WO2021103995A1 - 一种判断电池内短路的方法、设备和电子设备 - Google Patents

一种判断电池内短路的方法、设备和电子设备 Download PDF

Info

Publication number
WO2021103995A1
WO2021103995A1 PCT/CN2020/127554 CN2020127554W WO2021103995A1 WO 2021103995 A1 WO2021103995 A1 WO 2021103995A1 CN 2020127554 W CN2020127554 W CN 2020127554W WO 2021103995 A1 WO2021103995 A1 WO 2021103995A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
short circuit
internal short
charging
Prior art date
Application number
PCT/CN2020/127554
Other languages
English (en)
French (fr)
Inventor
陈伟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20891851.6A priority Critical patent/EP4057018A4/en
Publication of WO2021103995A1 publication Critical patent/WO2021103995A1/zh
Priority to US17/747,859 priority patent/US20220276322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Definitions

  • the embodiments of the present application relate to the technical field of battery detection, and specifically relate to a method, device, and electronic device for judging a short circuit in a battery.
  • the embodiments of the present application provide a method, device, and electronic device for judging a short circuit in a battery, so as to solve problems in related technologies.
  • a method for judging a short circuit in a battery including: obtaining the charge power charged in the battery in a preset voltage interval and the discharged power used in the preset voltage interval respectively; The electric quantity and the discharged electric quantity determine whether the battery has an internal short circuit.
  • a device for judging an internal short circuit of a battery including: an acquiring unit configured to respectively acquire the charge power charged in the battery in a preset voltage interval and the discharge power used in the preset voltage interval The judgment unit is used to judge whether the battery has an internal short circuit according to the charge power and the discharge power.
  • an electronic device including: a processor, configured to obtain the charge power charged in a preset voltage interval and the discharge power used in the preset voltage interval of the battery, respectively; according to the The charged power and the discharged power determine whether the battery has an internal short circuit.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method described in the first aspect or any one of its implementation manners.
  • a computer program product which is characterized by including computer program instructions that cause a computer to execute the method described in the first aspect or any one of its implementation manners.
  • the method for judging the internal short circuit of the battery provided by the embodiment of the present application can effectively determine whether the battery has an internal short circuit according to the obtained battery power charged in the preset voltage interval and the discharged power used in the preset voltage interval.
  • the charging power and the discharging power can be obtained through a fuel gauge, and the electronic device has a fuel gauge, the problem of limited application scenarios mentioned in the background art can also be solved.
  • FIG. 1 is a schematic block diagram of a power detection device provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for determining a short circuit in a battery provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the voltage-capacity change curve of the battery provided in the embodiment of the present application during the charging process and the discharging process;
  • FIG. 4 is a schematic block diagram of a device for determining a short circuit in a battery provided by an embodiment of the present application
  • FIG. 5 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wired charging system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a wired charging system provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wireless charging system provided by still another embodiment of the present application.
  • the power detection device provided by this embodiment of the application.
  • the fuel gauge can detect the current flowing through the battery.
  • Q is the amount of electricity charged in the battery during charging or the amount of electricity used by the battery during discharging
  • I is the charging current of the battery during the charging process or the discharge current during the discharging process
  • t is the charging time or discharging time.
  • the method provided by the embodiment of the present application can effectively detect whether the battery has an internal short circuit based on the obtained charge power and discharge power, and further, can avoid thermal runaway caused by continued use of the battery.
  • the internal short circuit in the embodiments of the present application may refer to the internal short circuit of the battery.
  • the battery in the embodiment of the present application may be a battery in a terminal.
  • the "terminal” may include, but is not limited to, set to be connected via a wired line (such as via a Public Switched Telephone Network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, Wireless Local Area Network (WLAN), such as handheld digital Video Broadcasting (Digital Video Broadcasting Handheld, DVB-H) network digital TV network, satellite network, AM-FM (Amplitude Modulation-Frequency Modulation, AM-FM) broadcast transmitter, and/or wireless interface of another communication terminal A device that receives/transmits communication signals.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal", and/or a "mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; Personal Communication System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal Digital Assistant (PDA) with intranet access, Web browser, notebook, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the device to be charged may refer to the mobile terminal being a device or a handheld terminal device, such as a mobile phone, a pad, and so on.
  • the device to be charged mentioned in the embodiments of the present application may refer to a chip system. In this embodiment, the battery of the device to be charged may or may not belong to the chip system.
  • the terminal can also include other devices to be charged that require charging, such as mobile phones, mobile power sources (such as power banks, travel chargers, etc.), electric cars, laptops, drones, tablets, e-books, e-cigarettes, smart phones Devices to be charged and small electronic products, etc.
  • Smart devices to be charged can include, for example, watches, bracelets, smart glasses, and sweeping robots.
  • Small electronic products may include, for example, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice.
  • the method for judging the internal short circuit of the battery provided by the embodiment of the present application can be applied in the test phase or in the actual use process, wherein when it is determined that the battery has an internal short circuit, the charging power and the charging voltage of the battery can be controlled.
  • the method 200 provided by the embodiment of the present application may include steps S210-S220.
  • S210 Obtain the charge power charged in the preset voltage interval and the discharged power used in the preset voltage interval of the battery, respectively.
  • the preset voltage interval in the embodiment of the present application may be any voltage interval value, for example, it may be the voltage interval between point A and point B in FIG. 3. Assuming that the rated voltage of the electric battery is 4.4V, this application The preset voltage interval in the embodiment may be 3V-4V, 3V-4.4V, or 3.5V-4V, which is not specifically limited in this application.
  • the charging power and the discharging power in the embodiment of the present application can be obtained through a fuel gauge.
  • t may be the duration of the preset voltage interval of the battery during charging or discharging, that is, t may be obtained by separately recording the duration of the battery voltage during the charging and discharging processes in the preset voltage interval.
  • S220 Determine whether the battery has an internal short circuit according to the charge power and the discharge power.
  • the method for judging the internal short circuit of the battery provided by the embodiment of the present application can effectively determine whether the battery has an internal short circuit according to the obtained battery power charged in the preset voltage interval and the discharged power used in the preset voltage interval.
  • the charging power and the discharging power can be obtained through a fuel gauge, and the electronic device has a fuel gauge, the problem of limited application scenarios mentioned in the background art can also be solved.
  • the judging whether the battery has an internal short circuit based on the charged power and the discharged power includes: if the charged power is greater than the discharged power, determining that the battery exists Internal short circuit; if the charge power is equal to the discharged power, it is determined that the battery does not have an internal short circuit.
  • FIG. 3 it is a schematic diagram of the voltage-capacity change curve of a battery during charging and discharging, respectively, according to an embodiment of this application.
  • the amount of electricity charged in this voltage range can be obtained by the charging current obtained by the fuel gauge Obtained from the recorded time, for example, the charge capacity is Q1; in the same way, if the battery is discharged from point C to point D and the battery voltage is discharged from Vb to voltage Va during the process of discharging the battery, the discharge can also be obtained by the fuel gauge
  • discharge the battery with a discharge current of 1A and record the time used when the battery voltage is discharged from 4V to 3V.
  • discharge the battery with a current of 1A and record the time used when the battery voltage is discharged from 4V to 3V.
  • the judging whether the battery has an internal short circuit based on the charged power and the discharged power includes: if the charging time of the charged power is longer than the time of using the discharged power The discharging time is to determine that the battery has an internal short circuit; if the charging time of the charged power is equal to the discharging time of using the discharged power, it is determined that the battery does not have an internal short circuit.
  • the charged power is greater than the discharged power, it is determined that the battery has an internal short circuit; if the charged power is equal to the discharged power, it is determined that the battery does not have an internal short circuit.
  • this is when the battery is in an ideal state, that is, when the battery has no internal resistance.
  • the battery has internal resistance, especially after the battery is charged and discharged for many times, the internal resistance of the battery may increase accordingly. Therefore, another embodiment of the present application will be described below.
  • the judging whether the battery has an internal short circuit based on the charged power and the discharged power includes: if the difference between the charged power and the discharged power is greater than a first threshold , Determining that the battery has an internal short circuit; if the difference between the charged power and the discharged power is less than or equal to the first threshold, it is determined that the battery does not have an internal short circuit.
  • the charged power in the process of charging the battery, as shown in Figure 3, if the battery is charged from point A to point B, and the battery voltage is charged from Va to voltage Vb, the charged power can be based on the charge obtained by the fuel gauge.
  • the current and the recorded time are obtained.
  • the charge capacity is Q1; similarly, in the process of discharging the battery, if the battery is discharged from point B to point A, and the battery voltage is discharged from Vb to voltage Va, it can also be obtained by the fuel gauge
