WO2021103688A1 - 吸尘器及分离机构 - Google Patents

吸尘器及分离机构 Download PDF

Info

Publication number
WO2021103688A1
WO2021103688A1 PCT/CN2020/111268 CN2020111268W WO2021103688A1 WO 2021103688 A1 WO2021103688 A1 WO 2021103688A1 CN 2020111268 W CN2020111268 W CN 2020111268W WO 2021103688 A1 WO2021103688 A1 WO 2021103688A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
air inlet
cyclone
separation mechanism
exhaust
Prior art date
Application number
PCT/CN2020/111268
Other languages
English (en)
French (fr)
Inventor
黄月林
王德旭
颜勇
李吉
陈闪毅
任敏
李锦坤
蔡木城
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021103688A1 publication Critical patent/WO2021103688A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1616Multiple arrangement thereof
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1658Construction of outlets
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1683Dust collecting chambers; Dust collecting receptacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1691Mounting or coupling means for cyclonic chamber or dust receptacles

Definitions

  • This application relates to the technical field of dust suction structures, and in particular to a vacuum cleaner and a separation mechanism.
  • the principle of the cyclone vacuum cleaner is to make the dust-laden airflow rotate, use centrifugal force to separate the dust from the airflow, and then use gravity to drop the dust particles.
  • dust-laden gas can enter the cyclone through the gap between the dust collector and the housing, resulting in an unbalanced dust-laden gas entering the cyclone, resulting in low gas and dust separation efficiency.
  • a separation mechanism including:
  • the dust collection assembly is formed with a dust collection cavity and at least two air inlet cavities are separated from the dust collection cavity, and at least two air inlet cavities are arranged around a first axis;
  • the cyclone separator includes a cyclone unit, one end of the cyclone unit is provided with an air inlet, and the other end is provided with a dust outlet communicating with the air inlet, the dust outlet communicating with the dust collection chamber
  • the number of the cyclone separators is the same as the number of the air inlet cavities, and the air inlet of the cyclone unit of each of the cyclone separators is in communication with the corresponding air inlet cavity.
  • the dust outlet of the cyclone separator is communicated with the dust collection cavity of the dust collection assembly, at least two air inlet cavities are arranged around the first axis, and the number of cyclone separators is equal to the number of air inlet cavities.
  • the air inlet of the cyclone unit of each cyclone is connected to the corresponding air inlet cavity. Dust-laden gas can enter the cyclone unit of the cyclone through the air inlet from the air inlet cavity, and separate air and dust in the cyclone unit. Dust can be discharged into the dust collection cavity through the dust outlet, which effectively realizes the air and dust separation.
  • the separation efficiency of gas and dust can be effectively improved.
  • the dust-laden gas flows around the first axis, and at least two inlet cavities can effectively separate the dust-laden gas in different inlet cavities, and the dust-laden gas in each inlet cavity can be processed by the corresponding cyclone separator. Separation can effectively reduce the unevenness of dust-laden gas entering each cyclone separator, thereby improving the gas-dust separation efficiency of the separation mechanism.
  • At least two of the air inlet cavities are evenly distributed around the first axis.
  • the number of the cyclone separator is three.
  • the cyclone separator includes a plurality of the cyclone units, and the plurality of the cyclone units are arranged in a symmetrical structure.
  • the cyclone separator further includes an exhaust assembly
  • the cyclone unit includes an air inlet and a cone part arranged on the air inlet, and the dust exhaust port is opened in the cone.
  • the body part faces away from the air inlet part on one end, the air inlet is opened on the side wall of the air inlet part; the air inlet part faces away from the cone part on the end of the opening to form a row An air port
  • the exhaust assembly is provided with exhaust passages corresponding to the number of the cyclone units, and the exhaust assembly is covered on a side of the intake part facing away from the cone part, each An exhaust passage is correspondingly inserted in an exhaust port.
  • the exhaust assembly includes an exhaust body and an exhaust pipe, the exhaust pipe forms the exhaust passage, and the exhaust body is covered on the intake portion to make One end of the exhaust pipe passes through the exhaust body and penetrates into the cyclone unit through the exhaust port.
  • the central axes of the plurality of cyclone units of the single cyclone separator are arranged in parallel, and the central axes of the exhaust pipes are arranged in parallel to each other.
  • the cyclone separator further includes an air inlet pipe, the air inlet pipe forms an air inlet passage, a plurality of the cyclone units are arranged on the outer peripheral side of the air inlet pipe, and each cyclone unit The air inlet faces the air inlet channel and communicates with the air inlet channel, and the air inlet is communicated with the air inlet cavity through the air inlet channel.
  • a plurality of the cyclone units are integrally formed on the air intake pipe.
  • the separation mechanism further includes a bracket provided on the dust collection assembly, the bracket is formed with an installation platform, and the number of the installation platform is the same as the number of the cyclone separator.
  • each of the cyclone separators is correspondingly arranged on an installation platform, and the installation platform is provided with a plurality of positioning holes and vent holes, the cyclone unit is correspondingly inserted in the positioning hole, and the The air inlet cavity is communicated with the air inlet through the vent hole.
  • the plane on which the single installation platform is located and the plane perpendicular to the first axis are arranged at an acute angle, so that the cyclone separator closes to the end of the installation platform.
  • the dust collection assembly includes a dust collector, the dust collector includes a dust collection part and at least two partition parts, the dust collection cavity is formed on the dust collection part, the inlet An air cavity is formed on the partition, and at least two partitions are arranged around the first axis.
  • the dust collector further includes a dust receiving pan, the dust receiving pan is arranged on the dust collecting part, the dust receiving pan is provided with a dust collecting opening, and the dust collecting opening is connected to the dust collecting part.
  • the dust collection chamber is communicated, the cyclone separator is arranged on the dust receiving pan, and the dust exhaust port is aligned with the dust receiving pan.
  • the surface of the dust receiving pan facing the dust exhaust port is a concave arc surface, and the dust collecting port is opened at the lowest point of the concave arc surface.
  • the dust receiving pan is integrally formed on the dust collecting part.
  • the partition part is provided on the side of the dust receiving pan facing away from the dust collecting part, and the dust receiving pan is further provided with an air inlet on the side facing the dust collecting part.
  • the air inlet is communicated with the air inlet cavity.
  • the air intake pipe is integrally formed on one end of the partition; or the air intake pipe is butted on one end of the partition.
  • the end of the partition part facing away from the air intake pipe is integrally formed on the dust pan.
  • the dust collection assembly further includes a filter element, the filter element is formed with a filter cavity, and an end of the dust collection part facing away from the cyclone is penetrated in the filter cavity, The air inlet cavity is communicated with the filter cavity.
  • the dust collection assembly further includes a dust cup, a accommodating cavity is formed on the dust cup, a suction port communicating with the accommodating cavity is opened on the dust cup, and the filter is provided In the containing cavity.
  • a vacuum cleaner is characterized in that it comprises the above-mentioned separation mechanism.
  • the dust outlet of the cyclone separator is communicated with the dust collection cavity of the dust collection assembly, at least two air inlet cavities are arranged around the first axis, and the number of cyclone separators is the same as the number of air inlet cavities ,
  • the air inlet of the cyclone unit of each cyclone separator is communicated with the corresponding air inlet cavity. Dust-laden gas can enter the cyclone unit of the cyclone through the air inlet from the air inlet cavity, and separate air and dust in the cyclone unit. Dust can be discharged into the dust collection cavity through the dust outlet, which effectively realizes the air and dust separation.
  • the separation efficiency of gas and dust can be effectively improved.
  • the dust-laden gas flows around the first axis, and at least two inlet cavities can effectively separate the dust-laden gas in different inlet cavities.
  • the dust-laden gas in each inlet cavity can be processed by the corresponding cyclone separator.
  • the separation can effectively reduce the unevenness of the dust-laden gas entering each cyclone separator, thereby improving the gas-dust separation efficiency of the separation mechanism, and the gas-dust separation efficiency of the vacuum cleaner.
  • Figure 1 is a schematic structural diagram of a separation mechanism in an embodiment
  • Figure 2 is an exploded schematic diagram of the separation mechanism shown in Figure 1;
  • Figure 3 is a cross-sectional view of the separation mechanism shown in Figure 1;
  • Fig. 4 is a schematic structural view of the cyclone separator in Fig. 1 with the exhaust component omitted;
  • Fig. 5 is a schematic structural diagram of the separation mechanism shown in Fig. 3 omitting the filter element and the dust cup;
  • Figure 6 is a cross-sectional view of the separation mechanism shown in Figure 5;
  • Fig. 7 is a cross-sectional view of the separation mechanism shown in Fig. 6 from another perspective.
  • Separation mechanism 100, dust collection assembly, 110, dust collection chamber, 120, air inlet chamber, 130, dust collector, 131, dust collection part, 132, partition, 133, dust tray, 134, dust collection Port, 135, air inlet, 140, filter, 142, filter cavity, 150, dust cup, 152, containing cavity, 154, suction port, 200, cyclone separator, 210, air inlet, 220, dust outlet, 230.
  • the separation mechanism 10 in an embodiment can effectively achieve the air-dust separation effect, and at least can improve the air-dust separation efficiency. Effectively reduce the problem of unbalanced dusty gas.
