WO2019096048A1 - 一种换流器耗能装置控制方法及系统 - Google Patents

一种换流器耗能装置控制方法及系统 Download PDF

Info

Publication number
WO2019096048A1
WO2019096048A1 PCT/CN2018/114377 CN2018114377W WO2019096048A1 WO 2019096048 A1 WO2019096048 A1 WO 2019096048A1 CN 2018114377 W CN2018114377 W CN 2018114377W WO 2019096048 A1 WO2019096048 A1 WO 2019096048A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
consuming
consuming device
inverter
converter
Prior art date
Application number
PCT/CN2018/114377
Other languages
English (en)
French (fr)
Inventor
王佳成
卢宇
汪楠楠
李钢
董云龙
胡兆庆
姜崇学
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2019096048A1 publication Critical patent/WO2019096048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the technical field of flexible direct current transmission of power systems, and particularly relates to a control method and system for an energy consumption device of an inverter.
  • Flexible DC transmission technology is an important technical means to realize multi-point collection of large-scale renewable energy, efficient use of clean energy and flexible consumption. It uses flexible DC transmission technology to achieve networking, and stable operation under isolated or weak systems is renewable energy. An important prerequisite for flexible Internet access and consumption.
  • the island electric field composed of clean energy such as wind power and photovoltaic is a very weak island, and it must have AC voltage support to operate normally.
  • the soft-straight system provides reliable grid-connected voltage for wind power and photovoltaic.
  • wind power and photovoltaic realize the power transmission by adjusting the terminal voltage, so the active power flowing into the inverter It is completely determined by the external system.
  • the DC grid must control the power balance of the incoming and outgoing DC systems to maintain the stable operation of the DC grid, and therefore must rely on the support of the external AC system.
  • the DC grid will have a power surplus. Since the time scale of the DC grid voltage and current changes is from a few milliseconds to tens of milliseconds, overcurrent or overvoltage is highly prone to occur when the DC grid power surplus.
  • the safety and stability control strategy requires at least 150 ms to cut off the new energy-sending wind-island island system, which cannot meet the requirements of DC grid fault-clearing speed.
  • the present invention proposes a converter energy consumption device control method, and the method ensures the direct current of the new energy island system.
  • the converter can operate reliably when the network has a power surplus.
  • the object of the present invention is to provide a method and a system for controlling an energy consuming device of an inverter, which are used to solve the problem of absorbing power redundancy during the disturbance of the DC power grid after the new energy island wind farm is connected to the DC grid.
  • An inverter energy consuming device control method the energy consuming device being arranged on an alternating current side of the transmitting end converter 1; the converter 1 being a single or double alternating current side parallel structure; the energy consuming device It is composed of one or more groups of energy-consuming branches; the DC grid of the converter 1 further includes an inverter 2 to an inverter k, wherein k ⁇ 2; the control method is: when the DC grid working condition satisfies the energy consumption When the device is put into the condition, the number of groups of the energy-consuming device into the energy-consuming branch is selected according to the size of the redundant absorption power ⁇ P s of the DC power grid of the inverter 1; when the energy-consuming device exit condition is satisfied, the group consumption is sequentially cancelled. Can branch road.
  • control method specifically includes the following steps:
  • the energy consuming device collects the redundant absorbed power ⁇ P s of the DC grid where the inverter 1 is located in real time; collects the real-time absorbed power P s1 ⁇ P sk of the AC side of the converter 1 to the converter; and collects the inverter 1 ⁇
  • the positive DC bus voltage U p1 ⁇ U pk of the converter k; the negative DC bus voltage U n1 ⁇ U nk of the inverter 1 to the converter k are collected;
  • step 1) the redundant absorbed power ⁇ P s of the DC grid can be obtained by any of the following methods:
  • P sk is the real-time absorbed power of the AC side of the converter k.
  • the AC side energy consuming device of the inverter 1 is allowed to be input:
  • At least one inverter x 1 of the inverter 1 to the converter k satisfies the upper limit of the DC bus voltage, and is allowed to input the energy consuming device.
  • the upper limit of the DC bus voltage is determined:
  • step 2) the energy consuming device configures the y group energy dissipation branch and y ⁇ 1, and the capacity of the x 3 energy dissipation branch is defined as P x3 , and the capacity relationship of each group of energy consuming branches is P 1 ⁇ . . . ⁇ P x3. . . ⁇ P y , where 1 ⁇ x 3 ⁇ y ; the input method of the energy dissipation branch follows the following steps:
  • step 3 is characterized in that the priority satisfies any of the following conditions:
  • step 3 the energy consuming device exit condition is any of the following situations:
  • U quit_en is the voltage setting that allows to exit the energy consuming device and guarantees 0 ⁇ U Quit_en ⁇ U inv_en ;
  • U inv_en is the input voltage setting for the energy consuming device, and U inv_en >0;
  • the energy dissipation branch described in step 2) is a load branch formed by combining one or more of a resistor, an inductor, a junction change, and a power electronic switching device.
  • An inverter energy consuming device control system the energy consuming device controlled by the system is arranged on the AC side of the transmitting end converter 1; the converter 1 is a single or dual AC side parallel structure;
  • the energy consuming device is composed of one or more groups of energy consuming branches;
  • the DC power grid of the inverter 1 further includes an inverter 2 to an inverter k, wherein k ⁇ 2, the system includes the following parts: the collecting unit and the alternating current side
  • the energy consuming device allows the input logic unit and the AC side energy consuming device to allow to exit the logic unit; wherein:
  • the acquisition unit collects the current working conditions of the DC grid
  • the AC side energy consumption device allows the logic unit to be input and receives the electrical quantity of the acquisition unit.
  • the energy consumption is selected according to the size of the redundant absorption power ⁇ P s of the DC power grid where the inverter 1 is located. The number of groups in which the device is put into the energy-consuming branch;
  • the AC side energy consuming device allows to exit the logic unit, and when the energy consuming device exit condition is met, each group of energy consuming branches is sequentially withdrawn.
  • a delay unit is further included;
  • the collecting unit collects the redundant absorbed power ⁇ P s of the DC grid where the inverter 1 is located in real time; collects the real-time absorbed power P s1 ⁇ P sk of the AC side of the converter 1 to the converter k; and collects the converter 1 ⁇
  • the positive DC bus voltage U p1 ⁇ U pk of the current collector k; the negative DC bus voltage U n1 ⁇ U nk of the inverter 1 to the converter k are collected;
  • the AC side energy consuming device allows the logic unit to be input, the absorption redundancy power ⁇ P s of the DC grid collected by the acquisition unit, the positive DC bus voltage U p1 ⁇ U pk of the converter 1 to the converter k, and the inverter 1 ⁇
  • the negative DC bus voltage U n1 ⁇ U nk of the converter k is processed.
