt%, copper: 0.40wt% % ⁇ 0.80wt%, manganese: 0.06wt% ⁇ 0.19wt%, iron: 0.06wt% ⁇ 0.14wt%, chromium: 0.001wt% ⁇ 0.03wt%, and the other components of aluminum; among them, the mass of magnesium: silicon The ratio is between 1 and 1.73.
  • the generated coarse ⁇ -Mg2Si is reduced, the molding effect of the alloy material is improved, and the appearance effect of the alloy material prepared into the terminal device shell is improved And the yield strength.
  • the manganese, chromium and iron meet the following conditions: the sum of the mass fractions of the manganese, chromium and iron is between 0.17 wt% and 0.26 wt%.
  • the alloy material further includes the following material in mass fraction: titanium: 0.001 wt% to 0.03 wt%. Improved grain refinement in the melting and casting process by adding titanium.
  • the alloy material further includes the following material in mass fraction: nickel: 0.001 wt% to 0.02 wt%, which improves the high-temperature mechanical properties and reduces the thermal expansion coefficient of the alloy.
  • the alloy material further includes the following material with a mass fraction of zinc: 0.005 wt% to 0.02 wt%. Introduce the strengthening phase Mg2Zn.
  • a method for preparing an alloy material for a terminal device housing includes the following steps:
  • the mass fractions are: 0.82wt% ⁇ 1.22wt% magnesium, 0.52wt% ⁇ 1.22wt% silicon, 0.40wt% ⁇ 0.80wt% copper, 0.06wt% ⁇ 0.19wt% manganese, 0.06wt% ⁇ 0.14 Iron by weight%, chromium by 0.001% by weight to 0.03% by weight, and the remaining components of aluminum are cast into alloy rods;
  • the alloy rod extruded at the second set cooling rate is quenched.
  • the coarse ⁇ -Mg2Si produced is reduced, and at the same time, the cooling rate of annealing and quenching is improved to avoid falling into the coarse phase ⁇ -Mg2Si at the temperature.
  • the precipitation temperature range improves the forming effect of the alloy material, and improves the appearance effect and the yield strength of the terminal device shell prepared from the alloy material.
  • it also includes an aging treatment at 160-210° C. and a heat preservation time of 2-30 hours after quenching.
  • the annealing of the alloy rod at the first set cold zone speed specifically includes: heating up to 550-570°C, holding for 8-24 hours; cooling at the first set speed Speed to cool down.
  • the first set cooling rate is greater than 150°C/h. Avoid the process temperature falling into the precipitation temperature range of the coarse phase ⁇ -Mg2Si.
  • the first set rate is 160°C/h, 170°C/h, 180°C/h, 190°C/h, and other different cooling rates.
  • the extruded alloy rod is specifically:
  • the temperature of extruding the alloy rod is 490-540°C, the extrusion speed is 6-14m/min, and the outlet temperature after extrusion is 550-570°C.
  • the second set cooling rate is greater than 50°C/s. Avoid the process temperature falling into the precipitation temperature range of the coarse phase ⁇ -Mg2Si.
  • the second set rate is 50°C/h, 60°C/h, 70°C/h, 80°C/h and other different cooling rates.
  • a terminal device may be a common terminal device such as a mobile phone or a tablet computer.
  • the terminal device includes a housing made of any of the alloy materials described above.
  • the generated coarse ⁇ -Mg2Si is reduced, the molding effect of the alloy material is improved, and the appearance effect of the alloy material prepared into the terminal device shell is improved And the yield strength.
  • Fig. 1 is a flow chart of the preparation of alloy materials provided by the embodiments of the application;
  • Figures 2a and 2b show the alloy phase structures of alloy materials at different magnification scales
  • Figure 3 is a microscopic analysis diagram of anodized film of alloy material
  • Figures 4a and 4b show the alloy phase structures of alloy materials at different magnification scales
  • Figure 5 is a microscopic analysis diagram of anodized film of alloy material.
  • the alloy materials provided in the embodiments of the application are used to prepare the housings of terminal devices, such as mobile phones, tablet computers, and electronic watches. And other common terminal equipment shells.
  • terminal devices such as mobile phones, tablet computers, and electronic watches. And other common terminal equipment shells.
  • the index requirements for the mechanical properties of the middle frame material are continuously improved.
  • the mirror light-colored anode effect is widely welcomed by the market.
  • the light-colored mirror anode effect and the large flat design have strict restrictions on the alloy composition of the aluminum alloy substrate, such as low magnesium, low silicon, and low copper. It can be seen from the above description that when the shell is prepared, the enhancement of the shell strength requires high alloying of the material, while the high anode quality of the shell requires low alloying of the material, and the prior art cannot take into account the two properties. For this reason, the embodiments of the present application An alloy material is provided, which will be described in detail below in conjunction with specific embodiments.
  • the elements in the alloy materials provided in the embodiments of this application mainly include the following: magnesium Mg, silicon Si, copper Cu, manganese Mn, iron Fe, chromium Cr, aluminum Lv and other metal materials, the fractions of the foregoing in the alloy It is: magnesium: 0.82wt% ⁇ 1.22wt%, silicon: 0.52wt% ⁇ 1.22wt%, copper: 0.40wt% ⁇ 0.80wt%, manganese: 0.06wt% ⁇ 0.19wt%, iron: 0.06wt% ⁇ 0.14wt %, chromium: 0.001wt% to 0.03wt%, and the remaining components of aluminum.
  • the above-mentioned materials undergo soaking and extrusion processes to form an aluminum alloy material.
  • Mg-Si phase precipitation strengthening (such as the nano-level ⁇ "-Mg 5 Si 6 precipitated during aging strengthening). But if Mg-Si precipitates prematurely in the high temperature section (forms a high temperature equilibrium phase and Coarse ⁇ -Mg 2 Si), such as precipitated in the cooling process after soaking and extrusion process, and produced coarse ⁇ -Mg 2 Si.
  • the Mg-Si phase preferentially corrodes .
  • the formation of corrosion pits in the anodized film (such as caused by coarse ⁇ -Mg 2 Si corrosion), when the size of the corrosion pit is large, the appearance of the anode effect appears a lot of pitting, ID tingling, the color of the anodized film It is impermeable, which leads to poor appearance of the shell of the terminal device.