  • the separation mechanism 10 includes a dust collection assembly 100 and a cyclone separator 200.
  • the dust collection assembly 100 is formed with a dust collection cavity 110 and at least two air inlet cavities 120 spaced apart from the dust collection cavity 110, and at least two air inlet cavities 120 are arranged around the first axis a .
  • the cyclone separator 200 includes a cyclone unit 230, one end of the cyclone unit 230 is provided with an air inlet 210, the other end with a dust outlet 220 is provided with an air inlet 210, and the dust outlet 220 communicates with the dust collection chamber 110;
  • the number of cyclones 200 is the same as the number of air inlet cavities 120, and the air inlet 210 of the cyclone unit 230 of each cyclone 200 is connected to the corresponding air inlet cavity 120.
  • the dust outlet 220 of the cyclone separator 200 is communicated with the dust collection chamber 110 of the dust collection assembly 100, at least two air inlet cavities 120 are arranged around the first axis a, and the cyclone separator 200
  • the number of is the same as the number of air inlet cavities 120, and the air inlet 210 of the cyclone unit 230 of each cyclone separator 200 is in communication with the corresponding air inlet cavity 120.
  • the dust-laden gas can enter the cyclone unit 230 of the cyclone 200 through the air inlet 210 from the air inlet chamber 120, and separate air and dust in the cyclone unit 230, and the dust can be discharged into the dust collection chamber 110 through the dust outlet 220 , Effectively realize the separation of gas and dust.
  • the separation efficiency of gas and dust can be effectively improved.
  • the dust-laden gas flows around the first axis a.
  • At least two air-intake cavities 120 can effectively separate the dust-laden gas in different air-intake cavities 120.
  • the cyclone separator 200 performs separation, which can effectively reduce the unevenness of the dust-laden gas entering each cyclone separator 200, and thereby can improve the gas and dust separation efficiency of the separation mechanism 10.
  • At least two air intake cavities 120 are evenly distributed around the first axis a. By evenly distributing the air inlet cavities 120, the uniformity of the dust-laden gas entering different air inlet cavities 120 can be effectively improved, thereby further increasing the utilization rate of the cyclone separator 200 and improving the efficiency of gas and dust separation.
  • the air inlet cavity 120 may also be set according to the characteristics of the dust-laden gas distribution, so that the dust-laden gas can be evenly distributed in different air inlet cavities 120.
  • the number of cyclone separators 200 is three.
  • the three cyclones 200 are evenly distributed around the first axis a.
  • three air inlet cavities 120 are formed on the dust collection assembly 100, and each air inlet cavity 120 is communicated with an air inlet 210 of a cyclone separator 200.
  • the number of cyclone separators 200 may also be two, four, five, or other numbers.
  • the number of the formed air-intake cavities 120 may also be two, four, five, or other numbers.
  • the cyclone separator 200 includes a plurality of cyclone units 230, and the plurality of cyclone units 230 are arranged in a symmetrical structure.
  • the cyclone separator 200 is composed of a plurality of cyclone units 230, and the dust-laden gas can enter different cyclone units 230 through different air inlets 210, which can effectively improve the efficiency of gas and dust separation.
  • the multiple cyclone units 230 are arranged in a symmetrical structure, which can improve the uniformity of the dust-laden gas entering different cyclone units 230.
  • a plurality of cyclone units 230 are enclosed in a ring structure to further improve the uniformity of dust-laden gas entering different cyclone units 230.
  • the cyclone separator 200 includes six cyclone units 230 enclosed in a ring structure, which can effectively improve the compactness of the structure and increase the utilization rate of space.
  • the cyclone separator 200 may also include other numbers such as three, four, eight, etc., as long as the dust-laden gas can enter different cyclone units 230.
  • the cyclone unit 230 includes an air inlet portion 232 and a cone portion 234 provided on the air inlet portion 232.
  • the dust exhaust port 220 is opened on an end of the cone portion 234 facing away from the air inlet portion 232, and the air inlet 210 It is opened on the side wall of the air inlet 232.
  • the dust-laden gas enters the cyclone unit 230 through the air inlet 210, and the dust is discharged from the dust outlet 220 on the cone 234 due to centrifugal force and gravity in the cone 234, so as to realize the separation of dust in the gas.
  • the air inlet 210 is opened on the side wall of the air inlet 232, and the opening direction of the air inlet 210 is tangent to the inner wall of the air inlet 232. In turn, the gas entering through the air inlet 210 can effectively rotate in the cyclone unit 230.
  • a single cyclone separator 200 is composed of an even number of cyclone units 230, and the opening of the air inlet 210 of one cyclone unit 230 is tangent to the inner wall of the air inlet 232, and a left-handed rotation is formed in the cyclone unit 230. airflow.
  • the opening of the air inlet 210 of another adjacent cyclone unit 230 is tangent to the inner wall of the air inlet 232, and a right-handed airflow is formed in the cyclone unit 230.
  • a common wall can be realized at the air inlets 210 of two adjacent cyclone units 230, the processing structure is simplified, and the processing efficiency is improved.
  • the tangent directions of the air inlets 210 of the multiple cyclone units 230 and the inner wall of the air inlet portion 232 can also be the same, and a single cyclone separator 200 can also be composed of an odd number of cyclone units 230.
  • the cyclone separator 200 further includes an exhaust assembly 240.
  • the intake portion 232 is opened on one end of the cone portion 234 that faces away from the cone portion 234 to form an exhaust port 236 (as shown in FIG. 4 ), the exhaust assembly 240 is provided with exhaust passages 242 corresponding to the number of cyclone units 230, and the exhaust assembly 240 is covered on the side of the intake portion 232 facing away from the cone portion 234, and each exhaust passage 242 Correspondingly, it is inserted in an exhaust port 236.
  • the exhaust assembly 240 allows the clean gas to be exhausted from the corresponding exhaust channel 242.
  • the exhaust assembly 240 can effectively cover the side of the intake portion 232 facing away from the cone portion 234, thereby improving the stability of the intake.
  • the exhaust assembly 240 includes an exhaust body 244 and an exhaust pipe 246.
  • the exhaust pipe 246 forms an exhaust passage 242.
  • the exhaust body 244 is covered on the intake portion 232 so that one end of the exhaust pipe 246 penetrates
  • the exhaust body 244 passes through the exhaust port 236 in the cyclone unit 230.
  • By forming the exhaust pipe 246 to pass through the cyclone unit 230 it is possible to prevent the dust-laden gas from entering the cyclone unit 230 from the air inlet 210, and then being directly discharged from the exhaust port 236 without being separated.
  • the exhaust pipe 246 can effectively avoid rigidity.
  • the dust-laden gas entering the cyclone unit 230 is discharged, which improves the stability of gas and dust separation.
  • the central axes of the multiple cyclone units 230 of a single cyclone separator 200 are arranged in parallel. Furthermore, during processing, a plurality of cyclone units 230 on a single cyclone separator 200 can be processed out of the mold in the same direction, which can effectively improve processing efficiency and reduce processing costs.
  • the central axes of the exhaust pipes 246 are arranged parallel to each other. Since the central axes of the multiple cyclone units 230 of the single cyclone 200 are arranged in parallel, the central axes of the exhaust pipes 246 on the cyclone unit 230 can be arranged parallel to each other, which can effectively improve the processing efficiency of the exhaust assembly 240 and reduce The processing cost of the exhaust assembly 240.
  • the exhaust pipe 246 is integrally formed on the exhaust body 244, so that the exhaust pipe 246 can be processed in the same direction.
  • the cone portion 234 of the cyclone unit 230 of the single cyclone separator 200 can also be arranged together to form a divergent structure with one end gathered and one end, which can effectively reduce the size of one end of the single cyclone unit 230 and improve the compactness of the structure.
  • the cyclone separator 200 further includes an air inlet pipe 250, which forms an air inlet passage 252, a plurality of cyclone units 230 are arranged on the outer peripheral side of the air inlet pipe 250, and the air inlet 210 of each cyclone unit 230 faces
  • the intake passage 252 is in communication with the intake passage 252, and the intake port 210 is in communication with the intake cavity 120 through the intake passage 252.
  • the dust-laden gas enters into the air-intake passage 252 of the air-intake pipe 250 from the air-inlet chamber 120, so as to gather the dust-laden gas and provide a guide for the dust-laden gas.
  • the dust-laden gas in the air inlet passage 252 can be effectively distributed to the multiple cyclone units 230, which can effectively improve the distribution of the dust-laden gas entering each cyclone unit 230 The uniformity of the gas and dust, thereby improving the efficiency of gas and dust separation.
  • a plurality of cyclone units 230 are evenly distributed around the outer circumference of the intake pipe 250, which can further improve the uniformity of the dust-laden gas entering each cyclone unit 230 and further improve the efficiency of gas and dust separation.
  • a plurality of cyclone units 230 are integrally formed on the air inlet pipe 250, which can effectively improve the stability of the communication between the air inlet 210 and the air inlet channel 252, and improve the uniformity of the dust-laden gas distribution.
  • the plurality of cyclone units 230 are enclosed in a ring structure, and the air inlet pipe 250 may also be inserted in the ring structure.
  • the separation mechanism 10 further includes a bracket 300, the bracket 300 is arranged on the dust collection assembly 100, the bracket 300 is formed with a mounting platform 310, the number of the mounting platform 310 and the cyclone 200 Corresponding to the number, each cyclone 200 is correspondingly arranged on an installation platform 310.
  • the mounting platform 310 is provided with a plurality of positioning holes 312 and vent holes 314, the cyclone unit 230 is correspondingly inserted in the positioning hole 312, and the air inlet cavity 120 is communicated with the air inlet 210 through the vent hole 314.