  • the discharge current and the recorded time are used to obtain the power used.
  • the discharged power is Q2.
  • the difference between Q1 and Q2 is greater than the first threshold, for example, greater than 100C, it can be determined that the battery has an internal short circuit; if the difference between Q1 and Q2 is less than or equal to the first threshold, for example, less than or equal to 100C, it can be determined There is no internal short circuit in the battery.
  • the difference between the power of the battery in the charging process and the discharging process in the above-mentioned case is 240C, that is, the power of 240C is consumed by the internal resistance of the battery in the form of heat. Therefore, in this case, it can be considered that there is an internal short circuit inside the battery.
  • the difference between the battery capacity during the charging process and the discharging process is less than the first threshold, it can be determined that there is no internal short circuit inside the battery.
  • the difference in power between the charging process and the discharging process of the battery is 60C, that is, the 60C power is consumed by the internal resistance of the battery in the form of heat. Therefore, in this case, it can be considered that there is no internal short circuit inside the battery.
  • the above introduces the judgment of whether the battery has an internal short circuit based on the charge power and the discharge power.
  • the following will specifically introduce the further measures that the terminal device can take when the battery is judged to have an internal short circuit.
  • the method 200 further includes: if it is determined that the battery has an internal short circuit, the terminal device controls the maximum charge capacity of the battery to be less than or equal to a second threshold; or if it is determined that the battery is If there is an internal short circuit, the terminal device controls the maximum charging voltage of the battery to be less than or equal to the third threshold.
  • the maximum charge capacity of the battery can be controlled to be less than or equal to the second threshold. For example, assuming that the rated capacity of the battery is 5000mAh, if it is determined that the battery has an internal short circuit during the first use of the battery, then in the process of charging the battery, the maximum charge capacity of the battery can be controlled to be less than or equal to the second threshold, for example , Less than or equal to 9000C.
  • the battery can be stopped. Charging, or when the battery power has not reached the second threshold, for example, when it does not reach 9000C, you can stop charging the battery, thereby preventing thermal runaway caused by continuing to charge the battery, and further, preventing users from thermal runaway It may cause personal injury or property damage.
  • the maximum charging voltage of the battery can be controlled to be less than or equal to the third threshold. For example, assuming that the rated voltage of the battery is 4.4V, if it is determined that the battery has an internal short circuit during the first use of the battery, during the charging of the battery, the maximum charging voltage of the battery can be controlled to be less than or equal to the third threshold. For example, less than or equal to 3.8V.
  • the battery when the battery voltage reaches 3.8V during the charging process, the battery can be stopped charging, or the battery voltage has not reached the third At the threshold, for example, when it does not reach 3.8V, the battery can be stopped charging, thereby preventing thermal runaway caused by continuing to charge the battery, and further, preventing the user from personal injury or property damage caused by thermal runaway.
  • the method further includes: if it is determined that the battery has an internal short circuit, the terminal device sends instruction information to the power supply device, and the instruction information instructs the power supply device to stop or slow down. Charging the battery.
  • the communication control circuit in the terminal device in the embodiment of the present application can feed back the charging of the battery to the power supply device during the current charging process and the subsequent charging process.
  • the state for example, the battery power has reached or is about to reach the maximum charging power of the battery, and the battery voltage has reached or is about to reach the maximum charging voltage of the battery, and can instruct the power supply device to stop or slow down the charging of the battery.
  • a device 400 for determining a short circuit in a battery may include an acquiring unit 410 and a determining unit 420.
  • the obtaining unit 410 is configured to obtain the charging power charged in the battery in the preset voltage interval and the discharging power used in the preset voltage interval, respectively.
  • the judging unit 420 is configured to judge whether the battery has an internal short circuit according to the charged power and the discharged power.
  • the judging unit 420 is further configured to: if the charged power is greater than the discharged power, determine that the battery has an internal short circuit; if the charged power is equal to the discharged power, determine There is no internal short circuit in the battery.
  • the determining unit 420 is further configured to: if the difference between the charged power and the discharged power is greater than a first threshold, determine that the battery has an internal short circuit; if the charged power The difference with the discharged power is less than or equal to the first threshold, and it is determined that there is no internal short circuit in the battery.
  • the judging unit 420 is further configured to: if the charging time of the charged power is greater than the discharging time of using the discharged power, determine that the battery has an internal short circuit; The charging time of the charged power is equal to the discharging time of using the discharged power, and it is determined that there is no internal short circuit in the battery.
  • the device 400 further includes: a control unit configured to control the maximum charge capacity of the battery to be less than or equal to a second threshold if it is determined that the battery has an internal short circuit; or if it is determined that the battery has an internal short circuit The battery has an internal short circuit, and the maximum charging voltage of the battery is controlled to be less than or equal to a third threshold.
  • a control unit configured to control the maximum charge capacity of the battery to be less than or equal to a second threshold if it is determined that the battery has an internal short circuit; or if it is determined that the battery has an internal short circuit The battery has an internal short circuit, and the maximum charging voltage of the battery is controlled to be less than or equal to a third threshold.
  • the device 400 further includes: a sending unit, configured to send instruction information to the power supply device if it is determined that the battery has an internal short circuit, the instruction information instructs the power supply device to stop Or slow down the charging of the battery.
  • a sending unit configured to send instruction information to the power supply device if it is determined that the battery has an internal short circuit, the instruction information instructs the power supply device to stop Or slow down the charging of the battery.
  • an electronic device 500 provided in an embodiment of this application, the device 500 may include a processor 510.
  • the processor 510 is configured to obtain the charge power charged in the preset voltage interval and the discharge power used in the preset voltage interval of the battery respectively; determine the battery according to the charge power and the discharged power Whether there is an internal short circuit.
  • the processor 510 is further configured to: if the charged power is greater than the discharged power, determine that the battery has an internal short circuit; if the charged power is equal to the discharged power, determine There is no internal short circuit in the battery.
  • the processor 510 is further configured to: if the difference between the charged power and the discharged power is greater than a first threshold, determine that the battery has an internal short circuit; if the charged power The difference with the discharged power is less than or equal to the first threshold, and it is determined that there is no internal short circuit in the battery.
  • the processor 510 is further configured to: if the charging time of the charged power is greater than the discharging time of using the discharged power, determine that the battery has an internal short circuit; The charging time of the charged power is equal to the discharging time of using the discharged power, and it is determined that there is no internal short circuit in the battery.
  • the processor 510 is further configured to: if it is determined that the battery has an internal short circuit, control the maximum charge capacity of the battery to be less than or equal to a second threshold; or if it is determined that the battery exists Internal short circuit, controlling the maximum charging voltage of the battery to be less than or equal to the third threshold.
  • the processor 510 is further configured to: if it is determined that the battery has an internal short circuit, the terminal device sends instruction information to the power supply device, and the instruction information instructs the power supply device to stop or Slow down the charging of the battery.
  • the embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute any one of the charging methods 200 described above.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer program The computer executes any one of the charging methods 200 described above.
  • the solution in the embodiment of the present application can be applied in a wired charging process or a wireless charging process, which is not specifically limited in the embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • the charging system includes a power supply device 10, a battery management circuit 20 and a battery 30.
  • the battery management circuit 20 can be used to manage the battery 30.
  • the device 400 and the electronic device 500 for determining a short circuit in the battery in the embodiment of the present application may include a battery management circuit 20 and a battery 30.
  • the battery management circuit 20 can manage the charging process of the battery 30, such as selecting the charging channel, controlling the charging voltage and/or charging current, etc.; as another example, the battery management circuit 20 can perform the charging process on the battery 30 Management, such as equalizing the voltage of the cells in the battery 30, etc.
  • the battery management circuit 20 may include a first charging channel 21 and a communication control circuit 23.
  • the power supply device 10 may be the power supply device with adjustable output voltage described above, but the embodiment of the present application does not specifically limit the type of the power supply device 20.
  • the power supply device 20 may be a device dedicated to charging such as an adapter and a power bank, or may be a computer and other devices capable of providing power and data services.
  • the communication control circuit 23 in the embodiment of the present application can control the charging state of the battery 30 to be fed back to the power supply device 10, for example, the battery The power has reached or is about to reach the maximum charging power of the battery, and the battery voltage has reached or is about to reach the maximum charging voltage of the battery, and the power supply device 10 can be instructed to stop or slow down the charging of the battery 30 at the same time.