  • the unit is allowed to input the AC side energy consuming device of the inverter 1 by logic, it is selected to input one or more groups of energy consuming branches;
  • the AC side energy consuming device allows to exit the logic unit, and after determining that the energy consuming device is put into operation, monitors the number n of the energy consuming branches, and receives the permission to exit the energy consuming device from the upper device, if the energy consuming branch allows If the number of energy-consuming branch groups that have exited and been put in is not equal to 0, the energy-consuming device exits the logic open, otherwise the unit locks the energy-consuming device to exit the operation command; if the energy-consuming device exits the operation command, if the inverter 1 is changed The DC bus voltage of the flow device k satisfies the exit condition of the energy-consuming device, and then exits a group of the consumed energy-consuming branches according to a certain priority, otherwise the energy-consuming device allows the logic module to be locked out and does not exit any energy-consuming branch;
  • the delay unit after the AC side energy consuming device allows the exit logic unit to perform once and has exited a group of energy consuming branches, after repeated delays, repeatedly performing the AC side energy consuming device to allow the logic unit to exit.
  • the redundant absorption power ⁇ P s of the DC grid required to form the acquisition unit can be obtained by any of the following methods:
  • the collecting unit receives the redundant absorbed power ⁇ P s of the entire DC grid where the inverter 1 is sent by the upper device;
  • the acquisition unit collects the real-time absorbed power P s1 ⁇ P sk of the AC side of the inverter 1 to k, and then adds the real-time absorbed power of the AC side of each station to obtain the redundant absorbed power ⁇ P s of the DC grid where the inverter 1 is located. ,which is:
  • the AC side energy consuming device allows the input logic unit to determine that any of the following conditions are met, and the AC side energy consuming device of the inverter 1 is allowed to be input:
  • the energy consuming device is configured with the y group energy consuming branch and y ⁇ 1, and the capacity of the x 3 energy consuming branch is defined as P x3 , and the capacity relationship of each group of energy consuming branches is P 1 ⁇ . . . ⁇ P x3. . . ⁇ P y , where 1 ⁇ x 3 ⁇ y ; the AC side energy consuming device allows the input logic unit to input the energy consuming branch according to the following steps:
  • the AC side energy consuming device allows the priority in the exit logic unit to be: the priority meets any of the following conditions:
  • execution condition of the energy consuming device to exit the logic unit is any of the following situations:
  • U quit_en is the voltage setting that allows to exit the energy consuming device and guarantees 0 ⁇ U Quit_en ⁇ U inv_en ;
  • U inv_en is the input voltage setting for the energy consuming device, and U inv_en >0;
  • a method and system for controlling an energy consuming device of an inverter ensures that when a converter is connected to a new energy system of an island, if the DC power grid of the converter generates an absorption power surplus due to system disturbance,
  • the input of the energy-consuming branch can quickly absorb the redundant energy and ensure that the non-faulty converter is not blocked by the power redundancy in the DC grid during the disturbance of the DC grid system.
  • the method improves the reliability of the operation of the non-faulty converter in the island mode.
  • the energy consuming device adopts a group switching strategy, and after the power dissipation redundancy of the DC power grid disappears, the energy consuming branch group exit can effectively reduce the energy consumption. Disturbance of the system during the device removal process.
  • control method and system for an inverter energy consuming device have a simple structure and a simple control method, which is suitable for practical engineering applications.
  • FIG. 1 is a schematic diagram of an inverter topology with an AC energy consuming device
  • Figure 2 shows a four-terminal DC grid topology with a new energy island wind farm
  • Figure 3 is a block diagram showing the control of the input logic module of the AC side energy dissipation branch of the converter
  • Figure 4 is a block diagram of the control of the AC side energy dissipation branch of the converter allowing the exit logic module to be controlled;
  • FIG. 5 is a structural diagram of a control system of an energy consuming device of an inverter.
  • the inverter energy consuming device control method according to the present invention is applied to the converter 1 topology shown in FIG. 1, and the inverter 1 adopts two AC side parallel structures, that is, the positive and negative inverters communicate.
  • the side parallels form a bipolar structure.
  • the energy-consuming device is connected in parallel at the same time on the AC side busbar.
  • the converter 1 to the inverter 4 are connected to the DC grid shown in FIG. 2, and only the energy consumption device is disposed on the AC bus side of the inverter 1.
  • the energy consumption device is composed of four groups of energy-consuming branches, and the structure thereof The capacity is the same as that of the example of Fig. 1, and the inverter 1 to the inverter 4 are both connected in parallel with the AC side positive electrode and the negative electrode converter shown in Fig. 1.
  • the operating conditions of the DC grid in this embodiment are as follows:
  • the rated DC voltage of the DC grid is 500kV
  • the energy consumption device control method is set and processed to obtain the following data:
  • the positive inverter of the converter 4 is abnormally locked for normal operation, and only the negative inverter is normally operated, and the inverter 4 absorbs power P s4 and is abruptly changed to -750 MW.
  • the system executes the energy-consuming branch input logic, and its flow is shown in Figure 3.
  • the method first determines the following conditions:
  • condition 1 is established.
  • condition 2 is established.
  • the upper-layer stability control device cuts off some of the fans connected to the AC side of the inverter 1 with a resection capacity of 750 MW. 1 AC side absorption power decreased from the original 3000MW to 2250MW.
  • the absolute values of the positive and negative bus voltages of each converter on the DC grid are less than 520kV, which satisfies the conditions for exiting the energy consuming device.
  • the control system of the energy consuming device of the converter according to the present invention is as shown in FIG. 5.
  • the system is composed of an acquisition unit, an AC side energy consuming device, an input logic unit, and an AC side energy consuming device, which are allowed to exit the logic unit and the delay unit.
  • ⁇ P s is close to zero during normal operation.
  • the anode converter of the converter 4 is abnormally locked for normal operation, only the anode converter is normally operated, and the inverter 4 absorbs the power P s4 and is abruptly changed to -750 MW.
  • the acquisition unit acquires the positive DC bus voltages U p1 ⁇ U pk and the negative DC bus voltages U n1 ⁇ U nk of the converters 1 to 3, in real time.