  • the Mg:Si mass ratio
  • Si mass fraction of Mg: 0.82wt%, 0.85wt%, 0.87wt%, 0.9wt%, 0.94wt%, 0.98wt% , 1.02wt%, 1.05wt%, 1.15wt%, 1.2wt%, 1.22wt% and other mass component ratios.
  • the mass fraction of Si is 0.52wt%, 0.65wt%, 0.77wt%, 0.8wt%, 0.84wt%, 0.98wt%, 1.02wt%, 1.06wt%, 1.18wt%, 1.2wt%, 1.22wt% and other mass component ratios.
  • the mass fraction ratio of Mg and Si between 1 to 1.73, it can be reduced
  • the formation of the ⁇ -Mg2Si coarse phase caused by excessive Mg element improves the forming effect of the alloy material.
  • the main role of Cu among the above elements in the 6-series aluminum alloy is solid solution strengthening and promoting the formation of the strengthened Q phase (Al-Cu-Mg-Si phase), but too much Cu will also bring about the corrosion resistance of the material.
  • the decrease in chromium, especially the addition of excessive Cu element will cause the alloy material to form red Cu 2 O during the anodic oxidation process, which will cause the anode film to turn yellow with different colors. Therefore, in the alloy material disclosed in the present application, the composition ratio of Cu is controlled at 0.40wt% to 0.80wt% to ensure that Cu element can promote the formation of Q phase, while ensuring that excessive Cu2O is not produced, and the corrosion resistance of the alloy is reduced. Performance impact.
  • the content of Cu element may be 0.40wt%, 0.45wt%, 0.50wt%, 0.55wt%, 0.60wt%, 0.65wt%, 0.70wt%, 0.75wt%, 0.80wt% and other mass component ratios.
  • Mn, Cr, and Fe are added elements in the alloy material.
  • the addition of Mn and Cr can effectively refine the crystal grains in the alloy.
  • Mn is added, too much Mn will easily cause the appearance of fibrous structure in the alloy material and reduce the anode effect of the material.
  • the purpose of the grain structure is not limited.
  • the content of Mn is between 0.06-0.19wt%, which has a better effect on grain control in the alloy material, and can also reduce the influence of Mn on the anodization effect of the alloy; for example, Mn
  • the mass fraction of can be 0.06wt%, 0.08wt%, 0.10wt%, 0.12wt%, 0.14wt%, 0.16wt%, 0.18wt%, 0.19wt% and other mass component ratios.
  • element Cr is the same as that of Mn.
  • adding element Cr will better control the equiaxed grain size.
  • Cr can easily cause the existence of fibrous structure and reduce the anode of the material. Therefore, when adding Cr, its content ratio needs to be controlled. In the embodiment of the present application, the content of Cr needs to be ⁇ 0.05wt%.
  • the mass fraction of Cr is 0.001 wt% to 0.03 wt%, for example, the mass fraction of Cr may be 0.001 wt%, 0.0015 wt%, 0.0018 wt%, 0.002 wt%, 0.0024 wt%, 0.0028 wt%, 0.003 wt % And other mass ingredients ratio.
  • the addition of Mn, Cr, and Fe can reduce the upper limit temperature of Mg 2 Si precipitation to a limited extent.
  • the upper limit temperature of Mg 2 Si precipitation will decrease by 2°C;
  • the content of Mn, Cr, and Fe is defined in this application: the sum of the mass fractions of Mn, Cr, and Fe is between 0.17 wt% and 0.26 wt%.
  • the total mass fraction of Mn, Cr and Fe is adjusted by Fe.
  • the content of Mn is between 0.06-0.19wt% and the mass fraction of Cr is between 0.001wt% and 0.03wt%
  • the mass fraction of Fe is between 0.06wt% and 0.14wt%; exemplary, the mass fraction of Fe It can be 0.06wt%, 0.08wt%, 0.1wt%, 0.12wt%, 0.14wt% and other mass component ratios.
  • Titanium Ti The addition of a small amount of Ti also generates TiAl3 intermetallic compounds, which can effectively refine the crystal grains during the melting and casting process.
  • the mass fraction of Ti element is: 0.001wt% ⁇ 0.03wt%; exemplary, the mass fraction of Ti element is 0.001wt%, 0.015wt%, 0.02wt%, 0.025wt%, 0.03wt% and other mass component ratios .
  • Nickel Ni In the Al-Si, Al-Cu, or Al-Si-Cu system, the addition of a small amount of Ni can improve the high-temperature mechanical properties and reduce the thermal expansion coefficient of the alloy.
  • the mass fraction of Ni element is: 0.001 wt% to 0.02 wt%.
  • the mass fraction of Ni element is 0.001wt%, 0.008wt%, 0.012wt%, 0.015wt%, 0.02wt% and other mass component ratios.
  • Zinc Zn In 7xxx aluminum alloys, Zn is the main strengthening phase (usually: Zn>3.5wt%).
  • the addition of Zn to the 7xxx aluminum alloy can introduce the strengthening phase Mg2Zn, but Zn will be corroded preferentially during the anodizing process, and corrosion pits will be formed in the film after the anodization treatment, which will cause the appearance of pitting, excessive white spots, etc. Unfavorable circumstances, too much Zn will increase the difficulty of the anode process. Therefore, in the alloy materials commonly used in the embodiments of the present application, Zn is not used as the main strengthening element.
  • the mass fraction of Zn may be 0.005 wt% to 0.02 wt%.
  • the mass fraction of Zn may be 0.005wt%, 0.008wt%, 0.012wt%, 0.015wt%, 0.018wt%, 0.02wt% and other mass component ratios.
  • the embodiments of the present application also provide a preparation method of the alloy materials. The preparation process will be described in detail below with reference to specific drawings.
  • FIG. 1 shows the preparation process of the alloy material provided in the embodiment of the present application.
  • the preparation process provided in the examples of this application includes the following steps:
  • Step 001 Prepare an alloy rod
  • the mass fractions are: 0.82wt% ⁇ 1.22wt% magnesium, 0.52wt% ⁇ 1.22wt% silicon, 0.40wt% ⁇ 0.80wt% copper, 0.06wt% ⁇ 0.19wt% manganese , 0.06wt% to 0.14wt% of iron, 0.001wt% to 0.03wt% of chromium, and the remaining components of aluminum are cast into alloy rods.
  • the alloy material also contains some inevitable impurities, but its The content can be ignored.
