WO2021104204A1 - 一种电池包控制方法、系统及车辆 - Google Patents

一种电池包控制方法、系统及车辆 Download PDF

Info

Publication number
WO2021104204A1
WO2021104204A1 PCT/CN2020/130888 CN2020130888W WO2021104204A1 WO 2021104204 A1 WO2021104204 A1 WO 2021104204A1 CN 2020130888 W CN2020130888 W CN 2020130888W WO 2021104204 A1 WO2021104204 A1 WO 2021104204A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
vehicle
preset
state
battery
Prior art date
Application number
PCT/CN2020/130888
Other languages
English (en)
French (fr)
Inventor
赵晴
陈淑江
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US17/754,359 priority Critical patent/US20220340012A1/en
Priority to EP20894318.3A priority patent/EP4023488A4/en
Publication of WO2021104204A1 publication Critical patent/WO2021104204A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed

Definitions

  • the present disclosure relates to the field of automobile technology, and in particular to a battery pack control method, system and vehicle.
  • the battery pack used as a power source in a new energy vehicle can only exert its maximum performance within a suitable temperature range. If the temperature of the battery pack is too high or too low, it will cause damage to the battery pack, and even safety accidents may occur. In order to prevent the temperature of the battery pack from being too low or too high, existing hybrid vehicles and pure electric vehicles use thermal management systems to control the temperature of the battery pack.
  • the existing thermal management system requires the vehicle to be powered on before it can work. After the vehicle is powered off, the existing thermal management system can no longer be used to control the temperature of the battery pack. Low or high causes the temperature of the power battery pack to exceed the appropriate temperature range, which is inconvenient for the vehicle to restart and use.
  • the present disclosure aims to provide a battery pack control method, system, and vehicle to solve the problem that in the prior art, after the vehicle is powered off, the thermal management system cannot be used to control the temperature of the battery pack, which is easily affected by the environment.
  • the temperature is low or high, leading to the problem of too low or too high battery pack temperature.
  • a battery pack control method applied to a vehicle wherein the vehicle includes a battery sensor, a heating module, and a cooling module, and the method includes:
  • the heating module When the vehicle is in the power-on state, if the current battery temperature value is less than the preset lower limit, if the heating module meets the first preset condition, the heating module will Heating the battery pack to restore the temperature of the battery pack to the preset range, and the preset lower limit value is the minimum value within the preset range;
  • the cooling module When the vehicle is in the power-on state, if the current battery temperature value is greater than a preset upper limit, if the cooling module meets a second preset condition, the cooling module will The battery pack is cooled, so that the temperature of the battery pack is restored to the preset range, and the preset upper limit value is the maximum value within the preset range.
  • the first preset condition includes that the heating module is turned on, and after the vehicle is in the power-off state, the number of activations of the heating module is less than a first number threshold;
  • the second preset condition includes that the cooling module is turned on, and after the vehicle is in the power-off state, the number of activations of the cooling module is less than a second number threshold.
  • the method when the vehicle is in the power-on state, if the current temperature value is less than a preset lower limit value, if the heating module satisfies a first preset condition, then Before the step of heating the battery pack by the heating module to restore the temperature of the battery pack to the preset range, the method further includes:
  • the first preset condition further includes: the current ambient temperature value is less than a preset temperature threshold.
  • the method further includes:
  • control the The battery sensor enters a sleep state.
  • the method further includes:
  • the first situation is a situation where the current battery temperature value is less than the preset lower limit value, and the current ambient temperature value is not less than the preset temperature threshold value.
  • the first preset condition further includes: the state of charge value of the battery pack is less than a preset charge threshold, the heating module is the engine of the vehicle, and the engine It can be started, and the engine is used for heating the battery pack;
  • the heating treatment includes:
  • the engine is started, and the battery pack is heated by the engine.
  • the first preset condition further includes: when the state of charge value of the battery pack is greater than or equal to a preset charge threshold, the heating module is a heating element;
  • the heating treatment includes:
  • the battery pack is used to supply power to the heating element, and the battery pack is heated by the heating element.
  • the second preset condition further includes: when the state of charge value of the battery pack is greater than or equal to a preset charge threshold, the cooling module includes a compressor;
  • the cooling treatment includes:
  • the second preset condition further includes: when the state of charge value of the battery pack is less than the preset charge threshold, the cooling module includes the cooling water circulation structure in the battery pack or the heat dissipation of the vehicle Device
  • the cooling processing includes:
  • the cooling process includes:
  • the radiator is used to cool the battery pack.
  • Another object of the present disclosure is to provide a battery pack control system applied to a vehicle, the vehicle including a battery sensor, a heating module, and a cooling module, wherein the system includes:
  • a battery pack state acquisition module configured to acquire the current battery temperature value of the battery pack of the vehicle and the current state of the thermostat control function of the battery pack through the battery sensor when the vehicle is in a power-off state;
  • the wake-up module is used to switch the vehicle from the power-off state to the power-on state when the current battery temperature value is not within the preset range and the current state of the thermostat control function is in the on state ;
  • the first control module is configured to pass if the heating module meets the first preset condition when the current battery temperature value is less than the preset lower limit value when the vehicle is in the power-on state
  • the heating module heats the battery pack so that the temperature of the battery pack returns to the preset range, and the preset lower limit value is the minimum value within the preset range;
  • the second control module is configured to pass if the cooling module satisfies the second preset condition when the current battery temperature value is greater than the preset upper limit value when the vehicle is in the power-on state
  • the cooling module performs cooling processing on the battery pack, so that the temperature of the battery pack returns to the preset range, and the preset upper limit value is the maximum value within the preset range.
  • the first preset condition includes that the heating module is turned on, and after the vehicle is in the power-off state, the number of activations of the heating module is less than a first number threshold;
  • the second preset condition includes that the cooling module is turned on, and after the vehicle is in the power-off state, the number of activations of the cooling module is less than a second number threshold.
  • the system further includes: an ambient temperature acquisition module, configured to acquire a current ambient temperature value when the vehicle is in the power-on state;
  • the first preset condition further includes: the current ambient temperature value is less than a preset temperature threshold.
  • system further includes:
  • the third control module is configured to: if the heating module does not meet the first preset condition, or the cooling module does not meet the second preset condition, or the current state of the thermostat control function of the battery pack is In the off state, the battery sensor is controlled to enter the dormant state.
  • system further includes:
  • a fourth control module configured to control the battery sensor to enter a sleep state if the number of occurrences of the first situation is greater than or equal to the third number threshold;
  • the first situation is a situation where the current battery temperature value is less than the preset lower limit value, and the current ambient temperature value is not less than the preset temperature threshold value.
  • the first preset condition further includes: the state of charge value of the battery pack is less than a preset charge threshold, the heating module is the engine of the vehicle, and the engine It can be started, and the engine is used for heating the battery pack;
  • the heating treatment includes:
  • the engine is started, and the battery pack is heated by the engine.
  • the first preset condition further includes: when the state of charge value of the battery pack is greater than or equal to a preset charge threshold, the heating module is a heating element;
  • the heating treatment includes:
  • the battery pack is used to supply power to the heating element, and the battery pack is heated by the heating element.
  • the second preset condition further includes: when the state of charge value of the battery pack is greater than or equal to a preset charge threshold, the cooling module includes a compressor;
  • the cooling treatment includes:
  • the second preset condition further includes: when the state of charge value of the battery pack is less than the preset charge threshold, the cooling module includes the cooling water circulation structure in the battery pack or the heat dissipation of the vehicle Device
  • the cooling processing includes:
  • the cooling process includes:
  • the radiator is used to cool the battery pack.
  • the battery pack control method and system described in the present disclosure have the following advantages:
  • the vehicle When the vehicle is in the power-off state, first use the battery sensor to obtain the current temperature value of the vehicle battery pack and the current state of the battery pack's thermostat control function, and when the current battery temperature value is not within the preset range, and the thermostat control function
  • the current state is on, the vehicle is switched from the power-off state to the power-on state; then when the current battery temperature value is less than the preset lower limit, if the heating module meets the first preset condition, the vehicle is heated The module heats the battery pack so that the temperature of the battery pack is restored to the preset range; or when the current battery temperature value is greater than the preset upper limit, if the cooling module meets the second preset condition, it will pass the cooling
  • the module cools the battery pack to restore the temperature of the battery pack to the preset range.
  • the battery sensor when the vehicle is in the power-off state, the battery sensor is used to detect the current battery temperature value of the battery pack and the current state of the thermostat control function of the battery pack, and when the current temperature value of the battery pack exceeds the preset range And when the thermostat control function of the battery pack is turned on, the vehicle is awakened, and then the thermostat control is performed on the battery pack, so that the temperature of the battery pack is maintained within a preset range, so that the vehicle can be restarted and used.
  • Another object of the present disclosure is to provide a vehicle, wherein the vehicle includes the battery pack control system.
  • the vehicle has the same advantages as the foregoing battery pack control method and system over the prior art, and will not be repeated here.
  • FIG. 1 is a schematic flowchart of a battery pack control method proposed by an embodiment of the disclosure
  • FIG. 2 is an execution flowchart of a battery pack control method proposed by another embodiment of the present disclosure
  • FIG. 3 is a flowchart of execution of step S203 in another embodiment of the present disclosure.
  • FIG. 4 is a flowchart of execution of step S204 in another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the structure of the battery pack control system proposed by the embodiment of the disclosure.
  • Fig. 6 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 7 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • FIG. 1 shows a schematic flowchart of a battery pack control method provided by an embodiment of the present disclosure, which is applied to a vehicle.
  • the vehicle includes a battery sensor, a heating module, and a cooling module.
  • the method includes steps S100 to S400 :
  • the power-off state refers to the state after the power switch of the vehicle is turned off, that is, the entire vehicle is in a sleep state. At this time, the electronic control equipment of the vehicle is in the sleep state.
  • the above-mentioned battery sensor is connected to the battery pack of the vehicle and uses the battery pack as a power source, and can detect the state information of the battery pack.
  • the state information may include the current battery temperature value of the battery pack and the current state of the thermostat control function of the battery pack. Only if the battery pack has current, the battery sensor can start and detect the above-mentioned status information.
  • the thermostat control function of the battery pack refers to the function of controlling the temperature value of the battery pack within a preset range, and the thermostat control function includes an on state and an off state. If the current state of the thermostat control function of the battery pack is off, it means that temperature control of the battery pack is not allowed; if the current state of the thermostat control function of the battery is on, it means that temperature control of the battery pack is allowed.
  • the temperature control function of the battery pack includes the battery pack heating and heat preservation control sub-function and the battery pack cooling and heat preservation control sub-function.
  • the battery pack heating and heat preservation control sub-function is executed by the heating module
  • the battery pack cooling and heat preservation control sub-function is executed by the cooling module. Turning on the battery pack heating and heat preservation control sub-function is to control the heating module to turn on; controlling the battery pack cooling and heat preservation control sub-function is to control the cooling module to turn on.
  • the on or off of the thermostat control function of the battery pack can be selected through a preset interface, which can be displayed on the display screen of the vehicle central control or a mobile terminal communicatively connected with the vehicle central control.
  • the thermostat control function is closed by default, and when the thermostat control function is turned off, the setting items related to the thermostat control function are grayed out, and the setting operation cannot be performed.
  • the battery sensor can be a battery management system, which can not be controlled by the vehicle power switch, that is, when the vehicle is powered off, the battery management system can still keep working, and the battery management system can also While the vehicle power switch performs the shutdown operation, it enters the sleep state, and then periodically starts and detects the status information of the battery pack.
  • Step S200 When the current battery temperature value is not within the preset range and the current state of the thermostat control function is in the on state, switch the vehicle from the power-off state to the power-on state.
  • the preset range is a preset preferred operating temperature range of the battery pack.
  • the current temperature value of the battery pack is within the preset range, the performance of the battery pack is better, and the battery pack can start and run normally. use.
  • the current battery temperature value is not within the preset range, it means that the battery pack is currently overheated or overcooled. At this time, in order to ensure the normal use of the battery pack, it is theoretically necessary to control the temperature of the battery pack accordingly. .
  • the current state of the thermostat control function is off, it means that although the battery pack needs to be temperature controlled in theory, it is not allowed to perform temperature control on the battery pack, so the vehicle will not be switched from the power-off state.
  • the operation in the power-on state means that the vehicle will not be awakened, and the battery pack will not be thermostatically controlled.
  • the vehicle is switched from the power-off state to the power-on state, which is specifically expressed as using the battery sensor to wake up the vehicle's controller area network bus, thereby waking up the vehicle controller, and passing the above-mentioned current temperature value through the controller area network bus Send refers to the vehicle controller, and then the vehicle controller performs thermostat control on the battery pack according to the current temperature value.
  • Step S300 When the vehicle is in the power-on state, if the current battery temperature value is less than a preset lower limit, if the heating module meets a first preset condition, pass the heating module Heating the battery pack is performed to restore the temperature of the battery pack to the preset range, and the preset lower limit value is the minimum value within the preset range.
  • the first preset condition is a precondition for allowing the battery pack to be heated by the heating module, and the heating module is a structure or device on the vehicle that can heat the battery pack.
  • the first preset condition is preset.
  • the control passes The heating module heats the battery pack to get the battery pack out of the state of too low temperature, that is, to restore the current temperature value of the battery pack to the aforementioned preset range.
  • the preset lower limit value may be -30°C.
  • Step S400 When the vehicle is in the power-on state, if the current battery temperature value is greater than the preset upper limit value, if the cooling module satisfies a second preset condition, the cooling module is The battery pack is cooled, so that the temperature of the battery pack is restored to the preset range, and the preset upper limit value is the maximum value within the preset range.
  • the second preset condition is a precondition for allowing the battery pack to be cooled by the cooling module, and the cooling module is a structure or device on the vehicle that can cool the battery pack.
  • the second preset condition is preset.
  • the current battery temperature value is greater than the preset upper limit, it means that the current temperature of the battery pack is too high.
  • the cooling module meets the second preset condition, it means that the battery pack can be cooled by the cooling module, so the control is passed
  • the cooling module heats the battery pack to get the battery pack out of the state of too low temperature, that is, to restore the current temperature value of the battery pack to the aforementioned preset range.
  • the preset upper limit value may be 55°C.
  • the battery pack control method described in the embodiments of the present disclosure has the following advantages:
  • the battery sensor when the vehicle is in the power-off state, the battery sensor is used to detect the current battery temperature value of the battery pack and the current state of the thermostat control function of the battery pack, and when the current temperature value of the battery pack exceeds
  • the preset range and the thermostat control function of the battery pack When the preset range and the thermostat control function of the battery pack is turned on, the vehicle will wake up, and then the thermostat control of the battery pack will be carried out to keep the temperature of the battery pack within the preset range, so that the vehicle can be restarted and used;
  • the thermal management system after the vehicle is powered off, the thermal management system cannot be used to control the temperature of the battery pack, and the temperature of the battery pack is likely to be too low or too high due to the low or high ambient temperature.
  • the above-mentioned battery pack control method includes steps S201 to S210:
  • Step S201 When the vehicle is in the power-off state, obtain the current battery temperature value of the battery pack of the vehicle and the current state of the thermostat control function of the battery pack through the battery sensor.
  • step S201 reference may be made to the detailed description of step S100, which will not be repeated here.
  • Step S202 When the current battery temperature value is not within the preset range and the current state of the thermostat control function is in the on state, switch the vehicle from the power-off state to the power-on state.
  • step S202 reference may be made to the detailed description of step S200, which will not be repeated here.
  • Step S203 When the vehicle is in the power-on state, if the current battery temperature value is less than the preset lower limit value, if the heating module meets the first preset condition, the battery is heated by the heating module. The battery pack is heated so that the temperature of the battery pack is restored to the preset range, and the preset lower limit value is the minimum value within the preset range; the first preset condition includes: The heating module is turned on, and after the vehicle is in a power-off state, the number of activations of the heating module is less than a first number threshold.
  • step S203 when the vehicle is in the power-on state, when the current battery temperature value is less than the preset lower limit, the heating module needs to be turned on, and the heating module is turned on after the vehicle is parked and enters the power-off state. If the number of starts is less than the first number threshold, the operation of heating the battery pack through the heating module is executed, so that the temperature of the battery pack is restored to the preset range. That is to say, when the heating module is turned on and the heating module is parked and entered the power-off state until the current number of starts is less than the first number of thresholds, any one of the conditions is not met, the heating process of the battery pack through the heating module will not be executed. operating.
  • setting the first preset condition includes turning on the heating module, that is, setting the heating module to allow the heating module to heat the battery pack when the temperature of the battery pack is too low. This condition prevents the heating module from automatically starting and heating the battery pack when the temperature of the battery pack is less than the preset lower limit when the driver does not plan to start the battery pack for a long time. That is to avoid meaningless heating of the battery pack.
  • the option of controlling the turning on or off of the heating module can be selected through a preset interface, and the preset interface may display options for turning on and off the heating module.
  • the preset interface can be displayed on the display screen of the vehicle central control or a mobile terminal communicatively connected with the vehicle central control.
