WO2021103483A1 - 风冷设备的控制方法及风冷设备 - Google Patents

风冷设备的控制方法及风冷设备 Download PDF

Info

Publication number
WO2021103483A1
WO2021103483A1 PCT/CN2020/095499 CN2020095499W WO2021103483A1 WO 2021103483 A1 WO2021103483 A1 WO 2021103483A1 CN 2020095499 W CN2020095499 W CN 2020095499W WO 2021103483 A1 WO2021103483 A1 WO 2021103483A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heating wire
temperature
compartment
control
Prior art date
Application number
PCT/CN2020/095499
Other languages
English (en)
French (fr)
Inventor
王德森
Original Assignee
青岛海尔特种电冰柜有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰柜有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰柜有限公司
Priority to EP20893899.3A priority Critical patent/EP4067795A4/en
Priority to US17/778,385 priority patent/US20220397331A1/en
Priority to JP2022530735A priority patent/JP7348400B2/ja
Priority to KR1020227016432A priority patent/KR20220079678A/ko
Publication of WO2021103483A1 publication Critical patent/WO2021103483A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Definitions

  • the invention belongs to the technical field of air-cooled equipment, and specifically relates to a control method of air-cooled equipment and air-cooled equipment.
  • a single evaporator + double evaporating fan is usually used.
  • the compressor runs and the corresponding evaporator fan runs.
  • the mutual cooling is serious, and the temperature can not be constant at a low ambient temperature.
  • the thermostatic control can ensure the storage and the best taste of the storage products such as wine.
  • the existing technology usually adopts the control switching method of double evaporator + double evaporator fan + two heating wires + solenoid valve.
  • the solenoid valve switches the first compartment, the first compartment evaporator cools, and the first compartment evaporator fan runs;
  • the solenoid valve switches the second compartment,
  • the two-compartment evaporator cools, and the second-compartment evaporating fan runs;
  • the two compartments switch back and forth, and when each compartment needs to be heated, the heating wire in the compartment starts and the evaporating fan runs; this method can achieve constant temperature control .
  • problems such as complex structure design and cumbersome production process.
  • the purpose of the present invention is to provide a control method for air-cooled equipment and air-cooled equipment, which adopts a structural design of single evaporator + single evaporator fan + two air doors + three heating wires, and combines the control of compressor, evaporating fan, and heating wire.
  • the control of the relationship with the operation of the damper with a simplified structural design and process, realizes a single-air-cooling system with dual-temperature zone constant temperature control.
  • the present invention adopts the following technical solutions to achieve:
  • the air-cooled equipment includes: a box body; an inner liner installed in the box body, the inner cavity of which is divided into a first compartment and a second compartment; and a first heating The wire is installed in the first room; the second heating wire is installed in the second room; the single-cycle refrigeration system includes a circulating air duct, a compressor and an evaporator; the evaporator is installed with a device for detecting the defrosting temperature Defrost sensor; evaporation fan, installed on the outside of the inner tank; a first damper, opened in the first compartment, connected to the circulating air duct; a second damper, opened in the second compartment, connected to the circulation The air duct; the control method includes: controlling the operation of the compressor and the evaporating fan, opening the first air door and closing the second air door, and starting the second heating wire; when the first compartment reaches the set cooling temperature, controlling the compressor to stop , And delay until the defrosting temperature reaches the first set temperature to close
  • control method further includes: controlling the evaporating fan to stop when the defrosting temperature reaches the first set temperature; and, when the defrosting temperature reaches the second set temperature, controlling the evaporating fan to run until the first set temperature.
  • the two rooms meet the heating temperature.
  • the air-cooled equipment further includes: a compensation heating wire arranged at the rear of the evaporator; the control method further includes: starting the compensation heating wire after the compressor is stopped.
  • starting the compensation heating wire is specifically: starting the compensation heating wire according to a 100% energization rate.
  • control method further includes: opening the first air door and the second air door, and controlling the operation of the evaporation fan; and starting the first heating wire, the second heating wire and the compensation heating wire.