  • the AC side energy consuming device allows the input logic unit to judge the absolute value of the positive DC bus of the inverter 1
  • >U inv_en 580 kV, which satisfies the allowable input condition of the energy consuming device 2). Therefore, the energy-consuming branch is put into logic startup.
  • ⁇ ⁇ U quit_en 520kV and max ⁇
  • ⁇ U quit_en 520kV; that is, the absolute value of the positive and negative bus voltages of each converter on the DC grid Both are less than 520kV, which meets the conditions for exiting the energy consuming device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种换流器耗能装置控制方法及系统,属于直流输电领域。本方法及系统所控制的耗能装置由一组或多组耗能支路组成且布置于送端换流器交流侧,当直流电网工况满足耗能装置投入条件时,本方法及系统根据换流器所在直流电网冗余吸收功率的大小选择耗能装置投入耗能支路的组数。当直流电网冗余功率被切除且满足耗能装置退出条件时,本方法及系统再依次退出各组耗能支路。本方法及系统采用分组策略实现耗能装置的投退,可降低对系统的扰动,保证了系统扰动期间非故障换流器的可靠运行。

Description

一种换流器耗能装置控制方法及系统 技术领域
本发明属于电力系统柔性直流输电技术领域,具体涉及一种换流器耗能装置控制方法及系统。
背景技术
柔性直流输电技术是实现大规模可再生能源多点汇集、清洁能源高效利用和灵活消纳的一项重要技术手段,利用柔性直流输电技术实现联网,孤岛或弱系统下的稳定运行是可再生能源灵活上网和消纳的重要前提。但风电、光伏等清洁能源组成的孤岛电场为极弱孤岛,必须有交流电压支撑才能正常运行。在与孤岛风光电场配套的柔性直流输电工程中,柔直系统为风电、光伏提供了可靠的并网电压,同时风电、光伏通过调整机端电压实现功率的传输,因此流入换流器的有功功率完全由外部系统决定。
作为交流系统的嵌入系统,直流电网须控制进、出直流系统的功率平衡以维持直流电网的稳定运行,因此必须依赖外部交流系统的支持。当直流系统线路短路或换流器故障闭锁等异常发生后,直流电网将出现功率盈余。由于直流电网电压电流变化的时间尺度为几毫秒至几十毫秒级,因此直流电网功率盈余时极易发生过流或过压。另一方面,安全稳定控制策略切除新能源送端风光孤岛系统至少需要150ms,无法满足直流电网故障清除速度的要求。在直流电网满功率运行时,任何扰动都可能引发直流电网吸收功率冗余,此时新能源送端系统又无法及时调整和切除冗余功率,极易造成流入换流器的有功功率无法控制,故障扩大引发直流电网中换流器大面积停运。
考虑到上述问题,同时针对现阶段尚无适合工程应用的直流电网吸收功率冗余抑制策略,本发明提出一种换流器耗能装置控制方法,本方法保证了新能源孤岛系统接入的直流电网发生功率盈余时,换流器能可靠运行。
发明内容
本发明的目的是提供一种换流器耗能装置控制方法及系统,用以解决新能源孤岛风光电场接入直流电网后,直流电网受到扰动期间的吸收功率冗余问题。
为实现上述目的,本发明采用的技术方案是:
一种换流器耗能装置控制方法,所述耗能装置布置于送端换流器1的交流侧;所述换流器1是单台或双台交流侧并联结构;所述耗能装置由一组或多组耗能支路构成;换流器1所在直流电网还包含换流器2~换流器k,其中k≥2;所述控制方法为:当直流电网工况满足耗能装置投入条件时,根据换流器1所在直流电网的冗余吸收功率ΔP s的大小选择耗能装置投入耗能支路的组数;当满足耗能装置退出条件时,再依次退出各组耗能支路。
进一步的,所述控制方法具体包括以下步骤:
(1)耗能装置实时采集换流器1所在直流电网的冗余吸收功率ΔP s;采集换流器1~换流器k交流侧实时吸收功率P s1~P sk;采集换流器1~换流器k的正极直流母线电压U p1~U pk;采集换流器1~换流器k的负极直流母线电压U n1~U nk
(2)对直流电网的吸收冗余功率ΔP s、换流器1~换流器k的正极直流母线电压U p1~U pk、换流器1~换流器k的负极直流母线电压U n1~U nk进行处理,当逻辑判断;
(3)耗能装置投入后,监测投入耗能支路的组数n,同时接收上层设备发来的允许退出耗能装置指令,若耗能支路允许退出且已投入的耗能支路组数不等于0,则耗能装置退出逻辑开放,否则逻辑闭锁;耗能装置退出逻辑开放后,如果直流电网中所包含的各换流器运行特性满足耗能装置退出条件,则按照一定优先级退出一组已投耗能支路,否则耗能装置退出逻辑闭锁且不退出任一耗能支路;
(4)当(3)执行完毕后经过一定的延时时间,重复执行步骤(3)。
进一步的,步骤1)中,所述直流电网的冗余吸收功率ΔP s可以通过以下任一种方式得到:
1)通过上层设备采集换流器1所在整个直流电网的冗余吸收功率ΔP s
2)计算得到换流器1所在直流电网的冗余吸收功率ΔP s,其中:
ΔP s=P s1+P s2+P s3+…+P sk,P sk为换流器k交流侧实时吸收功率。
进一步的,步骤2)中满足以下任一条件时,允许投入换流器1交流侧耗能装置:
1)换流器1所在直流电网的冗余吸收功率ΔP s>δ,则允许投入耗能装置,δ定义为功率门槛且δ≥0;
2)换流器1~换流器k中至少有一个换流器x 1满足直流母线电压越上限,则允许投入耗能装置,当满足以下条件任一种则判断直流母线电压越上限:
a)|U px1|>U inv_en
b)|U nx1|>U inv_en
其中|U px1|为换流器x 1的正极直流母线电压绝对值,|U nx1|为换流器x 1的负极直流母线电压绝对值,U inv_en为耗能装置投入电压定值,U inv_en>0且1≤x 1≤k。
进一步的,步骤2)中耗能装置配置y组耗能支路且y≥1,定义第x 3组耗能支路的容量为P x3,各组耗能支路的容量关系为P 1。。。≤P x3。。。≤P y,其中1≤x 3≤y;耗能支路的投入方法按照下述步骤:
1)直流电网的冗余吸收功率ΔP s≤P 1,则仅投入第一组耗能装置;