  • the alloy material contains trace elements Ti, Ni and Zn, they are added to the alloy material in the following proportions: the mass fraction of Ti element is: 0.001wt% ⁇ 0.03wt%; the mass fraction of Ni element is: 0.001wt% ⁇ 0.02 wt%; the mass fraction of Zn can be 0.005 wt% to 0.02 wt%.
  • the mass component ratio of aluminum decreases, and the other component ratios remain unchanged.
  • Step 002 Anneal the alloy rod at the first set cooling rate
  • the alloy rods are soaked, and the alloy rods are heated to 550-570°C for 8-24 hours; such as heating to 550°C, 560°C, 570°C and other different temperatures, the holding time can be changed according to needs For example, the holding time can be 8h, 12h, 16h, 20h, 24h and other different temperatures.
  • the alloy rod is cooled at the first set cooling rate. Among them, the first set cooling rate is greater than 150°C/h. In order to avoid the process temperature falling into the precipitation temperature range of the coarse phase ⁇ -Mg2Si.
  • the first set speed is 160°C/h, 170°C/h, 180°C/h, 190°C/h and other different cooling speeds.
  • Step 003 Extruding the alloy rod
  • the temperature of the extruded alloy rod is 490-540°C, for example, the temperature of the alloy rod is 490°C, 500°C, 520°C, 530°C, 540°C, and so on.
  • the extrusion speed is between 6 to 14m/min, such as 6m/min, 8m/min, 10m/min, 12m/min, 14m/min, etc.
  • the outlet temperature after extrusion is between 550 and 570°C.
  • the outlet temperature is: 550°C, 555°C, 560°C, 5650°C, 570°C, etc.
  • Step 004 Quench the alloy rod after extrusion at the second set cooling rate
  • the second set cooling rate is greater than 50°C/s.
  • the second set speed is 50°C/h, 60°C/h, 70°C/h, 80°C/h and other different cooling speeds.
  • Step 005 Aging treatment
  • the aging treatment is maintained at 160 ⁇ 210°C for 2 ⁇ 30h; among them, the temperature can be between 160°C, 180°C, 200°C, 210°C, etc.; the heat preservation time can be 2h, 8h, 14h , 18h, 22h, 26h, 30h, etc.
  • the coarse ⁇ -Mg2Si produced is reduced by adjusting the ratio of magnesium to silicon and the component occupancy.
  • the cooling rate of annealing and quenching is improved to avoid falling into the coarse phase ⁇ -Mg2Si at the temperature.
  • the precipitation temperature range improves the forming effect of the alloy material, and improves the appearance effect and the yield strength of the terminal device shell prepared from the alloy material.
  • Table 1 illustrates the components and component ratios of alloy materials used to prepare terminal device housings in the prior art.
  • Table 2 illustrates the composition ratio of a specific alloy material provided in the embodiment of the present application.
  • the above-mentioned materials are processed as follows: first, the cast rods are homogenized annealed, heated to 550-570°C for 8-24 hours, and then cooled, where the cooling rate of the cast rods after homogenization is greater than 150°C/h; then Extrusion, the extruded rod temperature is 490 ⁇ 540°C, the extrusion speed is 6 ⁇ 14m/min, the outlet temperature is 550 ⁇ 570°C, online quenching, the cooling rate of aluminum alloy extrusion online quenching is greater than 50°C/s; finally aging Treat at 160 ⁇ 210°C and keep for 2 ⁇ 30h.
  • the alloy is prepared by the above method. Analyze the prepared alloy, as shown in Figure 2a and Figure 2b.
  • Figure 2a and Figure 2b show the metallographic structure of the alloy with different magnifications. It can be seen from Figure 2a and Figure 2b that the grain size of the alloy is uniform. (Equiaxial crystals with effective diameter ⁇ 100 ⁇ m), the average size of the second phase is small, the size is uniform, and the distribution is uniform. The above-mentioned alloys were tested for strength, and the test results are shown in Table 3.
  • the microscopic analysis of the alloy material anode film is shown in Figure 3.
  • the white dots are the top view pits.
  • the anode film corrosion pits are uniform in size and evenly distributed; most of the corrosion pits are ⁇ 10 ⁇ m in size. Through direct observation of the appearance, it can be seen that the anode has no pitting in appearance and the appearance is transparent.
  • Table 4 illustrates the composition of another alloy material with a specific composition provided in an embodiment of the present application.
  • the above-mentioned materials are processed as follows: first, the cast rods are homogenized annealed, heated to 550-570°C for 8-24 hours, and then cooled, where the cooling rate of the cast rods after homogenization is greater than 150°C/h; then Extrusion, the extruded rod temperature is 490 ⁇ 540°C, the extrusion speed is 6 ⁇ 14m/min, the outlet temperature is 550 ⁇ 570°C, online quenching, the cooling rate of aluminum alloy extrusion online quenching is greater than 50°C/s; finally aging Treat at 160 ⁇ 210°C and keep for 2 ⁇ 30h.
  • the alloy is prepared by the above method. Analyze the prepared alloy, as shown in Figure 4a and Figure 4b.
  • Figure 4a and Figure 4b show the metallographic structure of the alloy under different magnification ratios. It can be seen from Figure 4a and Figure 4b that the grains are severely coarse. The grain size is ⁇ 500 ⁇ m, the average size of the second phase is small, the size is uniform, and the distribution is uniform. The strength test of the above alloy is carried out, and the test results are shown in Table 5.
  • FIG. 5 The microscopic analysis of the anode film of the alloy material is shown in Figure 5, where the white dots are the top view pits. As can be seen from Figure 5, the anode film corrosion pits are uniform in size and evenly distributed; most of the corrosion pits are 10 ⁇ m in size. Through direct observation of the appearance, it can be seen that the appearance of the anode has no pitting and the appearance is transparent.
  • the alloy materials provided in the embodiments of the present application control the proportion of Mg and Si, and without increasing the proportion of Mg and Si, the cooling strength of the soaking process should be improved (
  • the cooling rate is greater than 150°C/h)
  • the cooling intensity of the extrusion process is greater than 50°C/s
  • the exit temperature of the extrusion process 550 ⁇ 570°C
  • the precipitation temperature range of the coarse phase ⁇ -Mg 2 Si improves the strength of the alloy and the appearance effect of the alloy.
  • the embodiments of the present application also provide a terminal device.
  • the terminal device may be a common terminal device such as a mobile phone or a tablet computer.
  • the terminal device includes a shell made of any of the above alloy materials.