  • the cyclone unit 230 is installed on the bracket 300, the dust-laden gas in the air inlet cavity 120 can be effectively entered into the air inlet 210 of the cyclone unit 230 through the air hole 314 through the air hole 314.
  • the cyclone unit 230 since the cyclone unit 230 is inserted in the positioning hole 312, it is convenient for the dust outlet 220 to be aligned with the dust collection chamber 110 through the positioning hole 312.
  • the cone portion 234 is inserted into the positioning hole 312, so that the dust exhaust port 220 can be effectively aligned with the dust collection cavity 110, which facilitates dust collection.
  • the air inlet pipe 250 is located at the air hole 314, and the air inlet passage 252 communicates with the air inlet cavity 120 through the air hole 314.
  • the ventilation hole 314 By providing the ventilation hole 314, the communication between the intake passage 252 and the intake cavity 120 can be effectively realized.
  • the plane on which the single installation platform 310 is located and the plane perpendicular to the first axis a are set at an acute angle, so that the cyclone 200 close to the end of the installation platform 310 is gathered.
  • the size of the bracket 300 can be effectively reduced. Since the bracket 300 is disposed on the dust collection assembly 100, the size of the dust collection assembly 100 can be effectively reduced, and the compactness of the structure can be improved.
  • different installation platforms 310 can also be located on the same plane, as long as they can be conveniently implemented as a cyclone-separated installation support.
  • the dust collection assembly 100 includes a dust collector 130, the dust collector 130 includes a dust collection part 131 and at least two partition parts 132, the dust collection cavity 110 is formed on the dust collection part 131, and the air inlet cavity 120 is formed on the dust collection part 131.
  • On the partition 132 at least two partitions 132 are arranged around the first axis a.
  • the partition portion 132 is provided to facilitate the formation of the air inlet cavity 120, and the dust collection portion 131 is to facilitate the formation of the dust collection cavity 110 for dust collection.
  • the air inlet pipe 250 is connected to one end of the partition 132 to facilitate the communication between the air inlet chamber 120 and the air inlet passage 252, and facilitate the introduction of dust-laden gas into the cyclone separator 200.
  • the air intake pipe 250 is arranged on one side of the installation platform 310, and the partition 132 is arranged on the other side of the installation platform 310, so that the partition 132 communicates with the air inlet channel 252 through the vent 314 on the installation platform 310.
  • the intake pipe 250 may also be integrally formed on one end of the partition 132. During installation, the air inlet pipe 250 passes through the vent hole 314 of the bracket 300 and is inserted into the cyclone separator 200.
  • the dust collector 130 further includes a dust receiving pan 133, the dust receiving pan 133 is arranged on the dust collecting part 131, the dust receiving pan 133 is provided with a dust collecting port 134, and the dust collecting port 134 is in communication with the dust collecting chamber 110 .
  • the cyclone 200 is arranged on the dust receiving pan 133, and the dust exhaust port 220 is aligned with the dust receiving pan 133.
  • the dust receiving pan 133 can effectively expand the dust receiving surface, so that the dust discharged from the dust exhaust port 220 effectively falls into the dust receiving pan 133, and then falls into the dust collecting cavity 110 through the dust gathering port 134.
  • the surface of the dust receiving pan 133 facing the dust exhaust port 220 is a concave arc surface, and the dust collecting port 134 is opened at the lowest point of the concave arc surface, thereby facilitating the effective dust falling into the dust receiving pan 133. Fall into the dust collecting port 134 to prevent dust from accumulating in the dust receiving pan 133.
  • the cyclone 200 is disposed on the dust receiving pan 133 through a bracket 300, and the bracket 300 can cover the dust receiving pan 133. Since the cyclone unit 230 is inserted into the positioning hole 312, it can be effectively aligned with the dust pan 133.
  • the bracket 300 covers the dust receiving pan 133 so that the dust receiving pan 133 and the dust collecting chamber 110 form a closed dust collecting space, preventing dust from flying out of the dust collecting space, and improving the stability of dust collection.
  • the partition 132 is disposed on the side of the dust receiving pan 133 facing away from the dust collecting part 131, and the dust receiving pan 133 is also provided with an air inlet 135 on the side facing the dust collecting part 131.
  • the air inlet 135 is connected to the air inlet.
  • the cavity 120 communicates with each other. Since the cyclone 200 is arranged on the dust receiving plate 133, the partition 132 is arranged on the dust receiving plate 133 to facilitate the connection between the partition 132 and the air inlet pipe 250.
  • the dust-laden gas can enter the air inlet 135 from the outer peripheral side of the dust collecting part 131, and enter the air inlet passage 252 through the air inlet cavity 120, thereby forming an inlet The air passage; and the dust falls into the dust receiving pan 133 through the dust outlet 220, and further falls into the dust collecting chamber 110 from the dust collecting port 134 to form a dust collecting passage; the partition 132 can effectively separate the air inlet passage and the dust collecting passage , To avoid mutual interference between the intake passage and the dust collection passage.
  • the air inlet 135 and the dust collecting inlet 134 are arranged separately to further avoid the mutual communication interference between the formed dust collecting passage and the air inlet passage.
  • the end of the partition 132 facing away from the air inlet pipe 250 is integrally formed on the dust pan 133, which can effectively improve the stability of the partition 132 on the dust pan 133, and prevent dust-laden gas from passing through the partition 132.
  • the gap with the dust pan 133 leaks.
  • the end of the partition 132 facing away from the air inlet pipe 250 can also be directly penetrated through the air inlet 135 so that the dust-laden gas can directly enter the air inlet cavity 120.
  • the dust receiving plate 133 is integrally formed on the dust collecting part 131, thereby improving the stability of dust falling from the dust receiving plate 133 into the dust collecting cavity 110, and avoiding dust from passing through the dust receiving plate 133 and the dust collecting part 131.
  • the gap between the leaks is integrally formed on the dust collecting part 131, thereby improving the stability of dust falling from the dust receiving plate 133 into the dust collecting cavity 110, and avoiding dust from passing through the dust receiving plate 133 and the dust collecting part 131.
  • the dust collecting assembly 100 further includes a filter 140, the filter 140 is formed with a filter cavity 142, and the end of the dust collecting portion 131 facing away from the cyclone 200 passes through the filter.
  • the air inlet cavity 120 communicates with the filter cavity 142.
  • the filter element 140 can effectively filter the large particles of dust in the dust-laden gas to form a first-level filtration and separation.
  • the dust-laden gas passing through the filter element 140 enters the cyclone separator 200 from the air inlet cavity 120, which can perform a secondary gas and dust separation, and can effectively improve the efficiency of the gas and dust separation.
  • the dust collection assembly 100 further includes a dust cup 150, a receiving cavity 152 is formed on the dust cup 150, a suction port 154 communicating with the receiving cavity 152 is opened on the dust cup 150, and the filter 140 is disposed in the receiving cavity 152 Inside.
  • the receiving cavity 152 communicates with the filter cavity 142 through the filter element 140.
  • the dust-laden gas enters the accommodating cavity 152 through the suction port 154 of the dust cup 150, and enters the filter cavity 142 after being filtered by the filter element 140, so that large particles of dust are effectively retained in the accommodating cavity 152, thereby effectively achieving dust reduction Secondary separation.
  • the opening direction of the suction port 154 is tangent to the inner wall of the containing cavity 152, and after the dust-laden gas enters the containing cavity 152, it can rotate along the inner wall of the containing cavity 152.
  • the centrifugal force and gravity can be used to achieve A certain separation effect can further improve the air-dust separation effect of the separation mechanism 10.
  • the suction port 154 is opened at or near the upper part of the dust cup 150 to prevent the dust-laden gas entering from the suction port 154 from blowing up the dust at the bottom of the containing cavity 152 and affecting the air-dust separation effect of the separation mechanism 10.
  • the first axis a in the foregoing embodiment is the central axis of the dust cup 150; of course, the first axis a may also be the central axis of the dust collection chamber 110. Specifically, the dust cup 150 and the dust collection cavity 110 may be coaxially arranged.
  • the vacuum cleaner in an embodiment includes the separation mechanism 10 in any of the above embodiments.
  • the dust-laden gas can be filtered through the filter 140 to achieve a primary filtration, so that larger particles of dust remain in the accommodating cavity 152 of the dust cup 150.
  • the dust-laden gas further enters the intake chamber 120 of the partition 132 from the outer periphery of the dust collector 130, and enters the intake passage 252 of the intake pipe 250 through the vent hole 314 on the bracket 300. It enters into the cyclone unit 230 from the air intake passage 252 to achieve a two-stage separation.
  • the cooperation of the intake cavity 120 and the intake passage 252 can not only effectively improve the uniformity of the intake, but also enable the dust-laden gas to be stably delivered to the intake port 210 of the cyclone unit 230 through the intake passage 252, further improving Stability and uniformity of intake air.
  • the separated dust is discharged into the dust receiving pan 133 through the dust discharge port 220 of the cyclone unit 230, and falls into the dust collecting chamber 110 through the dust collecting port 134 to realize dust collection.
  • the above-mentioned vacuum cleaner can effectively realize the air-dust separation effect and improve the air-dust separation efficiency.