2)直流电网的冗余吸收功率ΔP s>P 1,则计算第一组到第x 3组耗能支路的总容量∑P x3,计算第一组到第x 3+1组耗能支路的总容量∑P x3+1;若∑P x3<ΔP s≤∑P x3+1,则同时投入第一组到第x 3+1组耗能支路。
进一步的,步骤3)中所述优先级,其特征在于所述优先级满足以下条件任一:
(1)优先退出已投耗能支路中容量最小的一组耗能支路;
(2)优先退出已投耗能支路中能量最大的一组耗能支路。
进一步的,步骤3)中耗能装置退出条件为下列情形任一:
(1)直流电网上各换流站最高的正极直流母线电压绝对值和最高的负极直流母线电压绝对值均不大于允许退出耗能装置电压定值,即:
max{|U p1|~|U pk|}≤U quit_en且max{|U n1|~|U nk|}≤U quit_en;其中U quit_en是允许退出耗能装置的电压定值且保证0<U quit_en<U inv_en;U inv_en为耗能装置投入电压定值,且U inv_en>0;
(2)接收的外部信号满足耗能装置退出条件。
进一步的,步骤2)中所述的耗能支路为电阻、电感、联结变及电力电子开关器件等设备中的一种或多种组合而成的负载支路。
一种换流器耗能装置控制系统,该系统所控制的耗能装置布置于送端换流器 1的交流侧;所述换流器1是单台或双台交流侧并联结构;所述耗能装置由一组或多组耗能支路构成;换流器1所在直流电网还包含换流器2~换流器k,其中k≥2,该系统包括以下部分:采集单元、交流侧耗能装置允许投入逻辑单元、交流侧耗能装置允许退出逻辑单元;其中:
采集单元,采集直流电网当前工况;
交流侧耗能装置允许投入逻辑单元,接收采集单元的电气量,当直流电网工况满足耗能装置投入条件时,根据换流器1所在直流电网的冗余吸收功率ΔP s的大小选择耗能装置投入耗能支路的组数;
交流侧耗能装置允许退出逻辑单元,当满足耗能装置退出条件时,依次退出各组耗能支路。
进一步的,还包括延时单元;
所述采集单元,实时采集换流器1所在直流电网的冗余吸收功率ΔP s;采集换流器1~换流器k交流侧实时吸收功率P s1~P sk;采集换流器1~换流器k的正极直流母线电压U p1~U pk;采集换流器1~换流器k的负极直流母线电压U n1~U nk
所述交流侧耗能装置允许投入逻辑单元,对采集单元采集的直流电网的吸收冗余功率ΔP s、换流器1~换流器k的正极直流母线电压U p1~U pk、换流器1~换流器k的负极直流母线电压U n1~U nk进行处理,当本单元通过逻辑判断允许投入换流器1交流侧耗能装置,则选择投入一组或多组耗能支路;
所述交流侧耗能装置允许退出逻辑单元,判断耗能装置投入后,监测投入耗能支路的组数n,同时接收上层设备发来的允许退出耗能装置指令,若耗能支路允许退出且已投入的耗能支路组数不等于0,则耗能装置退出逻辑开放,否则本单元闭锁耗能装置退出操作指令;耗能装置退出操作指令开放后,如果换流器1~换流器k的直流母线电压满足耗能装置退出条件,则按照一定优先级退出一组已投耗能支路,否则耗能装置允许退出逻辑模块闭锁且不退出任一耗能支路;
所述延时单元,在交流侧耗能装置允许退出逻辑单元一次执行完毕且已退出一组耗能支路后,经过延时,重复执行交流侧耗能装置允许退出逻辑单元。
进一步的,组成所述采集单元所需直流电网的冗余吸收功率ΔP s可以通过以下任一种方式得到:
1)采集单元接收由上层设备发来的换流器1所在整个直流电网的冗余吸收功率ΔP s
2)采集单元采集换流器1~k交流侧实时吸收功率P s1~P sk,后将各站交流侧实时吸收功率相加,得到得到换流器1所在直流电网的冗余吸收功率ΔP s,即:
ΔP s=P s1+P s2+P s3+…+P sk
进一步的,所述交流侧耗能装置允许投入逻辑单元判断满足以下任一条件时,允许投入换流器1交流侧耗能装置:
1)判断换流器1所在直流电网的吸收冗余功率ΔP s>δ,则允许投入耗能装置,δ定义为功率门槛且δ≥0;
2)判断换流器1~换流器k中至少有一个换流器x 1满足直流母线电压越上限,则允许投入耗能装置,当满足以下条件任一种则判断直流母线电压越上限:
a)|U px1|>U inv_en
b)|U nx1|>U inv_en
其中|U px1|为换流器x 1的正极直流母线电压绝对值,|U nx1|为换流器x 1的负极直流母线电压绝对值,U inv_en为耗能装置投入电压定值,U inv_en>0且1≤x 1≤k。
进一步的,耗能装置配置y组耗能支路且y≥1,定义第x 3组耗能支路的容量为P x3,各组耗能支路的容量关系为P 1。。。≤P x3。。。≤P y,其中1≤x 3≤y;所述交流侧耗能装置允许投入逻辑单元按照下述步骤投入耗能支路:
1)直流电网的冗余吸收功率ΔP s≤P 1,则仅投入第一组耗能装置;
2)直流电网的冗余吸收功率ΔP s>P 1,则计算第一组到第x 3组耗能支路的总容量∑P x3;计算第一组到第x 3+1组耗能支路的总容量∑P x3+1;若∑P x3<ΔP s≤∑P x3+1,则同时投入第一组到第x 3+1组耗能支路。
进一步的,所述交流侧耗能装置允许退出逻辑单元中的所述优先级为:所述优先级满足以下条件任一:
(1)优先退出已投耗能支路中容量最小的一组耗能支路;
(2)优先退出已投耗能支路中能量最大的一组耗能支路。
进一步的,耗能装置退出逻辑单元的执行条件为下列情形任一:
(1)直流电网上各换流站最高的正极直流母线电压绝对值和最高的负极直流母线电压绝对值均不大于允许退出耗能装置电压定值,即:
max{|U p1|~|U pk|}≤U quit_en且max{|U n1|~|U nk|}≤U quit_en;其中U quit_en是允许退出耗能装置的电压定值且保证0<U quit_en<U inv_en;U inv_en为耗能装置投入电压定值,且U inv_en>0;
(2)接收的外部信号满足耗能装置退出条件。
采用上述方案后,本发明的有益效果为:
(1)本发明所述的一种换流器耗能装置控制方法及系统保证了换流器接入孤岛新能源系统运行期间,若换流器所在直流电网由于系统扰动产生吸收功率盈余,通过耗能支路的投入可以快速吸收冗余能量,保证直流电网系统扰动期间非故障换流器不因直流电网中功率冗余而闭锁。本方法提高了孤岛方式下非故障换流器运行的可靠性。
(2)本发明所述的一种换流器耗能装置控制方法及系统中耗能装置采用分组投切策略,直流电网吸收功率冗余消失后,耗能支路分组退出可以有效降低耗能装置切除过程对系统的扰动。
(3)本发明所述的一种换流器耗能装置控制方法及系统中耗能装置结构简单,控制方法容易实现,适合于实际工程应用。
附图说明
图1为带交流耗能装置的换流器拓扑示意图;
