WO2021103674A1 - 逆变器短路检测方法、装置及逆变器 - Google Patents

逆变器短路检测方法、装置及逆变器 Download PDF

Info

Publication number
WO2021103674A1
WO2021103674A1 PCT/CN2020/110090 CN2020110090W WO2021103674A1 WO 2021103674 A1 WO2021103674 A1 WO 2021103674A1 CN 2020110090 W CN2020110090 W CN 2020110090W WO 2021103674 A1 WO2021103674 A1 WO 2021103674A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
boost
circuit
inverter
short
Prior art date
Application number
PCT/CN2020/110090
Other languages
English (en)
French (fr)
Inventor
徐志武
高拥兵
江念涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20894048.6A priority Critical patent/EP4053574B1/en
Publication of WO2021103674A1 publication Critical patent/WO2021103674A1/zh
Priority to US17/826,395 priority patent/US20220294361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This application relates to the field of photovoltaic technology, and in particular to an inverter short-circuit detection method, device and inverter.
  • the solar photovoltaic power generation system can use the photovoltaic effect of solar cell semiconductor materials (photovoltaic components) to directly convert solar radiation energy into direct current electrical energy. Since the photovoltaic modules output direct current and the mains grid is alternating current, an inverter needs to be installed between the photovoltaic and the mains grid to convert the direct current (DC) generated by the photovoltaic modules into alternating current (alternating current, AC). ). In order to increase the grid-connected voltage of the inverter, the inverter is also provided with a boost circuit connected to the photovoltaic modules one by one.
  • the inverter first boosts the voltage of the direct current generated by the photovoltaic module through the boost circuit, and then converts it to alternating current. Output to the grid.
  • the boost circuit is mostly implemented by the BOOST circuit.
  • the BOOST circuit uses the high-frequency switching of the switch tube and cooperates with the charging and discharging of the inductor to realize the boosting of the voltage at the input end of the BOOST circuit and outputting it from the output end.
  • the BOOST circuit sets a diode between the input terminal and the output terminal, so that the current can only enter the BOOST circuit from the input terminal and output from the output terminal.
  • the BOOST circuit Since one end of the BOOST circuit is connected to the photovoltaic module and the other end is connected to the DC bus, once the diode in the BOOST circuit is short-circuited, the voltage of the DC bus is higher and the voltage of the photovoltaic module is lower. Back-sink current, and too much current input into the photovoltaic module will cause damage to the photovoltaic module or even catch fire, causing serious safety accidents and economic losses. Therefore, in order to detect whether the diode in the BOOST circuit is short-circuited, when the BOOST circuit of some inverters is connected to the photovoltaic module, a fuse with a fusing threshold is set between each BOOST circuit and the photovoltaic module.
  • the diode is short-circuited, and the reverse sink current appears in the direction of the photovoltaic module through the BOOST circuit, and when the reverse sink current is greater than the fusing threshold of the fuse, the fuse is blown, so that the reverse sink current will not be input to the photovoltaic module, which protects the photovoltaic module. .
  • This application provides an inverter short-circuit detection method, device and inverter to solve the problem of current back-sinking when the diode in the BOOST circuit in the inverter is short-circuited. This application can reduce the cost of the inverter and reduce Technical effect of inverter maintenance workload.
  • the first aspect of the present application provides an inverter short-circuit detection method for detecting whether the inverter is short-circuited, and the method may be executed by a processing module or a processor in the inverter.
  • the processing module may increase the voltage of the common bus connected to the multiple boost circuits when the multiple boost circuits in the inverter are not in operation, and then detect each of the multiple boost circuits.
  • the circuit parameters of the input terminal of the booster circuit are used to determine the short-circuit booster circuit among the multiple booster circuits of the inverter according to the circuit parameter of each booster circuit.
  • the inverter detection method provided in this embodiment can detect whether the boost circuit in the inverter is detected through software through the processing module in the inverter, so there is no need to set additional
  • the fuse can thereby reduce the circuit complexity of the inverter, which in turn can reduce the circuit complexity of the photovoltaic power generation system including the inverter.
  • the circuit parameter of the input terminal of the booster circuit specifically detected by the processing module is voltage
  • the processing module can perform processing on the voltage at the input terminal of each booster circuit of the multiple booster circuits in the inverter. Detect and determine that the voltage at the input terminal is equal to the second voltage in the multiple boost circuits to determine that the boost circuit is short-circuited.
  • the inverter detection method provided by this embodiment aims at that when the voltage of the common bus connected to the boost circuit rises, the voltage on both sides of the short-circuited boost circuit is the same. Therefore, a more direct method can be adopted. , By using the voltage on the input side of the boost circuit to detect whether the boost circuit is short-circuited, the efficiency of detecting whether the boost circuit in the inverter is short-circuited can be improved.
  • the circuit parameter of the boost circuit input terminal specifically detected by the processing module is current, and the processing module can determine whether the input terminal of each boost circuit in the multiple boost circuits in the inverter is present.
  • the back-sink current is detected, and it is determined that the boost circuit with back-sink current is short-circuited.
  • the inverter detection method provided in this embodiment can deal with that when the voltage of the common bus connected to the boost circuit rises, the voltage of the photovoltaic string connected to the short-circuited boost circuit must be lower than that of the common bus. Voltage, therefore, there will be a back-sink current from the common bus to the photovoltaic string and through the short-circuited boost circuit. Therefore, this embodiment can detect whether the boost circuit is short-circuited in a more direct way by whether the back-supply current flows through the boost circuit, and can also improve the detection of whether the boost circuit in the inverter is short-circuited. effectiveness.
  • the inverter short-circuit detection method is applied to a photovoltaic power generation system, and the input terminal of each booster circuit in the inverter corresponds to the photovoltaic string in a one-to-one correspondence.
  • the DC-AC inverter module in the inverter is specifically used to convert DC power to AC power and output it to the grid, thereby realizing photovoltaic power generation.
  • the inverter short-circuit detection method provided by this embodiment can judge whether the inverter in the photovoltaic power generation system is short-circuited, especially for the photovoltaic string connected to the inverter, which is more expensive and more expensive. Many, using this embodiment can quickly and effectively detect whether the inverter is short-circuited, which can not only reduce the cost of monitoring the inverter, but also ensure that the photovoltaic string is not damaged and maintain economic benefits.
  • the processing module further switches the boost circuit that is not short-circuited among the plurality of boost circuits to work State; and control the output power of the photovoltaic string connected to the booster circuit that is not short-circuited to be lower than the preset power to protect the photovoltaic string connected to the short-circuited booster circuit.
  • the inverter short-circuit detection method in addition to detecting whether multiple boost circuits in the inverter are short-circuited, it can also detect short-circuited boost circuits in multiple boost circuits. , Further reduce the bus voltage by enabling the boost circuit that is not short-circuited, thereby reducing the output power of the photovoltaic string connected to the short-circuited boost circuit, so as to protect the photovoltaic string connected to the short-circuited boost circuit. After the boost circuit is short-circuited, the photovoltaic string is automatically protected. Before the operation and maintenance personnel discover and deal with the short-circuited boost circuit, measures are taken to ensure that the safety of the photovoltaic string is not damaged, which further improves the photovoltaic power generation system. Safety performance.
  • the processing module specifically controls the voltage at the output terminal of the boost circuit that is not short-circuited to be less than the third voltage, so that the output of the photovoltaic string connected to the boost circuit that is not short-circuited The power is lower than the preset power; wherein, the third voltage is the output terminal voltage of the short-circuited boost circuit when the plurality of boost circuits are all in a non-operating state.
  • the inverter short-circuit detection method based on the characteristics of the boost circuit itself to increase the output terminal voltage or decrease the input terminal voltage, reduce the input terminal on the left side of the boost circuit that is not short-circuited.
  • the voltage is used to reduce the output power of the photovoltaic string, so that a short-circuited booster circuit is protected by a booster circuit that is not short-circuited in a relatively simple and effective way.
  • the processing module may first switch the multiple boost circuits to the non-operating state before detecting whether the multiple boost circuits in the inverter are short-circuited.
  • the processing module can actively switch multiple boost circuits in the inverter to the non-operating state when it needs to be detected, or according to the user's instruction, After the inverter meets the execution conditions of this application, it is then detected whether multiple boost circuits in the inverter are short-circuited, thereby enriching the application scenarios of this embodiment.
  • the processing module specifically determines the first boost circuit with the lowest input terminal voltage among the plurality of boost circuits; Boosting by the bus.
  • the direct current output from the first booster circuit to the common bus in the working state is used to increase the voltage of the common bus from the first voltage to the second voltage.
  • the inverter short-circuit detection method based on the fact that when there is a short-circuited boost circuit, the first boost circuit with the lowest input terminal voltage in the boost circuit must not be short-circuited, so the first boost circuit can be enabled.
  • a booster circuit makes the booster circuit that is not short-circuited work to boost the voltage of the common bus. And the specific value of the boost is controllable, and the voltage of the common bus can be boosted in a more accurate, safe and effective way.
  • the processing module specifically determines a second boost circuit from a plurality of boost circuits; switches the second boost circuit to a working state, and controls the second boost circuit
  • the direct current at the input terminal is boosted with a duty ratio less than the preset threshold and then output to the common bus, so as to realize boosting of the common bus.
  • the direct current is used to increase the voltage of the common bus from the first voltage to the second voltage.
  • the inverter short-circuit detection method provided in this embodiment can select a booster circuit to boost the voltage of the common bus during detection, so that there is no need to test the booster circuit.
  • the booster circuit short circuit cannot increase the voltage of the common bus, and you can replace another arbitrary boost circuit to increase the voltage of the common bus. Therefore, in this embodiment, the operation flow of raising the voltage of the common bus is relatively simple, which can improve the efficiency of short-circuit detection of the inverter.
  • the inverter applied in the present application further includes: an AC-DC rectifier module, the input terminal of the AC-DC rectifier module is connected to the output terminal of the DC-AC rectifier module, and the AC-DC rectifier module is connected to the output terminal of the DC-AC rectifier module.
  • the output terminal of the DC rectifier module is connected to the common bus.
  • the AC-DC rectifier module can specifically convert the AC power into DC power and output the DC power to the common bus; wherein, the DC power output by the AC-DC rectifier module is used to transfer the common bus The voltage rises from the first voltage to the second voltage.
  • the inverter short-circuit detection method provided in this embodiment can directly collect the output power on the path of the common bus to output electrical energy to the power grid and send it back to the common bus to achieve an increase in the voltage of the common bus. Therefore, in a more direct way, the utilization rate of electric energy is improved, and the common bus voltage can be increased without operating any booster circuit in the inverter.
  • a second aspect of the present application provides an inverter short-circuit detection device, which can be used to implement the inverter short-circuit detection method provided in the first aspect of the present application.
  • the device includes a processing module used to implement the foregoing method as an execution subject.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the third aspect of the present application provides a computer program product containing instructions, which when running on a device, causes the device to execute the foregoing first aspect or the methods in the various possible implementation manners of the first aspect.
  • the fourth aspect of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions that, when run on a device, cause the device to perform the above-mentioned first aspect or various possible aspects of the first aspect.
  • the method in the implementation mode is not limited to.
  • a fifth aspect of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the function of the processing module as the execution subject in the method described in the first aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a sixth aspect of the present application provides an inverter, including: multiple boost circuits, a common bus, and a DC-AC inverter module; wherein the output ends of the multiple boost circuits are all connected in parallel with the common bus, and the common bus is also connected in parallel Connect the DC-AC inverter module; the input of each booster circuit is DC power.
  • the booster circuit is used to boost the DC power and send it to the DC-AC inverter module through the common bus.
  • the DC-AC inverter The module is used to convert the boosted direct current into alternating current and output; the switch tube of each boost circuit is connected in series with an overcurrent protector, which is used to disconnect for overcurrent when the current flowing through the switch tube is too large protection.
  • an overcurrent protector is connected in series with the switch tube in each boost circuit, and the overcurrent protector can be disconnected when the switch tube of the boost circuit is short-circuited, thereby To provide protection for the switch tube, therefore, the inverter provided in the present application has higher safety performance.
  • the seventh aspect of the present application provides an inverter short-circuit detection method, which can be used to detect whether the inverter provided in the sixth aspect of the present application is short-circuited, wherein the method includes: when a plurality of boost circuits are all in a non-operating state, The processing module in the inverter raises the voltage of the common bus from the first voltage to the second voltage; subsequently, the processing module in the inverter can protect against overcurrent in each of the multiple boost circuits. The state of the converter detects the short-circuited booster circuit among multiple booster circuits.
  • the state of the overcurrent protector in each boost circuit in the inverter can be detected to determine the boost corresponding to the disconnected overcurrent protector.
  • the switch tube in the circuit is short-circuited. Therefore, the inverter short-circuit detection method provided in this embodiment can protect each booster circuit by the over-current protector, and is further intelligent when the over-current protector is short-circuited.
  • the processing module autonomously determines the short-circuited boost circuit chemically, thereby improving the efficiency of detecting the short-circuit of the boost circuit in the inverter.
  • the eighth aspect of the present application provides an inverter short-circuit detection device, which can be used to implement the inverter short-circuit detection method as provided in the seventh aspect of the present application.
  • the device includes a processing module used to implement the foregoing method as an execution subject.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the ninth aspect of the present application provides a computer program product containing instructions, which when running on a device, causes the device to execute the method in the implementation manner of the seventh aspect.
  • a tenth aspect of the present application provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a device, cause the device to execute the method in the seventh aspect.
  • the eleventh aspect of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the function of the processing module as the execution subject in the method of the seventh aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • Figure 1 is a schematic diagram of the application scenario of this application.
  • Figure 2 is a schematic diagram of the internal structure of an inverter
  • Figure 3 is a schematic diagram of a circuit structure of an inverter
  • Figure 4 is a schematic diagram of the internal structure of another inverter
  • Fig. 5 is a schematic diagram of the circuit structure of another inverter
  • FIG. 6 is a schematic structural diagram of an embodiment of an inverter provided by this application.
  • FIG. 7 is a schematic flowchart of an embodiment of an inverter short-circuit detection method provided by this application.
  • FIG. 8 is a schematic flowchart of another embodiment of an inverter short-circuit detection method provided by this application.
  • FIG. 9 is a schematic flowchart of an embodiment of raising the bus voltage provided by this application.
  • FIG. 10 is a schematic flowchart of another embodiment of raising bus voltage provided by this application.
  • FIG. 11 is a schematic structural diagram of another embodiment of an inverter provided by this application.
  • FIG. 12 is a schematic flowchart of another embodiment of increasing the bus voltage provided by this application.
  • FIG. 13 is a schematic structural diagram of another embodiment of an inverter provided by this application.
  • FIG. 14 is a schematic flowchart of another embodiment of the inverter short-circuit detection method provided by this application.
  • 15 is a schematic structural diagram of an embodiment of inverter short-circuit detection provided by this application.
  • 16 is a schematic structural diagram of another embodiment of inverter short-circuit detection provided by this application.
  • FIG. 17 is a schematic structural diagram of another embodiment of inverter short-circuit detection provided by this application.
  • FIG. 18 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of the application scenario of this application. As shown in Figure 1, this application can be applied to a photovoltaic power generation system in the field of photovoltaic power generation technology.
  • the photovoltaic power generation system may include: at least one photovoltaic string 11 and an inverter 12 And the grid 13.
  • N photovoltaic strings 11 as an example, all N photovoltaic strings are respectively connected to the inverter 12, and the inverter 12 is also connected to the power grid 13.
  • each photovoltaic string 11 of the N photovoltaic strings 11 may be obtained by connecting multiple photovoltaic modules in series and/or in parallel.
  • the photovoltaic modules may be solar panels, and each photovoltaic module can be used to collect solar energy. , And convert solar energy into electricity.
  • Each photovoltaic string 11 can transmit the electrical energy generated by all photovoltaic components to the inverter 12, and the inverter 12 can transmit the electrical energy transmitted by all photovoltaic strings 11 to the grid 13, which is used in large photovoltaic power plants and other applications.
  • such a photovoltaic power generation system in which multiple photovoltaic strings 11 are connected to the grid 13 through the same inverter 12 can improve transmission efficiency.