  • the battery management circuit provided in the embodiment of the present application can directly charge the battery.
  • the battery management circuit provided in the embodiment of the present application is a battery management circuit that supports a direct charging architecture.
  • the direct charging architecture there is no need for a direct charging channel.
  • the conversion circuit is provided to reduce the calorific value of the device to be charged during the charging process.
  • the battery management circuit 20 may further include a second charging channel 24.
  • a boost circuit 25 is provided on the second charging channel 24.
  • the boost circuit 25 can be used to receive the initial voltage provided by the power supply device 10, boost the initial voltage to a target voltage, and provide the battery based on the target voltage.
  • 30 charging wherein the initial voltage is less than the total voltage of the battery 30, and the target voltage is greater than the total voltage of the battery 30; the communication control circuit 23 can also be used to control the switching between the first charging channel 21 and the second charging channel 24.
  • the battery management circuit 20 may also include an equalization circuit 22.
  • the equalization circuit 22 can be used to balance the multiple cells during the charging process and/or discharging process of the battery. The voltage of the core.
  • Traditional wireless charging technology generally connects a power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and wirelessly transmits the output power of the power supply device (such as electromagnetic waves) to the waiting device through the wireless charging device.
  • the device to be charged may be the above electronic device.
  • wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance, and radio waves.
  • mainstream wireless charging standards include the QI standard, the power matters alliance (PMA) standard, and the wireless power alliance (alliance for wireless power, A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance for wireless charging.
  • the wireless charging system includes a power supply device 110, a wireless charging signal transmitting device 120, and a charging control device 130.
  • the transmitting device 120 may be, for example, a wireless charging base, and the charging control device 130 may refer to the embodiment of the present application.
  • the output voltage and output current of the power supply device 110 are transmitted to the transmitting device 120.
  • the transmitting device 120 may convert the output voltage and output current of the power supply device 110 into a wireless charging signal (for example, an electromagnetic signal) through an internal wireless transmitting circuit 121 for transmission.
  • a wireless charging signal for example, an electromagnetic signal
  • the wireless transmitting circuit 121 can convert the output current of the power supply device 110 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna.
  • the charging control device 130 may receive the wireless charging signal transmitted by the wireless transmitting circuit 121 through the wireless receiving circuit 131, and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 131 may convert the wireless charging signal transmitted by the wireless transmitting circuit 121 into alternating current through a receiving coil or a receiving antenna, and perform operations such as rectification and/or filtering on the alternating current to convert the alternating current into the wireless receiving circuit 131 The output voltage and output current.
  • the output voltage of the wireless receiving circuit 131 is not suitable to be directly applied to both ends of the battery 133, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the expected charging voltage and/or charging current of the battery 133 is not suitable to be directly applied to both ends of the battery 133, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the expected charging voltage and/or charging current of the battery 133 is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • Fig. 9 is another schematic diagram of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 220 may further include a charging interface 223, and the charging interface 223 may be used to connect to an external power supply device 210.
  • the wireless transmitting circuit 221 can also be used to generate a wireless charging signal according to the output voltage and output current of the power supply device 210.
  • the first communication control circuit 222 can also adjust the amount of power that the wireless transmission circuit 221 extracts from the output power of the power supply device 210 during the wireless charging process to adjust the transmission power of the wireless transmission circuit 221 so that the wireless transmission circuit transmits
  • the power can meet the charging requirements of the battery.
  • the power supply device 210 can also directly output a relatively large fixed power (such as 40W), and the first communication control circuit 222 can directly adjust the amount of power drawn by the wireless transmitting circuit 221 from the fixed power provided by the power supply device 210.
  • the embodiment of the present application does not specifically limit the type of the power supply device 210.
  • the power supply device 210 may be a device such as an adapter, a power bank, a car charger, or a computer.
  • adjusting the transmission power of the wireless charging signal by the first communication control circuit 222 may mean that the first communication control circuit 222 adjusts the transmission power of the wireless charging signal by adjusting the input voltage and/or input current of the wireless transmission circuit 221.
  • the first communication control circuit may increase the transmission power of the wireless transmission circuit by increasing the input voltage of the wireless transmission circuit.
  • the device to be charged 230 further includes a first charging channel 233 through which the output voltage and/or output current of the wireless receiving circuit 231 can be supplied to the battery 232, 232 for charging.
  • a voltage conversion circuit 239 may be further provided on the first charging channel 233, and the input end of the voltage conversion circuit 239 is electrically connected to the output end of the wireless receiving circuit 231, and is used to perform a constant voltage on the output voltage of the wireless receiving circuit 231. And/or constant current control to charge the battery 232 so that the output voltage and/or output current of the voltage conversion circuit 239 matches the charging voltage and/or charging current currently required by the battery.
  • the embodiment of the present application does not specifically limit the manner in which the second communication control circuit 235 sends the instruction information to the first communication control circuit 222.
  • the second communication control circuit 235 may periodically send instruction information to the first communication control circuit 222.
  • the second communication control circuit 235 may send the instruction information to the first communication control circuit 222 only when the voltage of the battery reaches the charging cut-off voltage or the charging current of the battery reaches the charging cut-off current.
  • the second communication control circuit 235 in the embodiment of the present application may control the first communication control in the power supply device 210
  • the circuit 222 feeds back the charging status of the battery 230. For example, the battery power has reached or is about to reach the maximum charging power of the battery, the battery voltage has reached or is about to reach the maximum charging voltage of the battery, and can instruct the power supply device 210 to stop or slow down the battery 230 charging.
  • the wireless charging signal receiving device may further include a detection circuit 234, which can detect the voltage and/or charging current of the battery 232, and the second communication control circuit 235 can be based on the battery 232
  • the voltage and/or charging current sends instruction information to the first communication control circuit 222 to instruct the first communication control circuit 222 to adjust the output voltage and output current corresponding to the transmission power of the wireless transmission circuit 221.
  • the output voltage and/or output current of the first charging channel 232 matches the charging voltage and/or charging current currently required by the battery 232
  • the voltage value and/or current value of the output direct current is equal to the charging voltage value and/or charging current value required by the battery 232 or within a floating preset range (for example, the voltage value fluctuates from 100 mV to 200 mV, the current value Floating from 0.001A to 0.005A, etc.).
  • the device to be charged 230 further includes: a second charging channel 236.
  • the second charging channel 236 may be a wire.
  • a conversion circuit 237 may be provided on the second charging channel 236 to perform voltage control on the DC power output by the wireless receiving circuit 231 to obtain the output voltage and output current of the second charging channel 236 to charge the battery 232.
  • the conversion circuit 237 can be used for a step-down circuit and output constant current and/or constant voltage electric energy. In other words, the conversion circuit 237 can be used to perform constant voltage and/or constant current control on the charging process of the battery.
  • the wireless transmitting circuit 221 can use a constant transmitting power to transmit an electromagnetic signal. After the wireless receiving circuit 231 receives the electromagnetic signal, it is processed by the conversion circuit 237 into a voltage sum that meets the charging requirements of the battery 232. The current is also input to the battery 232 to charge the battery 232. It should be understood that, in some embodiments, constant transmission power does not necessarily mean that the transmission power remains completely unchanged, and it can vary within a certain range, for example, the transmission power is 7.5W and fluctuates 0.5W.
  • the function of the second communication control circuit can be implemented by the application processor of the device to be charged 230, thus, the hardware cost can be saved.
  • it can also be implemented by an independent control chip, and implementation by an independent control chip can improve the reliability of control.
  • the wireless receiving circuit 231 and the voltage conversion circuit 239 can be integrated in the same wireless charging chip, which can improve the integration of the device to be charged and simplify the implementation of the device to be charged.
  • the functions of traditional wireless charging chips can be expanded to support charging management functions.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)), etc.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • first, second, etc. may be used in this application to describe various devices, these devices should not be limited by these terms. These terms are only used to distinguish one device from another.
  • the first device can be called the second device, and similarly, the second device can be called the first device, as long as all occurrences of "first device” are renamed consistently and all occurrences
  • the “second device” can be renamed consistently.
  • the first device and the second device are both devices, but they may not be the same device.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种判断电池(30,133,232)内短路的方法、设备(400)和电子设备(500),包括:分别获取电池(30,133,232)在预设电压区间所充入的充电电量和在预设电压区间所使用的放电电量(S210);根据充电电量和放电电量判断电池(30,133,232)是否存在内短路(S220)。判断电池(30,133,232)内短路的方法,通过根据获取的电池(30,133,232)在预设电压区间所充入的电池(30,133,232)电量和在预设电压区间所使用的放电电量,可以有效判断电池(30,133,232)是否存在内短路的情况,同时由于充电电量和放电电量可以通过电量计获取,而电子设备(500)中本身有电量计,从而也可以解决应用场景受限的问题。