图2为带有新能源孤岛风电场的四端直流电网拓扑;
图3为换流器交流侧耗能支路允许投入逻辑模块控制方框图;
图4为换流器交流侧耗能支路允许退出逻辑模块控制方框图;
图5为一种换流器耗能装置控制系统组成结构图。
具体实施方式
下面结合附图对本发明的实施方法做详细说明:本实施方法在以本发明技术方案为前提的条件下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于以下实施例。
将本发明所述一种换流器耗能装置控制方法应用于图1所示的换流器1拓扑中,换流器1采用两台交流侧并联结构,即由正极和负极换流器交流侧并联构成双极结构。交流侧母线上同时并联有耗能装置,该耗能装置由四组耗能支路构成,每组耗能支路均为纯电阻结构。本实施例中每组耗能支路的容量分别为P 1=P 2=375MW,P 3=750MW,P 4=1500MW。
将换流器1~换流器4接入图2所示的直流电网中,仅在换流器1的交流母线侧配置耗能装置,耗能装置由四组耗能支路构成,其结构以及容量与图1示例相同,换流器1~换流器4均采用图1所示的交流侧正极和负极换流器并联的结构。本实施例中该直流电网的运行工况如下:
1)直流电网的额定直流电压为500kV;
2)换流器1采用交流电压-频率控制,双极对称满功率运行,交流侧连接新能源孤岛风电场,风电场送出功率3000MW,换流器1交流侧吸收功率P s1=3000MW;
3)换流器2采用定功率控制,双极对称满功率运行,交流侧并网连接大系统且吸收功率P s2=1500MW;
4)换流器3采用定功率控制,双极对称满功率运行,交流侧并网连接大系统且吸收功率P s3=-3000MW;
5)换流器4采用定直流电压控制,双极对称满功率运行,交流侧并网连接大系统且吸收功率P s4=-1500MW;
直流电网运行期间本耗能装置控制方法设定并处理得到以下数据:
1)设定耗能装置投入电压定值U inv_en=580kV;设置耗能装置退出电压定值U quit_en=520kV;设定换流器1所配置耗能装置的功率门槛δ=100MW;设定耗能支路退出延时定值T=40ms。
2)计算直流电网冗余吸收功率ΔP s=P s1+P s2+P s3+P s4,其中P s1~P s4分别为换流器1~4交流侧实时吸收功率;
3)通过站间通讯采集直流电网换流器1~换流器4的正极直流母线电压U p1~U p4和负极直流母线电压U n1~U n4
运行过程中,换流器4的正极换流器因故异常闭锁仅负极换流器正常运行,换流器4吸收功率P s4突变为-750MW。
此时本系统执行耗能支路投入逻辑,其流程如图3所示,本方法首先判断如下几个条件:
条件1)计算换流器4极1闭锁后直流电网冗余吸收功率ΔP s,其中:
ΔP s=P s1+P s2+P s3+P s4=3000MW+1500MW-3000MW-750MW=750MW大于功率门槛δ=100MW。
即条件1成立。
条件2)检监测到换流器1正极直流母线绝对值电压|U m1|>U inv_en=580kV。
即条件2成立。
因此耗能支路投入逻辑启动。换流器1交流侧耗能装置的第一组~第四组耗能支路的容量分别为P 1=P 2=375MW,P 3=500MW,P 4=750MW,有P 1<ΔP s=750MW≤P 1+P 2,因此耗能装置第一组和第二组耗能支路同时投入,耗能装置投入容量750MW。
耗能装置投入后,直流电网吸收的冗余功率降低,直流电网电压迅速恢复正常,此后由上层稳定控制装置切除换流器1交流侧所接部分风机,切除容量为750MW,切除后换流器1交流侧吸收功率由原先的3000MW降为2250MW。稳控切除风机且功率稳定后,本方法执行耗能装置退出策略,其流程如图4所示,首先测得投入耗能支路的组数n=2,然后本方法判断外部指令,即quit_enable置位,检测到此时直流电网上正负极母线电压均满足:
max{|U p1|~|U pk|}≤U quit_en=520kV且max{|U n1|~|U nk|}≤U quit_en=520kV;
即直流电网上各换流器正负极母线电压绝对值均小于520kV,满足退出耗能 装置的条件。
因为耗能支路的容量满足P 1=P 2=375MW,P 3=750MW,P 4=1500MW,所以第一组和第二组耗能支路容量相等且同为最小,耗能支路退出逻辑根据图4所示的耗能支路退出策略,首先退出组号小的第一组375MW耗能支路并设置n=2-1=1。后经延时T=40ms后,耗能支路退出逻辑再次判断投入耗能支路的组数n=1、quit_enable仍然置位且直流电网上各换流器正负极母线电压绝对值依然均小于520kV,耗能装置退出逻辑继续开放,再退出第二组375MW耗能支路,第二组耗能支路退出后,投入耗能支路的组数n=0,耗能装置退出逻辑闭锁,所有耗能支路均退出。至此本发明所述一种换流器耗能装置控制方法执行结束。
本发明所述一种换流器耗能装置控制系统如图5所示,该系统由采集单元、交流侧耗能装置允许投入逻辑单元、交流侧耗能装置允许退出逻辑单元和延时单元组成。将该装置运用于上述实施例中,采集单元实时采集换流器1所在直流电网的冗余吸收功率ΔP s,其中ΔP s=P s1+P s2+P s3+P s4,其中P s1~P s4分别为换流器1~4交流侧实时吸收功率。正常运行期间ΔP s接近0。交流侧耗能装置允许投入逻辑单元中,设置耗能装置投入电压定值U inv_en=580kV;设置耗能装置退出电压定值U quit_en=520kV;设定换流器1所配置耗能装置的功率门槛δ=100MW;延时单元中,设定耗能支路退出延时定值T=40ms。
直流电网运行期间,换流器4的正极换流器因故异常闭锁仅负极换流器正常运行,换流器4吸收功率P s4突变为-750MW。此时采集单元实时采集的冗余吸收功率ΔP s=P s1+P s2+P s3+P s4=3000MW+1500MW-3000MW-750MW=750MW大于功率门槛δ=100MW。此时交流侧耗能装置允许投入逻辑单元判断采集单元实时采集的冗余吸收功率ΔP s大于功率门槛δ=100MW,满足耗能装置允许投入条件1)。同样地,采集单元实时采集集换流器1~换流器k的正极直流母线电压U p1~U pk和负极直流母线电压U n1~U nk。此时交流侧耗能装置允许投入逻辑单元判断换流器1正极直流母线绝对值电压|U m1|>U inv_en=580kV,满足耗能装置允许投入条件2)。因此耗能支路投入逻辑启动。
交流侧耗能装置允许投入逻辑单元判断换流器1交流侧耗能装置的第一组~第四组耗能支路的容量分别为P 1=P 2=375MW,P 3=500MW,P 4=750MW,有P 1<ΔP s=750MW≤P 1+P 2,因此耗能装置第一组和第二组耗能支路同时投入,耗能装置投入容量750MW。