  • An air-cooled device comprising: a box body; an inner tank installed in the box body, the inner cavity of which is divided into a first chamber and a second chamber; a first heating wire installed in the first chamber
  • the second heating wire is installed in the second room
  • the single-cycle refrigeration system includes a circulating air duct, a compressor and an evaporator
  • the evaporator is equipped with a defrost sensor for detecting the defrost temperature
  • an evaporator fan is installed On the outside of the inner liner; further comprising: a first air door opened in the first room and connected to the circulating air duct; a second air door opened in the second room and connected to the circulating air channel; single room
  • the air cooling/heating control module is used to control the operation of the compressor and the evaporation fan, open the first air door and close the second air door, and start the second heating wire; when the first compartment reaches the set cooling temperature, control the compressor Shut down and delay until the defrosting temperature reaches the first set
  • the single-chamber air-cooling/heating control module includes: an evaporating fan control unit, configured to: control the evaporating fan to stop when the defrosting temperature reaches the first set temperature; and, when the defrosting temperature reaches the At the second set temperature, control the evaporation fan to run until the second compartment meets the heating temperature.
  • an evaporating fan control unit configured to: control the evaporating fan to stop when the defrosting temperature reaches the first set temperature; and, when the defrosting temperature reaches the At the second set temperature, control the evaporation fan to run until the second compartment meets the heating temperature.
  • the air-cooled device further includes: a compensation heating wire, which is arranged at the rear of the evaporator; and a compensation heating control module, which is used to start the compensation heating wire after the compressor is stopped.
  • the compensation heating control module is specifically configured to: start the compensation heating wire according to a 100% energization rate.
  • the air-cooled device further includes: a full heating control module, which is used to: open the first air door and the second air door, and control the operation of the evaporating fan; and start the first heating wire, the second heating wire, and the compensation heating wire .
  • a full heating control module which is used to: open the first air door and the second air door, and control the operation of the evaporating fan; and start the first heating wire, the second heating wire, and the compensation heating wire .
  • the advantages and positive effects of the present invention are: in the air-cooled equipment control method and air-cooled equipment proposed by the present invention, a single-cycle refrigeration system is adopted, and the structure is composed of a circulating air duct, a compressor, and a single evaporator.
  • the first and second dampers which are respectively opened in the first and second compartments and connected to the circulating air duct, are realized by the compressor, the single evaporating fan, and the compressor and the evaporating fan when the two rooms need to be cooled.
  • the two compartments can be separately controlled by temperature.
  • the single air cooling system is compared with the existing dual evaporator + dual evaporator fan that can achieve constant temperature control. +Two heating wires + solenoid valve, the structure design and process are more simplified, and the simplified structure and process design realizes the constant temperature control of the air-cooled equipment with single air cooling system and dual temperature zones.
  • Figure 1 is a schematic structural diagram of an embodiment of an air-cooled device proposed by the present invention
  • Fig. 3 is a functional architecture diagram of an embodiment of the air-cooled device proposed by the present invention.
  • the air-cooled equipment proposed by the present invention includes a box body 1 and an inner liner 2.
  • the inner liner 2 is installed in the box body 1, and the cavity is divided into a first compartment 3 and a second compartment 4 , A first heating wire 5 is installed in the first compartment 3, and a second heating wire 6 is installed in the second compartment 4;
  • the air-cooled equipment adopts a single-cycle refrigeration system to achieve refrigeration, and the single-cycle refrigeration system includes a circulating air duct 7.
  • the compressor 8 and the evaporator 9 are arranged on the rear side outside the inner liner 2; an evaporation fan 10 is also arranged on the rear side outside the inner liner 2, and the evaporator fan 10 is installed on the defrosting temperature to detect the defrosting temperature.
  • a sensor (not shown in the figure); a first damper 11 is provided on the first compartment 3, and the first damper 11 is connected to the circulating air duct 7; a second damper 12 is opened on the second compartment 4, The second damper 12 is connected to the circulating air duct 7.
  • the present invention proposes its control method, which aims to achieve dual temperature constant temperature control with a single-cycle refrigeration system. Specifically, as shown in Figure 2, it includes the following steps:
  • Step S21 Start the compressor and the evaporation fan, and open the first damper and the second damper.
  • Step S22 It is judged whether the cooling temperature of the two compartments both meet the cooling requirement.