  • the inverter 12 needs to convert the direct current generated by the N photovoltaic strings 11 into alternating current. Transmitted to the grid 13.
  • FIG. 2 is a schematic diagram of the internal structure of an inverter, in which, on the basis of the photovoltaic power generation system shown in FIG.
  • the inverter 12 is also provided with one-to-one correspondence with N photovoltaic strings 11 N boost circuits, the direct current generated by each photovoltaic string 11 is boosted by the connected boost circuit 121, and then the direct current/alternating current in the inverter (direct current/alternating current, DC The /AC) module 122 converts to alternating current and further transmits it to the grid 13.
  • the inverter 12 shown in Figure 1 and Figure 2 can also be a photovoltaic maximum power point tracking (MPPT) module, and the photovoltaic MPPT module can also be used for boosting , And convert direct current to alternating current.
  • MPPT photovoltaic maximum power point tracking
  • FIG. 3 is a schematic diagram of the circuit structure of an inverter, and FIG. 3 shows the specific circuit structure of the booster circuit shown in FIG. 2, where the booster circuit is a booster chopper circuit (English: BOOST chopper, abbreviation: BOOST boost circuit) Take an example, and specifically describe the BOOST boost circuit 1211 in the inverter 12.
  • the BOOST boost circuit 1211 includes: BOOST input capacitor 101, BOOST inductor 102, BOOST switch tube 103, BOOST diode 104 and bypass diode 105.
  • the BOOST boost circuit 1211 can control the BOOST inductor 102 to continuously switch between the charging state and the discharging state through the high-frequency switching of the BOOST switch tube 103 between the open state and the closed state, and then absorb energy when charging through the BOOST inductor 102 and During the discharge, energy is released for energy transfer, so that the voltage on the right side of the BOOST booster circuit 1211 is higher than the voltage on the left side of the input side. It should be noted that, on the basis of the basic circuit of the BOOST boost circuit as shown in FIG. 3, this application does not limit other possible implementations of the BOOST boost circuit.
  • each BOOST boost circuit has a uni-conducting BOOST diode and a uni-conducting bypass diode, so that each photovoltaic string can be connected to the BOOST boost circuit.
  • the electric energy is unidirectionally transmitted to the common bus 124, and finally the electric energy of all photovoltaic strings from the common bus 124 is transmitted to the DC/AC module 122.
  • the voltage on the common bus 124 is equal to the largest voltage among the output voltages of all BOOST boost circuits, and for the BOOST boost circuit with a lower output voltage, the voltage on the common bus 124 is equal to the maximum voltage among the output voltages of all BOOST boost circuits.
  • the input voltage of the photovoltaic string connected to the left input terminal is less than the bus voltage connected to the right output terminal. If there is no BOOST diode in the BOOST boost circuit, the voltage difference between the input terminal and the output terminal of the BOOST boost circuit will be Generates back-sink current from the output end of the BOOST boost circuit to the input end. When the back-sink current flows into the photovoltaic string connected to the input end of the BOOST boost circuit, it will cause damage to the photovoltaic modules in the photovoltaic string or even catch fire, which will cause serious Safety accidents and bring economic losses.
  • FIG. 4 is a schematic diagram of the internal structure of another inverter.
  • the inverter 12 is also provided with N fuses corresponding to the N photovoltaic strings 11 one-to-one. 123, the N photovoltaic strings 11 are respectively connected to the boost circuit 121 through a fuse 123.
  • FIG. 5 is a schematic diagram of the circuit structure of another inverter.
  • FIG. 5 shows the specific circuit structure of the boost circuit shown in FIG. Take any two photovoltaic string 111 and photovoltaic string 112 as an example.
  • the positive and negative poles of the photovoltaic string 111 are respectively connected to the positive and negative poles of the corresponding BOOST boost circuit 1211 in the inverter 12 and the positive and negative poles of the photovoltaic string 112. Connect the positive and negative poles of the corresponding BOOST boost circuit 1212 in the inverter 12 respectively.
  • the fuse 123 can be set on the positive line as shown in the photovoltaic string 111 or on the photovoltaic string 112. Shown on the negative line.
  • the fuse When the fuse is connected between each photovoltaic string and the BOOST boost circuit, when the diode in any BOOST boost circuit is short-circuited, if the output side voltage of the BOOST boost circuit is greater than the input side voltage, it will flow into the photovoltaic string When the reverse sink current is greater than the fusing threshold of the fuse, the fuse is blown, so that the reverse sink current will not be input to the photovoltaic string, which protects the photovoltaic string.
  • the present application provides an inverter short-circuit detection method, device, and inverter to solve the problem of current back-sinking when the diode in the BOOST circuit of the inverter is short-circuited.
  • Fig. 6 is a schematic structural diagram of an embodiment of the inverter provided by this application.
  • the inverter provided in this embodiment can be applied to the photovoltaic power generation scenario shown in Fig. 1, and the direct current generated by multiple photovoltaic strings 11 can pass through After the step-up and conversion processing of the inverter 12, it is further transmitted to the grid 13.
  • the inverter 12 is connected to two photovoltaic strings 111 and the photovoltaic string 112 as an exemplary illustration, and the inverter 12 includes multiple boost circuits and common The bus 124 and the direct current/alternating current (DC/AC) module 122, wherein the number of boost circuits can be greater than or equal to the number of photovoltaic strings connected to the inverter.
  • DC/AC direct current/alternating current
  • the inverter 12 can be connected to the photovoltaic string 111 through the input end of the boost circuit 1211, and connected to the photovoltaic string 112 through the input end of the boost circuit 1212, and at the same time, each boost The output terminal of the voltage circuit is connected in parallel with the common bus 124.
  • the boost circuit 1211 can boost the direct current generated by the photovoltaic string 111 at the input end, and then send the boosted direct current to the DC/AC module 122 through the common bus 124; the boost circuit 1212 can boost the photovoltaic group at the input end After the DC power generated by the string 112 is boosted, the boosted DC power is sent to the DC/AC module 122 through the public line 124, and the DC/AC module 122 converts the DC power to AC power and then outputs it to the grid 13.
  • the boost circuit 1211 and the boost circuit 1212 may be BOOST boost circuits, because the boost circuit 1211 is connected in parallel with the common bus 124, and the boost circuit 1212 is also connected in parallel with the common bus 124. Therefore, the voltage on the common bus 124 is the same as the maximum voltage at the output terminal of the boost circuit 1211 and the boost circuit 1212.
  • the voltage at the output terminal of the boost circuit 1211 is 1000V
  • the voltage at the output terminal of the boost circuit 1212 is 1200V.
  • the voltage on 124 is 1200V.
  • the input voltage of the photovoltaic string 111 connected to its left input terminal is less than the voltage of the common bus 124 connected to the right output terminal, and the BOOST diode 104 and the BOOST diode 104 and The bypass diode 105 can be used to prevent the reverse sink current generated by the voltage difference between the input terminal and the output terminal of the boost circuit 1211 from flowing into the photovoltaic string 111.
  • the processing module 125 in the inverter 12 may be used to detect the short-circuits of the diodes in the boost circuits of the inverter.
  • the detected diode short-circuit scenarios include: the BOOST diode in the boost circuit is short-circuited, the bypass diode in the boost circuit is short-circuited, or the BOOST diode in the boost circuit is short-circuited and the bypass diode is short-circuited at the same time.
  • the processing module 125 may be a device provided in the inverter 12 dedicated to detecting whether a diode is short-circuited, or the processing module 125 may also be an existing device or module in the inverter 12, such as a central processing unit. (central processing unit, CPU), hardware circuit, etc.
  • the processing module 125 can determine the circuit parameters by determining the connection relationship of each boost circuit and the common bus in the inverter. The connection relationship between the processing module 125 and the boost circuit and the common bus is not shown in FIG. 6.
  • the processing module 125 may be connected to the input terminal ab and the output terminal a'-b' of the BOOST boost circuit 1211, and the processing module may determine the voltage at the input terminal and the output terminal of the BOOST boost circuit 1211; or, the processing module 125
  • the positive electrode e and the negative electrode f of the common bus 124 can be connected, and the voltage between the ef of the common bus 124 can be determined.
  • the processing module 125 may also be provided outside the inverter 12 as a module independent of the inverter 12.
  • FIG. 7 is a schematic flowchart of an embodiment of an inverter short-circuit detection method provided by this application.
  • the inverter short-circuit detection method shown in FIG. 7 can be executed by the processing module 125 shown in FIG. Detect whether the diode in each booster circuit is short-circuited, the method includes:
  • the processing module 125 of the inverter in this embodiment performs short-circuit detection on the diode in the boost circuit, it needs all the boost circuits in the inverter to be in an unoperating state.
  • the boost circuit includes at least a working state and a non-working state.
  • the boost circuit 1211 when the boost circuit 1211 is in the working state, the voltage V ab of the input terminal ab can be boosted to obtain the output terminal a The voltage V a'b'of'-b' , at this time, V ab ⁇ V a'b' ; when the boost circuit 1211 is in the non-operating state, the voltage V ab of the input terminal ab will not be boosted.
  • V ab V a'b' .
  • the processing module 125 may actively perform the inverter short-circuit detection method as shown in FIG. 7 when all the boost circuits in the inverter are not in operation, and detect whether the diodes in each boost circuit are short-circuited. Or, when the processing module 125 performs detection, if some or all of the boost circuits in the inverter are still in working state, the processing module 125 first switches all the boost circuits in all inverters to the non-working state, Then execute S101 as shown in Figure 7.
  • the processing module 125 increases the first voltage of the common bus when all the boosting circuits are in the non-operating state to the second voltage.
  • the second voltage is greater than the first voltage, so that the second voltage of the common bus is higher than the first voltages at the input ends of all boost circuits.
  • the booster circuit 1211 in FIG. 6 For each booster circuit, take the booster circuit 1211 in FIG. 6 as an example. If neither the BOOST diode 104 nor the bypass diode 105 in the booster circuit 1211 is short-circuited, the voltage V at the output terminal a'-b' a'b' should be greater than the voltage V ab of the input terminal ab, and the current direction of the positive input terminal is a-a', and the current direction of the negative input terminal is b'-b. If either or both of the BOOST diode 104 and the bypass diode 105 in the boost circuit 1211 are short-circuited, at least the following two situations will occur: 1.
  • the voltage V ab of the input terminal ab on the left side of the boost circuit 1211 and The voltage Va'b' of the output terminals a'-b' on the right is equal; 2.
  • the current direction of the positive input terminal of the booster circuit 1211 is a'-a, and the current direction of the negative input terminal is b-b', because The direction of the current after the short-circuit is opposite to the direction of the current when the diode is not short-circuited, and this kind of current can also be called "reverse sink current.” Therefore, the processing module 125 can determine whether the diode in each boost circuit is short-circuited through the voltage or current at the input terminal of each boost circuit.
  • the processing module 125 can determine whether the boost circuit is short-circuited by detecting the voltage at the input end of the boost circuit.
  • the processing module 125 boosts the bus voltage from the first voltage through S101. After reaching the second voltage, the voltage at the input terminal of each boost circuit in the inverter 12 is further detected in S102.
  • the processing module 125 can be connected to the input terminal of the boost circuit 1211. The positive electrode a and the negative electrode b are connected, and the voltage V ab between ab is detected through the connection relationship.
  • the processing module 125 detects that the voltage V ab at the input terminal of the boost circuit 1211 is less than the second voltage, it is determined that neither the BOOST diode 104 nor the bypass diode 105 in the boost circuit 1211 is short-circuited; and when the processing module 125 detects the boost circuit 1211 The voltage at the input terminal of is equal to the second voltage, and it is determined that the BOOST diode 104 and/or the bypass diode 105 in the boost circuit 1211 are short-circuited.
  • the processing module 125 detects whether all the boost circuits in the inverter 12 are short-circuited according to the above-mentioned method for detecting the boost circuit 1211, and finally determines the boost circuit in the inverter whose input terminal voltage is equal to the second voltage through S103 The diode in the short circuit.
  • the processing module 125 since the processing module 125 performs boost processing on the common bus, and the voltage of the common bus is greater than the voltage at the input terminals of all boost circuits, the processing module 125 can detect whether all boost circuits are short-circuited.
  • the processing module 125 can determine whether the diode in the boost circuit is short-circuited by detecting the current at the input end of the boost circuit. After the first voltage is increased to the second voltage, the current at the input end of each booster circuit in the inverter 12 is further detected in S102. Also taking the booster circuit 1211 in FIG. 6 as an example, the processing module 125 can be connected to the booster circuit. The positive a or negative b of the input terminal of the voltage circuit 1211 is used to detect the current direction at point a or b through the connection relationship.
  • the processing module 125 detects that the positive current direction of the input terminal of the boost circuit 1211 is a-a' or the current direction of the negative input terminal is b'-b, it determines the BOOST diode 104 and the bypass diode in the boost circuit 1211 105 is not short-circuited; and when it is detected that the positive current direction of the input terminal of the boost circuit 1211 is a'-a or the current direction of the negative input terminal is b-b', it is determined that the BOOST diode 104 and/or the boost circuit 1211 The bypass diode 105 is short-circuited.
  • the processing module 125 detects whether all the boost circuits in the inverter 12 are short-circuited according to the above-mentioned method for detecting the boost circuit 1211, and finally determines through S103 that there is a reverse current in the boost circuit at the input of the inverter. The diode is shorted. And because the processing module 125 boosts the common bus, the voltage of the common bus is greater than the voltage at the input terminals of all boost circuits, and all short-circuited boost circuits have a voltage difference and can generate back-sink current. Therefore, the processing module 125 can Check whether all boost circuits are short-circuited.
  • the processing module 125 may select one to perform detection, or a combination of the two methods may perform detection. For example, the processing module 125 may detect that the voltage at the input terminal of the boost circuit is equal to the second The voltage determines that the boost circuit is short-circuited, or it can be determined that the boost circuit is short-circuited by detecting the back-sink current at the input of the boost circuit, or it can be determined when it is determined that the voltage at the input of the boost circuit is equal to the second voltage and the back-sink current occurs The boost circuit is shorted.
  • the processing module 125 may send a prompt message to indicate to the maintenance personnel of the inverter that there is a short circuit in the inverter, and indicate the specific short-circuited boost circuit.
  • the prompt information may be displayed on a display screen, played through a speaker, or the like. It is understandable that in this embodiment, the processing module 125 may also detect that none of the multiple boost circuits are short-circuited, and no prompt message will be sent.
  • the processing module raises the voltage of the common bus when multiple boost circuits in the inverter are not in operation, and then detects the input terminals of all the multiple boost circuits.
  • the circuit parameters are further determined according to the circuit parameters of the input terminal of the boost circuit to determine the boost circuit with the diode short-circuited in the multiple boost circuits.
  • the processing module in this embodiment can controllably increase the bus voltage from the first voltage to the second voltage, and the second voltage only needs to be slightly higher than the first voltage, even if the diode of the boost circuit is short-circuited , The second voltage on the bus voltage will not bring too much back-supply current, so that in the process of detecting the short circuit of the diode in the boost circuit, it can also ensure the protection of the photovoltaic modules connected to the boost circuit.
  • the protection degree of the photovoltaic module is improved, and the photovoltaic module is further ensured that the photovoltaic module will not be damaged by the back-supply current and cause serious consequences.
  • FIG. 8 is a schematic flowchart of another embodiment of the inverter short-circuit detection method provided by this application.
  • the processing module 125 determines through S103 After the short-circuited booster circuit among multiple booster circuits, it also includes: S104: Control the output power of the photovoltaic string connected to the booster circuit that is not short-circuited to be lower than the preset power to protect the photovoltaic group connected to the short-circuited booster circuit string.
  • the boost circuit when the processing module 125 determines that there are short circuits in multiple boost circuits through the above-mentioned embodiments, the boost circuit can also reduce its output terminal voltage. If the processing module 125 detects multiple boost circuits, The boost circuit that is short-circuited in the boost circuit can enable other boost circuits that are not short-circuited in the multiple boost circuits, so that after the other boost circuits that are not short-circuited are switched to the working state, they can be reduced by the boost circuit that is not short-circuited.
  • the output voltage is used to reduce the output power of the photovoltaic string connected to the short-circuited boost circuit.
  • the voltage at the output terminal of the boost circuit can be recorded as the third voltage. Then, after the boost circuit that is not short-circuited is switched to the working state, the voltage at the output terminal of the boost circuit that is not short-circuited can be made smaller than the third voltage, thereby reducing the power of the output terminal of the boost circuit that is not short-circuited. It is understandable that reducing the voltage at the output terminal of the boost circuit is also equivalent to reducing the voltage at the input terminal of the boost circuit and the voltage at the output terminal of the photovoltaic string.
  • the voltage of the photovoltaic string connected to the short-circuited boost circuit can also be reduced, thereby reducing the output power of the boost circuit that is not short-circuited.
  • the output power of the connected photovoltaic string reduces the voltage at the input terminal of the short-circuited boost circuit, and realizes the protection of the photovoltaic string connected to the short-circuited boost circuit.
  • the processing module 125 can switch the boost circuit 1212 to the working state by The boost circuit 1212 reduces the output voltage of the output terminal c'-d', thereby reducing the input power of the boost circuit 1211, that is, reducing the output power of the photovoltaic string 111, and realizes the short-circuit connection of the photovoltaic string 1211 111 protection.