耗能装置投入后,直流电网吸收的冗余功率降低,直流电网电压迅速恢复正常,此后由上层稳定控制装置切除换流器1交流侧所接部分风机,切除容量为750MW,切除后换流器1交流侧吸收功率由原先的3000MW降为2250MW。稳控切除风机且功率稳定后,耗能装置允许退出逻辑单元启动,其工作流程如图4所示,首先测得投入耗能支路的组数n=2,然后判断外部指令,即quit_enable置位,检测到此时直流电网上正负极母线电压均满足:
max{|U p1|~|U pk|}≤U quit_en=520kV且max{|U n1|~|U nk|}≤U quit_en=520kV;即直流电网上各换流器正负极母线电压绝对值均小于520kV,满足退出耗能装置的条件。
因为耗能支路的容量满足P 1=P 2=375MW,P 3=750MW,P 4=1500MW,所以第一组和第二组耗能支路容量相等且同为最小,交流侧耗能装置允许退出逻辑单元根据图4所示的耗能支路退出策略,首先退出组号小的第一组375MW耗能支路并设置n=2-1=1。后经延时单元延时T=40ms后,交流侧耗能装置允许退出逻辑单元再次判断投入耗能支路的组数n=1、quit_enable仍然置位且直流电网上各换流器正负极母线电压绝对值依然均小于520kV,耗能装置退出逻辑继续开放,再退出第二组375MW耗能支路,第二组耗能支路退出后,投入耗能支路的组数n=0,耗能装置退出逻辑闭锁,所有耗能支路均退出。至此本发明所述一种换流器耗能装置控制系统工作结束。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (15)

  1. 一种换流器耗能装置控制方法,其特征在于,所述耗能装置布置于送端换流器1的交流侧;所述换流器1是单台或双台交流侧并联结构;所述耗能装置由一组或多组耗能支路构成;换流器1所在直流电网还包含换流器2~换流器k,其中k≥2;所述控制方法为:当直流电网工况满足耗能装置投入条件时,根据换流器1所在直流电网的冗余吸收功率ΔP s的大小选择耗能装置投入耗能支路的组数;当满足耗能装置退出条件时,再依次退出各组耗能支路。
  2. 如权利要求1所述的一种换流器耗能装置控制方法,其特征在于,所述控制方法具体包括以下步骤:
    (1)耗能装置实时采集换流器1所在直流电网的冗余吸收功率ΔP s;采集换流器1~换流器k交流侧实时吸收功率P s1~P sk;采集换流器1~换流器k的正极直流母线电压U p1~U pk;采集换流器1~换流器k的负极直流母线电压U n1~U nk
    (2)对直流电网的冗余吸收功率ΔP s、换流器1~换流器k的正极直流母线电压U p1~U pk、换流器1~换流器k的负极直流母线电压U n1~U nk进行处理,当逻辑判断允许投入换流器1交流侧耗能装置,则选择投入一组或多组耗能支路;
    (3)耗能装置投入后,监测投入耗能支路的组数n;接收上层设备发来的允许退出耗能装置指令;若耗能支路允许退出且已投入的耗能支路组数不等于0则耗能装置退出逻辑开放,否则逻辑闭锁;耗能装置退出逻辑开放后,如果直流电网中所包含的各换流器运行特性满足耗能装置退出条件,则按照一定优先级退出一组已投耗能支路,否则耗能装置退出逻辑闭锁且不退出任一耗能支路;
    (4)当(3)执行完毕后经过延时,重复执行步骤(3)。
  3. 如权利要求2所述的一种换流器耗能装置控制方法,其特征在于,步骤1)中所述直流电网的冗余吸收功率ΔP s可以通过以下任一种方式得到:
    1)通过上层设备采集换流器1所在整个直流电网的冗余吸收功率ΔP s
    2)计算得到换流器1所在直流电网的冗余吸收功率ΔP s,其中:
    ΔP s=P s1+P s2+P s3+…+P sk,P sk为换流器k交流侧实时吸收功率。
  4. 如权利要求2所述的一种换流器耗能装置控制方法,其特征在于,步骤2)中满足以下任一条件时,允许投入换流器1交流侧耗能装置:
    1)换流器1所在直流电网的冗余吸收功率ΔP s>δ,则允许投入耗能装置, δ定义为功率门槛且δ≥0;
    2)换流器1~换流器k中至少有一个换流器x 1满足直流母线电压越上限,则允许投入耗能装置,当满足以下条件任一种则判断直流母线电压越上限:
    a)|U px1|>U inv_en
    b)|U nx1|>U inv_en
    其中|U px1|为换流器x 1的正极直流母线电压绝对值,|U nx1|为换流器x 1的负极直流母线电压绝对值,U inv_en为耗能装置投入电压定值,U inv_en>0且1≤x 1≤k。
  5. 如权利要求2所述的一种换流器耗能装置控制方法,其特征在于,步骤2)中耗能装置配置y组耗能支路且y≥1,定义第x 3组耗能支路的容量为P x3,各组耗能支路的容量关系为P 1≤。。。≤P x3。。。≤P y,其中1≤x 3≤y;耗能支路的投入方法按照下述步骤:
    1)直流电网的冗余吸收功率ΔP s≤P 1,则仅投入第一组耗能装置;
    2)直流电网的冗余吸收功率ΔP s>P 1,则计算第一组到第x 3组耗能支路的总容量∑P x3,计算第一组到第x 3+1组耗能支路的总容量∑P x3+1;若∑P x3<ΔP s≤∑P x3+1,则同时投入第一组到第x 3+1组耗能支路。
  6. 如权利要求2所述的一种换流器耗能装置控制方法,其特征在于,步骤3)中所述优先级满足以下任一:
    (1)优先退出已投耗能支路中容量最小的一组耗能支路;
    (2)优先退出已投耗能支路中能量最大的一组耗能支路。
  7. 如权利要求2所述的一种换流器耗能装置控制方法,其特征在于,步骤3)中耗能装置退出条件具体为下列情况任一:
    (1)直流电网上各换流站最高的正极直流母线电压绝对值和最高的负极直流母线电压绝对值均不大于允许退出耗能装置电压定值,即:
    max{|U p1|~|U pk|}≤U quit_en且max{|U n1|~|U nk|}≤U quit_en;其中U quit_en是允许退出耗能装置的电压定值且保证0<U quit_en<U inv_en;U inv_en为耗能装置投入电压定值,且U inv_en>0。
    (2)接收的外部信号满足耗能装置退出条件。
  8. 如权利要求2所述的一种换流器耗能装置控制方法,其特征在于,步骤2)中所述的耗能支路为电阻、电感、联结变及电力电子开关器件等设备中的一种或多种组合而成的负载支路。