  • step S23 control the compressor to stop, open the first and second air doors, and control the evaporator fan to continue running, And start the first heating wire and the second heating wire.
  • the first heating wire 5 of the first compartment 3 and the second heating wire 6 of the second compartment 4 are activated respectively.
  • a compensation heating wire 13 is also provided on the rear side of the evaporator 9.
  • the operation of the compensation heating wire 13 accelerates the defrosting time of the evaporator 9 and rapidly improves the evaporation
  • the surface temperature of the evaporator 9 is used to compensate and heat the constant temperature control in the compartment through the operation of the evaporator fan 10. Specifically, when the compressor 8 stops and enters the constant temperature control, the evaporator fan 10 is kept running, and the first damper 11 and the second damper are maintained.
  • the compensation heating wire 13 is activated.
  • the heat of the compensation heating wire 13 enters the first room through the first air door 11 through the action of the evaporation fan 10
  • the chamber 3 enters the second chamber 4 through the second damper 12, and the temperature of the two chambers is compensated respectively.
  • step S23 When situation 2 occurs first, or in the constant temperature adjustment process of step S23, when one room needs to be heated and the other room needs to be cooled, the first room 3 needs to be cooled and the second room 4 needs to be heated. For example, execute
  • Step S24 Control the operation of the compressor and the evaporation fan, open the first damper and close the second damper, and start the second heating wire.
  • step S25 is executed: controlling the compressor to stop, and delaying to close the first damper when the defrosting temperature reaches the first set temperature.
  • the compressor 8 is controlled to stop, and the defrosting temperature detected by the defrosting sensor is obtained.
  • the defrosting temperature reaches the first set temperature T1, the first damper 11 is closed.
  • the compensation heating wire 13 is immediately started to assist the evaporator 9 to defrost, so as to increase the surface temperature of the evaporator 9 as soon as possible, and prepare for the subsequent temperature adjustment of the compartment.
  • Step S26 After the first damper is closed, the second damper is delayed until the defrosting temperature reaches the second set temperature.
  • the second compartment 4 continues to heat to obtain the defrosting temperature detected by the defrosting sensor.
  • the defrosting temperature reaches the second set temperature T2
  • the second damper 12 is opened, because the compressor 8 is stopped.
  • the compensation heating wire 13 has been turned on, and the surface defrosting temperature of the evaporator 9 is relatively high.
  • the heating of the second compartment 4 can be compensated for. Speed up the constant temperature adjustment of the second compartment 4.
  • Step S27 When the second chamber meets the heating temperature, the second heating wire is turned off.
  • the evaporating fan 10 For the control of the evaporating fan 10, when the defrosting temperature reaches the first set temperature T1, that is, when the first air door 11 is closed in step S25, the evaporating fan 10 is controlled to stop. At this time, the compensation heating wire 13 is turned on and the evaporator 9 Implement auxiliary defrosting to increase the defrosting temperature as soon as possible; when the defrosting temperature reaches the second set temperature T2, that is, after the second damper is opened in step S26, the evaporator fan 10 is restarted to operate. Through the action of the evaporator fan 10, The heating of the second compartment 4 is compensated more quickly, and the constant temperature adjustment of the second compartment 4 is further accelerated until the second compartment is closed after meeting the heating temperature.
  • the two compartments can be cooled separately, heated at the same time, and heated one at the same time.
  • the implementation of constant temperature adjustment is based on the implementation of a single-cycle refrigeration system, so the structural design and process are more simplified . With simplified structure and process design, the constant temperature control of air-cooled equipment with single air cooling system and dual temperature zones is realized, which is more suitable for industrial applications.
  • step S26 when the compressor 8 restarts, the second damper 12 needs to be closed immediately, that is, as long as the compressor 8 is running, the damper of the compartment currently being heated needs to be closed immediately to avoid the influence of cold air on heating.
  • first heating wire 5 and second heating wire 6 After the above-mentioned first heating wire 5 and second heating wire 6 are started, they both operate according to the energization rate required by the heating gear, and for the compensation heating wire 13 after being turned on, they operate at a 100% energization rate.