  • the heating module is turned off by default, and when the heating module is set to turn off, the setting items related to the battery pack heating and holding control function are grayed out, and the setting operation cannot be performed.
  • setting the above-mentioned first preset condition includes that after the vehicle is in the power-off state, the number of activations of the heating module is less than the first number threshold, because if the vehicle is in the power-off state, the number of activations of the heating module reaches the first If the threshold is one times, it means that the driver will not use the car for a long time, and the temperature of the battery pack is less than the preset lower limit due to low ambient temperature, etc., so that the heating module is frequently activated to keep the temperature of the battery pack Stay within budget. However, because the vehicle will not restart temporarily, that is, the battery pack will not be activated temporarily, it is meaningless to heat the battery pack at this time, and it will deplete the power of the battery pack.
  • the above-mentioned first frequency threshold may be set through a preset interface, and the preset interface may display setting options for the first frequency threshold.
  • the preset interface can be displayed on the display screen of the vehicle central control or a mobile terminal communicatively connected with the vehicle central control.
  • the first count threshold may be set to 3, and the maximum setting count of the first count threshold is 20.
  • step S203 includes steps S301 to S302:
  • Step S301 When the vehicle is in the power-on state, if the current battery temperature value is less than a preset lower limit, if the heating module meets a first preset condition, pass the heating module Heating the battery pack to restore the temperature of the battery pack to the preset range, and the preset lower limit value is the minimum value within the preset range;
  • the first preset condition includes: the heating module is turned on, and after the vehicle is in the power-off state, the number of activations of the heating module is less than a first number threshold, and the state of charge of the battery pack The value is less than a preset charge threshold, the heating module is an engine of the vehicle, and the engine can be started, and the engine is used to heat the battery pack;
  • the heating treatment includes:
  • the engine is started, and the battery pack is heated by the engine.
  • the preset charge threshold is set in advance, and the preset charge threshold is a preset lower limit of the power level to ensure that the battery pack can start the vehicle.
  • the state of charge value of the battery pack is greater than or equal to the preset charge threshold, the battery pack has enough power to restart the vehicle; and when the state of charge value of the battery pack is less than the preset charge threshold , The battery pack is low.
  • the specific numerical value of the preset charge threshold value needs to be determined according to the capacity of the battery pack.
  • step S301 is when the temperature of the battery pack is too low and the battery pack itself has insufficient power, if the vehicle has an engine, and the engine is preset to allow starting, and after the vehicle is powered off, the number of engine starts is less than For the first threshold value, the engine can be started, and the battery pack can be heated through the engine's cooling circuit structure, so that the current temperature value of the battery pack is restored to the preset range. It can be seen that the execution of step S301 needs to satisfy that the vehicle is a hybrid vehicle.
  • setting whether the engine is allowed to start and heat the battery pack can be selected through a preset interface, which can display the option of whether to allow the engine to start without heating the battery pack.
  • the pre-interface is displayed on the display screen of the vehicle central control or the mobile terminal communicatively connected with the vehicle central control.
  • the preset interface when the engine is not allowed to be started by default, and the engine is not allowed to be started, the setting items related to engine start are grayed out, and the setting operation cannot be performed.
  • Step S302 When the vehicle is in the power-on state, if the current battery temperature value is less than a preset lower limit, if the heating module satisfies a first preset condition, pass the heating module Heating the battery pack to restore the temperature of the battery pack to the preset range, and the preset lower limit value is the minimum value within the preset range;
  • the first preset condition includes: the heating module is turned on, and after the vehicle is in the power-off state, the number of activations of the heating module is less than a first number threshold, and the first preset condition further includes: When the state of charge value of the battery pack is greater than or equal to the preset charge threshold, the heating module is a heating element;
  • the heating treatment includes:
  • the battery pack is used to supply power to the heating element, and the battery pack is heated by the heating element.
  • step S302 when the state of charge value of the battery pack is greater than or equal to the preset charge threshold value, the battery pack has enough power for restarting the vehicle. Therefore, if the vehicle is in the power-off state at this time, When the number of activations of the heating element is less than the first threshold, the battery pack itself can be used to power the heating element as a heating module, so that the heating element can heat the battery pack so that the current temperature value of the battery pack can be restored To within the preset range.
  • Step S204 When the vehicle is in the power-on state, if the current battery temperature value is greater than a preset upper limit, if the cooling module meets a second preset condition, pass the cooling module Perform cooling processing on the battery pack so that the temperature of the battery pack returns to the preset range, and the preset upper limit value is the maximum value within the preset range; the second preset The condition includes: the cooling module is turned on, and after the vehicle is in a power-off state, the number of activations of the cooling module is less than a second number threshold.
  • step S204 when the vehicle is in the power-on state, when the current battery temperature value is greater than the preset upper limit, the cooling module needs to be turned on, and the cooling module is turned off when the vehicle is parked. After the state, until the current number of startup times is less than the second number threshold, the operation of cooling the battery pack through the cooling module is performed, so that the temperature of the battery pack is restored to the preset range. That is to say, when the cooling module is turned on and the cooling module is turned on after the vehicle is parked and enters the power-off state until the current number of starts is less than the second number threshold, any one of the conditions is not met, the cooling module will not execute the battery pack. Operation of cooling treatment.
  • setting the second preset condition includes turning on the cooling module, that is, setting the cooling module to allow the cooling module to cool the battery pack when the temperature of the battery pack is too high. This condition prevents the cooling module from automatically starting and cooling the battery pack when the temperature of the battery pack is greater than the preset upper limit when the driver does not need to start the battery pack for a long time. That is to avoid meaningless battery pack cooling processing.
  • the control of turning on or off the cooling module can be performed through a preset interface, and the preset interface may display an option to set the cooling module on or off.
  • the preset interface can be displayed on the display screen of the vehicle central control or a mobile terminal communicatively connected with the vehicle central control.
  • the cooling module is turned off by default, and when you choose to turn off the cooling module, the setting items related to the battery pack cooling and heat preservation control function are grayed out, and setting operations cannot be performed.
  • setting the second preset condition includes that after the vehicle is in the power-off state, the number of activations of the heating module is less than the second threshold, because if the vehicle is in the power-off state, the number of activations of the heating module reaches the second If the threshold of times is used, it indicates that the driver will not use the car for a long time, because the vehicle will not restart temporarily, that is, the battery pack will not be started again. At this time, it is meaningless to heat the battery pack, but it will deplete the battery pack. Power.
  • the above-mentioned second frequency threshold may be set through a preset interface, and the preset interface may display setting options for the second frequency threshold.
  • the preset interface can be displayed on the display screen of the vehicle central control or a mobile terminal communicatively connected with the vehicle central control.
  • the second count threshold can be set to 3, and the maximum setting count of the second count threshold is 20.
  • step S204 includes steps S401 to S402:
  • Step S401 When the vehicle is in the power-on state, if the current battery temperature value is greater than a preset upper limit, if the cooling module meets a second preset condition, pass the cooling module Performing cooling processing on the battery pack so that the temperature of the battery pack returns to the preset range, and the preset upper limit value is the maximum value within the preset range;
  • the second preset condition includes: the cooling module is turned on, and after the vehicle is in the power-off state, the number of activations of the cooling module is less than a second number threshold, and the state of charge value of the battery pack When it is greater than or equal to the preset charge threshold, the cooling module includes a compressor;
  • the cooling treatment includes:
  • the battery pack is used to supply power to the compressor, and the battery pack is cooled by the compressor.
  • step S401 is when the temperature of the battery pack is too high and the battery pack itself has sufficient power, if the vehicle has a compressor, and after the vehicle is powered off, the number of compressor starts is less than the second number threshold, then The compressor is driven by the power of the battery pack, and the temperature of the battery pack is cooled by the compressor, so that the current temperature value of the battery pack is restored to the preset range.
  • Step S402 When the vehicle is in the power-on state, if the current battery temperature value is greater than a preset upper limit, if the cooling module meets a second preset condition, pass the cooling module Performing cooling processing on the battery pack so that the temperature of the battery pack returns to the preset range, and the preset upper limit value is the maximum value within the preset range;
  • the second preset condition includes: the cooling module is turned on, and after the vehicle is in the power-off state, the number of activations of the cooling module is less than a second threshold, and the battery pack is in the state of charge
  • the cooling module includes a cooling water circulation structure in the battery pack or a radiator of the vehicle;
  • the cooling processing includes:
  • the cooling process includes:
  • the radiator is used to cool the battery pack.
  • step S402 when the temperature of the battery pack is too high and the battery pack itself is insufficient, if the cooling module is allowed to cool the battery pack, and after the vehicle is in the power-off state, the cooling module cools the battery pack less than the first The threshold of the number of times, the battery pack can be cooled by the cooling water circulation structure in the battery pack or the radiator of the vehicle, so that the current temperature value of the battery pack is restored to the preset range.
  • Step S205 After the vehicle is in the power-off state, when the number of activations of the heating module reaches the first number threshold, or when the number of activations of the cooling module reaches the second threshold, then Control the battery sensor to enter a sleep state.
  • step S205 if the number of activations of the heating module reaches the first threshold after the vehicle is powered off, it indicates that the driver has not used the vehicle for a long time, and the temperature of the battery pack is at The state less than the preset lower limit value causes the heating module to be activated frequently to keep the temperature of the battery pack within the budget range. However, because the vehicle will not restart temporarily, that is, the battery pack will not be activated temporarily, it is meaningless to heat the battery pack at this time, and it will deplete the power of the battery pack.
  • the battery sensor is controlled to enter the dormant state, that is, the current temperature of the battery pack is no longer monitored, and the current temperature control function of the battery pack is no longer obtained. State, that is, the vehicle will no longer be awakened by the battery sensor to save the power of the battery pack.
  • step S205 if the number of activations of the cooling module reaches the second threshold after the vehicle is powered off, it indicates that the driver has not used the vehicle for a long time, and the temperature of the battery pack is greater than expected due to high ambient temperature and other reasons.
  • the vehicle will not restart temporarily, that is, the battery pack will not be activated temporarily, it is meaningless to heat the battery pack at this time, and it will deplete the power of the battery pack.
  • the battery sensor is controlled to enter the dormant state, that is, the current temperature of the battery pack is no longer monitored, and the current state of the thermostat control function of the battery pack is no longer obtained. , Which means that the vehicle will no longer be awakened by the battery sensor to save the battery pack’s power.
  • Step S206 When the current temperature value of the battery pack returns to the preset range, control the vehicle to switch from the power-on state to the power-off state.
  • step S206 when the temperature of the battery pack returns to the preset range, it indicates that the current battery pack has got rid of the overheating or overcooling state, and there is no need to cool or heat the battery pack, so the cooling module and the heating module are controlled accordingly Stop working and control the vehicle to switch from the power-on state to the power-off state, that is, control the vehicle to enter the sleep state.
  • the step S206 includes: when the current temperature value of the battery pack returns from less than the preset lower limit value to greater than or equal to the first target value, controlling the heating module to stop working, and controlling the vehicle to switch from the power-on state In the power-off state, the first target value is within the aforementioned budget range.
  • the aforementioned first target value is -20°C.
  • the step S206 includes: when the current temperature value of the battery pack returns from greater than the preset upper limit to less than or equal to the second target value, controlling the cooling module to stop working, and controlling the vehicle to switch from the power-on state In the power-off state, the second target value is within the aforementioned budget range.
  • the aforementioned second target value is 40°C.
  • the method further includes:
  • Step S207 If the heating module does not meet the first preset condition, or the cooling module does not meet the second preset condition, or the current state of the thermostat control function of the battery pack is off, control the battery The sensor enters the dormant state.
  • step S207 the number of starts after the heating module is not turned on, the heating module is greater than or equal to the first times threshold after the vehicle is powered off, the cooling module is not turned on, and the cooling module is started after the vehicle is powered off
  • the control sensor enters the dormant state, that is, the battery sensor no longer monitors the current temperature of the battery pack, and the battery sensor no longer obtains the constant temperature of the battery pack
  • the current state of the control function that is, the vehicle will no longer be awakened by the battery sensor to save the power of the battery pack.
  • the battery pack control method described in the embodiments of the present disclosure has the following advantages:
  • the vehicle When the vehicle is powered off, first use the battery sensor to detect the current battery temperature value of the battery pack and the current state of the battery pack's thermostat control function, and when the current temperature value of the battery pack exceeds the preset range and the battery pack's thermostat control
  • the function is turned on, the vehicle will wake up; and when the current battery temperature value is less than the preset lower limit, and the heating module is turned on, and after the vehicle is powered off, the number of activations of the heating module is less than the first threshold
  • the heating module is used to heat the battery pack to restore the temperature of the battery pack to the preset range; and the current battery temperature is greater than the preset upper limit, the cooling module is turned on, and the vehicle is powered off
  • the battery pack is cooled by the cooling module, so that the temperature of the battery pack is restored to the preset range.
  • the embodiment of the present disclosure not only solves the problem that in the prior art, after the vehicle is powered off, the thermal management system cannot be used to control the temperature of the battery pack, and the temperature of the battery pack is likely to be too low or high due to the low or high ambient temperature.
  • the problem of excessively high temperature is to avoid the situation that the battery pack is thermostatically controlled through the heating module or the cooling module when the battery pack does not need to be thermostatically controlled, thereby avoiding the waste of battery pack power.
  • FIG. 2 shows an execution flow chart of the battery pack control method provided by the embodiment of the present disclosure in practical applications, and the execution flow of the method includes steps S211 to S234:
  • step S211 after the vehicle is stopped and powered off, if the Battery Management System (BMS) is awakened by the Controller Area Network (CAN) remotely through the APP or periodically set automatically. After waking up, start to detect the intelligent constant temperature control function of the battery pack and the temperature of the battery pack, and then go to step S212;
  • BMS Battery Management System
  • CAN Controller Area Network
  • step S212 it is judged whether the intelligent thermostat control function of the battery pack is enabled, that is, whether it is allowed to be used. If the intelligent thermostat control function of the battery pack is enabled, go to step S213, otherwise go to step S214 and control the BMS to turn off the self-wake-up function , And enter the step S234 of controlling the vehicle to enter the sleep state;
  • step S213 it is further determined whether the battery pack temperature is lower than the preset lower limit value or higher than the preset upper limit value, and if the battery pack temperature is lower than the preset lower limit value or higher than the preset upper limit value, enter Step S215, otherwise, go to step S216 and control the BMS to enter the self-sleep state, and go to step S234 to control the vehicle to enter the sleep state;
  • step S215 the BMS wakes up the CAN network, and then sequentially enters steps S217 to S219;
  • step S217 the BMS sends the battery pack temperature detected in step S211 to the vehicle controller (Hybrid Control Unit, HCU) via CAN;
  • vehicle controller Hybrid Control Unit, HCU
  • step S218 the air conditioner controller detects the ambient temperature after waking up, and sends the ambient temperature to the HCU via CAN;
  • step S219 the HCU makes a judgment based on the ambient temperature and the temperature of the battery pack, and determines the intelligent constant temperature control strategy for the battery pack;
  • step S220 it is judged whether the ambient temperature is lower than -30 degrees Celsius and the battery pack temperature is lower than the preset lower limit. If the ambient temperature is lower than -30 degrees Celsius and the battery pack temperature is lower than the preset lower limit, go to step S221 Otherwise, proceed to step S222 to determine whether the battery pack temperature is higher than the preset upper limit;
  • step S221 it is detected whether the user has turned on the intelligent heating and heat preservation control function of the battery pack in the HUT. If the user has turned on the intelligent heating and heat preservation control function of the battery pack in the HUT, proceed to step S223 to further determine the intelligent heating during a single stop. Whether the number of activations of the heat preservation control function is less than the first number threshold N; in step S221, if it is detected that the user has not activated the battery pack intelligent heating and heat preservation control function in the HUT, then step S227 is entered;
  • step S223 if it is determined that the number of activations of the intelligent heating and heat preservation control function during a single stop is less than N, then step S224 is entered to activate the battery pack intelligent heating and heat preservation control sub-function through the HCU; in step S223, if it is determined that a single time During the parking process, the number of activations of the intelligent heating and heat preservation control function is not less than N, then step S227 is entered;
  • step S225 the temperature of the battery pack is continuously monitored to increase the temperature of the battery pack above the preset lower limit through the intelligent heating and heat preservation control function of the battery pack;
  • step S2266 after the temperature of the battery pack rises above the preset lower limit, the HCU controls the battery pack intelligent heat preservation control function to turn off, and controls the vehicle to enter a sleep state;
  • step S227 the intelligent heating and heat preservation control sub-function of the battery pack and the intelligent cooling and heat preservation control sub-function of the battery pack are prohibited through the HCU, and step S228 is entered;
  • step S22 control the BMS to turn off the self-wake-up function, and enter the step S234 of controlling the vehicle to enter the sleep state;
  • step S222 if it is detected that the battery pack temperature is higher than the preset upper limit, then it will go to step S229 to detect whether the user has turned on the battery pack intelligent cooling and heat preservation control function in the HUT; if it is detected that the battery pack temperature is not higher than The upper limit value is preset, then step S233 is entered;
  • step S229 if the user turns on the intelligent cooling and heat preservation control function of the battery pack in the HUT, proceed to step S230 to further determine whether the number of activations of the intelligent cooling and heat preservation control function during a single stop is less than the second number threshold N; in step S229 If it is detected that the user has not turned on the intelligent cooling and heat preservation control function of the battery pack in the HUT, step S227 is entered;