  • the coarse ⁇ -Mg 2 Si produced is reduced, the molding effect of the alloy material is improved, and the alloy material is prepared into a terminal device shell. Appearance effect and yield strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

一种终端设备壳体的合金材料及其制备方法、终端设备,该合金材料包括以下质量分数的材料:镁:0.82wt%~1.22wt%,硅:0.52wt%~1.22wt%,铜:0.40wt%~0.80wt%,锰:0.06wt%~0.19wt%,铁:0.06wt%~0.14wt%,铬:0.001wt%~0.03wt%,以及其余组分的铝;其中,镁:硅的质量比介于1~1.73。通过调整镁与硅的比例以及成分占用量,降低了产生的粗大的β-Mg2Si,改善了合金材料的成型效果,并提高了合金材料制备成终端设备壳体的外观效果以及屈服强度。

Description

一种终端设备壳体的合金材料及其制备方法、终端设备
相关申请的交叉引用
本申请要求在2019年11月26日提交中国专利局、申请号为201911174662.X、申请名称为“一种终端设备壳体的合金材料及其制备方法、终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到材料技术领域,尤其涉及到一种终端设备壳体的合金材料及其制备方法、终端设备。
背景技术
现阶段,随着手机需要的功能越来越多、美观效果越来越好,手机向多终端设备壳体的合金材料、多摄像头模组、多传感器、大电池的发展方向靠拢。这就造成目前手机的中框的开缝数量大量增加、手机结构件的空间在大幅减小。开缝增加、结构空间在大幅减小,而整机的抗跌能力还要不断提升,因此对中框材料的力学特性(主要是屈服强度)的指标要求在不断提升。对于铝合金材料中框,提升材料强度的主要手段为提高材料的合金化程度(对于主流的6系铝合金,主要为提升合金中的镁、硅、铜的合金含量)。另一方面,对于铝合金中框的表面处理工艺,镜面浅色系阳极效果收到市场的广泛欢迎。然而,浅色系的镜面阳极效果和大平面的外观设计都对铝合金基材的合金成分有严格的限制,如低镁、低硅、低铜。
综上所述,强度提升要材料高合金化;高阳极质量要求材料低合金化,现有技术中的壳体材料无法同时兼备这两种性能的要求,造成壳体无法满足产品的需要。
发明内容
本申请提供了一种终端设备壳体的合金材料及其制备方法、终端设备,用以提高壳体的强度以及阳极氧化效果。
第一方面,提供了一种终端设备壳体的合金材料,该合金材料包括以下质量分数的材料:镁:0.82wt%~1.22wt%,硅:0.52wt%~1.22wt%,铜:0.40wt%~0.80wt%,锰:0.06wt%~0.19wt%,铁:0.06wt%~0.14wt%,铬:0.001wt%~0.03wt%,以及其余组分的铝;其中,镁:硅的质量比介于1~1.73。
在上述技术方案中,通过调整镁与硅的比例以及成分占用量,降低了产生的粗大的β-Mg2Si,改善了合金材料的成型效果,并提高了合金材料制备成终端设备壳体的外观效果以及屈服强度。
在一个具体的可实施方案中,所述锰、铬及铁满足以下条件:所述锰、铬及铁的质量分数的总和介于0.17wt%~0.26wt%之间。通过调整锰、铬、铁的含量,改善等轴晶粒尺寸,降低纤维状组织的存在,进而改善合金材料的阳极效果。
在一个具体的可实施方案中,所述合金材料还包括以下质量分数的材料:钛: 0.001wt%~0.03wt%。通过增加钛改善在熔铸过程中细化晶粒。
在一个具体的可实施方案中,所述合金材料还包括以下质量分数的材料:镍:0.001wt%~0.02wt%,提高高温力学性能,同时降低合金热膨胀系数。
在一个具体的可实施方案中,所述合金材料还包括以下质量分数的材料:锌:0.005wt%~0.02wt%。引入强化相Mg2Zn。
第二方面,提供了一种终端设备壳体的合金材料的制备方法,该制备方法包括以下步骤:
将质量分数为:0.82wt%~1.22wt%的镁,0.52wt%~1.22wt%的硅,0.40wt%~0.80wt%的铜,0.06wt%~0.19wt%的锰,0.06wt%~0.14wt%的铁,0.001wt%~0.03wt%的铬,以及其余组分的铝材料铸造成合金棒;
以第一设定冷却速度对所述合金棒进行退火;
挤压所述合金棒;
以第二设定冷却速度挤压后的合金棒进行淬火。
在上述技术方案中,通过调整镁与硅的比例以及成分占用量,降低了产生的粗大的β-Mg2Si,同时,通过改善退火以及淬火的冷却速度,来避免在温度落入粗大相β-Mg2Si的析出温度区间,改善了合金材料的成型效果,并提高了合金材料制备成终端设备壳体的外观效果以及屈服强度。
在一个具体的可实施方案中,还包括在淬火后在160~210℃,保温2~30h的时效处理。
在一个具体的可实施方案中,所述以第一设定的冷区速度对所述合金棒进行退火具体为:升温至550~570℃,保温8~24h;以所述第一设定冷却速度进行冷却。
在一个具体的可实施方案中,所述第一设定冷却速度大于150℃/h。避免工艺温度落入粗大相β-Mg2Si的析出温度区间。
在一个具体的可实施方案中,第一设定速度为160℃/h、170℃/h、180℃/h、190℃/h等不同的冷却速度。
在一个具体的可实施方案中,所述挤压所述合金棒具体为:
挤压所述合金棒的温度在490~540℃,挤压的速度介于6~14m/min,挤压后的出口温度介于550~570℃之间。
在一个具体的可实施方案中,所述第二设定冷却速度大于50℃/s。避免工艺温度落入粗大相β-Mg2Si的析出温度区间。
在一个具体的可实施方案中,第二设定速度为50℃/h、60℃/h、70℃/h、80℃/h等不同的冷却速度。
第三方面,提供了一种终端设备,该终端设备可以为手机、平板电脑等常见的终端设备,该终端设备包括上述任一项所述的合金材料制备的壳体。
在上述技术方案中,通过调整镁与硅的比例以及成分占用量,降低了产生的粗大的β-Mg2Si,改善了合金材料的成型效果,并提高了合金材料制备成终端设备壳体的外观效果以及屈服强度。
附图说明
图1为本申请实施例提供的合金材料的制备流程图;
图2a及图2b为不同放大比例下合金材料的合金相组织;
图3为合金材料阳极化膜的微观分析图;
图4a及图4b为不同放大比例下合金材料的合金相组织;
图5为合金材料阳极化膜的微观分析图。