  • the processing module 125 can further reduce the bus voltage by enabling the boost circuit that is not short-circuited after detecting a short-circuited boost circuit among multiple boost circuits. , So as to reduce the output power of the photovoltaic string connected to the short-circuited boost circuit to protect the photovoltaic string connected to the short-circuited boost circuit. Therefore, the photovoltaic string can be automatically protected after the boost circuit is short-circuited. Furthermore, before the operation and maintenance personnel discover and deal with the short-circuited boost circuit, measures are taken to ensure that the safety of the photovoltaic string is not damaged, which further improves the safety performance of the photovoltaic power generation system.
  • the present application also provides the following specific implementation manners to realize the increase of the voltage of the common bus from the first voltage to the second voltage in S101, which is described below with reference to the accompanying drawings.
  • the processing module 125 may determine the boost circuit with the lowest input terminal voltage when the multiple boost circuits are not in operation, because the voltage of the common bus is equal to the output terminal of the multiple boost circuits. Therefore, the boost circuit with the lowest input voltage can be regarded as the diode without short circuit. Therefore, after the processing module 125 switches the boost circuit with the lowest input voltage to the working state, the boost circuit converts the photovoltaic string at the input After the DC power is boosted, it is input into the common bus to realize the increase of the voltage of the common bus.
  • FIG. 9 is a schematic flowchart of an embodiment of raising the bus voltage provided by this application, and FIG. 9 shows that the processing module 125 in the inverter shown in FIG. 6 uses the above implementation to raise the bus.
  • the processing module 125 determines the voltages at the input terminals of all the boost circuits in the multiple boost circuits. Specifically, the processing module 125 needs to first determine the voltages at the input terminals of all the boost circuits in the multiple boost circuits through S201 when all the multiple boost circuits are not in operation. For example, the processing module 125 may determine the boost circuit 1211 The voltage at the input terminal is 1400V, the voltage at the input terminal of the boost circuit 1212 is 1200V, and the voltage at the common bus 124 is 1400V.
  • the processing module 125 determines the first boost circuit with the lowest input terminal voltage from the multiple boost circuits determined in S201. Specifically, the processing module 125 may determine that the input terminal of the boost circuit 1212 with the smallest input terminal voltage is different from the output terminal voltage, and the diode in the boost circuit 1212 is not short-circuited, and the boost circuit 1212 is determined to be the first boost circuit in S202.
  • S203 The processing module 125 switches the boost circuit 1212 to a working state.
  • the boost circuit 1212 increases the voltage of the received DC power of the photovoltaic string 112 from 1200V to greater than 1400V, for example to 1450V. At this time, the voltage of the common bus 124 is also 1450V, so as to realize the connection to the common bus 124.
  • Boost boost
  • the general boost circuit increases the voltage more obviously.
  • the boost circuit 1212 only needs to work with a small duty cycle to increase the voltage of the DC power generated by the photovoltaic string. high. Therefore, the duty cycle when the boost circuit 1212 is working can be adjusted according to the voltage of the common bus, and it only needs to satisfy that the voltage at the output terminal of the boost circuit 1212 is greater than the voltage of the common bus in S201.
  • the processing module 125 judges whether the voltages at the input terminals of all the boost circuits are lower than the bus voltage.
  • the bus voltage refers to the increased second voltage.
  • the processing module 125 After determining the short-circuited boost circuit, the processing module 125 further controls the output power of the photovoltaic string of the boost circuit that is not short-circuited to be lower than the preset power, so as to protect the photovoltaic string connected to the short-circuited boost circuit. Finally, the process ends.
  • the processing module 125 can arbitrarily determine a boost circuit from among the multiple boost circuits when the multiple boost circuits are all in the non-operating state, and the boost circuit can use a lower voltage
  • the duty cycle boosts the DC power of the photovoltaic string at the input and inputs it into the common bus to increase the voltage of the common bus.
  • FIG. 10 is a schematic flowchart of another embodiment of raising the bus voltage provided by this application, and FIG. 9 shows that the processing module 125 in the inverter shown in FIG. 6 uses the above-mentioned implementation to raise the voltage.
  • the processing module 125 determines the voltages at the input terminals of all the boost circuits in the multiple boost circuits. Specifically, the processing module 125 needs to first determine the voltages at the input terminals of all the boost circuits in the multiple boost circuits through S201 when all the multiple boost circuits are not in operation. For example, the processing module 125 may determine the boost circuit 1211 The voltage at the input end is 1000V, the voltage at the input end of the boost circuit 1212 is 1000V, and the voltage at the common bus 124 is 1000V.
  • the processing module 125 arbitrarily determines a boost circuit from the multiple boost circuits determined in S301, which is recorded as a second boost circuit.
  • this embodiment can be applied to the situation where the voltages at the input terminals of all the boost circuits are the same.
  • a second boost circuit is arbitrarily determined from the multiple boost circuits.
  • S303 The processing module 125 switches the second booster circuit determined in S302 to a working state.
  • S304 The voltage of the DC power of the photovoltaic string received by the second booster circuit is increased from the first voltage to the second voltage, for example, to 1050V. At this time, the voltage of the common bus 124 is also increased from 1000V to 1050V, so as to realize the boosting of the common bus 124.
  • the general boost circuit increases the voltage more obviously.
  • the second boost circuit only needs to work with a small preset duty cycle to reduce the direct current generated by the photovoltaic string. The voltage rises. Therefore, the duty ratio when the second boost circuit is working can be adjusted according to the voltage of the common bus, and it only needs to satisfy that the voltage at the output terminal of the second boost circuit is greater than the voltage of the common bus in S301.
  • the processing module 125 judges whether the voltages at the input terminals of all the boost circuits are lower than the bus voltage.
  • the bus voltage refers to the increased second voltage.
  • the processing module 125 After determining the short-circuited boost circuit, the processing module 125 further controls the output power of the photovoltaic string of the boost circuit that is not short-circuited to be lower than the preset power, so as to protect the photovoltaic string connected to the short-circuited boost circuit. Finally, the process ends.
  • FIG. 11 is a schematic structural diagram of another embodiment of the inverter provided in this application.
  • the inverter shown in FIG. 11 further includes an AC/DC module 126 on the basis of that shown in FIG. 6.
  • the input end of the module 126 is connected to the power grid 13, and the output end of the AC/DC module 126 is connected to the common bus 124.
  • FIG. 12 is a schematic flowchart of another embodiment of raising the bus voltage provided by this application, and FIG. 12 shows that the processing module 125 in the inverter shown in FIG. 11 uses the above-mentioned implementation to raise the voltage.
  • the processing module 125 determines the voltages at the input terminals of all the boost circuits in the multiple boost circuits. Specifically, the processing module 125 needs to first determine the voltages at the input terminals of all the boost circuits in the multiple boost circuits through S201 when all the multiple boost circuits are not in operation. For example, the processing module 125 may determine the boost circuit 1211 The voltage at the input terminal is 1400V, the voltage at the input terminal of the boost circuit 1212 is 1200V, and the voltage at the common bus 124 is 1400V.
  • the processing module 125 converts the alternating current on the power grid 13 into direct current through the AC/DC module, and then inputs it to the common bus 124 to increase the voltage of the common bus 124, for example, from 1400V to 1450V, thereby realizing the connection to the common bus 124 Boost.
  • the processing module 125 judges whether the voltages at the input terminals of all boost circuits are lower than the bus voltage.
  • the bus voltage refers to the increased second voltage.
  • the processing module 125 After determining the short-circuited boost circuit, the processing module 125 further controls the output power of the photovoltaic string of the boost circuit that is not short-circuited to be lower than the preset power, so as to protect the photovoltaic string connected to the short-circuited boost circuit. Finally, the process ends.
  • FIG. 13 is a schematic structural diagram of another embodiment of the inverter provided by the application.
  • the inverter shown in FIG. 13 is based on that shown in FIG. 6, and each boost circuit includes an overcurrent protector 106 connected in series with the BOOST switch tube 103, and the overcurrent protector 106 is used When the current flowing through the BOOST switch tube 103 is too large, it is disconnected for overcurrent protection, the overcurrent protector 106 may be a current transformer.
  • FIG. 14 is a schematic flowchart of another embodiment of the inverter short-circuit detection method provided by this application.
  • FIG. 14 shows that the processing module 125 in the inverter as shown in FIG. 13 uses the above-mentioned implementation method.
  • the process of detecting whether multiple boost circuits are short-circuited, where the method includes:
  • the processing module 125 determines the voltages at the input terminals of all the boost circuits in the multiple boost circuits. Specifically, the processing module 125 needs to first determine the voltages at the input terminals of all the boost circuits in the multiple boost circuits through S501 when all the multiple boost circuits are not in operation. For example, the processing module 125 may determine the boost circuit 1211 The voltage at the input end is 1000V, the voltage at the input end of the boost circuit 1212 is 1000V, and the voltage at the common bus 124 is 1000V.
  • the processing module 125 arbitrarily determines a boost circuit from the multiple boost circuits determined in S501, and this is denoted as a third boost circuit. Among them, this embodiment can be applied to a situation where the voltages at the input terminals of all boost circuits are the same. At this time, a third boost circuit is arbitrarily determined from a plurality of boost circuits.
  • S503 The processing module 125 switches the third booster circuit determined in S502 to a working state.
  • S504 The voltage of the DC power of the photovoltaic string received by the third booster circuit is increased from the first voltage to the second voltage, for example, to 1050V. At this time, the voltage of the common bus 124 is also increased from 1000V to 1050V, so as to realize the boosting of the common bus 124.
  • the processing module 125 determines whether the overcurrent protector in the third booster circuit performs protection. Taking the boost circuit 1211 as an example, when the current flowing through the BOOST switch tube 103 is greater than the preset threshold, it indicates that there is a diode short-circuit phenomenon in the boost circuit 1211, and the overcurrent protector 106 will turn off the drive of the switch tube 103. To protect the BOOST switch tube 103.
  • the processing module 125 After determining all the short-circuited boost circuits in the multiple boost circuits, the processing module 125 further controls the output power of the photovoltaic string of the boost circuit that is not short-circuited to be lower than the preset power, so as to realize the connection to the short-circuited boost circuit The protection of the photovoltaic string will eventually end the process.
  • the method for detecting short circuit of the inverter provided in the embodiments of the present application is introduced from the perspective of the processor in the inverter.
  • the processor as the execution subject may also include a hardware structure and/or software module, in the form of a hardware structure, a software module, or a hardware structure plus a software module To achieve the above functions. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 15 is a schematic structural diagram of an embodiment of an inverter detection device provided by this application.
  • the device shown in FIG. 15 can be used to execute the method described in any one of FIGS. 7-10 and 12 for correcting Whether the inverter is short-circuited is detected, where the device includes: a boosting module 1501, a detecting module 1502, and a determining module 1503.
  • the boost module 1501 is used to boost the voltage of the common bus from the first voltage to the second voltage when the multiple boost circuits are not in operation; the first voltage and the voltage at the input terminals of the multiple boost circuits The maximum voltages in the multiple boost circuits are equal; the detection module 1502 is used to detect the circuit parameters of the input end of each boost circuit in the multiple boost circuits; the determination module 1503 is used to determine the multiple boost circuits according to the circuit parameters of the multiple boost circuits Short-circuited boost circuit.
  • the circuit parameter is voltage; the determining module 1503 is specifically configured to determine, according to the voltages of the multiple boost circuits, that among the multiple boost circuits, the boost circuit whose input terminal voltage is equal to the second voltage is short-circuited.
  • the circuit parameter is current; then the determining module 1503 is specifically configured to determine, according to the currents of the multiple boost circuits, that, among the multiple boost circuits, there is a short circuit of the boost circuit with the reverse sink current at the input end.
  • the input ends of multiple boost circuits are connected to multiple photovoltaic strings in a one-to-one correspondence; the DC-AC inverter module is specifically used to convert DC power to AC power and output it to the grid.
  • FIG. 16 is a schematic structural diagram of another embodiment of an inverter detection device provided by this application.
  • the device shown in FIG. 16 further includes: a switching module 1601 and a control module 1602, Among them, the switching module 1601 is used to switch the boost circuits that are not short-circuited among the multiple boost circuits into the working state; the control module 1602 is used to control the output power of the photovoltaic strings connected to the boost circuits that are not short-circuited to be lower than the preset power , To protect the photovoltaic string connected to the short-circuit boost circuit.
  • the switching module 1601 is used to switch the boost circuits that are not short-circuited among the multiple boost circuits into the working state
  • the control module 1602 is used to control the output power of the photovoltaic strings connected to the boost circuits that are not short-circuited to be lower than the preset power , To protect the photovoltaic string connected to the short-circuit boost circuit.
  • control module 1602 is specifically configured to control the output terminal voltage of the boost circuit that is not short-circuited to be less than the third voltage, so that the output power of the photovoltaic string connected to the boost circuit that is not short-circuited is lower than the preset power;
  • the third voltage is the output terminal voltage of the short-circuited boost circuit when the multiple boost circuits are all in the non-operating state.
  • the switching module 1601 can also be used to switch multiple boost circuits to a non-working state.
  • the boost module 1501 is specifically configured to determine the first boost circuit with the lowest input terminal voltage among the multiple boost circuits; switch the first boost circuit to the working state; The direct current output by the booster circuit to the common bus in the working state is used to increase the voltage of the common bus from the first voltage to the second voltage.
  • the boost module 1501 is specifically configured to determine a second boost circuit from a plurality of boost circuits; switch the second boost circuit to the working state, and control the second boost circuit.
  • the voltage circuit boosts the direct current at the input terminal with a duty ratio less than the preset threshold and outputs it to the common bus; wherein the direct current is used to increase the voltage of the common bus from the first voltage to the second voltage.
  • the inverter detected by the device further includes: an AC-DC rectifier module, the input terminal of the AC-DC rectifier module is connected to the output terminal of the DC-AC rectifier module, and the AC-DC rectifier module The output end of the module is connected to the public bus; the boost module 1501 is specifically used to convert AC power to DC power through an AC-DC rectifier module and output the DC power to the public bus; among them, the DC power output by the AC-DC rectifier module is used to The voltage of the common bus is increased from the first voltage to the second voltage.
  • FIG. 17 is a schematic structural diagram of another embodiment of an inverter detection device provided by this application.
  • the device shown in FIG. 17 can be used to implement the method described in FIG. 12 for detecting whether the inverter is short-circuited, where ,
  • the device includes: a boosting module 1701 and a determining module 1702, wherein the boosting module 1701 is used to divide the voltage of the common bus from the first when the multiple boosting circuits are all in the non-operating state A voltage is raised to a second voltage; wherein, the second voltage is greater than the first voltage, and the first voltage is equal to the maximum voltage among the voltages at the input terminals of the multiple booster circuits; the determining module 1702 is used for Detecting a short-circuited booster circuit in the plurality of booster circuits according to the state of the overcurrent protector in each booster circuit of the plurality of booster circuits.
  • the division of modules in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • FIG. 18 is a schematic structural diagram of a device provided by an embodiment of this application.
  • the device can be used to implement the inverter short-circuit detection methods in the foregoing embodiments of this application, and may be an inverter short-circuit detection device.
  • the device 1800 may include: a processor 1801 (for example, a CPU), and a memory 1802; the memory 1802 may include a high-speed random-access memory (random-access memory, RAM), or may also include a non-volatile memory (non-volatile memory, NVM), for example, at least one disk memory.
  • the memory 1802 can store various instructions for completing various processing functions and implementing the method steps of the present application.
  • the apparatus 1800 involved in the present application may further include a communication bus 1803.
  • the communication bus 1803 is used to implement communication connections between components.
  • the above-mentioned memory 1802 is used to store computer executable program code, and the program code includes instructions; when the processor 1801 executes the instructions, the instructions cause the processor 1801 of the communication device to execute any of the foregoing embodiments of the present application or
  • the processing actions of the processor in the selected embodiment have similar implementation principles and technical effects, and will not be repeated here.
  • plural herein refers to two or more.
  • the term “and/or” in this article is only an association relationship that describes the associated objects, which means that there can be three kinds of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or” relationship; in the formula, the character "/" indicates that the associated objects before and after are in a "division" relationship.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory. (volatile memory), such as random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种逆变器(12)短路检测方法、装置(1800)及逆变器(12),其中,在逆变器(12)中的多个升压电路(1211,1212)均处于未工作状态时抬升公共母线(124)的电压,检测所有多个升压电路(1211,1212)输入端的电路参数后,进一步根据升压电路(1211,1212)输入端的电路参数确定出多个升压电路(1211,1212)中二极管短路的升压电路(1211,1212)。逆变器(12)短路检测方法、装置(1800)及逆变器(12)能够减少逆变器(12)的电路复杂度,进而减少包括逆变器(12)的光伏发电系统的电路复杂度。