  • step S230 if it is determined that the number of activations of the intelligent cooling and heat preservation control function during a single stop is less than N, then step S231 is entered to activate the battery pack intelligent cooling and heat preservation control sub-function through the HCU; in step S230, if it is determined that a single time During the parking process, the number of activations of the intelligent cooling and heat preservation control function is not less than N, then step S227 is entered;
  • step S232 the temperature of the battery pack is continuously monitored to reduce the temperature of the battery pack below the preset upper limit through the intelligent heating and heat preservation control function of the battery pack;
  • step S2266 after the battery pack temperature drops below the preset upper limit, the HCU controls the battery pack intelligent heat preservation control function to turn off, and controls the vehicle to enter a sleep state;
  • step S233 it is detected whether the number of times that the BMS wakes up the CAN network and the HCU has not activated the heat preservation function is greater than the third number threshold N; if yes, it proceeds to step S227.
  • FIG. 3 shows the execution flowchart of the foregoing step S203 of the embodiment of the present disclosure in practical applications, including steps S311 to S322.
  • the vehicle controller Hybrid Control Unit, HCU
  • the vehicle controller first passes through the controller area network
  • the bus Controller Area Network, CAN
  • the keyless power-on system controls the power mode of the vehicle to switch to the ON gear.
  • the vehicle controller controls the high-voltage system to complete high-voltage power-on.
  • the vehicle controller controls the heating module to perform heating processing on the battery pack based on the state of charge (SOC) of the battery pack:
  • step S315 it is determined whether the SOC of the battery pack is greater than the preset charge threshold.
  • step S316 is entered to activate the positive temperature coefficient thermistor (positive The battery pack heating function of temperature coefficient (PTC) heats the battery pack, that is, the battery pack is used to supply power to the positive temperature coefficient thermistor to use the heating element to heat the battery pack until the current temperature value of the battery pack is greater than or equal to the preset value.
  • step S318 which is to control the positive temperature coefficient thermistor to stop working, so as to realize the control to exit the battery pack heating and heat preservation function; then go to step 319, that is, after the battery pack heating and heat preservation function is exited, control the vehicle to enter the sleep state;
  • step S320 is entered to determine whether the user has set permission to start the engine in the HUT, that is, whether the engine can be started is determined. If the engine can be started, enter step S321 to activate the battery pack heating function based on the engine cooling circuit to heat the battery pack, that is, start the engine and use the engine's cooling circuit structure to heat the battery pack until the current temperature value of the battery pack is greater than or equal to Preset the lower limit value, and then control the engine to stop working, so as to realize the control to exit the battery pack heating and heat preservation function. After the battery pack heating and heat preservation function is exited, the vehicle is controlled to enter the sleep state. If it is determined that the engine cannot be started, step S318 is directly entered, that is, the battery pack heating and heat preservation function is directly controlled to exit, and then the vehicle is controlled to enter the sleep state.
  • FIG. 4 shows the execution flowchart of the foregoing step S204 of the embodiment of the present disclosure in practical applications, including steps S411 to S421.
  • step S411 when the vehicle is in the power-on state and the current battery temperature value is less than the preset lower limit, the vehicle controller first sends a power-on request to the vehicle through the controller area network bus.
  • the key power-on system and then in step S412, the keyless power-on system controls the power mode of the vehicle to switch to the ON gear.
  • step S413 after the power supply mode is switched to the ON gear, the vehicle controller controls the high-voltage system to complete the high-voltage power-on.
  • step S414 after the high-voltage system completes high-voltage power-on, the vehicle controller controls the cooling module to perform cooling processing on the battery pack based on the state of charge value of the battery pack:
  • step S415 it is determined whether the SOC of the battery pack is greater than the charge threshold.
  • step S416 is entered to control the battery pack to supply power to the compressor to use the compressor to power the battery.
  • the temperature of the battery pack is lowered until the current temperature value of the battery pack is less than or equal to the preset upper limit value, and then step S418 is entered, that is, the compressor is controlled to stop working, so as to control the exit of the battery pack cooling and heat preservation function.
  • step 419 that is, after the battery pack cooling and heat preservation function exits, control the vehicle to enter the sleep state;
  • step S420 is entered to cool the battery pack through the cooling water circulation structure in the battery pack or the radiator of the vehicle until the current temperature value of the battery pack Less than or equal to the preset upper limit value, and then control the cooling water circulation structure or the radiator to stop working, so as to control the exit of the battery pack cooling and heat preservation function.
  • the vehicle is controlled to enter the sleep state.
  • the above-mentioned battery pack control method includes steps S501 to S506:
  • Step S501 When the vehicle is in the power-off state, obtain the current battery temperature value of the battery pack of the vehicle and the current state of the thermostat control function of the battery pack through the battery sensor.
  • step S501 refers to the detailed description of step S201, which will not be repeated here.
  • Step S502 When the current battery temperature value is not within the preset range and the current state of the thermostat control function is in the on state, switch the vehicle from the powered-off state to the powered-on state.
  • step S502 reference may be made to the detailed description of step S202, which will not be repeated here.
  • Step S503 Acquire the current ambient temperature value when the vehicle is in the power-on state.
  • the temperature of the battery pack at this time is likely to be temporarily lower than the preset lower limit, but if the current ambient temperature value is greater than the preset lower limit , Even if the battery pack is not heated, the temperature of the battery pack will gradually rise to the same value as the current ambient temperature under the action of the ambient temperature, that is, the temperature of the battery pack will rise to greater than or equal to the preset lower limit;
  • the temperature of the battery pack may be temporarily lower than the preset lower limit, but if the current ambient temperature value is lower than the preset upper limit , Even if the battery pack is not cooled, the temperature of the battery pack will gradually decrease to the same value as the current ambient temperature under the action of the ambient temperature, that is, the temperature of the battery pack will decrease to less than or equal to the preset lower limit.
  • step S503 when the vehicle is in the power-on state, the current ambient temperature is monitored through the vehicle's temperature sensor to obtain the current ambient temperature value, so as to accurately determine whether the battery pack needs to be heated or cooled.
  • Step S504 When the vehicle is in the power-on state, if the current battery temperature value is less than the preset lower limit, if the heating module satisfies the first preset condition, the battery is heated by the heating module Heat the battery pack to restore the temperature of the battery pack to the preset range, and the preset lower limit value is the minimum value within the preset range;
  • the first preset condition includes: the heating module is turned on, and after the vehicle is powered off, the number of activations of the heating module is less than a first number threshold, and the current ambient temperature value is less than a preset temperature Threshold.
  • step S504 when the vehicle is in the power-on state, when the current battery temperature value is less than the preset lower limit, the heating module needs to be turned on, and the heating module is turned on after the vehicle is parked and enters the power-off state. If the number of starts is less than the first number threshold, and the current ambient temperature value is less than the preset temperature threshold, the operation of heating the battery pack through the heating module will be performed, so that the temperature of the battery pack is restored to the preset range. That is, when the heating module is turned on, the heating module is started after the vehicle stops and enters the power-off state until the current number of starts is less than the first number threshold, and the current ambient temperature value is less than the preset temperature threshold, any one of the conditions is not met. Perform the operation of heating the battery pack through the heating module.
  • the aforementioned preset temperature threshold value should be greater than or equal to the aforementioned preset lower limit value, and can be specifically set to the aforementioned preset lower limit value, that is, the minimum value within the preset range.
  • the aforementioned preset temperature threshold can also be set through a preset interface, and the preset interface can display setting options for the preset temperature threshold.
  • the preset interface can be displayed on the display screen of the vehicle central control or a mobile terminal communicatively connected with the vehicle central control.
  • Step S505 If the number of occurrences of the first situation is greater than or equal to the third number threshold, control the battery sensor to enter a sleep state; wherein, the first situation is that the current battery temperature value is less than the preset lower limit value , And the current ambient temperature value is not less than the preset temperature threshold.
  • the battery sensor periodically detects the current temperature value of the battery pack, if the current battery temperature value of the battery pack is detected to be less than the preset lower limit during the cycle, the vehicle will be switched from the power-off state to the power-on state , And detect the current ambient temperature value of the environment in which the vehicle is located. If the current ambient temperature value is greater than or equal to the preset temperature threshold, the first case will be recorded once; if the current battery temperature value of the battery pack is detected in the next cycle to be less than the preset temperature When the lower limit value is set, the vehicle will still be switched from the power-off state to the power-on state, and the current ambient temperature value of the environment in which the vehicle is located will be detected. If the current ambient temperature value is still greater than or equal to the preset temperature threshold, the first The number of occurrences of the situation increases by one.
  • the battery pack is only temporarily in a lower temperature state.
  • the temperature of the battery pack will gradually rise to the same value as the current ambient temperature, that is, the temperature of the battery pack will rise to greater than or equal to the preset lower limit. Therefore, there is no need to heat the battery pack temporarily, and there is no need to monitor the current temperature of the battery pack through the battery sensor. Therefore, the battery sensor is controlled to enter the sleep state, that is, the vehicle will not be awakened by the battery sensor to save the battery pack. Power.
  • Step S506 When the vehicle is in the power-on state, if the current battery temperature value is greater than the preset upper limit value, if the cooling module satisfies the second preset condition, the battery is controlled by the cooling module. The battery pack is cooled, so that the temperature of the battery pack is restored to the preset range, and the preset upper limit value is the maximum value within the preset range.
  • the second preset condition includes: the The cooling module is turned on, and after the vehicle is in the power-off state, the number of activations of the cooling module is less than the second number threshold.
  • step S506 please refer to the detailed description of step S204, which will not be repeated here.
  • the battery pack control method described in the embodiments of the present disclosure has the following advantages:
  • the vehicle When the vehicle is powered off, first use the battery sensor to detect the current battery temperature value of the battery pack and the current state of the battery pack's thermostat control function, and when the current temperature value of the battery pack exceeds the preset range and the battery pack's thermostat control
  • the function When the function is turned on, the vehicle will wake up; when the current battery temperature value is less than the preset lower limit, and the heating module is turned on, and the current ambient temperature value is less than the preset temperature threshold, and the vehicle is powered off, the heating module
  • the number of starts is less than the first threshold
  • the battery pack When the number of starts is less than the first threshold, the battery pack is heated by the heating module to restore the temperature of the battery pack to the preset range; when the current battery temperature value is greater than the preset upper limit, and
  • the cooling module is turned on, and when the number of activations of the cooling module is less than the second threshold after the vehicle is powered off, the battery pack is cooled by the cooling module, so that the temperature of the battery pack is restored to the preset
  • the embodiment of the present disclosure not only solves the problem that in the prior art, after the vehicle is powered off, the thermal management system cannot be used to control the temperature of the battery pack, and the temperature of the battery pack is likely to be too low or high due to the low or high ambient temperature.
  • the problem of excessively high temperature is to avoid the situation that the battery pack is thermostatically controlled through the heating module or the cooling module when the battery pack does not need to be thermostatically controlled, thereby avoiding the waste of battery pack power.
  • Another object of the present disclosure is to provide a battery pack control system, which is applied to a vehicle, and the vehicle includes a battery sensor.
  • FIG. 5 shows a battery pack control system according to an embodiment of the present disclosure. Schematic diagram of the structure of the system, the system includes:
  • the battery pack state acquiring module 10 is configured to acquire the current battery temperature value of the battery pack of the vehicle and the current state of the thermostat control function of the battery pack through the battery sensor when the vehicle is in a power-off state;
  • the wake-up module 20 is configured to switch the vehicle from the power-off state to the power-on state when the current battery temperature value is not within the preset range and the current state of the thermostat control function is in the on state;
  • the first control module 30 is configured to pass the heating if the heating module satisfies the first preset condition when the current battery temperature value is less than the preset lower limit value when the vehicle is in the power-on state.
  • the module heats the battery pack so that the temperature of the battery pack returns to the preset range, and the preset lower limit value is the minimum value within the preset range;
  • the second control module 40 is configured to pass the cooling if the cooling module meets the second preset condition when the current battery temperature value is greater than the preset upper limit value when the vehicle is in the power-on state.
  • the module performs cooling processing on the battery pack, so that the temperature of the battery pack is restored to the preset range, and the preset upper limit value is the maximum value within the preset range.
  • the battery pack state acquisition module 10 is first used to obtain the current temperature value of the vehicle battery pack and the current state of the battery pack's thermostat control function through the battery sensor when the vehicle is in the power-off state. And when the current battery temperature value is not within the preset range, and the current state of the thermostat control function is in the on state, the wake-up module 20 is used to switch the vehicle from the power-off state to the power-on state; then when the current battery temperature value is less than In the case of the preset lower limit, if the heating module meets the first preset condition, the first control module 30 controls the heating module to heat the battery pack so that the temperature of the battery pack returns to the preset Within the range; or when the current battery temperature value is greater than the preset upper limit, if the cooling module meets the second preset condition, the second control module 40 controls the cooling module to cool the battery pack so that the battery pack The temperature returned to the preset range.
  • the battery sensor when the vehicle is in the power-off state, the battery sensor is used to detect the current battery temperature value of the battery pack, and the current state of the thermostat control function of the battery pack, and the current temperature value of the battery pack
  • the preset range is exceeded and the thermostat control function of the battery pack is turned on, the vehicle will be awakened, and then the thermostat control of the battery pack will be carried out to keep the temperature of the battery pack within the preset range to facilitate the restart and use of the vehicle.
  • the first preset condition includes that the heating module is turned on, and after the vehicle is powered off, the number of activations of the heating module is less than a first number threshold;
  • the second preset condition includes that the cooling module is turned on, and after the vehicle is in a power-off state, the number of activations of the cooling module is less than a second number threshold.
  • the system further includes: an ambient temperature acquisition module, configured to acquire a current ambient temperature value when the vehicle is in a power-on state;
  • the first preset condition further includes: the current ambient temperature value is less than a preset temperature threshold.
  • system further includes:
  • the third control module is configured to: if the heating module does not meet the first preset condition, or the cooling module does not meet the second preset condition, or the current state of the thermostat control function of the battery pack is off, then Control the battery sensor to enter a sleep state.
  • system further includes:
  • a fourth control module configured to control the battery sensor to enter a sleep state if the number of occurrences of the first situation is greater than or equal to the third number threshold;
  • the first situation is a situation where the current battery temperature value is less than the preset lower limit value, and the current ambient temperature value is not less than the preset temperature threshold value.
  • the first preset condition further includes: the state of charge value of the battery pack is less than a preset charge threshold, the heating module is the engine of the vehicle, and the The engine can be started, and the engine is used for heating the battery pack;
  • the heating treatment includes:
  • the engine is started, and the battery pack is heated by the engine.
  • the first preset condition further includes: when the state of charge value of the battery pack is greater than or equal to a preset charge threshold, the heating module is a heating element;
  • the heating treatment includes:
  • the battery pack is used to supply power to the heating element, and the battery pack is heated by the heating element.
  • the second preset condition further includes: when the state of charge value of the battery pack is greater than or equal to a preset charge threshold, the cooling module includes a compressor;
  • the cooling treatment includes:
  • the second preset condition further includes: when the state of charge value of the battery pack is less than the preset charge threshold, the cooling module includes the cooling water circulation structure in the battery pack or the heat dissipation of the vehicle Device
  • the cooling processing includes:
  • the cooling process includes:
  • the radiator is used to cool the battery pack.
  • Another object of the present disclosure is to provide a vehicle, wherein the vehicle includes the battery pack control system.
  • the vehicle has the same advantages as the foregoing battery pack control method and system over the prior art, and will not be repeated here.
  • the battery pack control method, system, and vehicle provided by the present application first use the battery sensor to obtain the current temperature value of the vehicle battery pack and the current state of the battery pack's thermostat control function when the vehicle is in the power-off state. And when the current battery temperature value is not within the preset range and the current state of the thermostat control function is on, switch the vehicle from the power-off state to the power-on state; then when the current battery temperature value is less than the preset lower limit If the heating module satisfies the first preset condition, the battery pack will be heated by the heating module to restore the temperature of the battery pack to the preset range; or if the current battery temperature value is greater than the preset upper limit In the case of the value, if the cooling module satisfies the second preset condition, the battery pack is cooled by the cooling module, so that the temperature of the battery pack is restored to the preset range.
  • the battery sensor when the vehicle is in the power-off state, the battery sensor is used to detect the current battery temperature value of the battery pack and the current state of the thermostat control function of the battery pack, and when the current temperature value of the battery pack exceeds the preset range And when the thermostat control function of the battery pack is turned on, the vehicle is awakened, and then the thermostat control is performed on the battery pack, so that the temperature of the battery pack is maintained within a preset range, so that the vehicle can be restarted and used.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 6 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 7.
  • the storage unit may have storage segments, storage spaces, and the like arranged similarly to the memory 1020 in the computing processing device of FIG. 6.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item. The use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电池包控制方法、系统及车辆,其中,所述车辆包括电池传感器、加热模块及冷却模块,所述方法在车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,将车辆唤醒,进而对电池包进行恒温控制,以使得电池包的温度维持在预设范围内,以便于车辆的再次启动及使用。