Abstract

一种吸尘器及分离机构(10),分离机构(10)包括旋风分离器(200)及集尘组件(100)。旋风分离器(200)包括旋风单元(230),旋风单元(230)的排尘口(220)与集尘组件(100)的集尘腔(110)相连通,至少两个进气腔(120)围绕第一轴线(a)设置,旋风分离器(200)的数量与进气腔(120)的数量相同,每一旋风分离器(200)的旋风单元(230)的进气口(210)与对应进气腔(120)相连通。带尘气体围绕第一轴线(a)流动,至少两个进气腔(120)能够将带尘气体有效分隔在不同的进气腔(120)内,每个进气腔(120)内的带尘气体能够由对应的旋风分离器(200)进行分离,能够有效降低进入每一旋风分离器(200)的带尘气体不均衡性,进而能够提高旋风分离器(200)的气尘分离效率。同时,通过设置至少两个旋风分离器(200)能够有效提高气尘的分离效率。

Description

吸尘器及分离机构
相关申请
本申请要求2019年11月27日申请的,申请号为201911181705.7,名称为“吸尘器及分离机构”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及吸尘结构技术领域,特别是涉及一种吸尘器及分离机构。
背景技术
旋风吸尘器的原理是使含尘气流作旋转运动,利用离心力将灰尘从气流中分离出来,再借助重力作用使尘粒掉落。传统的旋风吸尘器,带尘气体能够由集尘器与外壳之间的间隙进入到旋风分离器内,导致进入旋风分离器的带尘气体不均衡,进而导致气尘分离效率低。
发明内容
基于此,有必要针对上述问题,提供一种能够提高进气均匀性的吸尘器及分离机构。
一种分离机构,包括:
集尘组件,形成有集尘腔及至少两个与所述集尘腔分隔设置进气腔,至少两个所述进气腔围绕第一轴线设置;及
旋风分离器,包括旋风单元,所述旋风单元的一端开设有进气口,另一端开设有与所述进气口相连通的排尘口,所述排尘口与所述集尘腔相连通;所述旋风分离器的数量与所述进气腔的数量相同,每一所述旋风分离器的旋风单元的进气口均与对应的所述进气腔相连通。
上述分离机构在使用时,使得旋风分离器的排尘口与集尘组件的集尘腔相连通,至少两个进气腔围绕第一轴线设置,且旋风分离器的数量与进气腔的数量相同,每一旋风分离器的旋风单元的进气口与对应进气腔相连通。带尘气体能够由进气腔由进气口进入旋风分离器的旋风单元内,并在旋风单元内进行气尘分离,灰尘能够由排尘口排入集尘腔内,有效实现气尘分离。通过设置至少两个旋风分离器能够有效提高气尘的分离效率。同时,带尘气体围绕第一轴线流动,至少两个进气腔能够将带尘气体有效分隔在不同的进气腔内, 每个进气腔内的带尘气体能够由对应的旋风分离器进行分离,能够有效降低进入每一旋风分离器的带尘气体不均衡性,进而能够提高分离机构的气尘分离效率。
在其中一个实施例中,至少两个所述进气腔围绕所述第一轴线均匀分布。
在其中一个实施例中,所述旋风分离器的数量为三个。
在其中一个实施例中,所述旋风分离器包括多个所述旋风单元,多个所述旋风单元呈对称结构设置。
在其中一个实施例中,所述旋风分离器还包括排气组件,所述旋风单元包括进气部及设置于所述进气部上的锥体部,所述排尘口开设于所述锥体部背向于所述进气部的一端上,所述进气口开设于所述进气部的侧壁上;所述进气部背向于所述锥体部的一端上开口形成排气口,所述排气组件上开设有与所述旋风单元数量相对应的排气通道,所述排气组件盖设于所述进气部背向于所述锥体部的一侧,每一所述排气通道对应插设于一所述排气口内。
在其中一个实施例中,所述排气组件包括排气本体及排气管,所述排气管形成所述排气通道,所述排气本体盖设于所述进气部上,以使所述排气管的一端穿过所述排气本体并由所述排气口穿设于所述旋风单元内。
在其中一个实施例中,单个所述旋风分离器的多个所述旋风单元的中轴线平行设置,所述排气管的中轴线相互平行设置。
在其中一个实施例中,所述旋风分离器还包括进气管,所述进气管形成进气通道,多个所述旋风单元围设于所述进气管的外周侧,每一所述旋风单元的进气口朝向所述进气通道并与所述进气通道相连通,所述进气口通过所述进气通道与所述进气腔相连通。
在其中一个实施例中,多个所述旋风单元一体成型于所述进气管上。
在其中一个实施例中,所述分离机构还包括支架,所述支架设置于所述集尘组件上,所述支架形成有安装平台,所述安装平台的数量与所述旋风分离器的数量相对应,每一所述旋风分离器对应设置于一所述安装平台上,所述安装平台上开设有多个定位孔及通气孔,所述旋风单元对应插设于所述定位孔内,所述进气腔通过所述通气孔与所述进气口相连通。
在其中一个实施例中,单个所述安装平台所在的平面与垂直于所述第一轴线的平面之间呈锐角设置,以使所述旋风分离器靠近所述安装平台的一端聚拢。
在其中一个实施例中,所述集尘组件包括集尘器,所述集尘器包括集尘部及至少两个分隔部,所述集尘腔形成于所述集尘部上,所述进气腔形成于所述分隔部上,至少两个所述分隔部围绕所述第一轴线设置。
在其中一个实施例中,所述集尘器还包括接尘盘,所述接尘盘设置于所述集尘部上,所述接尘盘开设有集尘口,所述集尘口与所述集尘腔相连通,所述旋风分离器设置于所述 接尘盘上,所述排尘口对准所述接尘盘。
在其中一个实施例中,所述接尘盘朝向所述排尘口的表面为内凹形弧面,所述集尘口开设于所述内凹形弧面的最低点处。
在其中一个实施例中,所述接尘盘一体成型于所述集尘部上。
在其中一个实施例中,所述分隔部设置于所述接尘盘背向于所述集尘部的一侧,所述接尘盘朝向所述集尘部的一侧还开设有入气口,所述入气口与所述进气腔相连通。
在其中一个实施例中,所述进气管一体成型于所述分隔部的一端上;或者,所述进气管对接于所述分隔部的一端上。
在其中一个实施例中,所述分隔部背向于所述进气管的一端一体成型于所述接尘盘上。
在其中一个实施例中,所述集尘组件还包括过滤件,所述过滤件形成有过滤腔,所述集尘部背向于所述旋风分离器的一端穿设于所述过滤腔内,所述进气腔与所述过滤腔相连通。
在其中一个实施例中,所述集尘组件还包括尘杯,所述尘杯上形成有容纳腔,所述尘杯上开设有与所述容纳腔相连通的吸入口,所述过滤件设置于所述容纳腔内。
一种吸尘器,其特征在于,包括如上所述的分离机构。
上述吸尘器在使用时,使得旋风分离器的排尘口与集尘组件的集尘腔相连通,至少两个进气腔围绕第一轴线设置,且旋风分离器的数量与进气腔的数量相同,每一旋风分离器的旋风单元的进气口与对应进气腔相连通。带尘气体能够由进气腔由进气口进入旋风分离器的旋风单元内,并在旋风单元内进行气尘分离,灰尘能够由排尘口排入集尘腔内,有效实现气尘分离。通过设置至少两个旋风分离器能够有效提高气尘的分离效率。同时,带尘气体围绕第一轴线流动,至少两个进气腔能够将带尘气体有效分隔在不同的进气腔内,每个进气腔内的带尘气体能够由对应的旋风分离器进行分离,能够有效降低进入每一旋风分离器的带尘气体不均衡性,进而能够提高分离机构的气尘分离效率,提高吸尘器的气尘分离效率。
附图说明
图1为一实施例中的分离机构的结构示意图;
图2为图1所示的分离机构的分解示意图;
图3为图1所示的分离机构的剖视图;