具体实施方式
为方便理解本申请实施例提供的终端设备壳体的合金材料,下面首先说明一下其应用场景,本申请实施例提供的合金材料应用于制备终端设备的壳体,如手机、平板电脑、电子手表等常见的终端设备的壳体。以手机为例,随着现在终端设备的中框(壳体的一部分)的开缝数量大量增加、手机结构件的空间在大幅减小。开缝增加、结构空间在大幅减小,而整机的抗跌能力还要不断提升,因此对中框材料的力学特性(主要是屈服强度)的指标要求在不断提升。但是在另一方面,对于铝合金中框的表面处理工艺,镜面浅色系阳极效果收到市场的广泛欢迎。然而,浅色系的镜面阳极效果和大平面的外观设计都对铝合金基材的合金成分有严格的限制,如低镁、低硅、低铜。由上述描述可以看出,在制备壳体时,壳体强度提升需要材料高合金化,而壳体高阳极质量要求材料低合金化,而现有技术无法兼顾两种性能,为此本申请实施例提供了一种合金材料,下面结合具体的实施例详细进行说明。
本申请实施例提供的合金材料中的元素主要包括以下几种:镁Mg、硅Si、铜Cu、锰Mn、铁Fe、铬Cr、铝Lv等金属材料,上述几种在合金中占的分数为:镁:0.82wt%~1.22wt%,硅:0.52wt%~1.22wt%,铜:0.40wt%~0.80wt%,锰:0.06wt%~0.19wt%,铁:0.06wt%~0.14wt%,铬:0.001wt%~0.03wt%,以及其余组分的铝。上述材料经过均热和挤压工艺形成铝合金材料。
上述材料中的Mg、Si两种元素为6XXX铝合金的主要强化元素。在制备合金的过程中,通过Mg-Si相析出强化(如时效强化时所析出的纳米级别β”-Mg 5Si 6)。但是如果Mg-Si过早在高温段析出(形成高温平衡相且尺寸粗大的β-Mg 2Si),比如在均热和挤压工艺后的冷却过程中析出,而产生的粗大的β-Mg 2Si。在后续的阳极处理过程中,Mg-Si相优先腐蚀,在阳极化膜层形成腐蚀坑(如由粗大的β-Mg 2Si腐蚀所导致),当腐蚀坑尺寸较大时,阳极效果外观出现大量麻点,ID发麻,阳极化膜层的颜色不通透,从而引发终端设备的壳体外观不良。因此在制备合金材料时,为了避免在挤压工艺流程中析出β-Mg 2Si粗大相,Mg:Si(质量比)控制在1~1.73,既Mg:0.82~1.22wt%,Si:0.52~1.22wt%;示例性的,Mg的质量分数:0.82wt%、0.85wt%、0.87wt%、0.9wt%、0.94wt%、0.98wt%、1.02wt%、1.05wt%、1.15wt%、1.2wt%、1.22wt%等质量成分比例。Si的质量分数为0.52wt%、0.65wt%、0.77wt%、0.8wt%、0.84wt%、0.98wt%、1.02wt%、1.06wt%、1.18wt%、1.2wt%、1.22wt%等质量成分比例。在采用上述质量分数时,通过控制Mg与Si的质量分数比例在1~1.73,降低Mg元素过量而导致的β-Mg2Si粗大相的生成的情况,改善了合金材料的成型效果。
上述元素中的Cu在6系铝合金中的主要作用为固溶强化及促进强化Q相(Al-Cu-Mg-Si相)的形成,但是Cu的成分过多也会带来材料耐腐蚀性能的下降,特别是过量的Cu元素的添加会造成合金材料在阳极氧化过程中形成红色的Cu 2O,从而导致阳极膜异色发黄。因此在本申请公开的合金材料中,控制Cu的成分比例在0.40wt%~0.80wt%,保证Cu元素可以促进Q相的形成,同时保证不会产生过多的Cu2O,降低对合金的耐腐蚀性能的影响。示例性的,Cu元素的含量可以为0.40wt%、0.45wt%、0.50wt%、0.55wt%、 0.60wt%、0.65wt%、0.70wt%、0.75wt%、0.80wt%等质量成分比例。
上述元素中的Mn、Cr、Fe为合金材料中的添加元素。其中,Mn、Cr的添加可有效细化合金中的晶粒,在添加Mn元素时,Mn过多则易使得合金材料中出现纤维状组织,降低材料的阳极效果,过少则达不到细化晶粒组织的目的。因此,在添加Mn元素时,Mn的含量介于0.06-0.19wt%,对合金材料中晶粒控制的效果较佳,同时也可降低Mn元素对合金阳极化效果的影响;示例性的,Mn的质量分数可以为0.06wt%、0.08wt%、0.10wt%、0.12wt%、0.14wt%、0.16wt%、0.18wt%、0.19wt%等质量成分比例。
元素Cr的作用与Mn一致,在合金材料中含Mn的情况下,再增加元素Cr,则对等轴晶粒尺寸的控制更佳,同时Cr也容易造成纤维状组织的存在,降低材料的阳极效果,因此在添加Cr时需要控制其含量比例,在本申请实施例中Cr的含量需≤0.05wt%。如Cr的质量分量为0.001wt%~0.03wt%,示例性的,Cr的质量分数可以为0.001wt%、0.0015wt%、0.0018wt%、0.002wt%、0.0024wt%、0.0028wt%、0.003wt%等质量成分比例。
在合金材料中,Mn、Cr、Fe的添加总汇可有限降低Mg 2Si析出上限温度,在Mn、Cr、Fe的添加总量增每多0.1wt%,Mg 2Si析出上限温度下降2℃;为控制Mg 2Si的析出上限温度,在本申请中限定了Mn、Cr、Fe的含量:Mn、Cr、Fe的质量分数的总和介于0.17wt%~0.26wt%之间。为了能够降低Mg2Si的析出上限温度,同时避免过多的Mn、Cr造成纤维状组织的存在,在本申请公开的技术方案中,通过Fe调整Mn、Cr及Fe组成的总质量分数。在Mn的含量介于0.06-0.19wt%、Cr的质量分量为0.001wt%~0.03wt%时,Fe的质量分数介于0.06wt%~0.14wt%之间;示例性的,Fe的质量分数可以为0.06wt%、0.08wt%、0.1wt%、0.12wt%、0.14wt%等质量成分比例。从而通过调整锰、铬、铁的含量,改善等轴晶粒尺寸,降低纤维状组织的存在,进而改善合金材料的阳极效果。
除了上述的质量分数的元素外,合金材料还可以添加其他元素,来改善合金材料在制备时的效果,下面示例进行说明。
钛Ti:微量Ti的加入,也生成TiAl3金属间化合物,可以有效在熔铸过程中细化晶粒。其中,Ti元素的质量分数为:0.001wt%~0.03wt%;示例性的,Ti元素的质量分数为0.001wt%、0.015wt%、0.02wt%、0.025wt%、0.03wt%等质量成分比例。
镍Ni:在Al-Si、Al-Cu、或Al-Si-Cu体系中,微量Ni的加入可提高高温力学性能,同时降低合金热膨胀系数。其中,Ni元素的质量分数为:0.001wt%~0.02wt%。示例性的,Ni元素的质量分数为0.001wt%、0.008wt%、0.012wt%、0.015wt%、0.02wt%等质量成分比例。