Description

一种电池包控制方法、系统及车辆
本申请要求在2019年11月28日提交中国专利局、申请号为201911194054.5、名称为“一种电池包控制方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及汽车技术领域,特别涉及一种电池包控制方法、系统及车辆。
背景技术
当前,随着能源危机与环境污染问题的日益显现,纯电动汽车及混合动力汽车等新能源汽车因在节能和环保方面的突出优势,已经成为汽车行业发展的重要方向。
新能源汽车中作为动力来源的电池包,只有在合适的温度范围内才能发挥最大性能。电池包的温度过高或过低都会给电池包带来损伤,甚至还会发生安全事故。而为了防止电池包温度过低或过高,现有的混合动力汽车及纯电动汽车采用热管理系统对电池包的温度进行控制。
但是,现有的热管理系统需要车辆处于上电状态下才能进行工作,而在车辆处于下电状态后,则无法再利用现有的热管理系统对电池包进行温度控制,容易出现因环境温度较低或较高,导致动力电池包温度超出合适的温度范围,进而不便于车辆的再次启动及使用的问题。
概述
有鉴于此,本公开旨在提出一种电池包控制方法、系统及车辆,以解决现有技术中,在车辆处于下电状态后,无法利用热管理系统对电池包进行温度控制,容易因环境温度较低或较高,导致电池包温度过低或过高的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种电池包控制方法,应用于车辆,其中,所述车辆包括电池传感器、加热模块及冷却模块,所述方法包括:
在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态;
在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前 状态处于开启状态的情况下,将所述车辆由下电状态切换为上电状态;
在所述车辆处于所述上电状态时,在所述当前电池温度值小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值。
进一步地,所述的方法中,所述第一预设条件包括所述加热模块开启,且在所述车辆处于所述下电状态后,所述加热模块的启动次数小于第一次数阈值;
所述第二预设条件包括所述冷却模块开启,且在所述车辆处于所述下电状态后,所述冷却模块的启动次数小于第二次数阈值。
进一步地,所述的方法中,所述在所述车辆处于所述上电状态时,在所述当前温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内的步骤之前,还包括:
在所述车辆处于所述上电状态时,获取当前环境温度值;
所述第一预设条件还包括:所述当前环境温度值小于预设温度阈值。
进一步地,所述方法还包括:
若所述加热模块未满足所述第一预设条件,或者所述冷却模块未满足所述第二预设条件,或者所述电池包的恒温控制功能的当前状态为关闭状态,则控制所述电池传感器进入休眠状态。
进一步地,所述方法还包括:
若第一情况出现的次数大于或等于第三次数阈值,则控制所述电池传感器进入休眠状态;
其中,所述第一情况为所述当前电池温度值小于所述预设下限值,且所述当前环境温度值不小于所述预设温度阈值值的情况。
进一步地,所述的方法中,所述第一预设条件还包括:所述电池包的荷电状态值小于预设荷电阈值,所述加热模块为所述车辆的发动机,且所述发动机可启动,所述发动机用于对所述电池包进行加热处理;
所述加热处理包括:
启动所述发动机,并通过所述发动机对所述电池包进行加热。
进一步地,所述的方法中,所述第一预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述加热模块为发热元件;
所述加热处理包括:
利用所述电池包为发热元件供电,并通过所述发热元件对所述电池包进行加热。
进一步地,所述的方法中,所述第二预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述冷却模块包括压缩机;
所述冷却处理包括:
利用所述电池包为所述压缩机供电,并通过所述压缩机对所述电池包进行冷却;
所述第二预设条件还包括:在所述电池包的荷电状态值小于所述预设荷电阈值时,所述冷却模块包括所述电池包内的冷却水循环结构或者所述车辆的散热器;
在所述冷却模块包括所述电池包内的冷却水循环结构时,所述冷却处理包括:
利用所述电池包内的冷却水循环结构对所述电池包进行冷却;
在所述冷却模块包括所述车辆的散热器时,所述冷却处理包括:
利用所述散热器对所述电池包进行冷却。
本公开的另一目的在于提出一种电池包控制系统,应用于车辆,所述车辆包括电池传感器、加热模块及冷却模块,其中,所述系统包括:
电池包状态获取模块,用于在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态;
唤醒模块,用于在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由所述下电状态切换为上电状态;
第一控制模块,用于在所述车辆处于所述上电状态时,在所述当前电池温度值小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
第二控制模块,用于在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值。
进一步地,所述的系统中,所述第一预设条件包括所述加热模块开启,且在所述车辆处于所述下电状态后,所述加热模块的启动次数小于第一次数阈值;
所述第二预设条件包括所述冷却模块开启,且在所述车辆处于所述下电状态后,所述冷却模块的启动次数小于第二次数阈值。
进一步地,所述系统还包括:环境温度获取模块,用于在所述车辆处于所述上电状态时,获取当前环境温度值;
所述第一预设条件还包括:所述当前环境温度值小于预设温度阈值。
进一步地,所述系统还包括:
第三控制模块,用于若所述加热模块未满足所述第一预设条件,或者所述冷却模块未满足所述第二预设条件,或者所述电池包的恒温控制功能的当前状态为关闭状态,则控制所述电池传感器进入休眠状态。
进一步地,所述系统还包括:
第四控制模块,用于若第一情况出现的次数大于或等于第三次数阈值,则控制所述电池传感器进入休眠状态;
其中,所述第一情况为所述当前电池温度值小于所述预设下限值,且所述当前环境温度值不小于所述预设温度阈值的情况。
进一步地,所述的系统中,所述第一预设条件还包括:所述电池包的荷电状态值小于预设荷电阈值,所述加热模块为所述车辆的发动机,且所述发动机可启动,所述发动机用于对所述电池包进行加热处理;
所述加热处理包括:
启动所述发动机,并通过所述发动机对所述电池包进行加热。
进一步地,所述的系统中,所述第一预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述加热模块为发热元件;
所述加热处理包括:
利用所述电池包为发热元件供电,并通过所述发热元件对所述电池包进行加热。
进一步地,所述的系统中,所述第二预设条件还包括:所述电池包的荷 电状态值大于或等于预设荷电阈值时,所述冷却模块包括压缩机;
所述冷却处理包括:
利用所述电池包为所述压缩机供电,并通过所述压缩机对所述电池包进行冷却;
所述第二预设条件还包括:在所述电池包的荷电状态值小于所述预设荷电阈值时,所述冷却模块包括所述电池包内的冷却水循环结构或者所述车辆的散热器;
在所述冷却模块包括所述电池包内的冷却水循环结构时,所述冷却处理包括:
利用所述电池包内的冷却水循环结构对所述电池包进行冷却;
在所述冷却模块包括所述车辆的散热器时,所述冷却处理包括:
利用所述散热器对所述电池包进行冷却。
相对于在先技术,本公开所述的电池包控制方法及系统具有以下优势:
在车辆处于下电状态时,先利用电池传感器获取车辆电池包的当前温度值,以及电池包的恒温控制功能的当前状态,并在当前电池温度值未处于预设范围内,且恒温控制功能的当前状态处于开启状态的情况下,将车辆由下电状态切换为上电状态;然后在当前电池温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过加热模块对电池包进行加热处理,以使得电池包的温度恢复至预设范围内;或者在当前电池温度值大于预设上限值的情况下,若冷却模块满足第二预设条件,则通过冷却模块对电池包进行冷却处理,以使得电池包的温度恢复至预设范围内。即在本公开中,在车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,将车辆唤醒,进而对电池包进行恒温控制,以使得电池包的温度维持在预设范围内,以便于车辆的再次启动及使用。
本公开的再一目的在于提出一种车辆,其中,所述车辆包括所述的电池包控制系统。
所述车辆与上述一种电池包控制方法、系统相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例所提出的电池包控制方法的流程示意图;
图2为本公开另一实施例所提出的电池包控制方法的执行流程图;
图3为本公开另一实施例中步骤S203的执行流程图;
图4为本公开另一实施例中步骤S204的执行流程图;
图5为本公开实施例所提出的电池包控制系统的结构示意图。
图6示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;以及
图7示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面将参考附图更详细地描述本申请的实施例。虽然附图中显示了本申请的实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
请参阅图1,示出了本公开实施例所提供的一种电池包控制方法的流程示意图,应用于车辆,所述车辆包括电池传感器、加热模块及冷却模块,所述方法包括步骤S100~S400:
S100、在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态。
上述步骤S100中,下电状态指的是车辆电源开关关停后的状态,即整车处于睡眠的状态,此时车辆的电控设备均处于睡眠状态。而上述电池传感器与车辆的电池包连接并以电池包为电源,并可以检测电池包的状态信息,该状态信息可以包括电池包的当前电池温度值以及电池包的恒温控制功能的当前状态,因而只有该电池包具有电流,该电池传感器即可以启动并检测上述状态信息。
其中,该电池包的恒温控制功能指的是将电池包的温度值控制在预设范围内的功能,该恒温控制功能包括开启状态和关闭状态。若电池包的恒温控制功能的当前状态为关闭状态,则说明不允许对电池包进行温度控制;若该电池的恒温控制功能的当前状态为开启状态,则说明允许对电池包进行温度控制。
具体地,该电池包的恒温控制功能包含电池包加热保温控制子功能和电池包冷却保温控制子功能。其中,电池包加热保温控制子功能通过加热模块执行,而电池包冷却保温控制子功能则通过冷却模块执行。电池包加热保温控制子功能开启,即是控制加热模块开启;控制电池包冷却保温控制子功能,即是控制冷却模块开启。
在实际应用中,电池包的恒温控制功能的开启或关闭可以通过预设界面选择,该预设界面可以展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。该恒温控制功能默认关闭,且在选择关闭恒温控制功能时,恒温控制功能相关的设置项均为灰色,不可执行设置操作。
在实际使用中,电池传感器可以是电池管理系统,该电池管理系统可以不受车辆电源开关控制,即当车辆处于下电状态时,该电池管理系统依然可以保持工作状态,该电池管理系统也可以在车辆电源开关执行关闭操作的同时,进入睡眠状态,然后周期性启动并检测电池包的状态信息。
步骤S200、在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由所述下电状态切换为上电状态。
上述步骤S200中,该预设范围为预先设置的电池包的较佳工作温度范围,在电池包的当前温度值处于该预设范围内时,电池包的性能较佳,电池包可以正常启动和使用。在所述当前电池温度值未处于该预设范围内时,则说明电池包当前处于过热或过冷状态,此时,为了保证电池包的正常使用,理论上需要对电池包进行相应地温度控制。
而是否具体执行对电池包的温度控制,则需要结合上述恒温控制功能的当前状态判断。若恒温控制功能的当前状态为开启状态,则说明不仅理论上需要对电池包进行相应地温度控制,而且也被允许对电池包进行温度控制。因而将车辆由下电状态切换为上电状态,即将车辆唤醒,以对电池包进行恒温控制。
而若恒温控制功能的当前状态为关闭状态,则说明虽然理论上需要对电池包进行相应地温度控制,但是不允许对电池包进行温度控制,因而也就不会执行将车辆由下电状态切换为上电状态的操作,也即不会将车辆唤醒,也就不会对电池包进行恒温控制。
在实际应用中,该将车辆由下电状态切换为上电状态,具体表现为利用电池传感器唤醒车辆的控制器局域网总线,进而唤醒整车控制器,并将上述当前温度值经控制器局域网总线发送指整车控制器,然后整车控制器根据该当前温度值对电池包进行恒温控制。
步骤S300、在所述车辆处于所述上电状态时,在所述当前电池温度值小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值。
上述步骤S300中,第一预设条件为允许通过加热模块对电池包进行加热处理的前提条件,该加热模块为车辆上可以对电池包进行加热的结构或器件。该第一预设条件为预先设置。
若当前电池温度值小于预设下限值,则说明电池包当前温度过低,此时,若加热模块满足第一预设条件,则说明可以通过加热模块对电池包进行加热处理,因而控制通过加热模块对电池包进行加热,以让电池包摆脱温度过低的状态,即让电池包的当前温度值恢复至上述预设范围内。具体地,该预设下限值可以为-30℃。
步骤S400、在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若冷却模块满足第二预设条件,则通过所述冷却 模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值。
上述步骤S400中,第二预设条件为允许通过冷却模块对电池包进行冷却处理的前提条件,该冷却模块为车辆上可以对电池包进行冷却的结构或器件。该第二预设条件为预先设置。
若当前电池温度值大于预设上限值,则说明电池包当前温度过高,此时,若冷却模块满足第二预设条件,则说明可以通过冷却模块对电池包进行冷却处理,因而控制通过冷却模块对电池包进行加热,以让电池包摆脱温度过低的状态,即让电池包的当前温度值恢复至上述预设范围内。具体地,该预设上限值可以为55℃。
相对于现有技术,本公开实施例所述的电池包控制方法具有以下优势:
在本公开中,在所述车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,会将车辆唤醒,进而对电池包进行恒温控制,以使得电池包的温度维持在预设范围内,以便于车辆的再次启动及使用;从而解决了现有技术中,在车辆处于下电状态后,无法利用热管理系统对电池包进行温度控制,容易因环境温度较低或较高,导致电池包温度过低或过高的问题。
在本公开提供的优选实施例中,上述电池包控制方法包括步骤S201~S210:
步骤S201、在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态。
上述步骤S201可参照步骤S100的详细说明,此处不再赘述。
步骤S202、在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由所述下电状态切换为上电状态。
上述步骤S202可参照步骤S200的详细说明,此处不再赘述。
步骤S203、在所述车辆处于上电状态时,在所述当前电池温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;所述第一预设条件包括: 所述加热模块开启,且在所述车辆处于下电状态后,所述加热模块的启动次数小于第一次数阈值。