图4为图1中的旋风分离器省略排气组件的结构示意图;
图5为图3所示的分离机构省略过滤件与尘杯的结构示意图;
图6为图5所示的分离机构的剖视图;
图7为图6所示的分离机构另一视角下的剖视图。
附图标记说明:
10、分离机构,100、集尘组件,110、集尘腔,120、进气腔,130、集尘器,131、集尘部,132、分隔部,133、接尘盘,134、集尘口,135、入气口,140、过滤件,142、过滤腔,150、尘杯,152、容纳腔,154、吸入口,200、旋风分离器,210、进气口,220、排尘口,230、旋风单元,232、进气部,234、锥体部,236、排气口,240、排气组件,242、排气通道,244、排气本体,246、排气管,250、进气管,252、进气通道,300、支架,310、安装平台,312、定位孔,314、通气孔。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施例做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
请参阅图1,一实施例中的分离机构10,能够有效实现气尘分离效果,且至少能够提高气尘分离效率。有效降低带尘气体不均衡问题。具体地,分离机构10包括集尘组件100及旋风分离器200。
请一并参阅图2及图3,集尘组件100形成有集尘腔110及至少两个与集尘腔110分隔设置的进气腔120,至少两个进气腔120围绕第一轴线a设置。旋风分离器200包括旋风单元230,旋风单元230的一端开设有进气口210,另一端开设有排尘口220的一端开设有进气口210,排尘口220与集尘腔110相连通;旋风分离器200的数量与进气腔120 的数量相同,每一旋风分离器200的旋风单元230的进气口210与对应进气腔120相连通。
上述分离机构10在使用时,使得旋风分离器200的排尘口220与集尘组件100的集尘腔110相连通,至少两个进气腔120围绕第一轴线a设置,且旋风分离器200的数量与进气腔120的数量相同,每一旋风分离器200的旋风单元230的进气口210与对应进气腔120相连通。带尘气体能够由进气腔120由进气口210进入旋风分离器200的旋风单元230内,并在旋风单元230内进行气尘分离,灰尘能够由排尘口220排入集尘腔110内,有效实现气尘分离。通过设置至少两个旋风分离器200能够有效提高气尘的分离效率。同时,带尘气体围绕第一轴线a流动,至少两个进气腔120能够将带尘气体有效分隔在不同的进气腔120内,每个进气腔120内的带尘气体能够由对应的旋风分离器200进行分离,能够有效降低进入每一旋风分离器200的带尘气体不均衡性,进而能够提高分离机构10的气尘分离效率。
一实施例中,至少两个进气腔120围绕第一轴线a均匀分布。通过将进气腔120均匀分布设置能够有效提高带尘气体进入不同的进气腔120的均匀性,进而能够进一步提高旋风分离器200的利用率,提高气尘分离效率。
当然,在其他实施例中,进气腔120还可以根据带尘气体分布的特点进行设置,以使带尘气体能够均匀地分布在不同的进气腔120内。
在本实施例中,旋风分离器200的数量为三个。其中,三个旋风分离器200围绕第一轴线a均匀分布。对应地,集尘组件100上形成三个进气腔120,每一进气腔120与一旋风分离器200的进气口210相连通。通过设置三个旋风分离器200能够有效提供空间利用率,降低旋风分离器200之间的间隙,有效提高结构的紧凑性。
在其他实施例中,旋风分离器200的数量还可以为两个、四个、五个等其他数目个。对应地,形成的进气腔120的数量也可以为两个、四个、五个等其他数目个。
请参阅图4,一实施例中,旋风分离器200包括多个旋风单元230,多个旋风单元230呈对称结构设置。旋风分离器200由多个旋风单元230组成,带尘气体能够由不同进气口210进入不同的旋风单元230,能够有效提高气尘分离效率。多个旋风单元230呈对称结构设置,能够提高带尘气体进入不同的旋风单元230的均匀性。在本实施例中,多个旋风单元230围成环状结构,更进一步提高带尘气体进入不同的旋风单元230的均匀性。
在本实施例中,旋风分离器200包括六个围成环状结构的旋风单元230,能够有效提高结构的紧凑度,提高空间的利用率。在其他实施例中,旋风分离器200还可以包括三个、四个、八个等其他数目个,只要能够使得带尘气体进入不同的旋风单元230内即可。
具体地,旋风单元230包括进气部232及设置于进气部232上的锥体部234,排尘口 220开设于锥体部234背向于进气部232的一端上,进气口210开设于进气部232的侧壁上。带尘气体由进气口210进入旋风单元230内,并在锥体部234内由于离心力及重力原因,使得灰尘由锥体部234上的排尘口220排出,实现气体中灰尘的分离。
进一步地,进气口210开设于进气部232的侧壁上,且进气口210的开口朝向与进气部232的内壁相切。进而使得由进气口210进入的气体能够有效在旋风单元230内旋转。
在本实施例中,单个旋风分离器200由偶数个旋风单元230组成,其中一旋风单元230的进气口210的开口朝向与进气部232的内壁相切,在该旋风单元230内形成左旋气流。相邻的另一旋风单元230的进气口210的开口朝向与进气部232的内壁相切,在该旋风单元230内形成右旋气流。进而使得相邻两个旋风单元230的进气口210处能够实现共壁,简化加工结构,提高加工效率。
在其他实施例中,多个旋风单元230的进气口210与进气部232内壁相切方向还可以一致,单个旋风分离器200也可以由奇数个旋风单元230组成。
请参阅图5至图7,一实施例中,旋风分离器200还包括排气组件240,进气部232背向于锥体部234的一端上开口形成排气口236(如图4所示),排气组件240上开设有与旋风单元230数量相对应的排气通道242,排气组件240盖设于进气部232背向于锥体部234的一侧,每一排气通道242对应插设于一排气口236内。当灰尘由带尘气体中分离出来以后,通过排气组件240使得干净气体能够由对应的排气通道242排出。同时,通过设置排气组件240能够有效覆盖进气部232背向于锥体部234的一侧,进而能够提高进气的稳定性。
具体地,排气组件240包括排气本体244及排气管246,排气管246形成排气通道242,排气本体244盖设于进气部232上,以使排气管246的一端穿过排气本体244并由排气口236穿设于旋风单元230内。通过形成排气管246穿设于旋风单元230内,能够避免带尘气体由进气口210进入旋风单元230内后,未经过分离直接由排气口236排出,排气管246能够有效避免刚进入旋风单元230内的带尘气体排出,提高气尘分离的稳定性。
在本实施例中,单个旋风分离器200的多个旋风单元230的中轴线平行设置。进而在加工,单个旋风分离器200上的多个旋风单元230能够由同一方向进行加工出模,能够有效提高加工效率,降低加工成本。
具体地,排气管246的中轴线相互平行设置。由于单个旋风分离器200的多个旋风单元230的中轴线平行设置,进而能够使得设置旋风单元230上的排气管246的中轴线相互平行设置,能够有效提高排气组件240的加工效率,降低排气组件240的加工成本。在本实施例中,排气管246一体成型于排气本体244上,使得排气管246能够在同一方向上进 行加工。