Description

一种判断电池内短路的方法、设备和电子设备
本申请要求于2019年11月25日提交中国专利局、申请号为 201911166178.2、申请名称为“一种判断电池内短路的方法、设备和电子设 备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池检测技术领域,具体涉及一种判断电池内短路的方法、设备和电子设备。
背景技术
目前关于电池的安全检测方法,可以通过实时监测电池电压的变化来检测电池是否发生内短路,但是这种方法需要实时监测电池电压的变化来检测电池是否发生内短路,应用场景有限。
发明内容
本申请实施例提供一种判断电池内短路的方法、设备和电子设备,以解决相关技术中的问题。
第一方面,提供一种判断电池内短路的方法,包括:分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量;根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
第二方面,提供一种判断电池内部短路的设备,包括:获取单元,用于分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量;判断单元,用于根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
第三方面,提供一种电子设备,包括:处理器,用于分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量;根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
第四方面,提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中任一项所述的方法。
第五方面,提供一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中任一项所述的方法。
本申请实施例提供的判断电池内短路的方法,通过根据获取的电池在预设电压区间所充入的电池电量和在预设电压区间所使用的放电电量,可以有效判断电池是否存在内短路的情况,同时由于充电电量和放电电量可以通过电量计获取,而电子设备中本身有电量计,从而也可以解决背景技术中提到的应用场景受限的问题。
附图说明
图1是本申请实施例提供的电量检测装置的示意性框图;
图2是本申请一个实施例提供的判断电池内短路的方法的示意性流程图;
图3是本申请实施例提供的电池分别在充电过程中和放电过程中的电压-容量的变化曲线示意图;
图4是本申请一个实施例提供的判断电池内短路的设备的示意性框图;
图5是本申请一个实施例提供的电子设备的示意性框图;
图6是本申请一个实施例提供的有线充电系统的示意结构图;
图7是本申请另一个实施例提供的有线充电系统的示意结构图;
图8是本申请一个实施例提供的无线充电系统的示意性结构图;
图9是本申请另一实施例提供的无线充电系统的示意性结构图;
图10是本申请又一实施例提供的无线充电系统的示意性结构图;
图11是本申请再一实施例提供的无线充电系统的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
为了更加清楚地理解本申请,以下将结合图1介绍电池在使用过程中的电量检测装置和方法,便于后续理解本申请的方案。但应理解,以下介绍的内容仅仅是为了更好的理解本申请,不应对本申请造成特别限定。
如图1所示,为本申请实施例提供的电量检测装置。在电池的使用过程中,电量计可以检测流经电池的电流,根据公式Q=I*t,可以获取电池在充电过程中和放电过程中的累积的充电电量和放电电量。其中,Q为电池在充电过程中所充入的电量或电池在放电过程中所使用的电量,I为电池在充电过程中的充电电流或放电过程中的放电电流,t为充电时长或放电时长。
本申请实施例提供的方法,可以基于获取的充电电量和放电电量有效检测电池是否存在内短路的情况,进一步地,可以避免电池继续使用而导致的热失控。
本申请实施例中的内短路可以是指电池内部短路。
本申请实施例中的电池可以是终端中的电池,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(Public Switched Telephone Network,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如手持数字视频广播(Digital Video Broadcasting Handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(Amplitude Modulation-Frequency  Modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。
移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communication System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。在某些实施例中,待充电设备可指移动终端是设备或手持终端设备,如手机、pad等。在某些实施例中,本申请实施例提及的待充电设备可以是指芯片系统,在该实施例中,待充电设备的电池可以属于或也可以不属于该芯片系统。
另外,终端还可以包括其他有充电需求的待充电设备,例如手机、移动电源(如充电宝、旅充等)、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、智能待充电设备和小型电子产品等。智能待充电设备例如可以包括手表、手环、智能眼镜和扫地机器人等。小型电子产品例如可以包括无线耳机、蓝牙音响、电动牙刷和可充电无线鼠标等。
下面结合图2,对本申请实施例提供的判断电池内短路的方法200进行详细介绍。
本申请实施例提供的判断电池内短路的方法,可以应用于测试阶段,也可以应用于实际使用过程中,其中,当确定电池存在内短路的情况下,可以控制电池的充电电量和充电电压。
如图2所示,本申请实施例提供的方法200可以包括步骤S210-S220。
S210,分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量。
本申请实施例中的预设电压区间可以为任一电压区间值,例如,可以为图3中的A点和B点之间的电压区间,假设电电池的额定电压为4.4V,则本申请实施例中的预设电压区间可以为3V-4V,也可以为3V-4.4V,还可以为3.5V-4V,本申请对此不作具体限定。
本申请实施例中的充电电量和放电电量可以通过电量计获取。上文提到,电量计可以检测流经电池的电流,因此,可以根据公式Q=I*t,计算电池在充电过程中所充入的电量以及在放电过程中所使用的电量。其中,t可以为电池在充电过程中或放电过程中的预设电压区间的时长,即t可以通过分别记录电池在充电过程中和放电过程中的电池电压在预设电压区间的时长来获取。
S220,根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
本申请实施例提供的判断电池内短路的方法,通过根据获取的电池在预 设电压区间所充入的电池电量和在预设电压区间所使用的放电电量,可以有效判断电池是否存在内短路的情况,同时由于充电电量和放电电量可以通过电量计获取,而电子设备中本身有电量计,从而也可以解决背景技术中提到的应用场景受限的问题。
上文指出,可以根据充电电量和放电电量的差值判断电池是否存在内短路的情况,下文将进行详细说明。
可选地在,在一些实施例中,所述根据所述充电电量和所述放电电量判断所述电池是否存在内短路,包括:若所述充电电量大于所述放电电量,确定所述电池存在内短路;若所述充电电量等于所述放电电量,确定所述电池不存在内短路。
下面结合图3为例进行详细说明。如图3所示,为本申请实施例提供的一种电池分别在充电过程中和放电过程中的电压-容量的变化曲线示意图。
本申请实施例中,在对电池充电过程中,若电池从A点充电至B点,电池电压从Va充电至电压Vb,则在这一电压区间充入的电量可以通过电量计获取的充电电流和记录的时间得到,例如,充电电量为Q1;同样地,在对电池放电过程中,若电池从C点放电至D点,电池电压从Vb放电至电压Va,也可以通过电量计获取的放电电流和记录的时间得到在这一电压区间所使用的电量,例如,放电电量为Q2。若Q1>Q2,则可以判断电池存在内短路的情况;若Q1=Q2,则可以判断电池不存在内短路的情况。
具体地,若以1A的充电电流对电池进行充电10分钟,电池电压从3V充电至4V时,则电池在这一电压区间所充入的电量可以计为Q1=I*t=1A*600s=600C;同样地,以1A的放电电流对电池进行放电,记录电池电压从4V放电至3V时所使用的时间,假设电池电压从4V放电至3V所使用的时间为5分钟,则电池使用的电量可以计为Q2==I*t=1A*300s=300C。由于充电电量Q1>放电电量Q2,则可以确定电池存在内短路的情况,即剩余的300C的电量以热量的形式被电池内阻所消耗。