  9. 一种换流器耗能装置控制系统,其特征在于,该系统所控制的耗能装置布置于送端换流器1的交流侧;所述换流器1是单台或双台交流侧并联结构;所述耗能装置由一组或多组耗能支路构成;换流器1所在直流电网还包含换流器2~换流器k,其中k≥2,该系统包括以下部分:采集单元、交流侧耗能装置允许投入逻辑单元、交流侧耗能装置允许退出逻辑单元;其中:
    采集单元,采集直流电网当前工况;
    交流侧耗能装置允许投入逻辑单元,接收采集单元的电气量,当直流电网工况满足耗能装置投入条件时,根据换流器1所在直流电网的冗余吸收功率ΔP s的大小选择耗能装置投入耗能支路的组数;
    交流侧耗能装置允许退出逻辑单元,当满足耗能装置退出条件时,依次退出各组耗能支路。
  10. 如权利要求9所述的一种换流器耗能装置控制系统,其特征在于,还包括延时单元;
    所述采集单元,实时采集换流器1所在直流电网的冗余吸收功率ΔP s;采集换流器1~换流器k交流侧实时吸收功率P s1~P sk;采集换流器1~换流器k的正极直流母线电压U p1~U pk;采集换流器1~换流器k的负极直流母线电压U n1~U nk
    所述交流侧耗能装置允许投入逻辑单元,对采集单元采集的直流电网的吸收冗余功率ΔP s、换流器1~换流器k的正极直流母线电压U p1~U pk、换流器1~换流器k的负极直流母线电压U n1~U nk进行处理,当本单元通过逻辑判断允许投入换流器1交流侧耗能装置,则选择投入一组或多组耗能支路;
    所述交流侧耗能装置允许退出逻辑单元,判断耗能装置投入后,监测投入耗能支路的组数n,同时接收上层设备发来的允许退出耗能装置指令,若耗能支路允许退出且已投入的耗能支路组数不等于0,则本单元开放耗能装置退出操作指令,否则本单元闭锁耗能装置退出操作指令;耗能装置退出操作指令开放后,如果换流器1~换流器k满足耗能装置退出条件,则按照一定优先级退出一组已投耗能支路,否则耗能装置允许退出逻辑模块闭锁且不退出任一耗能支路;
    所述延时单元,在交流侧耗能装置允许退出逻辑单元一次执行完毕且已退出一组耗能支路后,经过延时时间,重复执行交流侧耗能装置允许退出逻辑单元。
  11. 如权利要求10所述的一种换流器耗能装置控制系统,其特征在于组成所述采集单元所需直流电网的冗余吸收功率ΔP s可以通过以下任一种方式得到:
    1)采集单元接收由上层设备发来的换流器1所在整个直流电网的冗余吸收功率ΔP s
    2)采集单元采集换流器1~k交流侧实时吸收功率P s1~P sk,后将各站交流侧实时吸收功率相加,得到得到换流器1所在直流电网的冗余吸收功率ΔP s,即:
    ΔP s=P s1+P s2+P s3+…+P sk
  12. 如权利要求10所述的一种换流器耗能装置控制系统,其特征在于,所述交流侧耗能装置允许投入逻辑单元判断满足以下任一条件时,允许投入换流器1交流侧耗能装置:
    1)判断换流器1所在直流电网的吸收冗余功率ΔP s>δ,则允许投入耗能装置,δ定义为功率门槛且δ≥0;
    2)判断换流器1~换流器k中至少有一个换流器x 1满足直流母线电压越上限,则允许投入耗能装置,当满足以下条件任一种则判断直流母线电压越上限:
    a)|U px1|>U inv_en
    b)|U nx1|>U inv_en
    其中|U px1|为换流器x 1的正极直流母线电压绝对值,|U nx1|为换流器x 1的负极直流母线电压绝对值,U inv_en为耗能装置投入电压定值,U inv_en>0且1≤x 1≤k。
  13. 如权利要求10所述的一种换流器耗能装置控制系统,其特征在于,耗能装置配置y组耗能支路且y≥1,定义第x 3组耗能支路的容量为P x3,各组耗能支路的容量关系为P 1≤。。。≤P x3。。。≤P y,其中1≤x 3≤y;所述交流侧耗能装置允许投入逻辑单元按照下述步骤投入耗能支路:
    1)直流电网的冗余吸收功率ΔP s≤P 1,则仅投入第一组耗能装置;
    2)直流电网的冗余吸收功率ΔP s>P 1,则计算第一组到第x 3组耗能支路的总容量∑P x3;计算第一组到第x 3+1组耗能支路的总容量∑P x3+1;若∑P x3<ΔP s≤∑P x3+1,则同时投入第一组到第x 3+1组耗能支路。
  14. 如权利要求10所述的一种换流器耗能装置控制系统,其特征在于,所述交流侧耗能装置允许退出逻辑单元中的所述优先级满足以下条件任一:
    (1)优先退出已投耗能支路中容量最小的一组耗能支路;
    (2)优先退出已投耗能支路中能量最大的一组耗能支路。
  15. 如权利要求10所述的一种换流器耗能装置控制系统,其特征在于,所述交流侧耗能装置允许退出逻辑单元中,耗能装置退出条件满足下列情形任一:
    (1)直流电网上各换流站最高的正极直流母线电压绝对值和最高的负极直流母线电压绝对值均不大于允许退出耗能装置电压定值,即:
    max{|U p1|~|U pk|}≤U quit_en且max{|U n1|~|U nk|}≤U quit_en;其中U quit_en是允许退出耗能装置的电压定值且保证0<U quit_en<U inv_en;U inv_en为耗能装置投入电压定值,且U inv_en>0;
    (2)接收的外部信号满足耗能装置退出条件。
PCT/CN2018/114377 2017-11-14 2018-11-07 一种换流器耗能装置控制方法及系统 WO2019096048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711120818.7A CN107834588A (zh) 2017-11-14 2017-11-14 一种换流器耗能装置控制方法及系统
CN201711120818.7 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019096048A1 true WO2019096048A1 (zh) 2019-05-23

Family

ID=61654391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114377 WO2019096048A1 (zh) 2017-11-14 2018-11-07 一种换流器耗能装置控制方法及系统

Country Status (2)

Country Link
CN (1) CN107834588A (zh)
WO (1) WO2019096048A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834588A (zh) * 2017-11-14 2018-03-23 南京南瑞继保电气有限公司 一种换流器耗能装置控制方法及系统