Description

逆变器短路检测方法、装置及逆变器
本申请要求于2019年11月29日提交中国专利局、申请号为201911204153.7、申请名称为“逆变器短路检测方法、装置及逆变器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏技术领域,尤其涉及一种逆变器短路检测方法、装置及逆变器。
背景技术
随着科技的进步以及能源技术的不断发展,太阳能发电由于其可再生、清洁的优势逐渐得到了广泛应用。其中,太阳能光伏发电系统作为一种太阳能发电方式,能够利用太阳电池半导体材料(光伏组件)的光伏效应,将太阳光辐射能直接转换为直流电的电能。由于光伏组件输出直流电而市电电网为交流电,因此需要在光伏和市电电网之间设置逆变器,将光伏组件产生的直流电(direct current,DC)转换为市电频率交流电(alternating current,AC)。为了提高逆变器并网电压,逆变器中还设置与光伏组件一一连接的升压电路,逆变器先通过升压电路对光伏组件生成的直流电的电压进行抬升后,再转换为交流电输出至电网。升压电路多采用BOOST电路实现,其中,BOOST电路通过开关管的高频通断,配合电感的充放电实现将BOOST电路输入端的电压抬升后从输出端输出。为了防止BOOST电路输入端和输出端直接连接导致短路,BOOST电路在输入端和输出端之间设置二极管,使得电流只能从输入端进入BOOST电路并从输出端输出。
由于BOOST电路一端连接光伏组件,另一端连接直流母线,一旦BOOST电路中的二极管短路,此时直流母线的电压较高、光伏组件的电压较低,BOOST电路上会出现直流母线向光伏组件方向的反灌电流,而输入光伏组件内部的电流过大会导致光伏组件损坏甚至着火,引起严重的安全事故并带来经济损失。因此,为了对BOOST电路中二极管是否短路进行检测,一些逆变器所设置的BOOST电路在连接光伏组件时,在每个BOOST电路与光伏组件之间设置具有熔断阈值的熔丝,当BOOST电路中的二极管短路,经过BOOST电路向光伏组件的方向出现反灌电流,并且反灌电流大于熔丝的熔断阈值时,熔丝熔断,使得反灌电流不会输入光伏组件,起到对光伏组件的保护。
但是,采用现有技术,运维人员需要通过观察熔丝熔断而确定BOOST电路中二极管是否短路,一方面增加了逆变器中设置熔丝的成本,另一方面增加了对逆变器及熔丝进行维护的工作量。
发明内容
本申请提供一种逆变器短路检测方法、装置及逆变器,用以解决逆变器中的BOOST电路中的二极管短路时电流反灌的问题,本申请具有能够降低逆变器成本以及降低逆 变器维护工作量的技术效果。
本申请第一方面提供一种逆变器短路检测方法,用于检测逆变器是否短路,所述方法可以由逆变器中的处理模块或者处理器执行。具体地,处理模块可以在逆变器中多个升压电路均处于未工作状态时,将多个升压电路所连接的公共母线的电压进行升高后,检测多个升压电路中每个升压电路输入端的电路参数,从而根据每个升压电路的电路参数,确定出逆变器的多个升压电路中短路的升压电路。
综上,本实施例提供的逆变器检测方法,能够通过逆变器中的处理模块通过软件的方式对逆变器中的升压电路是否检测,因此在逆变器中不需要设置额外的熔丝,从而能够减少逆变器的电路复杂度,进而可以减少由包括逆变器的光伏发电系统的电路复杂度。
在本申请第一方面一实施例中,处理模块具体检测的升压电路输入端的电路参数为电压,则处理模块可以对逆变器中多个升压电路中每个升压电路输入端的电压进行检测,并在多个升压电路中,输入端电压等于第二电压确定升压电路短路。
综上,本实施例提供的逆变器检测方法,针对当升压电路所连接的公共母线的电压升高之后,短路的升压电路两侧的电压相同,因此可以通过一种较为直接的方式,通过升压电路输入侧的电压,对升压电路是否短路进行检测,能够提高对逆变器中升压电路是否短路的检测效率。
在本申请第一方面一实施例中,处理模块具体检测的升压电路输入端的电路参数为电流,则处理模块可以对逆变器中多个升压电路中每个升压电路输入端是否出现反灌电流进行检测,并确定出现反灌电流的升压电路短路。
综上,本实施例提供的逆变器检测方法,能够针对当升压电路所连接的公共母线的电压升高之后,短路的升压电路所连接的光伏组串的电压必然低于公共母线的电压,因而会出现公共母线到光伏组串方向、并经过短路的升压电路的反灌电流。因此本实施例可以通过一种较为直接的方式,通过升压电路上是否流过反灌电流即可对升压电路是否短路进行检测,同样能够提高对逆变器中升压电路是否短路的检测效率。
在本申请第一方面一实施例中,所述逆变器短路检测方法应用于光伏发电系统中,则所述逆变器中每个升压电路的输入端,都与光伏组串一一对应连接,同时,逆变器中的直流-交流逆变模块的具体用于将直流电转换为交流电后输出至电网,从而实现光伏发电。
综上,本实施例提供的逆变器短路检测方法,能够对光伏发电系统中的逆变器是否短路进行判断,尤其对于逆变器所连接的光伏组串,其价格较为昂贵其、数量较多,使用本实施例能够对逆变器是否短路进行迅速、有效的检测,既能够减少对逆变器进行监护的成本,还能够保证光伏组串不被损坏,维护经济利益。
在本申请第一方面一实施例中,当确定所述多个升压电路中短路的升压电路之后,处理模块还进一步将所述多个升压电路中未短路的升压电路切换为工作状态;并控制所述未短路的升压电路连接的光伏组串的输出功率低于预设功率,以保护所述短路的升压电路连接的光伏组串。
综上,本实施例提供的逆变器短路检测方法中,除了对逆变器中的多个升压电路是否短路进行检测,还能够在检测出多个升压电路中短路的升压电路后,进一步通过 使能未短路的升压电路降低母线电压,从而降低短路的升压电路所连接的光伏组串的输出功率,以对短路的升压电路所连接的光伏组串进行保护,因此能够在升压电路短路后对光伏组串进行自动保护,进而在运维人员发现并对短路的升压电路处理之前,先采取措施保证光伏组串的安全不被损坏,进一步提高了光伏发电系统的安全性能。
在本申请第一方面一实施例中,处理模块具体通过控制所述未短路的升压电路的输出端电压小于第三电压,以使所述未短路的升压电路连接的光伏组串的输出功率低于预设功率;其中,所述第三电压为所述短路的升压电路在所述多个升压电路均处于未工作状态时的输出端电压。
综上,本实施例提供的逆变器短路检测方法中,基于升压电路本身所具有的升高输出端电压或者降低输入端电压的特性,通过降低未短路的升压电路左侧的输入端电压来降低光伏组串的输出功率,从而通过一种较为简单有效地方式,实现了由未短路的升压电路保护短路的升压电路。
在本申请第一方面一实施例中,所述处理模块在检测逆变器中多个升压电路是否短路之前,还可以首先将多个升压电路切换为未工作状态。
综上,本实施例提供的逆变器短路检测方法中,处理模块可以具体在需要进行检测时,或者根据用户的指示,将逆变器中多个升压电路主动地切换为未工作状态,使得逆变器满足本申请执行条件之后,再对逆变器中多个升压电路是否短路进行检测,从而丰富了本实施例的应用场景。
在本申请第一方面一实施例中,所述处理模块具体通过确定多个升压电路中输入端电压最低的第一升压电路;将第一升压电路切换为工作状态,从而实现对公共母线进行的升压。其中,第一升压电路在工作状态下向公共母线输出的直流电用于将公共母线的电压由第一电压升高至第二电压。
综上,本实施例提供的逆变器短路检测方法中,基于当存在短路的升压电路后,升压电路中输入端电压最低的第一升压电路必然没有短路,因此可以使能该第一升压电路,使得未短路的升压电路工作以对公共母线的电压进行升高。并且升压的具体数值可控,能够通过一种更加准确、安全以及有效地方式对公共母线的电压进行升高。
在本申请第一方面一实施例中,所述处理模块具体通过从多个升压电路中确定一个第二升压电路;将第二升压电路切换为工作状态,并控制第二升压电路以小于预设阈值的占空比对输入端的直流电进行升压后输出至公共母线,从而实现对公共母线进行的升压。其中,直流电用于将公共母线的电压由第一电压升高至第二电压。
综上,本实施例提供的逆变器短路检测方法,可以在检测时,任选一个升压电路对公共母线的电压进行升高,从而不需要再对升压电路进行检测,一旦该升压电路短路无法对公共母线的电压进行升高,可以更换另一个任意升压电路对公共母线的电压进行升高。因此,本实施例在对公共母线的电压进行升高的操作流程较为简单,能够提高对逆变器短路检测的效率。
在本申请第一方面一实施例中,本申请所应用的所述逆变器还包括:交流-直流整流模块,交流-直流整流模块的输入端连接直流-交流整流模块的输出端,交流-直流整流模块的输出端连接公共母线。则对于本实施例中执行主体的升压模块,可以具体通过交流-直流整流模块将交流电转换为直流电,并将直流电输出至公共母线;其中,交 流-直流整流模块输出的直流电用于将公共母线的电压由第一电压升高至第二电压。
综上,本实施例提供的逆变器短路检测方法,能够在公共母线将电能输出至电网的通路上,直接采集输出的电能并送回至公共母线上,实现公共母线电压的升高。从而通过一种较为直接的方式,提高电能的利用率,还能够在不操作逆变器中任一升压电路的情况下,即可实现公共母线电压的升高。
本申请第二方面提供一种逆变器短路检测装置,可用于执行如本申请第一方面提供的逆变器短路检测方法,该装置包括用于实现上述方法实现中,作为执行主体的处理模块的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本申请第三方面提供一种包含指令的计算机程序产品,当其在设备上运行时,使得设备执行上述第一方面或第一方面的各种可能的实现方式中的方法。
本申请第四方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在设备上运行时,使得设备执行上述第一方面或第一方面的各种可能的实现方式中的方法。
本申请第五方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面所述方法中作为执行主体的处理模块的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请第六方面提供一种逆变器,包括:多个升压电路,公共母线和直流-交流逆变模块;其中,多个升压电路的输出端均与公共母线并联,公共母线还并联连接直流-交流逆变模块;每个升压电路的输入端的输入为直流电,升压电路用于将直流电进行升压处理后,通过公共母线发送至直流-交流逆变模块,直流-交流逆变模块用于将升压后的直流电转换为交流电后输出;每个升压电路的开关管串联一个过流保护器,过流保护器用于在流经开关管的电流过大时断开进行过流保护。
综上,本申请第六方面提供的逆变器,在每个升压电路中与开关管串联一个过流保护器,能够在升压电路的开关管短路时,过流保护器断开,从而为开关管提供保护,因此,本申请提供的逆变器具有较高的安全性能。
本申请第七方面提供一种逆变器短路检测方法,可用于对本申请第六方面提供的逆变器是否短路进行检测,其中该方法包括:当多个升压电路均处于未工作状态时,逆变器中的处理模块将公共母线的电压由第一电压升高至第二电压;随后,逆变器中的处理模块可以根据多个升压电路中每个升压电路内的过流保护器的状态,检测多个升压电路中短路的升压电路。
综上,本实施例提供的逆变器短路检测方法中,能够通过逆变器中每个升压电路中过流保护器的状态进行检测,从而确定断开的过流保护器对应的升压电路中的开关管短路,因此,本实施例提供的逆变器短路检测方法,能够在过流保护器对每个升压电路进行保护的基础上,进一步在过流保护器短路时,更加智能化地由处理模块自主确定短路的升压电路,从而提高了对逆变器中升压电路短路的检测效率。
本申请第八方面提供一种逆变器短路检测装置,可用于执行如本申请第七方面提供的逆变器短路检测方法,该装置包括用于实现上述方法实现中,作为执行主体的处理模块的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件 实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本申请第九方面提供一种包含指令的计算机程序产品,当其在设备上运行时,使得设备执行上述第七方面的实现方式中的方法。
本申请第十方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在设备上运行时,使得设备执行上述第七方面中的方法。
本申请第十一方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第七方面的方法中作为执行主体的处理模块的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请应用场景的示意图;
图2为一种逆变器的内部结构示意图;
图3为一种逆变器的电路结构示意图;
图4为另一种逆变器的内部结构示意图;
图5为另一种逆变器的电路结构示意图;
图6为本申请提供的逆变器一实施例的结构示意图;
图7为本申请提供的逆变器短路检测方法一实施例的流程示意图;
图8为本申请提供的逆变器短路检测方法另一实施例的流程示意图;
图9为本申请提供的升高母线电压一实施例的流程示意图;
图10为本申请提供的升高母线电压另一实施例的流程示意图;
图11为本申请提供的逆变器另一实施例的结构示意图;
图12为本申请提供的升高母线电压又一实施例的流程示意图;
图13为本申请提供的逆变器又一实施例的结构示意图;
图14为本申请提供的逆变器短路检测方法又一实施例的流程示意图;
图15为本申请提供的逆变器短路检测一实施例的结构示意图;
图16为本申请提供的逆变器短路检测另一实施例的结构示意图;
图17为本申请提供的逆变器短路检测又一实施例的结构示意图;
图18为本申请实施例提供的一种装置的结构示意图。
具体实施方式
图1为本申请应用场景的示意图,如图1所示,本申请可应用于光伏发电技术领域的光伏发电系统中,其中,光伏发电系统可以包括:至少一个光伏组串11、逆变器12和电网13。在如图1所示的系统中,以N个光伏组串11为例,所有N个光伏组串均分别与逆变器12连接,逆变器12还与电网13连接。
具体地,N个光伏组串11中的每个光伏组串11可以由多个光伏组件串联和/或并联后得到,所述光伏组件可以是太阳能电池板,每个光伏组件均可用于采集太阳能,并将太阳能转换为电能。每个光伏组串11均可将所有光伏组件所产生的电能共同传输至逆变器12,逆变器12可以将所有光伏组串11传输的电能共同传输至电网13,在大型光伏电站等应用场景中,这种多个光伏组串11通过同一个逆变器12连接电网13 的光伏发电系统能够提高传输效率。同时,由于光伏组件所产生的电能的表现形式是直流电,而电网所传输的电能表现形式为高压交流电,因此,逆变器12需要将N个光伏组串11所产生的直流电转换为交流电后,传输至电网13中。