具体地,若以1A的电流对电池进行充电10分钟,电池电压从3V充电至4V时,则电池在这一电压区间所充入的电量可以计为Q1=I*t=1A*600s=600C;同样地,以1A的电流对电池进行放电,记录电池电压从4V放电至3V时所使用的时间,假设电池电压从4V放电至3V所使用的时间也为10分钟,则电池使用的电量可以计为Q2==I*t=1A*600s=600C。由于Q1=Q2,则可以确定电池不存在内短路的情况,换句话说,电池所充入的电量全部通过电量的形式被使用,没有电量以热量的形式被电池所内阻所使用,当然这是属于理想状态的情况下,即电池没有内阻的情况下。
可选地,在一些实施例中,所述根据所述充电电量和所述放电电量判断所述电池是否存在内短路,包括:若充入所述充电电量的充电时间大于使用所述放电电量的放电时间,确定所述电池存在内短路;若充入所述充电电量的充电时间等于使用所述放电电量的放电时间,确定所述电池不存在内短路。
本申请实施例中,在对电池充电过程中,若电池从A点充电至B点,电池电压从Va充电至电压Vb,在对电池放电过程中,若电池从C点放电至D点,电池电压从Vb放电至电压Va,在这两个过程中,假设充电电流和放电电流相同,若电池从A点充电至B点与电池从C点放电至D点所用的时间是相同的,则可以认为电池没有发生内短路,否则可以认为电池发生了内短路。
应理解,上述数值仅为举例说明,还可以为其他数值,不应对本申请造成特别限定。
上文指出,若所述充电电量大于所述放电电量,确定所述电池存在内短路;若所述充电电量等于所述放电电量,确定所述电池不存在内短路。当然这是在电池处于理想状态的情况下,即电池没有内阻的情况下。然而,在实际情况中,电池是存在内阻的,特别是电池经过多次充放电之后,电池内阻可能会随之增加,因此,下文将介绍本申请的另一实施例。
可选地,在一些实施例中,所述根据所述充电电量和所述放电电量判断所述电池是否存在内短路,包括:若所述充电电量与所述放电电量的差值大于第一阈值,确定所述电池存在内短路;若所述充电电量与所述放电电量的差值小于或等于所述第一阈值,确定所述电池不存在内短路。
本申请实施例中,在对电池充电过程中,如图3所示,若电池从A点充电至B点,电池电压从Va充电至电压Vb,则充入的电量可以根据电量计获取的充电电流和记录的时间得到,例如,充电电量为Q1;同样地,在对电池放电过程中,若电池从B点放电至A点,电池电压从Vb放电至电压Va,也可以通过电量计获取的放电电流和记录的时间得到所使用的电量,例如,放电电量为Q2。若Q1与Q2的差值大于第一阈值,例如,大于100C,则可以确定电池存在内短路的情况;若Q1与Q2的差值小于或等于第一阈值,例如小于或等于100C,则可以确定电池不存在内短路的情况。
具体地,若以1A的电流对电池进行充电10分钟,电池电压从3V充电至4V时,则电池充入的电量可以计为Q1=I*t=1A*600s=600C;同样地,以1A的电流对电池进行放电,记录电池电压从4V放电至3V时所使用的时间,假设电池电压从4V放电至3V所使用的时间为6分钟,则电池使用的电量可以计为Q2==I*t=1A*360s=360C。由于600-360=240C>100C,则可以确定电池内部存在内短路的情况。
可以理解的是,在上述情况下,由于电池在充电过程中和放电过程中的电量差值大于第一阈值,则可以确定电池内部存在内短路的情况。本申请实施例中,上述情况下的电池在充电过程中和放电过程中的电量差值为240C,即该240C的电量以热量的形式被电池内阻所消耗。因此,在这种情况下,可以认为电池内部存在内短路的情况。
类似地,若以1A的电流对电池进行充电10分钟,电池电压从3V充电至4V时,则电池充入的电量可以计为Q1=I*t=1A*600s=600C;同样地,以1A的电流对电池进行放电,记录电池电压从4V放电至3V时所使用的时间, 假设电池电压从4V放电至3V所使用的时间为9分钟,则电池使用的电量可以计为Q2==I*t=1A*540s=540C。由于600-540=60C<100C,则可以确定电池内部不存在内短路的情况。
可以理解的是,在上述情况下,由于电池在充电过程中和放电过程中的电量差值小于第一阈值,则可以确定电池内部不存在内短路的情况。上述情况下,电池在充电过程中和放电过程中的电量差值为60C,即该60C的电量以热量的形式被电池内阻所消耗。因此,在这种情况下,可以认为电池内部不存在内短路的情况。
应理解,上述数值仅为举例说明,还可以为其他数值,不应对本申请造成特别限定。
上文介绍了根据充电电量和放电电量判断电池是否存在内短路的情况,下文将具体介绍在判断电池存在内短路的情况下,终端设备可以进一步采取的措施。
可选地,在一些实施例中,所述方法200还包括:若确定所述电池存在内短路,则终端设备控制所述电池的最大充电电量小于或等于第二阈值;或若确定所述电池存在内短路,则终端设备控制所述电池的最大充电电压小于或等于第三阈值。
在一种实施例中,若确定电池存在内短路的情况下,在此次充电过程中以及后续充电过程中,可以控制电池的最大充电电量小于或等于第二阈值。例如,假设电池的额定容量为5000mAh,若在第一次使用电池过程中,确定电池存在内短路,则在对电池充电的过程中,可以控制电池的最大充电电量小于或等于第二阈值,例如,小于或等于9000C。
本申请实施例中,假设电池的额定容量为5000mAh,即其电量为18000C,则在对电池进行充电的过程中,当电池的电量达到第二阈值时,例如达到9000C时,可以停止对电池进行充电,或者在电池的电量还未达到第二阈值时,例如未达到9000C时,可以停止对电池进行充电,从而可以防止对电池继续充电而导致的热失控,进一步地,可以防止用户因热失控而可能导致的人身伤害或财产损失。
在另一种实施例中,若确定电池存在内短路的情况下,在此次充电过程中以及后续充电过程中,可以控制电池的最大充电电压小于或等于第三阈值。例如,假设电池的额定电压为4.4V,若在第一次使用电池过程中,确定电池存在内短路,则在对电池充电的过程中,可以控制电池的最大充电电压小于或等于第三阈值,例如,小于或等于3.8V。
本申请实施例中,假设电池的额定电压为4.4V,则在对电池进行充电的过程中,当电池电压达到3.8V时,可以停止对电池进行充电,或者在电池的电压还未达到第三阈值时,例如,未达到3.8V时,可以停止对电池进行充电,从而可以防止对电池继续充电而导致的热失控,进一步地,可以防止用户因热失控而可能导致的人身伤害或财产损失。
应理解,上述数值仅为举例说明,还可以为其他数值,不应对本申请造 成特别限定。
可选地,在一些实施例中,所述方法还包括:若确定所述电池存在内短路,终端设备向电源提供装置发送指示信息,所述指示信息指示所述电源提供装置停止或放慢对电池的充电。
本申请实施例中,若确定电池存在内短路的情况下,在此次充电过程中以及后续充电过程中,本申请实施例中的终端设备中的通信控制电路可以向电源提供装置反馈电池的充电状态,例如,电池电量已达到或即将达到电池的最大充电电量,电池电压已达到或即将达到电池的最大充电电压,同时可以指示电源提供装置停止或放慢对电池充电。
上文结合图1-图3,详细描述了本申请的方法实施例,下面结合图4-图11,详细描述本申请的设备实施例,设备实施例与方法实施例相互对应,因此未详细描述的部分可以参见前面各方法实施例。
如图4所示,为本申请实施例提供的一种判断电池内短路的设备400,该设备400可以包括获取单元410和判断单元420。
获取单元410,用于分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量。
判断单元420,用于根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
可选地,在一些实施例中,所述判断单元420进一步用于:若所述充电电量大于所述放电电量,确定所述电池存在内短路;若所述充电电量等于所述放电电量,确定所述电池不存在内短路。
可选地,在一些实施例中,所述判断单元420进一步用于:若所述充电电量与所述放电电量的差值大于第一阈值,确定所述电池存在内短路;若所述充电电量与所述放电电量的差值小于或等于所述第一阈值,确定所述电池不存在内短路。
可选地,在一些实施例中,所述判断单元420进一步用于:若充入所述充电电量的充电时间大于使用所述放电电量的放电时间,确定所述电池存在内短路;若充入所述充电电量的充电时间等于使用所述放电电量的放电时间,确定所述电池不存在内短路。
可选地,在一些实施例中,所述设备400还包括:控制单元,用于若确定所述电池存在内短路,控制所述电池的最大充电电量小于或等于第二阈值;或若确定所述电池存在内短路,控制所述电池的最大充电电压小于或等于第三阈值。
可选地,在一些实施例中,所述设备400还包括:发送单元,用于若确定所述电池存在内短路,向电源提供装置发送指示信息,所述指示信息指示所述电源提供装置停止或放慢对电池的充电。
如图5所示,为本申请实施例提供的一种电子设备500,该设备500可以包括处理器510。
处理器510,用于分别获取所述电池在预设电压区间所充入的充电电量 和在所述预设电压区间所使用的放电电量;根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
可选地,在一些实施例中,所述处理器510进一步用于:若所述充电电量大于所述放电电量,确定所述电池存在内短路;若所述充电电量等于所述放电电量,确定所述电池不存在内短路。