上述步骤S203中,即设置在车辆处于上电状态时,在当前电池温度值小于预设下限值的情况下,还需要加热模块开启,且加热模块在车辆停车并进入下电状态后至当前的启动次数小于第一次数阈值,才会执行通过加热模块对电池包进行加热处理的操作,进而使得电池包的温度恢复至预设范围内。也即加热模块开启及加热模块在车辆停车并进入下电状态后至当前的启动次数小于第一次数阈值中任意一个条件未满足时,均不会执行通过加热模块对电池包进行加热处理的操作。
其中,设置上述第一预设条件包括加热模块开启,即设置允许加热模块在电池包温度过低时对电池包进行加热。在驾驶员计划长时间不再启动电池包等情况下,无需电池包进行加热保温时,该条件可以防止加热模块在电池包的温度小于预设下限值时自启动并对电池包加热,也即避免了无意义地电池包加热处理。
在实际应用中,控制上述加热模块的开启或关闭的选择可以通过预设界面选择,该预设界面可以展示有加热模块的开启和关闭的选项。该预设界面可以展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。在预设界面中,加热模块默认关闭,且设置加热模块关闭时,电池包加热保温控制功能相关的设置项均为灰色,不可执行设置操作。
其中,设置上述第一预设条件包括在所述车辆处于下电状态后,加热模块的启动次数小于第一次数阈值,是因为若在车辆处于下电状态后,加热模块的启动次数达到第一次数阈值的话,则表明驾驶员长时间不用车,且因为环境温度过低等原因导致电池包的温度处于小于预设下限值的状态,使得加热模块频繁启动,以让电池包的温度维持在预算范围内。但是因为车辆暂时不会再启动,也即暂时不会启动电池包,此时对电池包进行加热处理是无意义地,反而会耗尽电池包的电量。
在实际应用中,上述第一次数阈值可以通过预设界面进行设置,该预设界面可以展示有第一次数阈值的设置选项。该预设界面可以展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。例如,可以设置该第一次数阈值为3,且第一次数阈值的最大设置次数为20。
可选地,所述步骤S203包括步骤S301~S302:
步骤S301、在所述车辆处于所述上电状态时,在所述当前电池温度值 小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
所述第一预设条件包括:所述加热模块开启,且在所述车辆处于所述下电状态后,所述加热模块的启动次数小于第一次数阈值,所述电池包的荷电状态值小于预设荷电阈值,所述加热模块为所述车辆的发动机,且所述发动机可启动,所述发动机用于对所述电池包进行加热处理;
所述加热处理包括:
启动所述发动机,并通过所述发动机对所述电池包进行加热。
上述步骤S301中,该预设荷电阈值为预先设置,该预设荷电阈值为保证电池包可启动车辆的电量预设下限值。在电池包的荷电状态值大于或等于该预设荷电阈值时,电池包的有足够的电量用于车辆的再次启动;而在电池包的荷电状态值小于该预设荷电阈值时,电池包的电量不足。该预设荷电阈值的具体数值大小需要根据电池包的容量确定。
上述步骤S301即在电池包的温度过低时,且电池包自身电量不足时,若该车辆具有发动机,且发动机被预先设置为允许启动,且在车辆处于下电状态后,发动机的启动次数小于第一次数阈值,则可以通过启动发动机,并通过发动机的冷却回路结构为电池包进行加热,以使得电池包的当前温度值恢复至预设范围内。可以看出,步骤S301的执行需要满足车辆为混合动力车辆。
在实际应用中,设置发动机是否允许启动并为电池包加热,可以通过预设界面选择,该预设界面可以展示有是否允许启动发动机并未电池包加热的选项。该预先界面展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。在预设界面中,默认设置发动机不允许启动,且设置发动机不允许启动时,发动机起动相关的设置项均为灰色,不可执行设置操作。
步骤S302、在所述车辆处于所述上电状态时,在所述当前电池温度值小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
所述第一预设条件包括:所述加热模块开启,且在所述车辆处于下电状态后,所述加热模块的启动次数小于第一次数阈值,所述第一预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述加热模块为 发热元件;
所述加热处理包括:
利用所述电池包为发热元件供电,并通过所述发热元件对所述电池包进行加热。
在步骤S302中,在电池包的荷电状态值大于或等于该预设荷电阈值时,电池包的有足够的电量用于车辆的再次启动,因而此时若在车辆处于下电状态后,发热元件的启动次数小于第一次数阈值时,则可以利用电池包自身的电量为作为加热模块的发热元件供电,以通过该发热元件对电池包进行加热,以使得电池包的当前温度值恢复至预设范围内。
步骤S204、在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值;所述第二预设条件包括:所述冷却模块开启,且在所述车辆处于下电状态后,所述冷却模块的启动次数小于第二次数阈值。
上述步骤S204中,即设置在所述车辆处于上电状态时,在所述当前电池温度值大于预设上限值的情况下,还需要冷却模块开启,且冷却模块在车辆停车并进入下电状态后至当前的启动次数小于第二次数阈值,才会执行通过上述冷却模块对电池包进行冷却处理的操作,进而使得电池包的温度恢复至预设范围内。也即冷却模块开启及冷却模块在车辆停车并进入下电状态后至当前的启动次数小于第二次数阈值中任意一个条件未满足时,均不会执行通过所述冷却模块对所述电池包进行冷却处理的操作。
其中,设置上述第二预设条件包括冷却模块开启,即设置允许冷却模块在电池包温度过高时对电池包进行冷却。在驾驶员计划长时间不再启动电池包等情况下,无需电池包进行冷却保温时,该条件可以防止冷却模块在电池包的温度大于预设上限值时自启动并对电池包冷却,也即避免了无意义地电池包冷却处理。
在实际应用中,控制上述冷却模块的开启或关闭可以通过预设界面进行,该预设界面可以展示有设置冷却模块开启或关闭的选项。该预设界面可以展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。该冷却模块默认关闭,且在选择关闭冷却模块时,电池包冷却保温控制功能相关的设置项均为灰色,不可执行设置操作。
其中,设置上述第二预设条件包括在所述车辆处于下电状态后,加热模块的启动次数小于第二次数阈值,是因为若在车辆处于下电状态后,加热模块的启动次数达到第二次数阈值的话,则表明驾驶员长时间不用车,因为车辆暂时不会再启动,也即不会再启动电池包,此时对电池包进行加热处理是无意义地,反而会耗尽电池包的电量。
在实际应用中,上述第二次数阈值可以通过预设界面进行设置,该预设界面可以展示有第二次数阈值的设置选项。该预设界面可以展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。例如,可以设置该第二次数阈值为3,且第二次数阈值的最大设置次数为20。
可选地,所述步骤S204包括步骤S401~S402:
步骤S401、在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值;
所述第二预设条件包括:所述冷却模块开启,且在所述车辆处于所述下电状态后,所述冷却模块的启动次数小于第二次数阈值,所述电池包的荷电状态值大于或等于预设荷电阈值时,所述冷却模块包括压缩机;
所述冷却处理包括:
利用所述电池包为所述压缩机供电,并通过所述压缩机对所述电池包进行冷却。
上述步骤S401即在电池包的温度过高时,且电池包自身电量充足时,若该车辆具有压缩机,且在车辆处于下电状态后,压缩机的启动次数小于第二次数阈值,则可以通过电池包自身的电量驱动压缩机,并通过该压缩机为电池包进行降温,以使得电池包的当前温度值恢复至预设范围内。
步骤S402、在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值;
所述第二预设条件包括:所述冷却模块开启,且在所述车辆处于所述下电状态后,所述冷却模块的启动次数小于第二次数阈值,在所述电池包的荷电状态值小于所述预设荷电阈值时,所述冷却模块包括所述电池包内的冷却水循环结构或者所述车辆的散热器;
在所述冷却模块包括所述电池包内的冷却水循环结构时,所述冷却处理包括:
利用所述电池包内的冷却水循环结构对所述电池包进行冷却;
在所述冷却模块包括所述车辆的散热器时,所述冷却处理包括:
利用所述散热器对所述电池包进行冷却。
上述步骤S402即在电池包的温度过高时,且电池包自身电量不足时,若允许冷却模块为电池包进行冷却,且在车辆处于下电状态后,冷却模块对电池包的冷却小于第一次数阈值,则可以通过电池包内的冷却水循环结构或者车辆的散热器对电池包进行冷却降温,以使得电池包的当前温度值恢复至预设范围内。
步骤S205、在所述车辆处于所述下电状态后,所述加热模块的启动次数达到第一次数阈值的情况下,或者所述冷却模块的启动次数达到第二次数阈值的情况下,则控制所述电池传感器进入休眠状态。
上述步骤S205中,若在车辆处于下电状态后,加热模块的启动次数达到第一次数阈值的话,则表明驾驶员长时间不用车,且因为环境温度过低等原因导致电池包的温度处于小于预设下限值的状态,使得加热模块频繁启动,以让电池包的温度维持在预算范围内。但是因为车辆暂时不会再启动,也即暂时不会启动电池包,此时对电池包进行加热处理是无意义地,反而会耗尽电池包的电量。因而在加热模块的启动次数达到第一次数阈值的情况下,控制所述电池传感器进入休眠状态,即不再对电池包的当前温度进行监测,也不再获取电池包的恒温控制功能的当前状态,也即不会再通过电池传感器唤醒车辆,以节省电池包的电量。
上述步骤S205中,若在车辆处于下电状态后,冷却模块的启动次数达到第二次数阈值的话,则表明驾驶员长时间不用车,且因为环境温度过高等原因导致电池包的温度处于大于预设上限值的状态,使得冷却模块频繁启动,以让电池包的温度维持在预算范围内。但是因为车辆暂时不会再启动,也即暂时不会启动电池包,此时对电池包进行加热处理是无意义地,反而会耗尽电池包的电量。因而在冷却模块的启动次数达到第二次数阈值的情况下,控制所述电池传感器进入休眠状态,即不再对电池包的当前温度进行监测,也不再获取电池包的恒温控制功能的当前状态,也即不会再通过电池传感器唤醒车辆,以节省电池包的电量。
步骤S206、在所述电池包的当前温度值恢复至所述预设范围内时,控 制所述车辆由所述上电状态切换至所述下电状态。
上述步骤S206中,在电池包的温度恢复至预设范围内时,说明当前电池包已经摆脱过热或过冷状态,无需再对电池包进行冷却处理或加热处理,因而对应控制冷却模块及加热模块停止工作,并控制车辆由上电状态切换至下电状态,即控制车辆进入睡眠状态。
具体地,所述步骤S206包括:在所述电池包的当前温度值由小于预设下限值恢复至大于或等于第一目标值时,控制加热模块停止工作,并控制车辆由上电状态切换至下电状态,该第一目标值处于上述预算范围内。可选地,上述第一目标值为-20℃。
具体地,所述步骤S206包括:在所述电池包的当前温度值由大于预设上限值恢复至小于或等于第二目标值时,控制冷却模块停止工作,并控制车辆由上电状态切换至下电状态,该第二目标值处于上述预算范围内。可选地,上述第二目标值为40℃。
可选地,所述方法还包括:
步骤S207、若所述加热模块未满足第一预设条件,或者所述冷却模块未满足第二预设条件,或者所述电池包的恒温控制功能的当前状态为关闭状态,则控制所述电池传感器进入休眠状态。
上述步骤S207中,即在加热模块未开启、加热模块在车辆处于下电状态后的启动次数大于或等于第一次数阈值、冷却模块未开启、冷却模块在车辆处于下电状态后的启动次数大于或等于第二次数阈值中的任意一项或多项满足时,控制传感器进入休眠状态,即不再通过电池传感器对电池包的当前温度进行监测,也不再通过电池传感器获取电池包的恒温控制功能的当前状态,也即不会再通过电池传感器唤醒车辆,以节省电池包的电量。
相对于现有技术,本公开实施例所述的电池包控制方法具有以下优势:
在车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,会将车辆唤醒;并在当前电池温度值小于预设下限值,且加热模块开启,且在所述车辆处于下电状态后,加热模块的启动次数小于第一次数阈值的情况下,才通过加热模块对电池包进行加热处理,以使得电池包的温度恢复至预设范围内;并当前电池温度值大于预设上限值,且冷却模块开启,且在车辆处于下电状态后,冷却模块的启动次数小于第二次数阈值的情况下,才通过冷却模块对电池包进行冷却处 理,以使得电池包的温度恢复至预设范围内。通过本公开实施例不仅解决了现有技术中,在车辆处于下电状态后,无法利用热管理系统对电池包进行温度控制,容易因环境温度较低或较高,导致电池包温度过低或过高的问题,更是避免了在无需对电池包进行恒温控制时,却通过加热模块或冷却模块对电池包进行恒温控制的情况,从而避免了电池包电量浪费。
请参阅图2,示出了在实际应用中,本公开实施例所提供的电池包控制方法的执行流程图,所述方法的执行流程包括步骤S211~S234:
如图2所示,在步骤S211中,在车辆停车下电后,若电池控制系统(Battery Management System,BMS)被控制器局域网总线(Controller Area Network,CAN)通过APP远程设置唤醒或周期性自唤醒后,则开始检测电池包的智能恒温控制功能以及电池包温度,然后进入步骤S212;
在步骤S212中,判断电池包智能恒温控制功能是否被使能,即是否被允许使用,如果电池包智能恒温控制功能被使能,则进入步骤S213,否则进入步骤S214并控制BMS关闭自唤醒功能,并进入控制车辆进入睡眠状态的步骤S234;
在步骤S213中,进一步判断电池包温度是否低于预设下限值或高于预设上限值,如果电池包温度是否低于预设下限值或高于预设上限值,则进入步骤S215,否则进入步骤S216并控制BMS进入自休眠状态,并进入控制车辆进入睡眠状态的步骤S234;
在步骤S215中,BMS唤醒CAN网络,然后依次进入步骤S217~S219;
在步骤S217中,BMS将步骤S211处所检测得到的电池包温度通过CAN发送给整车控制器(Hybrid Control Unit,HCU);
在步骤S218中,空调控制器唤醒后检测环境温度,并将环境温度通过CAN发送给HCU;
在步骤S219中,HCU基于环境温度和电池包温度进行判断,确定电池包智能恒温控制策略;
在步骤S220中,判断环境温度是否低于-30摄氏度且电池包温度低于预设下限值,如果环境温度低于-30摄氏度且电池包温度低于预设下限值,则进入步骤S221中,否则进入步骤S222中判断电池包温度是否高于预设上限值;
在步骤S221中,检测用户是否在HUT中开启了电池包智能加热保温控制功能,如果用户在HUT中开启了电池包智能加热保温控制功能,则进入 步骤S223中进一步判断单次停车过程中智能加热保温控制功能激活次数是否小于第一次数阈值N;在步骤S221中,若检测出用户在HUT中未开启电池包智能加热保温控制功能,则进入步骤S227中;
在步骤S223中,若判断单次停车过程中智能加热保温控制功能激活次数小于N,则进入步骤S224中,以通过HCU激活电池包智能加热保温控制子功能;在步骤S223中,若判断单次停车过程中智能加热保温控制功能激活次数不小于N,则进入步骤S227中;
在步骤S225中,持续监测电池包温度,以通过电池包智能加热保温控制功能将电池包温度升高至高于预设下限值;
在步骤S226中,在电池包温度升高至高于预设下限值后,HCU控制电池包智能保温控制功能关闭,并控制车辆进入睡眠状态;
在步骤S227中,通过HCU禁止电池包智能加热保温控制子功能和电池包智能冷却保温控制子功能,在进入步骤S228;
在步骤S228中,控制BMS关闭自唤醒功能,并进入控制车辆进入睡眠状态的步骤S234;
在步骤S222中,若监测到电池包温度高于预设上限值,则进入步骤S229中,检测用户是否在HUT中开启了电池包智能冷却保温控制功能;若监测到电池包温度不高于预设上限值,则进入步骤S233中;