在其他实施例中,单个旋风分离器200的旋风单元230的锥体部234还可以聚拢设置,形成一端聚拢一端发散式结构,能够有效降低单个旋风单元230一端的尺寸,提高结构紧凑度。
一实施例中,旋风分离器200还包括进气管250,进气管250形成进气通道252,多个旋风单元230围设于进气管250的外周侧,每一旋风单元230的进气口210朝向进气通道252并与进气通道252相连通,进气口210通过进气通道252与进气腔120相连通。带尘气体由进气腔120进入到进气管250的进气通道252内,进而能够将带尘气体进行聚拢,并为带尘气体提供导向作用。由于旋风单元230的进气口210朝向进气通道252,进气通道252内的带尘气体能够有效分配到多个旋风单元230内,能够有效提高进入到每个旋风单元230内带尘气体分布的均匀性,进而提高气尘分离效率。
具体地,多个旋风单元230围绕进气管250的外周侧均匀分布,能够进一步提高进入每一旋风单元230内的带尘气体的均匀性,进一步提高气尘分离效率。
在本实施例中,多个旋风单元230一体成型于进气管250上,能够有效提高进气口210与进气通道252连通的稳定性,提高带尘气体分布的均匀性。在其他实施例中,多个旋风单元230围成环状结构,进气管250还可以插设于环状结构内。
请参阅图2及图3,一实施例中,分离机构10还包括支架300,支架300设置于集尘组件100上,支架300形成有安装平台310,安装平台310的数量与旋风分离器200的数量相对应,每一旋风分离器200对应设置于一安装平台310上。通过设置支架300,并将旋风分离器200设置于安装平台310上,为旋风分离器200安装在集尘组件100上提供有效支撑,方便旋风分离器200的安装。
具体地,安装平台310上开设有多个定位孔312及通气孔314,旋风单元230对应插设于定位孔312内,进气腔120通过通气孔314与进气口210相连通。当旋风单元230安装在支架300上时,通过通气孔314能够使得进气腔120内的带尘气体有效通过通气孔314进入到旋风单元230的进气口210。同时,由于旋风单元230插设于定位孔312内,进而方便排尘口220通过定位孔312对准集尘腔110。
进一步,锥体部234插设于定位孔312内,使得排尘口220能够有效对准集尘腔110,方便灰尘的收集。
一实施例中,进气管250对位于通气孔314处,进气通道252通过通气孔314与进气腔120相连通。通过设置通气孔314能够有效实现进气通道252与进气腔120的连通。
一实施例中,单个安装平台310所在的平面与垂直于第一轴线a的平面之间呈锐角设 置,以使旋风分离器200靠近安装平台310的一端聚拢。能够有效降低支架300的尺寸,由于支架300设置于集尘组件100上,进而还能够有效降低集尘组件100的尺寸,提高结构的紧凑度。
在其他实施例中,不同的安装平台310还可以位于同一平面上,只要能够方便实现为旋风分离去的安装支撑即可。
一实施例中,集尘组件100包括集尘器130,集尘器130包括集尘部131及至少两个分隔部132,集尘腔110形成于集尘部131上,进气腔120形成于分隔部132上,至少两个分隔部132围绕第一轴线a设置。通过设置分隔部132方便形成进气腔120,通过集尘部131方便形成用于集尘的集尘腔110。
具体地,进气管250对接于分隔部132的一端上,进而方便实现进气腔120与进气通道252的相互连通,方便实现带尘气体进入旋风分离器200中。
进一步地,进气管250设置于安装平台310的一侧,分隔部132设置于安装平台310的另一侧,以使分隔部132通过安装平台310上的通气孔314与进气通道252相连通。
在其他实施例中,进气管250还可以一体成型于分隔部132的一端上。安装时,使得进气管250穿过支架300的通气孔314,并插设于旋风分离器200中。
一实施例中,集尘器130还包括接尘盘133,接尘盘133设置于集尘部131上,接尘盘133开设有集尘口134,集尘口134与集尘腔110相连通。旋风分离器200设置于接尘盘133上,排尘口220对准接尘盘133。通过接尘盘133能够有效扩大接尘面,进而使得由排尘口220排出的灰尘有效落入接尘盘133内,进而通过集尘口134落入到集尘腔110内。
具体地,接尘盘133朝向排尘口220的表面为内凹形弧面,集尘口134开设于内凹形弧面的最低点处,进而方便落入到接尘盘133内的灰尘有效落入到集尘口134内,避免灰尘在接尘盘133内堆积。
可选地,旋风分离器200通过支架300设置于接尘盘133上,支架300能够覆盖在接尘盘133上。由于旋风单元230插设于定位孔312内,进而能够有效对准接尘盘133。支架300覆盖在接尘盘133上使得接尘盘133与集尘腔110形成为封闭的集尘空间,避免灰尘由集尘空间飞出,提高集尘的稳定性。
一实施例中,分隔部132设置于接尘盘133背向于集尘部131的一侧,接尘盘133朝向集尘部131的一侧还开设有入气口135,入气口135与进气腔120相连通。由于旋风分离器200设置于接尘盘133上,将分隔部132设置于接尘盘133上有利于分隔部132与进气管250的对接。同时,由于入气口135的开口朝向集尘部131的方向,使得带尘气体能 够由集尘部131的外周侧进入入气口135,并通过进气腔120进入到进气通道252,进而形成进气通路;而灰尘通过排尘口220落入接尘盘133,由集尘口134进一步落入集尘腔110内,形成集尘通路;通过分隔部132能够有效分隔进气通路与集尘通路,避免进气通路与集尘通路相互干扰。
具体地,入气口135与集尘口134分隔设置,进一步避免形成的集尘通路与进气通路的相互连通干扰。
一实施例中,分隔部132背向于进气管250的一端一体成型于接尘盘133上,能够有效提高分隔部132在接尘盘133上设置的稳定性,避免带尘气体由分隔部132与接尘盘133之间的间隙泄露。在其他实施例中,分隔部132背向于进气管250的一端还可以直接穿设于入气口135,使得带尘气体能够直接进入到进气腔120。
在本实施例中,接尘盘133一体成型于集尘部131上,进而能够提高灰尘由接尘盘133落入集尘腔110的稳定性,避免灰尘由接尘盘133与集尘部131之间的间隙泄露。
请再次参阅图2及图3,一实施例中,集尘组件100还包括过滤件140,过滤件140形成有过滤腔142,集尘部131背向于旋风分离器200的一端穿设于过滤腔142内,进气腔120与过滤腔142相连通。通过设置过滤件140能够有效过滤带尘气体中的大颗粒灰尘,形成一级过滤分离。经过过滤件140的带尘气体由进气腔120进入旋风分离器200中,能够进行二级气尘分离,能够有效提高气尘分离的效率。
一实施例中,集尘组件100还包括尘杯150,尘杯150上形成有容纳腔152,尘杯150上开设有与容纳腔152相连通的吸入口154,过滤件140设置于容纳腔152内。容纳腔152通过过滤件140与过滤腔142连通。带尘气体由尘杯150的吸入口154进入到容纳腔152内,经过过滤件140的过滤之后进入到过滤腔142内,使得大颗粒的灰尘有效留在容纳腔152内,进而有效实现灰尘的二级分离。