可选地,在一些实施例中,所述处理器510进一步用于:若所述充电电量与所述放电电量的差值大于第一阈值,确定所述电池存在内短路;若所述充电电量与所述放电电量的差值小于或等于所述第一阈值,确定所述电池不存在内短路。
可选地,在一些实施例中,所述处理器510进一步用于:若充入所述充电电量的充电时间大于使用所述放电电量的放电时间,确定所述电池存在内短路;若充入所述充电电量的充电时间等于使用所述放电电量的放电时间,确定所述电池不存在内短路。
可选地,在一些实施例中,所述处理器510进一步用于:若确定所述电池存在内短路,控制所述电池的最大充电电量小于或等于第二阈值;或若确定所述电池存在内短路,控制所述电池的最大充电电压小于或等于第三阈值。
可选地,在一些实施例中,所述处理器510进一步用于:若确定所述电池存在内短路,终端设备向电源提供装置发送指示信息,所述指示信息指示所述电源提供装置停止或放慢对电池的充电。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述充电方法200中的任何一种方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述充电方法200中的任何一种方法。
本申请实施例的方案可以应用在有线充电过程中,也可以应用在无线充电过程中,本申请实施例对此不做具体限定。
下面结合图6-图7,对本申请实施例应用的有线充电过程进行描述。
图6是本申请实施例提供的一种充电系统的示意性结构图。该充电系统包括电源提供装置10、电池管理电路20和电池30。电池管理电路20可用于对电池30进行管理。其中,本申请实施例中的判断电池内短路的设备400和电子设备500可以包括电池管理电路20和电池30。
作为一个示例,电池管理电路20可以对电池30的充电过程进行管理,比如选择充电通道、控制充电电压和/或充电电流等;作为另一个示例,电池管理电路20可以对电池30的电芯进行管理,如均衡电池30中的电芯的电压等。
电池管理电路20可以包括第一充电通道21和通信控制电路23。
电源提供装置10可以是上文描述的输出电压可调的电源提供装置,但本申请实施例对电源提供装置20的类型不做具体限定。例如,该电源提供装置20可以是适配器和移动电源(power bank)等专门用于充电的设备,也可以是电脑等能够提供电源和数据服务的其他设备。
若确定电池30存在内短路的情况下,在此次充电过程中以及后续充电过程中,本申请实施例中的通信控制电路23可以控制向电源提供装置10反馈电池30的充电状态,例如,电池电量已达到或即将达到电池的最大充电电量,电池电压已达到或即将达到电池的最大充电电压,同时可以指示电源提供装置10停止或放慢对电池30充电。
本申请实施例提供的电池管理电路能够对电池进行直充,换句话说,本申请实施例提供的电池管理电路是支持直充架构的电池管理电路,在直充架构中,直充通道上无需设置变换电路,从而能够降低待充电设备在充电过程的发热量。
可选地,在一些实施例中,如图7所示,电池管理电路20还可包括第二充电通道24。第二充电通道24上设置有升压电路25。在电源提供装置10通过第二充电通道24为电池30充电的过程中,升压电路25可用于接收电源提供装置10提供的初始电压,将初始电压升压至目标电压,并基于目标电压为电池30充电,其中初始电压小于电池30的总电压,目标电压大于电池30的总电压;通信控制电路23还可用于控制第一充电通道21和第二充电通道24之间的切换。
对于包含多节电芯的电池30来说,电池管理电路20还可以包括均衡电路22,参见上文的描述,该均衡电路22可用于在电池的充电过程和/或放电过程中均衡多节电芯的电压。
下面结合图8-图11,对本申请实施例应用的无线充电过程进行描述。
传统的无线充电技术一般将电源提供装置(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供装置的输出功率以无线的方式(如电磁波)传输至待充电设备,对待充电设备进行无线充电。该待充电设备可以为上文中的电子设备。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(power matters alliance,PMA)标准、无线电源联盟(alliance for wireless power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
下面结合图8,对一实施例的无线充电方式进行介绍。
如图8所示,无线充电系统包括电源提供装置110、无线充电信号的发射装置120以及充电控制装置130,其中发射装置120例如可以是无线充电底座,充电控制装置130可以指本申请实施例中的判断电池内短路的设备400或电子设备500。
电源提供装置110与发射装置120连接之后,会将电源提供装置110的 输出电压和输出电流传输至发射装置120。
发射装置120可以通过内部的无线发射电路121将电源提供装置110的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路121可以将电源提供装置110的输出电流转换成交流电,并通过发射线圈或发射天线将该交流电转换成无线充电信号。
充电控制装置130可以通过无线接收电路131接收无线发射电路121发射的无线充电信号,并将该无线充电信号转换成无线接收电路131的输出电压和输出电流。例如,该无线接收电路131可以通过接收线圈或接收天线将无线发射电路121发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路131的输出电压和输出电流。
若无线接收电路131的输出电压并不适合直接加载到电池133两端,则是需要先经过充电控制装置130内的变换电路132进行恒压和/或恒流控制,以得到充电控制装置130内的电池133所预期的充电电压和/或充电电流。
图9是本申请实施例提供的充电系统的另一示意图。请参见图9,无线充电信号的发射装置220还可以包括充电接口223,充电接口223可用于与外部的电源提供装置210相连。无线发射电路221还可用于根据电源提供装置210的输出电压和输出电流,生成无线充电信号。
第一通信控制电路222还可以在无线充电的过程中,调整无线发射电路221从电源提供装置210的输出功率中抽取的功率量,以调整无线发射电路221的发射功率,使得无线发射电路发射的功率能够满足电池的充电需求。例如,电源提供装置210也可以直接输出较大的固定功率(如40W),第一通信控制电路222可以直接调整无线发射电路221从电源提供装置210提供的固定功率中抽取的功率量。
本申请实施例对电源提供装置210的类型不做具体限定。例如,电源提供装置210可以为适配器、移动电源(power bank)、车载充电器或电脑等设备。
可选地,第一通信控制电路222调整无线充电信号的发射功率可以指,第一通信控制电路222通过调整无线发射电路221的输入电压和/或输入电流来调整无线充电信号的发射功率。例如,第一通信控制电路可以通过增大无线发射电路的输入电压来增大无线发射电路的发射功率。
可选地,如图10所示,待充电设备230还包括第一充电通道233,通过该第一充电通道233可将无线接收电路231的输出电压和/或输出电流提供给电池232,对电池232进行充电。
可选地,第一充电通道233上还可以设置电压转换电路239,该电压转换电路239的输入端与无线接收电路231的输出端电连接,用于对无线接收电路231的输出电压进行恒压和/或恒流控制,以对电池232进行充电,使得电压转换电路239的输出电压和/或输出电流与电池当前所需的充电电压和/或充电电流相匹配。
本申请实施例对第二通信控制电路235向第一通信控制电路222发送指示信息的方式不做具体限定。
例如,第二通信控制电路235可以定期向第一通信控制电路222发送指示信息。或者,第二通信控制电路235可以仅在电池的电压达到充电截止电压,或者电池的充电电流达到充电截止电流的情况下,再向第一通信控制电路222发送指示信息。
或者,若确定电池230存在内短路的情况下,在此次充电过程中以及后续充电过程中,本申请实施例中的第二通信控制电路235可以控制向电源提供装置210中的第一通信控制电路222反馈电池230的充电状态,例如,电池电量已达到或即将达到电池的最大充电电量,电池电压已达到或即将达到电池的最大充电电压,同时可以指示电源提供装置210停止或放慢对电池230充电。
可选地,如图9所示,无线充电信号的接收装置还可包括检测电路234,该检测电路234可以检测电池232的电压和/或充电电流,第二通信控制电路235可以根据电池232的电压和/或充电电流,向第一通信控制电路222发送指示信息,以指示第一通信控制电路222调整无线发射电路221的发射功率对应的输出电压和输出电流。
应理解,在本公开的一实施例中,“第一充电通道232的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配”包括:第一充电通道232输出的直流电的电压值和/或电流值与电池232所需的充电电压值和/或充电电流值相等或在浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏,电流值上下浮动0.001A~0.005A等)。