锌Zn:在7xxx铝合金中,Zn为主要强化相(通常:Zn>3.5wt%)。Zn在7xxx铝合金中的加入可引入强化相Mg2Zn,但是Zn在阳极处理过程中会被优先腐蚀,在阳极化处理后的膜层形成腐蚀坑,从而使外观形成麻点、白点过多等不良情况,过多的Zn元素的会增加阳极工艺的难度。因此在本申请实施例通的合金材料中,Zn不作为主要强化元素,在本申请实施例的合金材料中,Zn的质量分数可以为:0.005wt%~0.02wt%。示例性的,Zn的质量分数可以为0.005wt%、0.008wt%、0.012wt%、0.015wt%、0.018wt%、0.02wt%等质量成分比例。
当然应当理解的时,上述几种添加元素仅仅为一种示例,本申请实施例提供的合金材 料中,可以根据需要添加其他的元素,在此不再一一列举。
为方便理解本申请实施例提供的合金材料,本申请实施例还提供了合金材料的制备方法,下面结合具体附图详细说明一下制备流程。
如图1中所示,图1示出了本申请实施例提供的合金材料的制备流程。本申请实施例提供的制备流程包括以下步骤:
步骤001、制备合金棒;
具体的制备过程中,将质量分数为:0.82wt%~1.22wt%的镁,0.52wt%~1.22wt%的硅,0.40wt%~0.80wt%的铜,0.06wt%~0.19wt%的锰,0.06wt%~0.14wt%的铁,0.001wt%~0.03wt%的铬,以及其余组分的铝材料铸造成合金棒,在制备过程中合金材料中还包含一些不可避免的杂质,但其含量可以忽略不计。在合金材料包含有微量元素Ti、Ni及Zn时,按照以下比例添加到合金材料中:Ti元素的质量分数为:0.001wt%~0.03wt%;Ni元素的质量分数为:0.001wt%~0.02wt%;Zn的质量分数可以为:0.005wt%~0.02wt%。在添加上述几种元素后,铝所在的质量成分比例降低,其他的成分比例不变。
步骤002:以第一设定冷却速度对合金棒进行退火;
在具体制备过程中,对合金棒进行均热,将合金棒升温至550~570℃,保温8~24h;如升温至550℃、560℃、570℃等不同的温度,保温时间可以根据需要而定,如保温时间可以为8h、12h、16h、20h、24h等不同的温度。在保温完成后,对合金棒进行以第一设定冷却速度进行冷却。其中,第一设定冷却速度大于150℃/h。以避免工艺温度落入粗大相β-Mg2Si的析出温度区间。在具体冷却过程中,第一设定速度为160℃/h、170℃/h、180℃/h、190℃/h等不同的冷却速度。
步骤003:挤压合金棒;
在具体的制备过程中,挤压合金棒的温度在490~540℃,如合金棒的温度在490℃、500℃、520℃、530℃、540℃等。挤压的速度介于6~14m/min,如6m/min、8m/min、10m/min、12m/min、14m/min等速度。挤压后的出口温度介于550~570℃之间,如出口温度为:550℃、555℃、560℃、5650℃、570℃等温度。
步骤004:以第二设定冷却速度挤压后的合金棒进行淬火;
在具体制备过程中,第二设定冷却速度大于50℃/s。示例性的,第二设定速度为50℃/h、60℃/h、70℃/h、80℃/h等不同的冷却速度。通过控制冷却速度,避免工艺温度落入粗大相β-Mg 2Si的析出温度区间。
步骤005:时效处理;
在具体制备过程中,在160~210℃,保温2~30h的时效处理;其中,温度可以在160℃、180℃、200℃、210℃等之间;保温的时间可以为2h、8h、14h、18h、22h、26h、30h等时间。
在上述制备方法中,通过调整镁与硅的比例以及成分占用量,降低了产生的粗大的β-Mg2Si,同时,通过改善退火以及淬火的冷却速度,来避免在温度落入粗大相β-Mg2Si的析出温度区间,改善了合金材料的成型效果,并提高了合金材料制备成终端设备壳体的外观效果以及屈服强度。
为方便理解本申请实施例提供的合金材料与现有技术中合金材料的区别,下面以具体的示例进行对比。
首先,参考表1,其中,表1中示例出了现有技术中用于制备终端设备壳体的合金材 料的成分以及成分比例。
表1屈服强度340MPa和370MPa材料合金元素成分
Figure PCTCN2020131778-appb-000001
由表1可以看出,现有技术中为提高合金材料的屈服强度,通过增加Mg与Si的成分比例,将Mg由原来的0.941wt%提升到1.339wt%,而Si由原来的0.54wt%提升到0.839wt%;虽然采用上述的成分比例提高了合金材料的屈服强度,但是在采用上述合金材料存在一些缺陷,以上述屈服强度370MPa材料方案,在进行阳极化处理时,合金材料在阳极后表面出现大量麻点;阳极后颜色不通透,通过对该方案合金阳极膜分析发现,在显微镜下可观测到阳极膜腐蚀坑(如图三中所示白点)尺寸、分布不均匀,并发现大量大尺寸膜腐蚀坑(等效直径>20μm)。在对该合金的显微组织分析中,可观测到大量粗大第二相颗粒(等效直径>10μm),且晶粒尺寸分布不均匀,粗大晶粒等效直径>300μm。
一并参考表2,其中,表2示例出了本申请实施例提供的一种具体的合金材料的成分比例。
表2
Figure PCTCN2020131778-appb-000002
对上述成分的材料,进行如下加工:首先铸棒进行均匀化退火,升温至550~570℃保温8~24h,再进行冷却,其中,铸棒均火后的冷却速度大于150℃/h;然后进行挤压,挤压棒温490~540℃,挤压速度6~14m/min,出口温度550~570℃,在线淬火,铝合金挤压在线淬火的冷却速度大于50℃/s;最后进行时效处理160~210℃保温2~30h。通过上述方法制备成合金。对制备的合金进行分析,如图2a及图2b所示,图2a及图2b示出了不同放大倍数的合金的金相组织,由图2a及图2b可以看出,合金的晶粒尺寸均匀(有效直径≈100μm的等轴晶),第二相平均尺寸较小、尺寸均一、分布均匀。对上述合金进行力性测试,测试结果如表3所示。
表3
Figure PCTCN2020131778-appb-000003
由表3可以看出,采用上述制备方法制备出的合金材料的抗拉强度、延伸强度等均大于370Mpa。
对合金材料阳极膜微观分析如图3所示,其中白色的点为俯视坑,由图3中可以看出,阳极膜腐蚀坑尺寸均一,分布均匀;大部分腐蚀坑尺寸≦10μm。通过外观直接观察可以 看出,阳极外观无麻点,外观透亮。
如表4所示,表4示例了本申请实施例提供的另一种具体成分的合金材料的成分。
表4
Figure PCTCN2020131778-appb-000004