  • the air-cooled equipment proposed by the present invention also includes a full-air-cooling control module 31, a full-heating control module 32, and a single-chamber air-cooling/heating control module 33;
  • the air-cooling control module 31 is used to control the operation of the compressor 8 and the evaporating fan 10, and to open the first damper 22 and the second damper 12;
  • the full heating control module 32 is used to control the compressor 8 to stop and open the first damper 11 and the second damper.
  • the fan 10 runs, opens the first air door 11 and closes the second air door 12, and starts the second heating wire 6; when the first compartment 3 reaches the set refrigeration temperature, the compressor 8 is controlled to stop and delay until the defrost temperature reaches Close the first damper 11 at the first set temperature T1; close the second heating wire 12 when the second compartment 4 meets the heating temperature; and delay until the defrosting temperature reaches the second set temperature after the first damper 11 is closed Open the second damper 12 at T2.
  • the single-chamber air-cooling/heating control module 33 includes an evaporating fan control unit 331 for controlling the evaporating fan 10 to stop when the defrosting temperature reaches the first set temperature T1; and, when the defrosting temperature reaches the second set temperature T2 , Control the evaporation fan 10 to run until the second compartment 4 meets the heating temperature.
  • the air-cooled equipment proposed by the present invention also includes a compensation heating control module 34 for starting the compensation heating wire 13 after the compressor 8 is stopped, specifically, starting the compensation heating wire at a 100% energization rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种风冷设备的控制方法及风冷设备,风冷设备采用单蒸发器、单蒸发风机、两个风门和三个加热丝的结构设计,结合对压缩机、蒸发风机、加热丝和风门的运作关系的控制,使得两个间室可通过压缩机和蒸发风机运行并打开第一风门和第二风门实现同时制冷;可通过压缩机停机、蒸发风机运行、打开第一风门和第二风门,以及启动第一加热丝、第二加热丝和补偿加热丝实现同时加热;可通过压缩机和蒸发风机运行,打开第一风门关闭第二风门,启动第二加热丝,结合制冷、加热要求以及化霜温度等条件的限定,实现单室制冷同时单室加热;结合上述三种方式的控制,实现对单制冷系统双温区风冷设备的恒温控制。