参见图11,在本公开的一实施例中,待充电设备230还包括:第二充电通道236。第二充电通道236可为导线。在第二充电通道236上可设置变换电路237,用于对无线接收电路231输出的直流电进行电压控制,得到第二充电通道236的输出电压和输出电流,以对电池232进行充电。
在一个实施例中,变换电路237可用于降压电路,并且输出恒流和/或恒压的电能。换句话说,该变换电路237可用于对电池的充电过程进行恒压和/或恒流控制。
当采用第二充电通道236对电池232进行充电时,无线发射电路221可采用恒定发射功率发射电磁信号,无线接收电路231接收电磁信号后,由变换电路237处理为满足电池232充电需求的电压和电流并输入电池232,实现对电池232的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W上下浮动0.5W。
在本申请的实施例中,第二通信控制电路的功能可由待充电设备230的应用处理器实现,由此,可以节省硬件成本。或者,也可由独立的控制芯片实现,由独立的控制芯片实现可提高控制的可靠性。
可选地,本申请实施例可以将无线接收电路231与电压转换电路239均 集成在同一无线充电芯片中,这样可以提高待充电设备集成度,简化待充电设备的实现。例如,可以对传统无线充电芯片的功能进行扩展,使其支持充电管理功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各设备,但这些设备不应受到这些术语的限制。这些术语仅用于将一个设备与另一个设备区别开。比如,在不改变描述的含义的情况下,第一设备可以叫做第二设备,并且同样地,第二设备可以叫做第一设备,只要所有出现的“第一设备”一致重命名并且所有出现的“第二设备”一致重命名即可。第一设备和第二设备都是设备,但可以不是相同的设备。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种判断电池内短路的方法,其特征在于,包括:
    分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量;
    根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述充电电量和所述放电电量判断所述电池是否存在内短路,包括:
    若所述充电电量大于所述放电电量,确定所述电池存在内短路;
    若所述充电电量等于所述放电电量,确定所述电池不存在内短路。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述充电电量和所述放电电量判断所述电池是否存在内短路,包括:
    若所述充电电量与所述放电电量的差值大于第一阈值,确定所述电池存在内短路;
    若所述充电电量与所述放电电量的差值小于或等于所述第一阈值,确定所述电池不存在内短路。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述充电电量和所述放电电量判断所述电池是否存在内短路,包括:
    若充入所述充电电量的充电时间大于使用所述放电电量的放电时间,确定所述电池存在内短路;
    若充入所述充电电量的充电时间等于使用所述放电电量的放电时间,确定所述电池不存在内短路。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    若确定所述电池存在内短路,则终端设备控制所述电池的最大充电电量小于或等于第二阈值;或
    若确定所述电池存在内短路,则终端设备控制所述电池的最大充电电压小于或等于第三阈值。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    若确定所述电池存在内短路,终端设备向电源提供装置发送指示信息,所述指示信息指示所述电源提供装置停止或放慢对电池的充电。
  7. 一种判断电池内短路的设备,其特征在于,所述设备包括:
    获取单元,用于分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量;
    判断单元,用于根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
  8. 根据权利要求7所述的设备,其特征在于,所述判断单元进一步用于:
    若所述充电电量大于所述放电电量,确定所述电池存在内短路;
    若所述充电电量等于所述放电电量,确定所述电池不存在内短路。
  9. 根据权利要求7所述的设备,其特征在于,所述判断单元进一步用于:
    若所述充电电量与所述放电电量的差值大于第一阈值,确定所述电池存在内短路;
    若所述充电电量与所述放电电量的差值小于或等于所述第一阈值,确定所述电池不存在内短路。
  10. 根据权利要求7所述的设备,其特征在于,所述判断单元进一步用于:
    若充入所述充电电量的充电时间大于使用所述放电电量的放电时间,确定所述电池存在内短路;
    若充入所述充电电量的充电时间等于使用所述放电电量的放电时间,确定所述电池不存在内短路。
  11. 根据权利要求7至10中任一项所述的设备,其特征在于,所述设备还包括:
    控制单元,用于若确定所述电池存在内短路,控制所述电池的最大充电电量小于或等于第二阈值;或
    若确定所述电池存在内短路,控制所述电池的最大充电电压小于或等于第三阈值。
  12. 根据权利要求7至10中任一项所述的设备,其特征在于,所述设备还包括:
    发送单元,用于若确定所述电池存在内短路,向电源提供装置发送指示信息,所述指示信息指示所述电源提供装置停止或放慢对电池的充电。
  13. 一种电子设备,其特征在于,所述设备包括:
    处理器,用于分别获取所述电池在预设电压区间所充入的充电电量和在所述预设电压区间所使用的放电电量;
    根据所述充电电量和所述放电电量判断所述电池是否存在内短路。
  14. 根据权利要求13所述的设备,其特征在于,所述处理器进一步用于:
    若所述充电电量大于所述放电电量,确定所述电池存在内短路;
    若所述充电电量等于所述放电电量,确定所述电池不存在内短路。
  15. 根据权利要求13所述的设备,其特征在于,所述处理器进一步用于:
    若所述充电电量与所述放电电量的差值大于第一阈值,确定所述电池存在内短路;
    若所述充电电量与所述放电电量的差值小于或等于所述第一阈值,确定所述电池不存在内短路。
  16. 根据权利要求13所述的设备,其特征在于,所述处理器进一步用于:
    若充入所述充电电量的充电时间大于使用所述放电电量的放电时间,确定所述电池存在内短路;
    若充入所述充电电量的充电时间等于使用所述放电电量的放电时间,确定所述电池不存在内短路。
  17. 根据权利要求13至16中任一项所述的设备,其特征在于,所述处理器进一步用于:
    若确定所述电池存在内短路,控制所述电池的最大充电电量小于或等于第二阈值;或
    若确定所述电池存在内短路,控制所述电池的最大充电电压小于或等于第三阈值。
  18. 根据权利要求13至16中任一项所述的设备,其特征在于,所述处理器进一步用于:
    若确定所述电池存在内短路,终端设备向电源提供装置发送指示信息,所述指示信息指示所述电源提供装置停止或放慢对电池的充电。
  19. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1至6中任一项所述的方法。
PCT/CN2020/127554 2019-11-25 2020-11-09 一种判断电池内短路的方法、设备和电子设备 WO2021103995A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20891851.6A EP4057018A4 (en) 2019-11-25 2020-11-09 METHOD AND DEVICE FOR DETERMINING SHORT-CIRCUIT IN A BATTERY, AND ELECTRONIC DEVICE
US17/747,859 US20220276322A1 (en) 2019-11-25 2022-05-18 Method, device and electronic device for determining internal short circuit within battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911166178.2 2019-11-25
CN201911166178.2A CN110824372A (zh) 2019-11-25 2019-11-25 一种判断电池内短路的方法、设备和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,859 Continuation US20220276322A1 (en) 2019-11-25 2022-05-18 Method, device and electronic device for determining internal short circuit within battery