在步骤S229中,如果用户在HUT中开启了电池包智能冷却保温控制功能,则进入步骤S230中进一步判断单次停车过程中智能冷却保温控制功能激活次数是否小于第二次数阈值N;在步骤S229中,若检测出用户在HUT中未开启电池包智能冷却保温控制功能,则进入步骤S227中;
在步骤S230中,若判断单次停车过程中智能冷却保温控制功能激活次数小于N,则进入步骤S231中,以通过HCU激活电池包智能冷却保温控制子功能;在步骤S230中,若判断单次停车过程中智能冷却保温控制功能激活次数不小于N,则进入步骤S227中;
在步骤S232中,持续监测电池包温度,以通过电池包智能加热保温控制功能将电池包温度降低至低于预设上限值;
在步骤S226中,在电池包温度降低至低于预设上限值后,HCU控制电池包智能保温控制功能关闭,并控制车辆进入睡眠状态;
在步骤S233中,检测本次停车后BMS唤醒CAN网络且HCU未激活保温功能的次数是否大于第三次数阈值N;是则进入步骤S227中。
请参阅图3,图3示出了在实际应用中,本公开实施例的上述步骤S203的执行流程图,包括步骤S311~S322。如图3所示,在步骤S311中,在车辆处于上电状态时,且当前电池温度值小于预设下限值的情况下,整车控制器(Hybrid Control Unit,HCU)先通过控制器局域网总线(Controller Area Network,CAN)发送上电请求给无钥匙上电系统,然后在步骤S312中,无钥匙上电系统控制车辆的电源模式切换至ON档。在步骤S313中,在电源模式切换至ON档后,整车控制器控制高压系统完成高压上电。在步骤S314中,在高压系统完成高压上电后,整车控制器基于电池包的荷电状态值(state of charge,SOC)控制加热模块执行对电池包的加热处理:
在步骤S315中,判断电池包SOC是否大于与预设荷电阈值,在电池包的荷电状态值大于预设荷电阈值时,进入步骤S316中,激活基于正温度系数热敏电阻器(positive temperature coefficient,PTC)的电池包加热功能给电池包加热,即利用电池包为正温度系数热敏电阻器供电以利用发热元件给电池包加热,直至电池包的当前温度值大于或等于预设下限值,然后进入步骤S318即控制正温度系数热敏电阻器停止工作,以实现控制退出电池包加热保温功能;再进入步骤319,即在电池包加热保温功能退出后,控制车辆进入睡眠状态;
在电池包的荷电状态值小于或等于预设荷电阈值时,进入步骤S320中,判断用户是否在HUT中设置允许启动发动机,即判断发动机是否可启动。如发动机可启动,则进入步骤S321中激活基于发动机冷却回路的电池包加热功能给电池包加热,即启动发动机并利用发动机的冷却回路结构给电池包加热,直至电池包的当前温度值大于或等于预设下限值,然后控制发动机停止工作,以实现控制退出电池包加热保温功能。再在电池包加热保温功能退出后,控制车辆进入睡眠状态。而若判断发动机不可启动,则直接进入步骤S318,即直接控制退出电池包加热保温功能,然后控制车辆进入睡眠状态。
请参阅图4,图4示出了在实际应用中,本公开实施例的上述步骤S204的执行流程图,包括步骤S411~S421。如图4所示,在步骤S411中,在车辆处于上电状态时,且当前电池温度值小于预设下限值的情况下,整车控制器先通过控制器局域网总线发送上电请求给无钥匙上电系统,然后在步骤S412中,无钥匙上电系统控制车辆的电源模式切换至ON档。在步骤S413中,在电源模式切换至ON档后,整车控制器控制高压系统完成高压上电。在步骤S414中,在高压系统完成高压上电后,整车控制器基于电池包的荷 电状态值控制冷却模块执行对电池包的冷却处理:
在步骤S415中,判断电池包SOC是否大于与荷电阈值,在电池包的荷电状态值大于预设荷电阈值时,进入步骤S416中,控制电池包为压缩机供电以利用压缩机给电池包降温,直至电池包的当前温度值小于或等于预设上限值,然后进入步骤S418,即控制压缩机停止工作,以实现控制退出电池包冷却保温功能。再进入步骤419,即在电池包冷却保温功能退出后,控制车辆进入睡眠状态;
在电池包的荷电状态值小于或等于预设荷电阈值时,进入步骤S420中,通过电池包内的冷却水循环结构或者车辆的散热器对电池包进行冷却降温,直至电池包的当前温度值小于或等于预设上限值,然后控制冷却水循环结构或者散热器停止工作,以实现控制退出电池包冷却保温功能。再在电池包冷却保温功能退出后,控制车辆进入睡眠状态。
在本公开提供的另一优选实施例中,上述电池包控制方法包括步骤S501~S506:
步骤S501、在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态。
上述步骤S501可参照步骤S201的详细说明,此处不再赘述。
步骤S502、在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由下电状态切换为上电状态。
上述步骤S502可参照步骤S202的详细说明,此处不再赘述。
步骤S503、在所述车辆处于上电状态时,获取当前环境温度值。
因为在如车辆刚由较低温度的环境停车进入较高温度的环境时,此时电池包的温度很可能暂时低于预设下限值,但是如果当前环境温度值大于预设下限值的话,就算不对电池包进行加热处理,电池包的温度也会在环境温度的作用下逐渐升温至与当前环境温度值一致,也即电池包的温度升高至大于或等于预设下限值;
再如车辆刚由较高温度的环境停车进入较低温度的环境时,此时电池包的温度很可能暂时低于预设下限值,但是如果当前环境温度值低于预设上限值的话,就算不对电池包进行冷却处理,电池包的温度也会在环境温度的作用下逐渐降低至与当前环境温度值一致,也即电池包的温度降低至小于或等 于预设下限值。
因而需要在上述步骤S503中,在车辆处于上电状态时,通过车辆的温度传感器监测当前环境温度,以获取当前环境温度值,以便于精确判断是否需要对电池包进行加热处理或者冷却处理。
步骤S504、在所述车辆处于上电状态时,在所述当前电池温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
所述第一预设条件包括:所述加热模块开启,且在所述车辆处于下电状态后,所述加热模块的启动次数小于第一次数阈值,所述当前环境温度值小于预设温度阈值。
上述步骤S504中,即设置在车辆处于上电状态时,在当前电池温度值小于预设下限值的情况下,还需要加热模块开启,且加热模块在车辆停车并进入下电状态后至当前的启动次数小于第一次数阈值,且当前环境温度值小于预设温度阈值,才会执行通过加热模块对电池包进行加热处理的操作,进而使得电池包的温度恢复至预设范围内。也即加热模块开启、加热模块在车辆停车并进入下电状态后至当前的启动次数小于第一次数阈值、以及当前环境温度值小于预设温度阈值中任意一个条件未满足时,均不会执行通过加热模块对电池包进行加热处理的操作。
其中,上述预设温度阈值应大于或等于上述预设下限值,具体可以设置为上述预设下限值,即预设范围内的最小值。在实际应用中,上述预设温度阈值同样可以通过预设界面进行设置,该预设界面可以展示有预设温度阈值的设置选项。该预设界面可以展示在车辆中控的显示屏或者与车辆中控通信连接的移动终端上。
步骤S505、若第一情况出现的次数大于或等于第三次数阈值,则控制所述电池传感器进入休眠状态;其中,所述第一情况为所述当前电池温度值小于所述预设下限值,且所述当前环境温度值不小于预设温度阈值的情况。
因为电池传感器是周期性对电池包的当前温度值进行检测,若在当个周期检测到电池包的当前电池温度值小于预设下限值时,会将车辆由下电状态切换为上电状态,并检测车辆所处环境的当前环境温度值,若当前环境温度值大于或等于预设温度阈值,则记第一情况出现1次;若下一个周期检测到电池包的当前电池温度值小于预设下限值时,仍会将车辆由下电状态切换为 上电状态,并检测车辆所处环境的当前环境温度值,若当前环境温度值仍大于或等于预设温度阈值,则记第一情况的出现次数增加1次。
若第一情况的出现次数达到第三次数阈值,则表明当前环境温度值持续维持在大于或等于预设温度阈值的状态下,电池包只是暂时处于较低温度状态,在环境温度的作用下,电池包的温度会逐渐升至与当前环境温度值一致,也即电池包的温度升高至大于或等于预设下限值。因而暂时不需要对电池包进行加热处理,也就不需要通过电池传感器对电池包的当前温度进行监测,因而控制电池传感器进入休眠状态,也即不会再通过电池传感器唤醒车辆,以节省电池包的电量。
步骤S506、在所述车辆处于上电状态时,在所述当前电池温度值大于预设上限值的情况下,若冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值所述第二预设条件包括:所述冷却模块开启,且在所述车辆处于下电状态后,所述冷却模块的启动次数小于第二次数阈值。
上述步骤S506可参照步骤S204的详细说明,此处不再赘述。
相对于现有技术,本公开实施例所述的电池包控制方法具有以下优势:
在车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,会将车辆唤醒;在当前电池温度值小于预设下限值,且加热模块开启,且当前环境温度值小于预设温度阈值,且在所述车辆处于下电状态后,加热模块的启动次数小于第一次数阈值的情况下,才通过加热模块对电池包进行加热处理,以使得电池包的温度恢复至预设范围内;在当前电池温度值大于预设上限值,且冷却模块开启,且在车辆处于下电状态后,冷却模块的启动次数小于第二次数阈值的情况下,才通过冷却模块对电池包进行冷却处理,以使得电池包的温度恢复至预设范围内。通过本公开实施例不仅解决了现有技术中,在车辆处于下电状态后,无法利用热管理系统对电池包进行温度控制,容易因环境温度较低或较高,导致电池包温度过低或过高的问题,更是避免了在无需对电池包进行恒温控制时,却通过加热模块或冷却模块对电池包进行恒温控制的情况,从而避免了电池包电量浪费。
本公开的另一目的在于提出一种电池包控制系统,应用于车辆,所述车 辆包括电池传感器,其中,请参阅图5,图5示出了本公开实施例所提出的一种电池包控制系统的结构示意图,所述系统包括:
电池包状态获取模块10,用于在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态;
唤醒模块20,用于在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由下电状态切换为上电状态;
第一控制模块30,用于在所述车辆处于上电状态时,在所述当前电池温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
第二控制模块40,用于在所述车辆处于上电状态时,在所述当前电池温度值大于预设上限值的情况下,若冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值。
本公开实施例所述的系统中,先利用电池包状态获取模块10,在车辆处于下电状态时,通过电池传感器获取车辆电池包的当前温度值,以及电池包的恒温控制功能的当前状态,并在当前电池温度值未处于预设范围内,且恒温控制功能的当前状态处于开启状态的情况下,利用唤醒模块20将车辆由下电状态切换为上电状态;然后在当前电池温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过第一控制模块30控制加热模块对电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内;或者在当前电池温度值大于预设上限值的情况下,若冷却模块满足第二预设条件,则通过第二控制模块40控制冷却模块对电池包进行冷却处理,以使得电池包的温度恢复至预设范围内。即在本公开中,在所述车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,将车辆唤醒,进而对电池包进行恒温控制,以使得电池包的温度维持在预设范围内,以便于车辆的再次启动及使用。
可选地,所述的系统中,所述第一预设条件包括所述加热模块开启,且在所述车辆处于下电状态后,所述加热模块的启动次数小于第一次数阈值;
所述第二预设条件包括所述冷却模块开启,且在所述车辆处于下电状态后,所述冷却模块的启动次数小于第二次数阈值。
可选地,所述系统还包括:环境温度获取模块,用于在所述车辆处于上电状态时,获取当前环境温度值;
所述第一预设条件还包括:所述当前环境温度值小于预设温度阈值。
可选地,所述系统还包括:
第三控制模块,用于若所述加热模块未满足第一预设条件,或者所述冷却模块未满足第二预设条件,或者所述电池包的恒温控制功能的当前状态为关闭状态,则控制所述电池传感器进入休眠状态。
可选地,所述系统还包括:
第四控制模块,用于若第一情况出现的次数大于或等于第三次数阈值,则控制所述电池传感器进入休眠状态;
其中,所述第一情况为所述当前电池温度值小于所述预设下限值,且所述当前环境温度值不小于所述预设温度阈值的情况。
可选地,所述的系统中,所述第一预设条件还包括:所述电池包的荷电状态值小于预设荷电阈值,所述加热模块为所述车辆的发动机,且所述发动机可启动,所述发动机用于对所述电池包进行加热处理;
所述加热处理包括:
启动所述发动机,并通过所述发动机对所述电池包进行加热。
可选地,所述的系统中,所述第一预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述加热模块为发热元件;
所述加热处理包括:
利用所述电池包为发热元件供电,并通过所述发热元件对所述电池包进行加热。
可选地,所述的系统中,所述第二预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述冷却模块包括压缩机;
所述冷却处理包括:
利用所述电池包为所述压缩机供电,并通过所述压缩机对所述电池包进行冷却;
所述第二预设条件还包括:在所述电池包的荷电状态值小于所述预设荷电阈值时,所述冷却模块包括所述电池包内的冷却水循环结构或者所述车辆的散热器;
在所述冷却模块包括所述电池包内的冷却水循环结构时,所述冷却处理包括:
利用所述电池包内的冷却水循环结构对所述电池包进行冷却;
在所述冷却模块包括所述车辆的散热器时,所述冷却处理包括:
利用所述散热器对所述电池包进行冷却。
本公开的再一目的在于提出一种车辆,其中,所述车辆包括所述的电池包控制系统。
所述车辆与上述一种电池包控制方法、系统相对于现有技术所具有的优势相同,在此不再赘述
关于上述系统和车辆的技术细节和好处已在上述方法中进行了详细阐述,此处不再赘述。
综上所述,本申请提供的电池包控制方法、系统及车辆,在车辆处于下电状态时,先利用电池传感器获取车辆电池包的当前温度值,以及电池包的恒温控制功能的当前状态,并在当前电池温度值未处于预设范围内,且恒温控制功能的当前状态处于开启状态的情况下,将车辆由下电状态切换为上电状态;然后在当前电池温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过加热模块对电池包进行加热处理,以使得电池包的温度恢复至预设范围内;或者在当前电池温度值大于预设上限值的情况下,若冷却模块满足第二预设条件,则通过冷却模块对电池包进行冷却处理,以使得电池包的温度恢复至预设范围内。即在本公开中,在车辆处于下电状态时,先利用电池传感器检测电池包的当前电池温度值,以及电池包的恒温控制功能的当前状态,并在电池包的当前温度值超出预设范围且电池包的恒温控制功能开启时,将车辆唤醒,进而对电池包进行恒温控制,以使得电池包的温度维持在预设范围内,以便于车辆的再次启动及使用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图6示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图7所述的便携式或者固定存储单元。该存储单元可以具有与图6的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (13)