具体地,吸入口154的开口方向与容纳腔152的内壁相切,进而带尘气体进入到容纳腔152内后,能够沿着容纳腔152的内壁旋转,利用离心力和重力的作用,能够起到一定的分离效果,进而提高分离机构10的气尘分离效果。
进一步地,吸入口154开设于尘杯150的上部或靠近上部的位置,避免由吸入口154进入的带尘气体将容纳腔152底部的灰尘吹起,影响分离机构10的气尘分离效果。
上述实施例中的第一轴线a为尘杯150的中轴线;当然,第一轴线a还可以为集尘腔110的中轴线。具体地,尘杯150与集尘腔110可以同轴设置。
一实施例中的吸尘器包括上述任一实施例中的分离机构10。带尘气体通过过滤件140能够实现一级过滤,使得较大颗粒的灰尘留在尘杯150的容纳腔152内。带尘气体进一步 由集尘器130外周侧进入到分隔部132的进气腔120内,并通过支架300上的通气孔314进入到进气管250的进气通道252内。由进气通道252进入到旋风单元230内,实现二级分离。通过进气腔120与进气通道252的配合不仅能够有效提高进气的均匀性,同时还能够使得带尘气体稳定地通过进气通道252输送至旋风单元230的进气口210处,进一步提高进气的稳定性及均匀性。分离后的灰尘由旋风单元230的排尘口220排入接尘盘133,并通过集尘口134落入到集尘腔110内,实现灰尘的收集。上述吸尘器能够有效实现气尘分离效果,提高气尘分离效率。
以上所述实施例仅表达了本申请的几种实施例,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种分离机构,其特征在于,包括:
    集尘组件,形成有集尘腔及至少两个与所述集尘腔分隔设置进气腔,至少两个所述进气腔围绕第一轴线设置;及
    旋风分离器,包括旋风单元,所述旋风单元的一端开设有进气口,另一端开设有与所述进气口相连通的排尘口,所述排尘口与所述集尘腔相连通;所述旋风分离器的数量与所述进气腔的数量相同,每一所述旋风分离器的旋风单元的进气口均与对应的所述进气腔相连通。
  2. 根据权利要求1所述的分离机构,其特征在于,至少两个所述进气腔围绕所述第一轴线均匀分布。
  3. 根据权利要求2所述的分离机构,其特征在于,所述旋风分离器的数量为三个。
  4. 根据权利要求1-3任一项所述的分离机构,其特征在于,所述旋风分离器包括多个所述旋风单元,多个所述旋风单元呈对称结构设置。
  5. 根据权利要求4所述的分离机构,其特征在于,所述旋风分离器还包括排气组件,所述旋风单元包括进气部及设置于所述进气部上的锥体部,所述排尘口开设于所述锥体部背向于所述进气部的一端上,所述进气口开设于所述进气部的侧壁上;所述进气部背向于所述锥体部的一端上开口形成排气口,所述排气组件上开设有与所述旋风单元数量相对应的排气通道,所述排气组件盖设于所述进气部背向于所述锥体部的一侧,每一所述排气通道对应插设于一所述排气口内。
  6. 根据权利要求5所述的分离机构,其特征在于,所述排气组件包括排气本体及排气管,所述排气管形成所述排气通道,所述排气本体盖设于所述进气部上,以使所述排气管的一端穿过所述排气本体并由所述排气口穿设于所述旋风单元内。
  7. 根据权利要求6所述的分离机构,其特征在于,单个所述旋风分离器的多个所述旋风单元的中轴线平行设置,所述排气管的中轴线相互平行设置。
  8. 根据权利要求4所述的分离机构,其特征在于,所述旋风分离器还包括进气管,所述进气管形成进气通道,多个所述旋风单元围设于所述进气管的外周侧,每一所述旋风单元的进气口朝向所述进气通道并与所述进气通道相连通,所述进气口通过所述进气通道与所述进气腔相连通。
  9. 根据权利要求8所述的分离机构,其特征在于,多个所述旋风单元一体成型于所 述进气管上。
  10. 根据权利要求8所述的分离机构,其特征在于,还包括支架,所述支架设置于所述集尘组件上,所述支架形成有安装平台,所述安装平台的数量与所述旋风分离器的数量相对应,每一所述旋风分离器对应设置于一所述安装平台上,所述安装平台上开设有多个定位孔及通气孔,所述旋风单元对应插设于所述定位孔内,所述进气腔通过所述通气孔与所述进气口相连通。
  11. 根据权利要求10所述的分离机构,其特征在于,单个所述安装平台所在的平面与垂直于所述第一轴线的平面之间呈锐角设置,以使所述旋风分离器靠近所述安装平台的一端聚拢。
  12. 根据权利要求8所述的分离机构,其特征在于,所述集尘组件包括集尘器,所述集尘器包括集尘部及至少两个分隔部,所述集尘腔形成于所述集尘部上,所述进气腔形成于所述分隔部上,至少两个所述分隔部围绕所述第一轴线设置。
  13. 根据权利要求12所述的分离机构,其特征在于,所述集尘器还包括接尘盘,所述接尘盘设置于所述集尘部上,所述接尘盘开设有集尘口,所述集尘口与所述集尘腔相连通,所述旋风分离器设置于所述接尘盘上,所述排尘口对准所述接尘盘。
  14. 根据权利要求13所述的分离机构,其特征在于,所述接尘盘朝向所述排尘口的表面为内凹形弧面,所述集尘口开设于所述内凹形弧面的最低点处。
  15. 根据权利要求13所述的分离机构,其特征在于,所述接尘盘一体成型于所述集尘部上。
  16. 根据权利要求13所述的分离机构,其特征在于,所述分隔部设置于所述接尘盘背向于所述集尘部的一侧,所述接尘盘朝向所述集尘部的一侧还开设有入气口,所述入气口与所述进气腔相连通。
  17. 根据权利要求16所述的分离机构,其特征在于,所述进气管一体成型于所述分隔部的一端上;或者,所述进气管对接于所述分隔部的一端上。
  18. 根据权利要求17所述的分离机构,其特征在于,所述分隔部背向于所述进气管的一端一体成型于所述接尘盘上。
  19. 根据权利要求12所述的分离机构,其特征在于,所述集尘组件还包括过滤件,所述过滤件形成有过滤腔,所述集尘部背向于所述旋风分离器的一端穿设于所述过滤腔内,所述进气腔与所述过滤腔相连通。
  20. 根据权利要求19所述的分离机构,其特征在于,所述集尘组件还包括尘杯,所述尘杯上形成有容纳腔,所述尘杯上开设有与所述容纳腔相连通的吸入口,所述过滤件设 置于所述容纳腔内。
  21. 一种吸尘器,其特征在于,包括如权利要求1-20任一项所述的分离机构。
PCT/CN2020/111268 2019-11-27 2020-08-26 吸尘器及分离机构 WO2021103688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911181705.7A CN110742552A (zh) 2019-11-27 2019-11-27 吸尘器及分离机构
CN201911181705.7 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021103688A1 true WO2021103688A1 (zh) 2021-06-03