CN109687437B (zh) * 2018-12-18 2020-08-11 国家电网有限公司 一种柔性直流输电的交流耗能装置的电气仿真方法
CN109861269A (zh) * 2019-03-29 2019-06-07 西安许继电力电子技术有限公司 一种分布式直流耗能装置的投切控制系统及方法
CN110932304B (zh) * 2019-11-08 2021-10-01 南京南瑞继保工程技术有限公司 一种直流耗能装置控制系统及控制方法
CN113922406B (zh) * 2020-07-10 2024-04-05 南京南瑞继保电气有限公司 一种柔性直流电网的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743115A (zh) * 2016-02-29 2016-07-06 全球能源互联网研究院 用于直流输电换相失败故障的并联防御及修复装置和方法
CN106130057A (zh) * 2016-07-22 2016-11-16 全球能源互联网研究院 一种具备平抑功率波动功能的直流输电系统
CN106159988A (zh) * 2016-09-13 2016-11-23 南京南瑞继保电气有限公司 一种暂态能量耗散装置控制系统
CN107181274A (zh) * 2017-05-24 2017-09-19 南京南瑞继保电气有限公司 一种新能源接入柔性直流电网的方法
CN107834588A (zh) * 2017-11-14 2018-03-23 南京南瑞继保电气有限公司 一种换流器耗能装置控制方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299526A (zh) * 2011-09-09 2011-12-28 南车株洲电力机车研究所有限公司 一种双馈式风力发电机组低电压穿越控制方法及系统装置
CN104092247A (zh) * 2014-07-04 2014-10-08 镇江船舶电器有限责任公司 一种适用于离网风机的风电变流装置
CN105391081A (zh) * 2014-09-09 2016-03-09 艾默生网络能源有限公司 一种直流母线斩波电路及其控制方法、装置和风电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743115A (zh) * 2016-02-29 2016-07-06 全球能源互联网研究院 用于直流输电换相失败故障的并联防御及修复装置和方法
CN106130057A (zh) * 2016-07-22 2016-11-16 全球能源互联网研究院 一种具备平抑功率波动功能的直流输电系统
CN106159988A (zh) * 2016-09-13 2016-11-23 南京南瑞继保电气有限公司 一种暂态能量耗散装置控制系统
CN107181274A (zh) * 2017-05-24 2017-09-19 南京南瑞继保电气有限公司 一种新能源接入柔性直流电网的方法
CN107834588A (zh) * 2017-11-14 2018-03-23 南京南瑞继保电气有限公司 一种换流器耗能装置控制方法及系统

Also Published As

Publication number Publication date
CN107834588A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
WO2019096048A1 (zh) 一种换流器耗能装置控制方法及系统
CN101345419B (zh) 串联电压质量调节器及快速投入和切除方法
CN103368203B (zh) 光伏逆功率闭环控制系统及方法
CN107181274A (zh) 一种新能源接入柔性直流电网的方法
CN103916041B (zh) 级联储能变流器多链节冗余控制方法
WO2018098673A1 (zh) 一种双极型vsc-hvdc和upfc混合拓扑结构及其运行方法
CN109546656A (zh) 一种耗能支路及控制方法
WO2021189754A1 (zh) 一种双联接变压器海上风电直流送出系统及控制方法
CN107980194A (zh) 冗余住宅电源
CN103560541A (zh) 一种交直流混合微网故障穿越控制装置及方法
CN103001254A (zh) 一种交直流混合微网系统
CN105656051A (zh) 一种暂态能量耗散装置
CN103904667B (zh) 一种海岛独立电网发电设备故障后的快速稳定控制方法
CN210780230U (zh) 一种用于大功率离网转并网的开关装置
CN205724930U (zh) 一种混合逆变器系统
CN206349764U (zh) 光伏三相并网单相离网自动切换装置
CN107359638B (zh) 一种具备无级调节直流电压的多端口直流-直流变压系统拓扑
Xin et al. AC fault ride-through coordinated control strategy of LCC-MMC hybrid DC transmission system connected to passive networks
CN205509501U (zh) 一种暂态能量耗散装置
CN106972541A (zh) 一种基于混合型子模块mmc的配电网多端柔性互联开关
CN113964864A (zh) 柔直并网系统受端换流站孤岛故障穿越控制方法及系统
Xiaoyu et al. A service restoration method for active distribution network
Li et al. Study on AC-side dynamic braking-based fault ride-through control for islanded renewable energy system with grid-connected VSC-HVDC transmission
KR20170074631A (ko) 스마트 그리드 환경에서 에너지 분전 시스템
CN203312829U (zh) 可实现离网模式与并网模式的平滑切换的逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878233

Country of ref document: EP

Kind code of ref document: A1