进一步地,由于光伏组串所产生的直流电的电压较低,根据焦耳定律,电能以越高的电压进行传输时的损耗越低,因此为了提高逆变器并网电压以提高光伏发电系统的发电效率,一些光伏发电系统中的逆变器为每个逆变器所连接的光伏组串设置一个对应的升压电路,使得逆变器还可以对光伏组串所产生的电压较低直流电进行升压处理。例如,图2为一种逆变器的内部结构示意图,其中,在如图1所示的光伏发电系统的基础上,逆变器12中还设置有与N个光伏组串11一一对应的N个升压电路,每个光伏组串11所产生的直流电经过所连接的升压电路121的升压处理后,再由逆变器中的直流到交流逆变(direct current/alternating current,DC/AC)模块122转换为交流电并进一步传输至电网13。此外,在一些具体的光伏发电系统中,如图1和图2所示的逆变器12还可以是光伏最大功率点跟踪(maximum power point tracking,MPPT)模块,光伏MPPT模块同样可用于升压,以及将直流电转换为交流电。
更为具体地,图3为一种逆变器的电路结构示意图,如图3示出了如图2所示的升压电路的具体电路结构,其中,以升压电路是升压斩波电路(英文:BOOST chopper,简称:BOOST升压电路)为例,并具体对逆变器12中的BOOST升压电路1211进行说明,该BOOST升压电路1211包括:BOOST输入电容101、BOOST电感102、BOOST开关管103、BOOST二极管104和旁路二极管105。BOOST升压电路1211可以通过BOOST开关管103在开启状态和闭合状态之间的高频通断,控制BOOST电感102在充电状态与放电状态之间不断切换,进而通过BOOST电感102充电时吸收能量以及放电时放出能量进行能量的传递,使得BOOST升压电路1211右侧的输出侧的电压高于其左侧的输入侧的电压。需要说明的是,在如图3所示的BOOST升压电路的基本电路的基础上,本申请对BOOST升压电路其他可能的实现方式不作限定。
则根据图3所示的电路结构,每个BOOST升压电路中均存在单向导通的BOOST二极管和单向导通的旁路二极管,使得每个光伏组串可以通过其连接的BOOST升压电路将电能单向传输至公共母线124上,最终由公共母线124所有光伏组串的电能传输至DC/AC模块122。由于所有BOOST升压电路与公共母线124是并联关系,此时,公共母线124上的电压等于所有BOOST升压电路的输出电压中最大的电压,而对于输出电压较低的BOOST升压电路,其左侧输入端所连接的光伏组串的输入电压小于右侧输出端所连接的母线电压,如果BOOST升压电路中没有设置BOOST二极管,BOOST升压电路输入端和输出端之间的压差会产生从BOOST升压电路输出端至输入端的反灌电流,当反灌电流流入BOOST升压电路输入端所连接的光伏组串,会造成光伏组串中光伏组件的损坏甚至着火,进而会引起严重的安全事故并带来经济损失。
因此,BOOST升压电路中的BOOST二极管以及旁路二极管两个二极管中任一个短路时,都会对BOOST升压电路所连接的光伏组串造成的损害,而为了防止二极管短路带来的严重后果,在另一种逆变器的实现方式中,逆变器在通过升压电路连接光伏组串时,还额外在升压电路与光伏组串之间设置具有一定电流熔断阈值的熔丝,用于在二极管短路时对光伏组串进行保护。例如,图4为另一种逆变器的内部结构示意图, 在如图4所示的光伏发电系统中,逆变器12中还设置与N个光伏组串11一一对应的N个熔丝123,N个光伏组串11分别通过一个熔丝123连接升压电路121。
更为具体地,图5为另一种逆变器的电路结构示意图,如图5示出了如图4所示的升压电路的具体电路结构,其中,以N个光伏组串11中的任意两个光伏组串111和光伏组串112作为示例,光伏组串111的正负极分别连接逆变器12中对应的BOOST升压电路1211的正负极、光伏组串112的正负极分别连接逆变器12中对应的BOOST升压电路1212的正负极,此时熔丝123既可以设置在如光伏组串111所示的正极线路上,也可以设置在如光伏组串112所示的负极线路上。当每个光伏组串与BOOST升压电路之间均连接熔丝后,当任一BOOST升压电路中的二极管短路,如果该BOOST升压电路输出侧电压大于输入侧电压而产生流入光伏组串的反灌电流,并且当反灌电流大于熔丝的熔断阈值时,熔丝熔断,使得反灌电流不会输入光伏组串,起到对光伏组串的保护。
然而,在如图5所示的逆变器中,虽然所有BOOST电路与光伏组件之间设置熔丝能够实现对BOOST电路所连接的光伏组串进行保护,但是,此方案需要在熔丝熔断才能够确定BOOST电路中二极管是否短路,一方面增加了逆变器中设置熔丝的成本,另一方面增加了对逆变器及熔丝进行维护的工作量。
因此,本申请提供一种逆变器短路检测方法、装置及逆变器,以解决逆变器中的BOOST电路中的二极管短路时,电流反灌的问题。
下面结合附图,对本申请提供的逆变器短路检测方法、装置及逆变器进行介绍。
图6为本申请提供的逆变器一实施例的结构示意图,本实施例提供的逆变器可应用于如图1所示的光伏发电场景中,多个光伏组串11生成的直流电可以通过逆变器12的升压以及转换处理后,进一步传输至电网13中。在如图6所示的示例中,以逆变器12连接光伏组串111和光伏组串112共两个光伏组串作为示例性说明,并且逆变器12中包括多个升压电路、公共母线124和直流/交流逆变(direct current/alternating current,DC/AC)模块122,其中升压电路的数量可以大于或等于逆变器所连接的光伏组串的数量。则图6所示的示例中,逆变器12可以通过其升压电路1211的输入端连接光伏组串111、并通过其升压电路1212的输入端连接光伏组串112,同时,每个升压电路的输出端与公共母线124并联连接。升压电路1211可以将输入端的光伏组串111产生的直流电进行升压处理后,通过公共母线124将升压处理后的直流电发送至DC/AC模块122;升压电路1212可以将输入端的光伏组串112产生的直流电进行升压处理后,通过公共线124将升压处理后的直流电发送至DC/AC模块122,由,所述DC/AC模块122将直流电转换为交流电后输出至电网13。
进一步地,如图6所示的示例中,升压电路1211和升压电路1212可以是BOOST升压电路,由于升压电路1211与公共母线124并联连接、升压电路1212也与公共母线124并联连接,因此公共母线124上的电压与升压电路1211和升压电路1212之中输出端的最大电压相同,例如升压电路1211输出端的电压为1000V、升压电路1212输出端的电压为1200V,公共母线124上的电压为1200V。此时,对于升压电路1211,其左侧输入端所连接的光伏组串111的输入电压小于右侧输出端所连接的公共母线124的电压,升压电路1211中所设置的BOOST二极管104和旁路二极管105,可用于 防止由升压电路1211的输入端和输出端之间的压差产生的反灌电流流入光伏组串111。
更为具体地,本实施例中,为了防止逆变器的各升压电路中的二极管短路,逆变器12中的处理模块125可用于对逆变器各升压电路中的二极管短路进行检测,所检测的二极管短路的场景包括:升压电路中的BOOST二极管短路、升压电路中的旁路二极管短路,或者升压电路中的BOOST二极管短路和旁路二极管同时短路。
可选地,处理模块125可以是逆变器12中设置的专用于检测二极管是否短路的装置,或者,处理模块125还可以是逆变器12中已有的装置或模块,例如:中央处理器(central processing unit,CPU)、硬件电路等。并且,处理模块125可以通过与确定逆变器中各升压电路、公共母线的连接关系确定电路参数,处理模块125与升压电路、公共母线的连接关系未在图6中示出。示例性地,处理模块125可以连接BOOST升压电路1211的输入端a-b、输出端a’-b’,则处理模块可以确定BOOST升压电路1211输入端的电压以及输出端的电压;或者,处理模块125可以连接公共母线124的正极e和负极f,并确定公共母线124的e-f之间的电压。此外,在其他可能的实现方式中,处理模块125还可以设置在逆变器12之外,作为独立于逆变器12的模块。
图7为本申请提供的逆变器短路检测方法一实施例的流程示意图,如图7所示的逆变器短路检测方法可以由如图6所示的处理模块125执行,可用于对图6中每个升压电路中的二极管是否短路进行检测,该方法包括:
S101:当多个升压电路均处于未工作状态时,将公共母线的电压由第一电压升高至第二电压。
S102:检测多个升压电路中每个升压电路输入端的电路参数。
S103:根据电路参数,确定多个升压电路中短路的升压电路。
具体地,本实施例中逆变器的处理模块125在对升压电路中的二极管进行短路检测时,需要逆变器中所有的升压电路处于未工作状态。其中,升压电路至少包括工作状态和未工作状态,以升压电路1211为例,当升压电路1211处于工作状态时,可以对输入端a-b的电压V ab进行升压处理后得到输出端a’-b’的电压V a’b’,此时V ab<V a’b’;当升压电路1211处于未工作状态时,不会对输入端a-b的电压V ab进行升压处理,此时V ab=V a’b’
可选地,处理模块125可以在逆变器中所有升压电路都处于未工作状态时,主动进行如图7所示的逆变器短路检测方法,对各升压电路中二极管是否短路进行检测;或者,当处理模块125进行检测时,若逆变器中仍有部分或全部升压电路处于工作状态,则处理模块125首先将所有逆变器中所有升压电路切换为未工作状态后,再执行如图7所示的S101。
则当逆变器中所有多个升压电路均处于未工作状态时,由于每个升压电路均通过并联连接的方式与逆变器中的公共母线连接,此时公共母线的电压等于逆变器中所有升压电路输出端的最大电压相同,本实施例中记为第一电压。在S101中,处理模块125将公共母线在所有升压电路均处于未工作状态时的第一电压,升高至第二电压。其中,第二电压大于第一电压,使得公共母线的第二电压高于所有升压电路输入端的第一电压。
此时,由于所有升压电路均并联连接公共母线124,并且逆变器12中所有升压电 路均处于未工作状态,而处理模块125将公共母线124的电压升高至第二电压后,所有升压电路右侧输出端的电压均为第二电压,也就造成了逆变器12中所有升压电路的输出端电压都大于其输入端电压,包括在升压之前输出端电压最大的第一电压对应的升压电路。
则对于每个升压电路,以图6中的升压电路1211为例,如果升压电路1211中的BOOST二极管104和旁路二极管105都没有短路,其输出端a’-b’的电压V a’b’应大于输入端a-b的电压V ab,并且输入端正极电流方向为a-a’、输入端负极的电流方向为b’-b。而如果升压电路1211中的BOOST二极管104和旁路二极管105中任一个或两个短路,则会至少出现如下两种情况:1、升压电路1211左侧的输入端a-b的电压V ab与右侧的输出端a’-b’的电压V a’b’相等;2、升压电路1211输入端正极的电流方向为a’-a、输入端负极的电流方向为b-b’,由于短路后的电流方向与二极管未短路时的电流方向相反,这种电流又可被称为“反灌电流”。因此,处理模块125可以通过每个升压电路输入端的电压,或者电流确定每个升压电路中的二极管是否短路。
在如图7所示实施例一种具体的实现方式中,处理模块125可以通过检测升压电路输入端的电压确定升压电路是否短路,其中,处理模块125通过S101将母线电压由第一电压升高至第二电压后,进一步在S102中检测逆变器12中每个升压电路输入端的电压,以图6中的升压电路1211为例,处理模块125可以连接升压电路1211的输入端的正极a和负极b,并通过连接关系检测a-b之间的电压V ab。则当处理模块125检测升压电路1211的输入端的电压V ab小于第二电压,确定升压电路1211中的BOOST二极管104和旁路二极管105都没有短路;而当处理模块125检测升压电路1211的输入端的电压等于第二电压,确定升压电路1211中的BOOST二极管104和/或旁路二极管105短路。随后,处理模块125按照上述检测升压电路1211的方法对逆变器12中所有升压电路是否短路均进行检测,并最终通过S103确定逆变器中输入端电压等于第二电压的升压电路中的二极管短路。并且由于处理模块125对公共母线进行了升压处理,公共母线的电压大于所有升压电路输入端的电压,因此,处理模块125可以对所有升压电路是否短路进行检测。
在如图7所示实施例另一种具体的实现方式中,处理模块125可以通过检测升压电路输入端的电流,确定升压电路中的二极管是否短路,其中,处理模块125通过S101将母线电压由第一电压升高至第二电压后,进一步在S102中检测逆变器12中每个升压电路输入端的电流,同样以图6中的升压电路1211为例,处理模块125可以连接升压电路1211的输入端的正极a或者负极b,并通过连接关系检测a或b点的电流方向。则当处理模块125检测到升压电路1211的输入端的正极电流方向为a-a’或者输入端负极的电流方向为b’-b,则确定升压电路1211中的BOOST二极管104和旁路二极管105都没有短路;而当检测到升压电路1211的输入端的正极电流方向为a’-a或者输入端负极的电流方向为b-b’,确定升压电路1211中的BOOST二极管104和/或旁路二极管105短路。随后,处理模块125按照上述检测升压电路1211的方法对逆变器12中所有升压电路是否短路均进行检测,并最终通过S103确定逆变器中输入端出现反灌电流的升压电路中的二极管短路。并且由于处理模块125对公共母线进行了升压处理,公共母线的电压大于所有升压电路输入端的电压,所有短路的升压电路均存在 压差并可产生反灌电流,因此,处理模块125可以对所有升压电路是否短路进行检测。
可选地,本实施例中上述两种具体的实现方式,处理模块125可以择一进行检测,或者两种方式结合进行检测,例如,处理模块125可以通过检测升压电路输入端的电压等于第二电压确定升压电路短路,或者可以通过检测升压电路输入端出现反灌电流确定升压电路短路,又或者,可以在确定升压电路的输入端的电压等于第二电压且出现反灌电流时确定升压电路短路。
可选地,当处理模块125确定逆变器中存在二极管短路的升压电路后,可以发出提示信息,向逆变器的维护人员指示逆变器中出现短路,并指示具体出现短路的升压电路。例如,所述提示信息可以是通过显示屏幕显示、通过扬声器播放等。可以理解的是,本实施例中处理模块125也可能检测出多个升压电路均未短路,则不会发出提示信息。
综上,本实施例提供的逆变器短路检测方法,处理模块在逆变器中的多个升压电路均处于未工作状态时抬升公共母线的电压,随后检测所有多个升压电路输入端的电路参数,并进一步根据升压电路输入端的电路参数确定出多个升压电路中二极管短路的升压电路。与如图5所示的现有技术中设置熔丝对升压电路是否短路的方式相比,由于在逆变器中不需要设置额外的熔丝,能够减少逆变器的电路复杂度,进而减少了由包括逆变器的光伏发电系统的电路复杂度。
此外,由于本实施例中处理模块能够可控地将母线电压从第一电压升高至第二电压,而第二电压只需略高于第一电压即可,使得即使升压电路的二极管短路,母线电压上的第二电压也不会带来过大的反灌电流,从而在检测升压电路中二极管短路的过程中,还能够保证对升压电路所连接的光伏组件的保护,与现有技术中通过熔丝被动地等待母线电压不可控地升高熔断相比,提高了对光伏组件的保护程度,进一步保证了光伏组件不会被反灌电流损害而造成严重后果。