Description

风冷设备的控制方法及风冷设备 技术领域
本发明属于风冷设备技术领域,具体地说,是涉及一种风冷设备的控制方法及风冷设备。
背景技术
诸如酒柜等的风冷设备中,对于双温区产品,通常采用采用单蒸发器+双蒸发风机的方式实现,当某个间室需要制冷时,压缩机运行,对应的蒸发器风机运行实现对应间室的制冷;这种方式虽然结构简单,但相互窜冷严重,无法实现低环温下的温度恒定。
技术问题
恒温控制能够保证诸如葡萄酒等存品的存储以及最佳口感,为实现恒温控制,现有技术通常采用双蒸发器+双蒸发器风机+两个加热丝+电磁阀进行控制切换的方式实现,当第一间室需要制冷时,电磁阀切换第一间室,第一间室蒸发器制冷,第一间室蒸发风机运行;当第二间室需要制冷时,电磁阀切换第二间室,第二间室蒸发器制冷,第二间室蒸发风机运行;两个间室来回切换,每个间室需要加热时,该间室内的加热丝启动,蒸发风机运行;这种方式虽然能够实现恒温控制,但存在结构设计复杂、生产工艺繁琐等问题。
技术解决方案
本发明的目的在于提供一种风冷设备的控制方法及风冷设备,采用单蒸发器+单蒸发风机+两个风门+三个加热丝的结构设计,结合对压缩机、蒸发风机、加热丝和风门的运作关系的控制,以简化的结构设计和工艺,实现一种单风冷系统双温区的恒温控制。
为解决上述技术问题,本发明采用以下技术方案予以实现:
提出一种风冷设备的控制方法,所述风冷设备包括:箱体;内胆,安装于所述箱体中,其内腔被分隔为第一间室和第二间室;第一加热丝,安装于第一间室内;第二加热丝,安装于第二间室内;单循环制冷系统,包括循环风道、压缩机和蒸发器;所述蒸发器上安装有用于检测化霜温度的化霜传感器;蒸发风机,安装于内胆外侧;第一风门,开设于所述第一间室,连接所述循环风道;第二风门,开设于所述第二间室,连接所述循环风道;所述控制方法包括:控制压缩机和蒸发风机运行,打开第一风门并关闭第二风门,以及启动第二加热丝;在第一间室达到设定制冷温度时,控制压缩机停机,并延迟至化霜温度达到第一设定温度时关闭第一风门;在第二间室满足加热温度时,关闭第二加热丝;以及在第一风门关闭后延迟至化霜温度达到第二设定温度时打开第二风门。
进一步的,所述控制方法还包括:在化霜温度达到所述第一设定温度时控制蒸发风机停机;以及,在化霜温度达到所述第二设定温度时,控制蒸发风机运行直至第二间室满足加热温度。
进一步的,所述风冷设备还包括:补偿加热丝,设置于所述蒸发器后部;所述控制方法还包括:在压缩机停机后启动所述补偿加热丝。
进一步的,启动所述补偿加热丝,具体为:按照100%通电率启动所述补偿加热丝。
进一步的,所述控制方法还包括:打开第一风门和第二风门,并控制蒸发风机运行;启动第一加热丝、第二加热丝和补偿加热丝。
提出一种风冷设备,包括:箱体;内胆,安装于所述箱体中,其内腔被分隔为第一间室和第二间室;第一加热丝,安装于第一间室内;第二加热丝,安装于第二间室内;单循环制冷系统,包括循环风道、压缩机和蒸发器;所述蒸发器上安装有用于检测化霜温度的化霜传感器;蒸发风机,安装于内胆外侧;还包括:第一风门,开设于所述第一间室,连接所述循环风道;第二风门,开设于所述第二间室,连接所述循环风道;单室风冷/加热控制模块,用于:控制压缩机和蒸发风机运行,打开第一风门并关闭第二风门,以及启动第二加热丝;在第一间室达到设定制冷温度时,控制压缩机停机,并延迟至化霜温度达到第一设定温度时关闭第一风门;在第二间室满足加热温度时,关闭第二加热丝;以及在第一风门关闭后延迟至化霜温度达到第二设定温度时打开第二风门。
进一步的,所述单室风冷/加热控制模块包括:蒸发风机控制单元,用于:在化霜温度达到所述第一设定温度时控制蒸发风机停机;以及,在化霜温度达到所述第二设定温度时,控制蒸发风机运行直至第二间室满足加热温度。
进一步的,所述风冷设备还包括:补偿加热丝,设置于所述蒸发器后部;补偿加热控制模块,用于在压缩机停机后启动所述补偿加热丝。
进一步的,所述补偿加热控制模块,具体用于:按照100%通电率启动所述补偿加热丝。