对上述成分的材料,进行如下加工:首先铸棒进行均匀化退火,升温至550~570℃保温8~24h,再进行冷却,其中,铸棒均火后的冷却速度大于150℃/h;然后进行挤压,挤压棒温490~540℃,挤压速度6~14m/min,出口温度550~570℃,在线淬火,铝合金挤压在线淬火的冷却速度大于50℃/s;最后进行时效处理160~210℃保温2~30h。通过上述方法制备成合金。对制备的合金进行分析,如图4a及图4b所示,图4a及图4b示出了不同放大比例下的合金的金相组织,由图4a及图4b可以看出,晶粒粗大严重,晶粒尺寸≈500μm,第二相平均尺寸小、尺寸均一、分布均匀。对上述合金进行力性测试,测试结果如表5所示。
表5
Figure PCTCN2020131778-appb-000005
对合金材料阳极膜微观分析如图5所示,其中白色的点为俯视坑,由图5中可以看出,阳极膜腐蚀坑尺寸均一,分布均匀;大部分腐蚀坑尺寸10μm。通过外观直接观察可以看出,阳极外观无麻点,外观透亮。
对比现有技术可以看出,在本申请实施例提供的合金材料通过控制Mg与Si的比例成分,在没有提升Mg、Si的成分比例的前提下,通过要配合提高均热工艺的冷却强度(冷却速度大于150℃/h)、挤压工艺的冷却强度(在线淬火的冷却速度大于50℃/s)、挤压工艺出口温度(550~570℃)来避免在挤压流程中工艺温度落入粗大相β-Mg 2Si的析出温度区间,从而改善了合金的强度,改善了合金的外观效果。
本申请实施例还提供了一种终端设备,该终端设备可以为手机、平板电脑等常见的终端设备,该终端设备包括上述任一项的合金材料制备的壳体。在上述技术方案中,通过调整镁与硅的比例以及成分占用量,降低了产生的粗大的β-Mg 2Si,改善了合金材料的成型效果,并提高了合金材料制备成终端设备壳体的外观效果以及屈服强度。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种终端设备壳体的合金材料,其特征在于,包括以下质量分数的材料:
    镁:0.82wt%~1.22wt%,硅:0.52wt%~1.22wt%,铜:0.40wt%~0.80wt%,锰:0.06wt%~0.19wt%,铁:0.06wt%~0.14wt%,铬:0.001wt%~0.03wt%,以及其余组分的铝;其中,
    镁:硅的质量比介于1~1.73。
  2. 根据权利要求1所述的终端设备壳体的合金材料,其特征在于,所述锰、铬及铁满足以下条件:
    所述锰、铬及铁的质量分数的总和介于0.17wt%~0.26wt%之间。
  3. 根据权利要求1或2所述的终端设备壳体的合金材料,其特征在于,所述合金材料还包括以下质量分数的材料:
    钛:0.001wt%~0.03wt%。
  4. 根据权利要求1~3任一项所述的合金材料,其特征在于,所述合金材料还包括以下质量分数的材料:
    镍:0.001wt%~0.02wt%。
  5. 根据权利要求1~4任一项所述的合金材料,其特征在于,所述合金材料还包括以下质量分数的材料:
    锌:0.005wt%~0.02wt%。
  6. 一种终端设备壳体的合金材料的制备方法,其特征在于,包括以下步骤:
    将质量分数为:0.82wt%~1.22wt%的镁,0.52wt%~1.22wt%的硅,0.40wt%~0.80wt%的铜,0.06wt%~0.19wt%的锰,0.06wt%~0.14wt%的铁,0.001wt%~0.03wt%的铬,以及其余组分的铝材料铸造成合金棒;
    以第一设定冷却速度对所述合金棒进行退火;
    挤压所述合金棒;
    以第二设定冷却速度挤压后的合金棒进行淬火。
  7. 根据权利要求6所述的制备方法,其特征在于,还包括在淬火后在160~210℃,保温2~30h的时效处理。
  8. 根据权利要求6或7所述的制备方法,其特征在于,所述以第一设定的冷区速度对所述合金棒进行退火具体为:
    升温至550~570℃,保温8~24h;
    以所述第一设定冷却速度进行冷却。
  9. 根据权利要求6~8任一项所述的制备方法,其特征在于,所述第一设定冷却速度大于150℃/h。
  10. 根据权利要求6~9任一项所述的制备方法,其特征在于,所述挤压所述合金棒具体为:
    挤压所述合金棒的温度在490~540℃,挤压的速度介于6~14m/min,挤压后的出口温度介于550~570℃之间。
  11. 根据权利要求6~10任一项所述的制备方法,其特征在于,所述第二设定冷却速度大于50℃/s。
  12. 一种终端设备,其特征在于,包括如权利要求1~5任一项所述的合金材料制备的壳体。
PCT/CN2020/131778 2019-11-26 2020-11-26 一种终端设备壳体的合金材料及其制备方法、终端设备 WO2021104374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911174662.XA CN112941375A (zh) 2019-11-26 2019-11-26 一种终端设备壳体的合金材料及其制备方法、终端设备
CN201911174662.X 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021104374A1 true WO2021104374A1 (zh) 2021-06-03

Family

ID=76128759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131778 WO2021104374A1 (zh) 2019-11-26 2020-11-26 一种终端设备壳体的合金材料及其制备方法、终端设备

Country Status (2)

Country Link
CN (1) CN112941375A (zh)
WO (1) WO2021104374A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317255A (ja) * 2001-04-17 2002-10-31 Sumitomo Light Metal Ind Ltd 自動車ブレーキ用部材及びその製造方法
CN105296811A (zh) * 2015-10-23 2016-02-03 苏州有色金属研究院有限公司 手机部件用高强6xxx系铝合金及其加工方法
CN105970025A (zh) * 2016-05-16 2016-09-28 东莞市灿煜金属制品有限公司 一种高强度可氧化铝合金板带材的制造方法