进一步地,在如图7所示实施例的基础上,图8为本申请提供的逆变器短路检测方法另一实施例的流程示意图,如图8所示,当处理模块125通过S103确定出多个升压电路中短路的升压电路后,还包括:S104:控制未短路的升压电路连接的光伏组串的输出功率低于预设功率,以保护短路的升压电路连接的光伏组串。
具体地,在本实施例中,当处理模块125通过上述实施例确定多个升压电路中存在短路,针对升压电路还能够降低其输出端电压的特点,如果处理模块125检测出多个升压电路中短路的升压电路,则可以使能多个升压电路中其他未短路的升压电路,使得其他未短路的升压电路切换为工作状态后,通过至未短路的升压电路降低输出端的电压,来降低短路的升压电路所连接的光伏组串的输出功率。其中,对于短路的升压电路未工作时,升压电路输出端的电压记可为第三电压。则当未短路的升压电路切换为工作状态后,可以使得该未短路的升压电路输出端的电压小于所述第三电压,进而使得未短路的升压电路的输出端功率降低。可以理解的是,降低升压电路输出端的电压,也相当于降低升压电路输入端的电压,以及降低了光伏组串的输出端的电压。随后,当多个升压电路中所有未短路的升压电路的输出功率均降低后,短路的升压电路所连接的光伏组串的电压也能够降低,进而通过降低未短路的升压电路所连接的光伏组串的输出功率,降低了短路的升压电路输入端的电压,实现了对短路的升压电路 所连接的光伏组串的保护。
示例性地,在如图6所示的电路中,当检测升压电路1211中的二极管短路,此时升压电路1211已经失效,则处理模块125可以将升压电路1212切换为工作状态,通过升压电路1212降低输出端c’-d’的输出电压,进而降低升压电路1211的输入端功率,也就是降低光伏组串111的输出功率,实现了对短路的1211所连接的光伏组串111的保护。
综上,在本实施例提供的逆变器短路检测方法中,处理模块125能够在检测出多个升压电路中短路的升压电路后,进一步通过使能未短路的升压电路降低母线电压,从而降低短路的升压电路所连接的光伏组串的输出功率,以对短路的升压电路所连接的光伏组串进行保护,因此能够在升压电路短路后对光伏组串进行自动保护,进而在运维人员发现并对短路的升压电路处理之前,先采取措施保证光伏组串的安全不被损坏,进一步提高了光伏发电系统的安全性能。
在上述各实施例的基础上,本申请还提供如下具体实现方式,以实现S101中的将公共母线的电压由第一电压升高至第二电压,下面结合附图进行说明。
在第一种可能的实现方式中,处理模块125可以在多个升压电路均处于未工作状态时,确定输入端电压最低的升压电路,由于公共母线的电压等于多个升压电路输出端的最大电压,因此输入端电压最低的升压电路可以被认为其二极管没有短路,因此处理模块125将输入端电压最低的升压电路切换为工作状态后,由该升压电路将输入端的光伏组串的直流电进行升压处理后输入到公共母线中,实现公共母线电压的升高。
更为具体地,图9为本申请提供的升高母线电压一实施例的流程示意图,如图9示出了如图6所示的逆变器中的处理模块125使用上述实现方式升高母线电压的完整流程示意图,其中,该方法包括:
S201:处理模块125确定多个升压电路中所有升压电路输入端的电压。具体地,处理模块125需要在所有多个升压电路均处于未工作状态时,通过S201先确定多个升压电路中所有升压电路输入端的电压,例如,处理模块125可以确定升压电路1211输入端的电压为1400V,升压电路1212输入端的电压为1200V,公共母线124的电压为1400V。
S202:处理模块125从S201中所确定的多个升压电路中确定输入端电压最低的第一升压电路。具体地,处理模块125可以确定输入端电压最小的升压电路1212输入端和输出端电压不同,其中的二极管未短路,在S202中确定升压电路1212为所述第一升压电路。
S203:处理模块125将升压电路1212切换为工作状态。
S204:升压电路1212将接收到的光伏组串112的直流电的电压从1200V升高至大于1400V,例如升高至1450V,此时,公共母线124的电压也为1450V,从而实现对公共母线124的升压。需要说明的是,一般的升压电路对电压的升高较为明显,在S204中,升压电路1212只需要以很小的占空比工作,就可以将光伏组串所产生的直流电的电压升高。因此,升压电路1212可工作时的占空比可以根据公共母线的电压进行调整,只需要满足升压电路1212输出端的电压大于S201中公共母线的电压即可。
S205:处理模块125判断所有的升压电路输入端的电压是否低于母线电压。其中, 所述母线电压是指升高后的第二电压。
S206:若所有升压电路中的输入端电压均低于升高后的第二电压,则说明所有升压电路中的二极管均未短路,即可结束流程。
S207:若所有升压电路中,存在输入端电压等于升高后的第二电压的升压电路,则确定输入端电压等于升高后的第二电压的升压电路中的二极管短路。
S208:在确定短路的升压电路后,处理模块125进一步控制未短路的升压电路的光伏组串的输出功率低于预设功率,实现对短路的升压电路连接的光伏组串的保护,最终结束流程。
在第二种可能的实现方式中,处理模块125可以在多个升压电路均处于未工作状态时,任意从多个升压电路中确定一个升压电路,由该升压电路以较低的占空比将输入端的光伏组串的直流电进行升压处理后输入到公共母线中,实现公共母线电压的升高。
更为具体地,图10为本申请提供的升高母线电压另一实施例的流程示意图,如图9示出了如图6所示的逆变器中的处理模块125使用上述实现方式升高母线电压的完整流程示意图,其中,该方法包括:
S301:处理模块125确定多个升压电路中所有升压电路输入端的电压。具体地,处理模块125需要在所有多个升压电路均处于未工作状态时,通过S201先确定多个升压电路中所有升压电路输入端的电压,例如,处理模块125可以确定升压电路1211输入端的电压为1000V,升压电路1212输入端的电压为1000V,公共母线124的电压为1000V。
S302:处理模块125从S301中所确定的多个升压电路中任意确定一个升压电路,记为第二升压电路。其中,本实施例可以应用于所有升压电路输入端电压相同的情况,此时从多个升压电路中任意确定一个第二升压电路。
S303:处理模块125将S302中确定的第二升压电路切换为工作状态。
S304:由第二升压电路将接收到的光伏组串的直流电的电压由第一电压升高至第二电压,例如升高至1050V,此时,公共母线124的电压也从1000V升高至1050V,从而实现对公共母线124的升压。需要说明的是,一般的升压电路对电压的升高较为明显,在S204中,第二升压电路只需要以很小的预设占空比工作,就可以将光伏组串所产生的直流电的电压升高。因此,第二升压电路可工作时的占空比可以根据公共母线的电压进行调整,只需要满足第二升压电路输出端的电压大于S301中公共母线的电压即可。
S305:处理模块125判断所有的升压电路输入端的电压是否低于母线电压。其中,所述母线电压是指升高后的第二电压。
S306:若所有升压电路中的输入端电压均低于升高后的第二电压,则说明所有升压电路中的二极管均未短路,即可结束流程。
S307:若所有升压电路中,存在输入端电压等于升高后的第二电压的升压电路,则确定输入端电压等于升高后的第二电压的升压电路中的二极管短路。
S308:在确定短路的升压电路后,处理模块125进一步控制未短路的升压电路的光伏组串的输出功率低于预设功率,实现对短路的升压电路连接的光伏组串的保护, 最终结束流程。
在第三种可能的实现方式中,由于光伏发电系统中,逆变器还通过DC/AC模块连接电网,因此,为了提高DC/AC模块一端所连接的公共母线上的电压,可以从DC/AC模块另一端所连接的电网中取电,通过电网中的交流电转换为直流电后输入到公共母线中,实现公共母线电压的升高。而为了实现上述升压方式,还需要在逆变器中设置交流到直流整流(alternating current/direct current,AC/DC)模块。具体地,图11为本申请提供的逆变器另一实施例的结构示意图,图11所示的逆变器在如图6所示的基础上,还包括AC/DC模块126,AC/DC模块126的输入端连接电网13,AC/DC模块126的输出端连接公共母线124。
更为具体地,图12为本申请提供的升高母线电压又一实施例的流程示意图,如图12示出了如图11所示的逆变器中的处理模块125使用上述实现方式升高母线电压的完整流程示意图,其中,该方法包括:
S401:处理模块125确定多个升压电路中所有升压电路输入端的电压。具体地,处理模块125需要在所有多个升压电路均处于未工作状态时,通过S201先确定多个升压电路中所有升压电路输入端的电压,例如,处理模块125可以确定升压电路1211输入端的电压为1400V,升压电路1212输入端的电压为1200V,公共母线124的电压为1400V。
S402:处理模块125通过AC/DC模块将电网13上的交流电转换为直流电后,输入到公共母线124上,提高公共母线124的电压,例如从1400V升高至1450V,从而实现对公共母线124的升压。
S403:处理模块125判断所有的升压电路输入端的电压是否低于母线电压。其中,所述母线电压是指升高后的第二电压。
S404:若所有升压电路中的输入端电压均低于升高后的第二电压,则说明所有升压电路中的二极管均未短路,即可结束流程。
S405:若所有升压电路中,存在输入端电压等于升高后的第二电压的升压电路,则确定输入端电压等于升高后的第二电压的升压电路中的二极管短路。
S406:在确定短路的升压电路后,处理模块125进一步控制未短路的升压电路的光伏组串的输出功率低于预设功率,实现对短路的升压电路连接的光伏组串的保护,最终结束流程。
进一步地,本申请还提供一种逆变器短路检测方法,可应用于如图13所示的逆变器中,其中,图13为本申请提供的逆变器又一实施例的结构示意图,如图13所示的逆变器在如图6所示的基础上,在每个升压电路中包括一个与BOOST开关管103串联连接的过流保护器106,所述过流保护器106用于在流经BOOST开关管103的电流过大时断开进行过流保护,所述过流保护器106可以是电流互感器。
更为具体地,图14为本申请提供的逆变器短路检测方法又一实施例的流程示意图,如图14示出了如图13所示的逆变器中的处理模块125使用上述实现方式检测多个升压电路是否短路的流程,其中,该方法包括:
S501:处理模块125确定多个升压电路中所有升压电路输入端的电压。具体地,处理模块125需要在所有多个升压电路均处于未工作状态时,通过S501先确定多个升 压电路中所有升压电路输入端的电压,例如,处理模块125可以确定升压电路1211输入端的电压为1000V,升压电路1212输入端的电压为1000V,公共母线124的电压为1000V。
S502:处理模块125从S501中所确定的多个升压电路中任意确定一个升压电路,记为第三升压电路。其中,本实施例可以应用于所有升压电路输入端电压相同的情况,此时从多个升压电路中任意确定一个第三升压电路。
S503:处理模块125将S502中确定的第三升压电路切换为工作状态。
S504:由第三升压电路将接收到的光伏组串的直流电的电压由第一电压升高至第二电压,例如升高至1050V,此时,公共母线124的电压也从1000V升高至1050V,从而实现对公共母线124的升压。
S505:处理模块125判断第三升压电路中的过流保护器是否进行保护。其中,以升压电路1211为例,当流经BOOST开关管103的电流大于预设阈值时,说明升压电路1211中存在二极管短路的现象,则过流保护器106会关闭开关管103的驱动以保护BOOST开关管103。
S506:若确定第三升压电路中的过流保护器没有进行过流保护,则说明该第三升压电路中的二极管未短路,即可结束流程。
S507:若确定第三升压电路中的过流保护器进行了过流保护,则说明该第三升压电路中的二极管短路。
随后,可以通过如上述S502-S505的步骤依次将逆变器中多个升压电路作为上述第三升压电路分别进行检测后,最终确定出多个升压电路中所有短路的升压电路。
S508:在确定多个升压电路中所有短路的升压电路后,处理模块125进一步控制未短路的升压电路的光伏组串的输出功率低于预设功率,实现对短路的升压电路连接的光伏组串的保护,最终结束流程。
上述本申请提供的实施例中,从逆变器中处理器的角度对本申请实施例提供的逆变器短路检测方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,作为执行主体的所述处理器还可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
例如,图15为本申请提供的逆变器检测装置一实施例的结构示意图,如图15所示的装置可用于执行如图7-10以及12中任一项所述的方法,用于对逆变器是否短路进行检测,其中,该装置包括:升压模块1501,检测模块1502和确定模块1503。其中,升压模块1501用于,当多个升压电路均处于未工作状态时,将公共母线的电压由第一电压升高至第二电压;第一电压与多个升压电路输入端的电压中的最大电压相等;检测模块1502用于检测多个升压电路中每个升压电路输入端的电路参数;确定模块1503用于根据多个升压电路的电路参数,确定多个升压电路中短路的升压电路。
可选地,电路参数为电压;则确定模块1503具体用于,根据多个升压电路的电压,确定多个升压电路中,输入端电压等于第二电压的升压电路短路。
可选地,电路参数为电流;则确定模块1503具体用于,根据多个升压电路的电流, 确定多个升压电路中,输入端出现反灌电流的升压电路短路。
可选地,多个升压电路的输入端与多个光伏组串一一对应连接;直流-交流逆变模块的具体用于将直流电转换为交流电后输出至电网。
图16为本申请提供的逆变器检测装置另一实施例的结构示意图,如图16所示的装置在如图15所示实施例的基础上,还包括:切换模块1601和控制模块1602,其中,切换模块1601用于将多个升压电路中未短路的升压电路切换为工作状态;控制模块1602用于控制未短路的升压电路连接的光伏组串的输出功率低于预设功率,以保护短路的升压电路连接的光伏组串。
可选地,控制模块1602具体用于,通过控制未短路的升压电路的输出端电压小于第三电压,以使未短路的升压电路连接的光伏组串的输出功率低于预设功率;其中,第三电压为短路的升压电路在多个升压电路均处于未工作状态时的输出端电压。
可选地,切换模块1601,还可以用于将多个升压电路切换为未工作状态。
可选地,在上述各实施例中,升压模块1501具体用于,确定多个升压电路中输入端电压最低的第一升压电路;将第一升压电路切换为工作状态;第一升压电路在工作状态下向公共母线输出的直流电用于将公共母线的电压由第一电压升高至第二电压。
可选地,在上述各实施例中,升压模块1501具体用于,从多个升压电路中确定一个第二升压电路;将第二升压电路切换为工作状态,并控制第二升压电路以小于预设阈值的占空比对输入端的直流电进行升压后输出至公共母线;其中,直流电用于将公共母线的电压由第一电压升高至第二电压。