Family

ID=69284788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111268 WO2021103688A1 (zh) 2019-11-27 2020-08-26 吸尘器及分离机构

Country Status (2)

Country Link
CN (1) CN110742552A (zh)
WO (1) WO2021103688A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110742552A (zh) * 2019-11-27 2020-02-04 珠海格力电器股份有限公司 吸尘器及分离机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102578971A (zh) * 2012-04-16 2012-07-18 苏州爱普电器有限公司 旋风分离装置及真空清洁设备
CN103169420A (zh) * 2011-12-22 2013-06-26 戴森技术有限公司 真空吸尘器
CN104644058A (zh) * 2015-03-12 2015-05-27 江苏美的春花电器股份有限公司 吸尘器的尘杯和吸尘器
CN105193351A (zh) * 2014-05-26 2015-12-30 江苏美的清洁电器股份有限公司 旋风分离装置和吸尘器
CN105534405A (zh) * 2014-10-22 2016-05-04 戴森技术有限公司 具有电机冷却的真空吸尘器
US20160353953A1 (en) * 2013-02-11 2016-12-08 Techtronic Floor Care Technology Limited Cyclonic separator assembly for a vacuum cleaner
CN108606717A (zh) * 2018-07-10 2018-10-02 江苏美的清洁电器股份有限公司 手持清洁设备
CN209437154U (zh) * 2018-12-29 2019-09-27 江苏美的清洁电器股份有限公司 清洁设备
CN110742552A (zh) * 2019-11-27 2020-02-04 珠海格力电器股份有限公司 吸尘器及分离机构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103169420A (zh) * 2011-12-22 2013-06-26 戴森技术有限公司 真空吸尘器
CN102578971A (zh) * 2012-04-16 2012-07-18 苏州爱普电器有限公司 旋风分离装置及真空清洁设备
US20160353953A1 (en) * 2013-02-11 2016-12-08 Techtronic Floor Care Technology Limited Cyclonic separator assembly for a vacuum cleaner
CN105193351A (zh) * 2014-05-26 2015-12-30 江苏美的清洁电器股份有限公司 旋风分离装置和吸尘器
CN105534405A (zh) * 2014-10-22 2016-05-04 戴森技术有限公司 具有电机冷却的真空吸尘器
CN104644058A (zh) * 2015-03-12 2015-05-27 江苏美的春花电器股份有限公司 吸尘器的尘杯和吸尘器
CN108606717A (zh) * 2018-07-10 2018-10-02 江苏美的清洁电器股份有限公司 手持清洁设备
CN209437154U (zh) * 2018-12-29 2019-09-27 江苏美的清洁电器股份有限公司 清洁设备
CN110742552A (zh) * 2019-11-27 2020-02-04 珠海格力电器股份有限公司 吸尘器及分离机构

Also Published As

Publication number Publication date
CN110742552A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
US9131818B2 (en) Separating apparatus
WO2020108492A1 (zh) 手持清洁设备
US7955405B2 (en) Cyclonic separation apparatus
WO2014048045A1 (zh) 吸尘器上的多级旋风分离器
WO2007041947A1 (fr) Dispositif de separation a cyclone d'un nettoyeur
WO2016117893A1 (en) Dust collector for vacuum cleaner
WO2019105142A1 (zh) 尘气分离装置及具有其的吸尘器
WO2007022664A1 (fr) Dispositif d’échappement de poussière avec épurateur extérieur
WO2021103688A1 (zh) 吸尘器及分离机构
WO2021103689A1 (zh) 吸尘器、旋风分离机构及集尘结构
CN210124715U (zh) 手持式清洁设备
WO2019154314A1 (zh) 一种旋风分离装置及其应用
US20210212539A1 (en) Multi-cyclone dust collecting device and vacuum cleaner including same
CN108209723B (zh) 旋风分离装置和具有其的吸尘器
WO2021004040A1 (zh) 分离器、尘杯组件及吸尘装置
CN111904326B (zh) 清洁设备
CN211460036U (zh) 吸尘器、旋风分离机构及集尘结构
CN107854048B (zh) 气旋分离装置及具有其的吸尘器
CN211460035U (zh) 吸尘器及分离机构
KR101473781B1 (ko) 사이클론 집진장치
CN202198537U (zh) 旋风分离装置及装有该装置的旋风吸尘器
CN108294686B (zh) 旋风分离装置和吸尘器
KR20070067791A (ko) 사이클론 청소기
CN111904325B (zh) 手持式清洁设备
CN211460034U (zh) 吸尘器、旋风分离机构及安装支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892692

Country of ref document: EP

Kind code of ref document: A1