  1. 一种电池包控制方法,应用于车辆,其特征在于,所述车辆包括电池传感器、加热模块及冷却模块,所述方法包括:
    在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态;
    在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由所述下电状态切换为上电状态;
    在所述车辆处于所述上电状态时,在所述当前电池温度值小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
    在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预设条件包括:所述加热模块开启,且在所述车辆处于所述下电状态后,所述加热模块的启动次数小于第一次数阈值;
    所述第二预设条件包括:所述冷却模块开启,且在所述车辆处于所述下电状态后,所述冷却模块的启动次数小于第二次数阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述在所述车辆处于所述上电状态时,在所述当前温度值小于预设下限值的情况下,若加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内的步骤之前,还包括:
    在所述车辆处于所述上电状态时,获取当前环境温度值;
    所述第一预设条件还包括:所述当前环境温度值小于预设温度阈值。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述加热模块未满足所述第一预设条件,或者所述冷却模块未满足所述第二预设条件,或者所述电池包的恒温控制功能的当前状态为关闭状态, 则控制所述电池传感器进入休眠状态。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    若第一情况出现的次数大于或等于第三次数阈值,则控制所述电池传感器进入休眠状态;
    其中,所述第一情况为所述当前电池温度值小于所述预设下限值,且所述当前环境温度值不小于所述预设温度阈值的情况。
  6. 根据权利要求2所述的方法,其特征在于,所述第一预设条件还包括:所述电池包的荷电状态值小于预设荷电阈值,所述加热模块为所述车辆的发动机,且所述发动机可启动,所述发动机用于对所述电池包进行加热处理;
    所述加热处理包括:
    启动所述发动机,并通过所述发动机对所述电池包进行加热。
  7. 根据权利要求2所述的方法,其特征在于,所述第一预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述加热模块为发热元件;
    所述加热处理包括:
    利用所述电池包为发热元件供电,并通过所述发热元件对所述电池包进行加热。
  8. 根据权利要求2所述的方法,其特征在于,所述第二预设条件还包括:所述电池包的荷电状态值大于或等于预设荷电阈值时,所述冷却模块包括压缩机;
    所述冷却处理包括:
    利用所述电池包为所述压缩机供电,并通过所述压缩机对所述电池包进行冷却;
    所述第二预设条件还包括:在所述电池包的荷电状态值小于所述预设荷电阈值时,所述冷却模块包括所述电池包内的冷却水循环结构或者所述车辆的散热器;
    在所述冷却模块包括所述电池包内的冷却水循环结构时,所述冷却处理包括:
    利用所述电池包内的冷却水循环结构对所述电池包进行冷却;
    在所述冷却模块包括所述车辆的散热器时,所述冷却处理包括:
    利用所述散热器对所述电池包进行冷却。
  9. 一种电池包控制系统,应用于车辆,其特征在于,所述车辆包括电池传感器、加热模块及冷却模块,所述系统包括:
    电池包状态获取模块,用于在所述车辆处于下电状态时,通过所述电池传感器获取所述车辆的电池包的当前电池温度值,以及所述电池包的恒温控制功能的当前状态;
    唤醒模块,用于在所述当前电池温度值未处于预设范围内,且所述恒温控制功能的当前状态处于开启状态的情况下,将所述车辆由所述下电状态切换为上电状态;
    第一控制模块,用于在所述车辆处于所述上电状态时,在所述当前电池温度值小于预设下限值的情况下,若所述加热模块满足第一预设条件,则通过所述加热模块对所述电池包进行加热处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设下限值为所述预设范围内的最小值;
    第二控制模块,用于在所述车辆处于所述上电状态时,在所述当前电池温度值大于预设上限值的情况下,若所述冷却模块满足第二预设条件,则通过所述冷却模块对所述电池包进行冷却处理,以使得所述电池包的温度恢复至所述预设范围内,所述预设上限值为所述预设范围内的最大值。
  10. 一种车辆,其特征在于,所述车辆包括如权利要求9所述的电池包控制系统。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-8中任一项所述的电池包控制方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-8中任一项所述的电池包控制方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2020/130888 2019-11-28 2020-11-23 一种电池包控制方法、系统及车辆 WO2021104204A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/754,359 US20220340012A1 (en) 2019-11-28 2020-11-23 Battery pack control method and system, and vehicle
EP20894318.3A EP4023488A4 (en) 2019-11-28 2020-11-23 METHOD AND SYSTEM FOR CONTROLLING BATTERY PACK, AND VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911194054.5A CN112026589A (zh) 2019-11-28 2019-11-28 一种电池包控制方法、系统及车辆
CN201911194054.5 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021104204A1 true WO2021104204A1 (zh) 2021-06-03