可选地,在上述各实施例中,所述装置检测的逆变器还包括:交流-直流整流模块,交流-直流整流模块的输入端连接直流-交流整流模块的输出端,交流-直流整流模块的输出端连接公共母线;则升压模块1501具体用于,通过交流-直流整流模块将交流电转换为直流电,并将直流电输出至公共母线;其中,交流-直流整流模块输出的直流电用于将公共母线的电压由第一电压升高至第二电压。
图17为本申请提供的逆变器检测装置又一实施例的结构示意图,如图17所示的装置可用于执行如图12所述的方法,用于对逆变器是否短路进行检测,其中,该装置包括:升压模块1701和确定模块1702,其中,所述升压模块1701用于当所述多个升压电路均处于未工作状态时,将所述公共母线的电压由所述第一电压升高至第二电压;其中,所述第二电压大于第一电压,所述第一电压与所述多个升压电路输入端的电压中的最大电压相等;所述确定模块1702用于,根据所述多个升压电路中每个升压电路内的过流保护器的状态,检测所述多个升压电路中短路的升压电路。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图18为本申请实施例提供的一种装置的结构示意图,该装置可用于执行本申请前述各实施例中的逆变器短路检测方法,可以是逆变器短路检测装置。如图18所示,该装置1800可以包括:处理器1801(例如CPU)、存储器1802;存储器1802可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存 储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器1802中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的装置1800还可以包括通信总线1803。通信总线1803用于实现元件之间的通信连接。
在本申请实施例中,上述存储器1802用于存储计算机可执行程序代码,程序代码包括指令;当处理器1801执行指令时,指令使通信装置的处理器1801执行本申请上述任一实施例或可选实施例中处理器的处理动作,其实现原理和技术效果类似,在此不再赘述。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
可以理解的是,在本申请的实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种逆变器短路检测方法,应用于逆变器,其特征在于,所述逆变器包括多个升压电路,公共母线和直流-交流逆变模块;其中,所述多个升压电路的输出端均与所述公共母线并联连接,所述公共母线还并联连接所述直流-交流逆变模块;每个所述升压电路的输入端的输入为直流电,所述升压电路用于将直流电进行升压处理后,通过所述公共母线发送至所述直流-交流逆变模块,所述直流-交流逆变模块用于将升压后的直流电转换为交流电后输出;所述方法包括:
    当所述多个升压电路均处于未工作状态时,将所述公共母线的电压由第一电压升高至第二电压;所述第一电压与所述多个升压电路输入端的电压中的最大电压相等;
    检测所述多个升压电路中每个升压电路输入端的电路参数;
    根据所述多个升压电路的电路参数,确定所述多个升压电路中短路的升压电路。
  2. 根据权利要求1所述的方法,其特征在于,所述电路参数为电压;
    所述根据所述多个升压电路的电路参数,确定所述多个升压电路中短路的升压电路,包括:
    根据所述多个升压电路的电压,确定所述多个升压电路中,输入端电压等于所述第二电压的升压电路为短路。
  3. 根据权利要求1所述的方法,其特征在于,所述电路参数为电流;
    所述根据所述多个升压电路的电路参数,确定所述多个升压电路中短路的升压电路,包括:
    根据所述多个升压电路的电流,确定所述多个升压电路中,输入端出现反灌电流的升压电路为短路。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述多个升压电路的输入端与多个光伏组串一一对应连接;
    所述直流-交流逆变模块的具体用于将直流电转换为交流电后输出至电网。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述多个升压电路中短路的升压电路之后,还包括:
    将所述多个升压电路中未短路的升压电路切换为工作状态;
    控制所述未短路的升压电路连接的光伏组串的输出功率低于预设功率,以保护所述短路的升压电路连接的光伏组串。
  6. 根据权利要求5所述的方法,其特征在于,所述通过所述未短路的升压电路,控制所述未短路的升压电路连接的光伏组串的输出功率低于预设功率包括:
    通过控制所述未短路的升压电路的输出端电压小于第三电压,以使所述未短路的升压电路连接的光伏组串的输出功率低于预设功率;其中,所述第三电压为所述短路的升压电路在所述多个升压电路均处于未工作状态时的输出端电压。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述将所述公共母线的电压由第一电压升高至第二电压之前,还包括:
    将所述多个升压电路切换为未工作状态。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述将所述公共母线的电压由第一电压升高至第二电压,包括:
    确定所述多个升压电路中输入端电压最低的第一升压电路;
    将所述第一升压电路切换为工作状态;所述第一升压电路在工作状态下向所述公共母线输出的直流电用于将所述公共母线的电压由所述第一电压升高至第二电压。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述将所述公共母线的电压由第一电压升高至第二电压,包括:
    从所述多个升压电路中确定一个第二升压电路;
    将所述第二升压电路切换为工作状态,并控制所述第二升压电路以小于预设阈值的占空比对输入端的直流电进行升压后输出至所述公共母线;其中,所述直流电用于将所述公共母线的电压由所述第一电压升高至第二电压。
  10. 根据权利要求1-7任一项所述的方法,其特征在于,
    所述逆变器还包括:交流-直流整流模块,所述交流-直流整流模块的输入端连接所述直流-交流整流模块的输出端,所述交流-直流整流模块的输出端连接所述公共母线;
    所述将所述公共母线的电压由所述第一电压升高至第二电压,包括:
    通过所述交流-直流整流模块将交流电转换为直流电,并将直流电输出至所述公共母线;其中,所述交流-直流整流模块输出的直流电用于将所述公共母线的电压由所述第一电压升高至第二电压。
  11. 一种逆变器短路检测装置,用于对逆变器是否短路进行检测,其特征在于,所述逆变器包括多个升压电路,公共母线和直流-交流逆变模块;其中,所述多个升压电路的输出端均与所述公共母线并联连接,所述公共母线还并联连接所述直流-交流逆变模块;每个所述升压电路的输入端的输入为直流电,所述升压电路用于将直流电进行升压处理后,通过所述公共母线发送至所述直流-交流逆变模块,所述直流-交流逆变模块用于将升压后的直流电转换为交流电后输出;所述装置包括:
    升压模块,用于当所述多个升压电路均处于未工作状态时,将所述公共母线的电压由第一电压升高至第二电压;所述第一电压与所述多个升压电路输入端的电压中的最大电压相等;
    检测模块,用于检测所述多个升压电路中每个升压电路输入端的电路参数;
    确定模块,用于根据所述多个升压电路的电路参数,确定所述多个升压电路中短路的升压电路。
  12. 根据权利要求11所述的装置,其特征在于,所述电路参数为电压;
    所述确定模块具体用于,根据所述多个升压电路的电压,确定所述多个升压电路中,输入端电压等于所述第二电压的升压电路短路。
  13. 根据权利要求11所述的装置,其特征在于,所述电路参数为电流;
    所述确定模块具体用于,根据所述多个升压电路的电流,确定所述多个升压电路中,输入端出现反灌电流的升压电路短路。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,
    所述多个升压电路的输入端与多个光伏组串一一对应连接;
    所述直流-交流逆变模块的具体用于将直流电转换为交流电后输出至电网。
  15. 根据权利要求14所述的装置,其特征在于,还包括:
    切换模块,用于将所述多个升压电路中未短路的升压电路切换为工作状态;
    控制模块,用于控制所述未短路的升压电路连接的光伏组串的输出功率低于预设功率,以保护所述短路的升压电路连接的光伏组串。
  16. 根据权利要求15所述的装置,其特征在于,
    所述控制模块具体用于,通过控制所述未短路的升压电路的输出端电压小于第三电压,以使所述未短路的升压电路连接的光伏组串的输出功率低于预设功率;其中,所述第三电压为所述短路的升压电路在所述多个升压电路均处于未工作状态时的输出端电压。
  17. 根据权利要求11-16任一项所述的装置,其特征在于,还包括:
    切换模块,用于将所述多个升压电路切换为未工作状态。
  18. 根据权利要求11-17任一项所述的装置,其特征在于,所述升压模块具体用于,
    确定所述多个升压电路中输入端电压最低的第一升压电路;
    将所述第一升压电路切换为工作状态;所述第一升压电路在工作状态下向所述公共母线输出的直流电用于将所述公共母线的电压由所述第一电压升高至第二电压。
  19. 根据权利要求11-17任一项所述的装置,其特征在于,所述升压模块具体用于,
    从所述多个升压电路中确定一个第二升压电路;
    将所述第二升压电路切换为工作状态,并控制所述第二升压电路以小于预设阈值的占空比对输入端的直流电进行升压后输出至所述公共母线;其中,所述直流电用于将所述公共母线的电压由所述第一电压升高至第二电压。
  20. 根据权利要求11-17任一项所述的装置,其特征在于,所述逆变器还包括:交流-直流整流模块,所述交流-直流整流模块的输入端连接所述直流-交流整流模块的输出端,所述交流-直流整流模块的输出端连接所述公共母线;
    所述升压模块具体用于,通过所述交流-直流整流模块将交流电转换为直流电,并将直流电输出至所述公共母线;其中,所述交流-直流整流模块输出的直流电用于将所述公共母线的电压由所述第一电压升高至第二电压。
  21. 一种逆变器短路检测装置,其特征在于,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-10中任一项所述的方法。
  22. 一种逆变器,其特征在于,包括如权利要求11-20任一项所述的逆变器短路检测装置。
  23. 一种逆变器短路检测方法,应用于逆变器,其特征在于,
    所述逆变器包括多个升压电路,公共母线和直流-交流逆变模块;其中,所述多个升压电路的输出端均与所述公共母线并联,所述公共母线还并联连接所述直流-交流逆变模块;每个所述升压电路的输入端的输入为直流电,所述升压电路用于将直流电进行升压处理后,通过所述公共母线发送至所述直流-交流逆变模块,所述直流-交流逆变模块用于将升压后的直流电转换为交流电后输出;每个所述升压电路的开关管串联一个过流保护器;所述方法包括:
    当所述多个升压电路均处于未工作状态时,将所述公共母线的电压由第一电压升高至第二电压;其中,所述第二电压大于第一电压,所述第一电压与所述多个升压电路输入端的电压中的最大电压相等;
    根据所述多个升压电路中每个升压电路内的过流保护器的状态,检测所述多个升压电路中短路的升压电路。
  24. 一种逆变器短路检测装置,用于对逆变器是否短路进行检测,其特征在于,
    所述逆变器包括多个升压电路,公共母线和直流-交流逆变模块;其中,所述多个升压电路的输出端均与所述公共母线并联,所述公共母线还并联连接所述直流-交流逆变模块;每个所述升压电路的输入端的输入为直流电,所述升压电路用于将直流电进行升压处理后,通过所述公共母线发送至所述直流-交流逆变模块,所述直流-交流逆变模块用于将升压后的直流电转换为交流电后输出;每个所述升压电路的开关管串联一个过流保护器,所述过流保护器用于在流经所述开关管的电流过大时断开进行过流保护;所述装置包括:
    升压模块,当所述多个升压电路均处于未工作状态时,将所述公共母线的电压由第一电压升高至第二电压;其中,所述第二电压大于第一电压,所述第一电压与所述多个升压电路输入端的电压中的最大电压相等;
    确定模块,根据所述多个升压电路中每个升压电路内的过流保护器的状态,检测所述多个升压电路中短路的升压电路。
  25. 一种逆变器短路检测装置,其特征在于,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求23中所述的方法。
  26. 一种逆变器,其特征在于,包括如权利要求24中所述的逆变器短路检测装置。
  27. 一种逆变器,其特征在于,包括:
    多个升压电路,公共母线和直流-交流逆变模块;
    其中,所述多个升压电路的输出端均与所述公共母线并联,所述公共母线还并联连接所述直流-交流逆变模块;每个所述升压电路的输入端的输入为直流电,所述升压电路用于将直流电进行升压处理后,通过所述公共母线发送至所述直流-交流逆变模块,所述直流-交流逆变模块用于将升压后的直流电转换为交流电后输出;
    每个所述升压电路的开关管串联一个过流保护器,所述过流保护器用于在流经所述开关管的电流过大时断开进行过流保护。
PCT/CN2020/110090 2019-11-29 2020-08-19 逆变器短路检测方法、装置及逆变器 WO2021103674A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20894048.6A EP4053574B1 (en) 2019-11-29 2020-08-19 Short-circuit detection method and apparatus for inverter, and inverter
US17/826,395 US20220294361A1 (en) 2019-11-29 2022-05-27 Method and apparatus for detecting short circuit of inverter, and inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911204153.7A CN110888085A (zh) 2019-11-29 2019-11-29 逆变器短路检测方法、装置及逆变器
CN201911204153.7 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/826,395 Continuation US20220294361A1 (en) 2019-11-29 2022-05-27 Method and apparatus for detecting short circuit of inverter, and inverter