Publications (1)

Publication Number Publication Date
WO2021103995A1 true WO2021103995A1 (zh) 2021-06-03

Family

ID=69558947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127554 WO2021103995A1 (zh) 2019-11-25 2020-11-09 一种判断电池内短路的方法、设备和电子设备

Country Status (4)

Country Link
US (1) US20220276322A1 (zh)
EP (1) EP4057018A4 (zh)
CN (1) CN110824372A (zh)
WO (1) WO2021103995A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824372A (zh) * 2019-11-25 2020-02-21 Oppo广东移动通信有限公司 一种判断电池内短路的方法、设备和电子设备
CN111610456B (zh) * 2020-04-29 2022-08-23 上海理工大学 一种区分电池微短路和小容量故障的诊断方法
JP7322817B2 (ja) * 2020-06-02 2023-08-08 トヨタ自動車株式会社 バッテリーセル短絡検知装置、方法、プログラム、及び車両
CN111929602B (zh) * 2020-06-23 2023-06-16 上海理工大学 一种基于容量估计的单体电池漏电或微短路定量诊断方法
CN114264961B (zh) * 2021-12-23 2023-09-15 蜂巢能源科技(无锡)有限公司 一种电芯内短路的检测方法、装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821801A (zh) * 2005-02-18 2006-08-23 松下电器产业株式会社 二次电池的内部短路检测装置和检测方法、二次电池的电池组件及电子设备
US20180062401A1 (en) * 2016-08-24 2018-03-01 The Boeing Company Detecting internal short circuits in batteries
CN107843802A (zh) * 2017-10-23 2018-03-27 北京小米移动软件有限公司 内短路检测方法及装置
CN108152755A (zh) * 2018-01-19 2018-06-12 上海理工大学 在线定量诊断电池微短路故障的方法
CN108318775A (zh) * 2018-05-11 2018-07-24 北京市亿微科技有限公司 在线诊断电池短路故障的方法及装置
CN110244233A (zh) * 2019-06-03 2019-09-17 Oppo广东移动通信有限公司 一种电池的检测方法、电子设备以及计算机存储介质
CN110824372A (zh) * 2019-11-25 2020-02-21 Oppo广东移动通信有限公司 一种判断电池内短路的方法、设备和电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652802B2 (ja) * 2008-02-27 2015-01-14 レノボ・イノベーションズ・リミテッド(香港) 二次電池の内部短絡検出装置および内部短絡検出方法
US8219333B2 (en) * 2010-06-29 2012-07-10 O2Micro, Inc Battery management systems for protecting batteries from fault conditions
CN103280597B (zh) * 2013-05-31 2017-09-29 宁德新能源科技有限公司 锂离子电池
CN107438917B (zh) * 2016-07-01 2019-09-10 深圳市大疆创新科技有限公司 金属电池及其电池管理系统、控制方法
CN108428924A (zh) * 2017-02-13 2018-08-21 谷涛 一种内部微短路失效安全锂离子电池
CN107290684A (zh) * 2017-07-21 2017-10-24 广东欧珀移动通信有限公司 终端设备及其电池安全监控方法、系统
CN109716579B (zh) * 2017-08-25 2022-02-01 Oppo广东移动通信有限公司 终端设备及其电池安全监控方法和监控系统
CN108134126A (zh) * 2017-11-29 2018-06-08 清华大学 电池内短路的触发方法
JP6973213B2 (ja) * 2018-03-16 2021-11-24 トヨタ自動車株式会社 二次電池システム、及び二次電池制御方法
CN108919131A (zh) * 2018-06-29 2018-11-30 湖南科霸汽车动力电池有限责任公司 电池微短路的检测判定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821801A (zh) * 2005-02-18 2006-08-23 松下电器产业株式会社 二次电池的内部短路检测装置和检测方法、二次电池的电池组件及电子设备
US20180062401A1 (en) * 2016-08-24 2018-03-01 The Boeing Company Detecting internal short circuits in batteries
CN107843802A (zh) * 2017-10-23 2018-03-27 北京小米移动软件有限公司 内短路检测方法及装置
CN108152755A (zh) * 2018-01-19 2018-06-12 上海理工大学 在线定量诊断电池微短路故障的方法
CN108318775A (zh) * 2018-05-11 2018-07-24 北京市亿微科技有限公司 在线诊断电池短路故障的方法及装置
CN110244233A (zh) * 2019-06-03 2019-09-17 Oppo广东移动通信有限公司 一种电池的检测方法、电子设备以及计算机存储介质
CN110824372A (zh) * 2019-11-25 2020-02-21 Oppo广东移动通信有限公司 一种判断电池内短路的方法、设备和电子设备

Also Published As

Publication number Publication date
CN110824372A (zh) 2020-02-21
EP4057018A1 (en) 2022-09-14
US20220276322A1 (en) 2022-09-01
EP4057018A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2021103995A1 (zh) 一种判断电池内短路的方法、设备和电子设备
US11437865B2 (en) Wireless charging system, wireless charging method, and device to-be-charged
RU2724645C1 (ru) Беспроводное зарядное устройство, заряжаемое устройство и способ управления ими
US11735941B2 (en) Charging method and charging device
WO2018184285A1 (zh) 无线充电系统、装置、方法及待充电设备
US11462931B2 (en) Charging method and charging apparatus
US20210281099A1 (en) Transmitting Apparatus and Wireless Charging Method
WO2020223880A1 (zh) 充电方法和充电装置
US11722062B2 (en) Power supply device, electronic device and power supply method
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
US11750018B2 (en) Device to-be-charged and charging control method
US12027888B2 (en) Transmitting apparatus, receiving apparatus, power supply device and wireless charging method
CN110879361A (zh) 一种电池的剩余电量的估计方法、装置和电子设备
WO2021017770A1 (zh) 无线充电方法和待充电设备
EP3937333A1 (en) Apparatus to be charged, and charging and discharging control method
US20220329111A1 (en) Electronic device
US11502557B2 (en) Wireless charging control method and charging control device
WO2021052346A1 (zh) 充电方法、充电设备和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020891851

Country of ref document: EP

Effective date: 20220610

NENP Non-entry into the national phase

Ref country code: DE