Family

ID=73576694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130888 WO2021104204A1 (zh) 2019-11-28 2020-11-23 一种电池包控制方法、系统及车辆

Country Status (4)

Country Link
US (1) US20220340012A1 (zh)
EP (1) EP4023488A4 (zh)
CN (1) CN112026589A (zh)
WO (1) WO2021104204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665438A (zh) * 2021-09-15 2021-11-19 上汽通用五菱汽车股份有限公司 汽车电池及其温控方法、计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113581012B (zh) * 2021-08-31 2023-03-03 东风商用车有限公司 一种动力电池的低温保护方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921003A (zh) * 2016-10-25 2017-07-04 蔚来汽车有限公司 电动汽车电池包温度的智能控制系统和方法
CN107672466A (zh) * 2017-08-30 2018-02-09 北京长城华冠汽车科技股份有限公司 一种电动汽车电池包温度的监控方法及装置
CN107672465A (zh) * 2017-08-30 2018-02-09 北京长城华冠汽车科技股份有限公司 一种电动汽车电池包温度的处理方法及装置
JP2018103841A (ja) * 2016-12-27 2018-07-05 株式会社Subaru 電池モジュールの冷却装置
CN109244568A (zh) * 2018-08-02 2019-01-18 宝沃汽车(中国)有限公司 用于动力电池的控制方法、装置和车辆
CN109532562A (zh) * 2018-09-21 2019-03-29 江苏敏安电动汽车有限公司 一种电动汽车主动热管理控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202741A1 (en) * 2007-02-23 2008-08-28 Daewoong Lee Battery cooling device for vehicles and control method thereof
US20140338376A1 (en) * 2011-12-29 2014-11-20 Magna E-Car System of America, Inc. Thermal management system for vehicle having traction motor
CN104149600A (zh) * 2013-05-15 2014-11-19 北汽福田汽车股份有限公司 电动汽车电机系统的冷却系统的控制方法及系统
CN204210324U (zh) * 2014-10-28 2015-03-18 北汽福田汽车股份有限公司 电动汽车及电动汽车中动力电池的温度控制装置
CN105235472B (zh) * 2015-11-12 2018-01-02 潍柴动力股份有限公司 一种电动汽车加热系统、电动汽车和驻车加热方法
CN105922880B (zh) * 2016-05-03 2018-10-16 北京新能源汽车股份有限公司 电动汽车动力电池的充电控制方法和控制系统
US10744885B2 (en) * 2016-11-21 2020-08-18 Ford Global Technologies, Llc Battery pre-heating prior to fast charge
KR102394113B1 (ko) * 2017-09-05 2022-05-04 에스케이온 주식회사 전지 밸런싱 장치 및 방법
CN109273793A (zh) * 2018-08-24 2019-01-25 合肥移顺信息技术有限公司 低温环境下维持电动车续航里程的电池恒温系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106921003A (zh) * 2016-10-25 2017-07-04 蔚来汽车有限公司 电动汽车电池包温度的智能控制系统和方法
JP2018103841A (ja) * 2016-12-27 2018-07-05 株式会社Subaru 電池モジュールの冷却装置
CN107672466A (zh) * 2017-08-30 2018-02-09 北京长城华冠汽车科技股份有限公司 一种电动汽车电池包温度的监控方法及装置
CN107672465A (zh) * 2017-08-30 2018-02-09 北京长城华冠汽车科技股份有限公司 一种电动汽车电池包温度的处理方法及装置
CN109244568A (zh) * 2018-08-02 2019-01-18 宝沃汽车(中国)有限公司 用于动力电池的控制方法、装置和车辆
CN109532562A (zh) * 2018-09-21 2019-03-29 江苏敏安电动汽车有限公司 一种电动汽车主动热管理控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023488A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665438A (zh) * 2021-09-15 2021-11-19 上汽通用五菱汽车股份有限公司 汽车电池及其温控方法、计算机可读存储介质

Also Published As

Publication number Publication date
EP4023488A1 (en) 2022-07-06
CN112026589A (zh) 2020-12-04
US20220340012A1 (en) 2022-10-27
EP4023488A4 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2021104205A1 (zh) 一种电池包控制方法、系统及车辆
WO2021104204A1 (zh) 一种电池包控制方法、系统及车辆
CN107672466B (zh) 一种电动汽车电池包温度的监控方法及装置
TW201203271A (en) Memory power reduction in a sleep state
CN112824139B (zh) 车辆的电池保温方法、系统
CN104035395A (zh) 低功耗车载终端及车载终端实现低功耗的方法
US8949638B2 (en) Embedded controller with an internal timer
CN104460451A (zh) 车载信息服务终端产品的系统启动控制方法
WO2021170024A1 (zh) 动力电池荷电状态下限控制方法、装置及车辆
WO2021170025A1 (zh) 动力电池荷电状态下限控制方法、装置及车辆
WO2021233219A1 (zh) 电池管理系统自唤醒诊断方法、电池管理系统和车辆
CN110096125B (zh) 用于保存存储器数据的计算机实施方法及计算机系统
CN113525094A (zh) 电池控制方法及装置、车辆、车辆系统及存储介质
CN113829953A (zh) 电动汽车动力电池冷却控制方法及控制装置
JP5919555B2 (ja) 情報処理装置および情報処理装置の起動方法
CN105744604B (zh) 基于android系统的WIFI模块功耗控制装置及方法
WO2021227991A1 (zh) 一种充电方法及装置
US8138929B2 (en) Method for protecting data in non-volatile storage device and computer thereof
WO2024045872A1 (zh) 用于控制车辆蓄电池的温度的方法及装置
CN117687694A (zh) 误唤醒处理方法、装置及存储介质
WO2020215747A1 (zh) 加固设备和实现加固设备在低温下工作的方法
EP4343925A1 (en) Battery heating method and heating apparatus
CN113581012B (zh) 一种动力电池的低温保护方法、装置、设备及存储介质
CN114801885A (zh) 电池包恒温控制方法、装置、车辆及计算机可读存储介质
CN107179819B (zh) 预防电池膨胀的方法及其电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020894318

Country of ref document: EP

Effective date: 20220331

NENP Non-entry into the national phase

Ref country code: DE