Publications (1)

Publication Number Publication Date
WO2021103674A1 true WO2021103674A1 (zh) 2021-06-03

Family

ID=69749663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110090 WO2021103674A1 (zh) 2019-11-29 2020-08-19 逆变器短路检测方法、装置及逆变器

Country Status (4)

Country Link
US (1) US20220294361A1 (zh)
EP (1) EP4053574B1 (zh)
CN (1) CN110888085A (zh)
WO (1) WO2021103674A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888085A (zh) * 2019-11-29 2020-03-17 华为数字技术(苏州)有限公司 逆变器短路检测方法、装置及逆变器
CN112098821A (zh) * 2020-08-14 2020-12-18 深圳科士达科技股份有限公司 光伏逆变器升压电路开关短路检测方法及其光伏发电装置
CN112332669B (zh) * 2020-11-11 2022-05-24 阳光电源股份有限公司 一种mlpe光伏系统及其光伏组串控制方法
CN113014198B (zh) * 2021-03-31 2022-12-13 华为数字能源技术有限公司 光伏系统
CN114710053B (zh) * 2022-06-06 2022-11-15 阳光电源股份有限公司 一种逆变器、电源系统及逆变器直流侧的保护方法
CN115224683A (zh) * 2022-09-20 2022-10-21 阳光电源股份有限公司 一种电源系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257377A (ja) * 2000-03-13 2001-09-21 Omron Corp 融雪制御装置および太陽光発電システム
CN102520304A (zh) * 2011-12-09 2012-06-27 上海新进半导体制造有限公司 器件短路检测电路及检测方法
CN103973149A (zh) * 2013-01-24 2014-08-06 欧姆龙株式会社 功率调节器、太阳能电池系统以及异常判断方法
CN104977471A (zh) * 2014-04-11 2015-10-14 艾默生网络能源有限公司 双路输入光伏逆变器对地绝缘阻抗检测系统、方法及装置
CN105356840A (zh) * 2015-11-27 2016-02-24 上海中兴派能能源科技有限公司 一种光伏发电电路及光伏发电电路逆变器分配方法
CN108736712A (zh) * 2017-04-20 2018-11-02 威士多公司 电力转换器和电力系统
CN110429644A (zh) * 2019-07-31 2019-11-08 华为技术有限公司 逆变装置及供电系统
CN110888085A (zh) * 2019-11-29 2020-03-17 华为数字技术(苏州)有限公司 逆变器短路检测方法、装置及逆变器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475199B2 (ja) * 2005-07-29 2010-06-09 Tdk株式会社 故障検知回路
JP5277527B2 (ja) * 2006-09-22 2013-08-28 トヨタ自動車株式会社 車両の電源装置および車両
JP2010051053A (ja) * 2008-08-19 2010-03-04 Nec Electronics Corp 昇圧dc−dcコンバータ用制御回路及び昇圧dc−dcコンバータ
JP5278837B2 (ja) * 2009-06-18 2013-09-04 トヨタ自動車株式会社 コンバータの出力ダイオード短絡検出装置
DE102012112184A1 (de) * 2012-12-12 2014-06-12 Sma Solar Technology Ag Verfahren und Vorrichtung zum Schutz mehrerer Strings eines Photovoltaikgenerators vor Rückströmen
JP6213183B2 (ja) * 2013-11-21 2017-10-18 富士電機株式会社 スイッチング電源回路
US10298018B2 (en) * 2015-01-28 2019-05-21 Kyocera Corporation Power control apparatus, power control system, and power control method
WO2017212572A1 (ja) * 2016-06-08 2017-12-14 三菱電機株式会社 系統連系インバータ装置
CN107017767B (zh) * 2017-04-27 2019-07-19 华为技术有限公司 一种太阳能电池阵列开路过压保护的方法及装置、逆变器
CN207010572U (zh) * 2017-08-03 2018-02-13 贵州电网有限责任公司电力科学研究院 一种双通道输入的三相光伏并网逆变器系统
JP7067155B2 (ja) * 2018-03-14 2022-05-16 オムロン株式会社 パワーコンディショナ
CN114303309A (zh) * 2019-09-12 2022-04-08 欧姆龙株式会社 过流保护电路及开关电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257377A (ja) * 2000-03-13 2001-09-21 Omron Corp 融雪制御装置および太陽光発電システム
CN102520304A (zh) * 2011-12-09 2012-06-27 上海新进半导体制造有限公司 器件短路检测电路及检测方法
CN103973149A (zh) * 2013-01-24 2014-08-06 欧姆龙株式会社 功率调节器、太阳能电池系统以及异常判断方法
CN104977471A (zh) * 2014-04-11 2015-10-14 艾默生网络能源有限公司 双路输入光伏逆变器对地绝缘阻抗检测系统、方法及装置
CN105356840A (zh) * 2015-11-27 2016-02-24 上海中兴派能能源科技有限公司 一种光伏发电电路及光伏发电电路逆变器分配方法
CN108736712A (zh) * 2017-04-20 2018-11-02 威士多公司 电力转换器和电力系统
CN110429644A (zh) * 2019-07-31 2019-11-08 华为技术有限公司 逆变装置及供电系统
CN110888085A (zh) * 2019-11-29 2020-03-17 华为数字技术(苏州)有限公司 逆变器短路检测方法、装置及逆变器

Also Published As

Publication number Publication date
EP4053574A4 (en) 2023-01-18
EP4053574B1 (en) 2023-10-11
CN110888085A (zh) 2020-03-17
US20220294361A1 (en) 2022-09-15
EP4053574A1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2021103674A1 (zh) 逆变器短路检测方法、装置及逆变器
WO2022052646A1 (zh) 一种直流汇流箱、逆变器、光伏系统及保护方法
JP6225388B2 (ja) Mppt集中モード退出、切り替え方法及びその応用
CN204758699U (zh) 用于光伏逆变器的绝缘阻抗检测电路
WO2019096048A1 (zh) 一种换流器耗能装置控制方法及系统
WO2021003728A1 (zh) 一种应用于光伏发电系统的变换器、方法及系统
EP3035509B1 (en) Method and device for switching operation mode of a five-level inverter
CN109449886A (zh) 一种光伏逆变器控制方法及系统
WO2021017704A1 (zh) 逆变装置及供电系统
BR112017006269B1 (pt) Circuito de carregamento, e terminal móvel
US20240088785A1 (en) Resonant switched capacitor converter and control method thereof
WO2022242135A1 (zh) 一种电力变换系统和电力变换装置及其控制方法
CN104143955B (zh) 一种智能自平衡光伏串联电池组件
CN103269099B (zh) 电池充放电电路
WO2021208141A1 (zh) 一种电源系统
CN104092373A (zh) Dc/dc升压变换模块和电路
CN204664982U (zh) Led高压灯带
CN111162663A (zh) 分压电路及开关电源
JP6478171B2 (ja) 太陽光パネルの太陽光モジュールストリング用スプリット式電力最適化モジュール
CN204290715U (zh) Dc/dc升压变换模块和电路
CN204206316U (zh) 一种开机冲击电流的抑制装置和电视机
CN209250228U (zh) 一种光伏逆变器控制系统
CN209029910U (zh) 一种用于无刷控制器的防反接、防打火及防漏电电路
CN204190615U (zh) Dc/dc升压变换模块和电路
CN219718171U (zh) 一种太阳能电池设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020894048

Country of ref document: EP

Effective date: 20220603

NENP Non-entry into the national phase

Ref country code: DE