CN108138269A (zh) * 2015-12-18 2018-06-08 诺维尔里斯公司 高强度6xxx铝合金和其制备方法
CN108359864A (zh) * 2018-05-22 2018-08-03 东莞市宏锦金属制品有限公司 铝合金及其制备方法
CN108950324A (zh) * 2018-09-27 2018-12-07 淮北市君意达金属科技有限责任公司 一种高强高阳极氧化效果的电子产品用铝合金及其加工方法
CN109402466A (zh) * 2018-12-25 2019-03-01 广东和胜工业铝材股份有限公司 Al-Mg-Si-Cu-Mn合金及其制备方法
CN109609817A (zh) * 2019-02-21 2019-04-12 广东圆合汽车通讯新材料应用研究院有限公司 一种智能手机用高强高阳极氧化效果的6xxx系铝合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620207B2 (ja) * 2000-02-24 2011-01-26 昭和電工株式会社 Al−Mg−Si系合金押出形材およびその製造方法
BG65068B1 (bg) * 2001-08-09 2007-01-31 Norsk Hydro Asa Метод за обработване на алуминиева сплав, съдържаща магнезий и силиций
CN106636806B (zh) * 2016-12-30 2018-11-20 中山瑞泰铝业有限公司 一种细小晶粒中等强度铝合金及其制备方法与应用
CN108425046B (zh) * 2018-03-28 2020-07-28 广西南南铝加工有限公司 阳极氧化用铝合金及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317255A (ja) * 2001-04-17 2002-10-31 Sumitomo Light Metal Ind Ltd 自動車ブレーキ用部材及びその製造方法
CN105296811A (zh) * 2015-10-23 2016-02-03 苏州有色金属研究院有限公司 手机部件用高强6xxx系铝合金及其加工方法
CN108138269A (zh) * 2015-12-18 2018-06-08 诺维尔里斯公司 高强度6xxx铝合金和其制备方法
CN105970025A (zh) * 2016-05-16 2016-09-28 东莞市灿煜金属制品有限公司 一种高强度可氧化铝合金板带材的制造方法
CN108359864A (zh) * 2018-05-22 2018-08-03 东莞市宏锦金属制品有限公司 铝合金及其制备方法
CN108950324A (zh) * 2018-09-27 2018-12-07 淮北市君意达金属科技有限责任公司 一种高强高阳极氧化效果的电子产品用铝合金及其加工方法
CN109402466A (zh) * 2018-12-25 2019-03-01 广东和胜工业铝材股份有限公司 Al-Mg-Si-Cu-Mn合金及其制备方法
CN109609817A (zh) * 2019-02-21 2019-04-12 广东圆合汽车通讯新材料应用研究院有限公司 一种智能手机用高强高阳极氧化效果的6xxx系铝合金及其制备方法

Also Published As

Publication number Publication date
CN112941375A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2015127805A1 (zh) 一种汽车车身外板用高烤漆硬化铝合金材料及其制备方法
CN106350716B (zh) 一种高强度外观件铝合金材料及其制备方法
WO2021008428A1 (zh) 一种超高强铝锂合金及其制备方法
JP3803981B2 (ja) 高強度および高導電性を有する銅合金の製造方法
WO2015109893A1 (zh) 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
JP2019512050A (ja) 高電気伝導性・耐熱性鉄含有軽質アルミワイヤー及びその製造プロセス
WO2021155648A1 (zh) 6系铝合金及其制备方法,移动终端
JP2007009262A (ja) 熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板およびその製造方法
JP2008013836A (ja) 異方性の少ない高強度銅合金板材およびその製造法
WO2015022734A1 (ja) 高強度アルマイト素材用アルミニウム合金板及びその製造方法、並びに高強度アルマイト皮膜付きアルミニウム合金板
CN110983128A (zh) 一种高强耐热变形铝合金及其制备方法
CN110396628B (zh) 一种铝合金及其制备方法
CN103898353A (zh) 一种高强度高导电性能铜合金及其制备方法
CN111074121B (zh) 铝合金及其制备方法
CN113106306A (zh) 一种高强度耐蚀性的5xxx系合金及其制备方法
JP5555154B2 (ja) 電気・電子部品用銅合金およびその製造方法
CN110093542A (zh) 一种高屈服高延伸率手机中板用压铸合金材料及制备方法
CN112501482B (zh) 一种Si微合金化AlZnMgCu合金及其制备方法
CN105483577A (zh) 共晶类Al-Si-Cu-Mn耐热铝合金的热处理工艺
CN109161738B (zh) 一种高导电耐腐蚀的铝合金及其制备方法
WO2021104374A1 (zh) 一种终端设备壳体的合金材料及其制备方法、终端设备
JP2017179449A (ja) Al−Mg―Si系合金板の製造方法
CN114351016B (zh) 一种粗晶铝合金及其制备方法和应用
JP7472318B2 (ja) アルミニウム合金及びアルミニウム合金鋳物材
JP2019056163A (ja) アルミニウム合金板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893888

Country of ref document: EP

Kind code of ref document: A1