进一步的,所述风冷设备还包括:全加热控制模块,用于:打开第一风门和第二风门,并控制蒸发风机运行;以及,启动第一加热丝、第二加热丝和补偿加热丝。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明提出的风冷设备的控制方法及风冷设备中,采用单循环制冷系统,结构上以循环风道、压缩机、单蒸发器、单蒸发风机和分别开设于第一间室和第二间室并均连接循环风道的第一风门和第二风门实现,若双间室均需制冷时,启动压缩机和蒸发风机,开启两个风门;若双间室均需加热时,控制压缩机停机并控制蒸发风机运行,关闭两个风门,以及开启间室内的加热丝;若一个间室需制冷而另一个间室需加热时,开启制冷间室的风门,关闭加热间室的风门,开启加热间室的加热丝,当制冷间室达到设定制冷温度时,控制压缩机停机,并延迟至化霜温度达到第一设定温度时关闭制冷间室的风门,当加热间室满足加热温度时,关闭其加热丝,并在制冷间室的风门关闭后延迟至化霜温度达到第二设定温度时开启加热间室的风门;结合上述三种方式的控制,在单风冷系统的结构上可分别对两个间室单独实施恒温控制,单风冷系统相比现有能够实现恒温控制的双蒸发器+双蒸发风机+两个加热丝+电磁阀的方式,结构设计和工艺均更加简化,以简化的结构和工艺设计实现了单风冷系统双温区风冷设备的恒温控制。
附图说明
图1 为本发明提出的风冷设备一个实施例的结构示意图;
图2为本发明提出的风冷设备的控制方法的一个实施例流程图;
图3本发明提出的风冷设备一个实施例的功能架构图。
本发明的最佳实施方式
下面结合附图对本发明的具体实施方式作进一步详细的说明。
本发明提出的风冷设备,如图1所示,包括箱体1和内胆2,内胆2安装于箱体1中,期内腔被分隔为第一间室3和第二间室4,第一间室3内安装有第一加热丝5,第二间室4内安装有第二加热丝6;该风冷设备采用单循环制冷系统实现制冷,该单循环制冷系统包括循环风道7、压缩机8和蒸发器9,设置于内胆2外的后侧;内胆2外的后侧还设置一部蒸发风机10,在蒸发风机10上安装有用于检测化霜温度的化霜传感器(图中未示出);在第一间室3开上设有第一风门11,该第一风门11与循环风道7连接;在第二间室4上开设有第二风门12,该第二风门12与循环风道7连接。
在如图1提出的风冷设备的架构上,本发明提出其控制方法,旨在以单循环制冷系统实现双温度恒温控制,具体的,如图2所示,包括如下步骤:
步骤S21:启动压缩机和蒸发风机,打开第一风门和第二风门。
以该风冷设备启动制冷开始为例,在该风冷设备开机后,首选启动单循环制冷系统,并打开第一风门11和第二风门12,分别对第一间室3和第二间室4实施制冷。
步骤S22:判断两个间室的制冷温度是否均达到制冷要求。
在两个间室分别制冷期间,分别判断两个间室的制冷温度是否达到各自的制冷要求,在制冷一段时间后,两个间室的制冷存在两种情况:1、均达到制冷要求,均需要进入恒温调节;2、一个间室已达到其制冷要求需要进入恒温调节,另一个间室未达到其制冷要求,需要继续制冷。
基于上述两种情况,本发明提出的控制方法分别执行不同的步骤,当情况1先发生时,执行步骤S23:控制压缩机停机,打开第一风门和第二风门,并控制蒸发风机继续运行,以及启动第一加热丝和第二加热丝。
在两个间室均达到其制冷要求后,通过该步骤的控制,分别启动第一间室3的第一加热丝5,以及第二间室4的第二加热丝6,对两个间室实施恒温控制;在本发明实施例中,在蒸发器9后侧还设置有一个补偿加热丝13,在恒温控制时,通过补偿加热丝13的运行加速蒸发器9的化霜时间,迅速提高蒸发器9表面温度,通过蒸发风机10的运行对间室内的恒温控制实施补偿加热,具体的,在压缩机8停机进入恒温控制时,保持蒸发风机10的运行,保持第一风门11和第二风门12打开的状态,以及启动补偿加热丝13,两个间室在通过其自己的加热丝实施恒温调节时,补偿加热丝13的热量通过蒸发风机10的作用,经第一风门11进入第一间室3,经第二风门12进入第二间室4,分别对两个间室的温度实施补偿。
当情况2先发生,或者在步骤S23的恒温调节过程中,均发生一个间室需要加热,另一个间室需要制冷的情况时,以第一间室3需要制冷,第二间室4需要加热为例,执行
步骤S24:控制压缩机和蒸发风机运行,打开第一风门并关闭第二风门,以及启动第二加热丝。
启动压缩机8,蒸发风机10继续运行,打开第一风门11并关闭第二风门12,保持第二加热丝6启动运行,单循环制冷系统运行的冷风经第一风门11进入第一间室3,对第一间室3制冷,而因为第二风门12关闭,则第二间室2内不进入冷风,继续经第二加热丝6的运行加热,这期间,当第一间室3再次达到其设定制冷温度时,执行步骤S25:控制压缩机停机,并延迟至化霜温度达到第一设定温度时关闭第一风门。
在第一间室3再次达到其制冷要求后,控制压缩机8停机,获取化霜传感器检测的化霜温度,当化霜温度达到第一设定温度T1时,关闭第一风门11。
压缩机8停机后,即刻启动补偿加热丝13,辅助蒸发器9化霜,以便尽快提高蒸发器9的表面温度,为后续对间室的恒温调节做准备。
步骤S26:在第一风门关闭后延迟至化霜温度达到第二设定温度时开启第二风门。
第一风门11关闭后,第二间室4继续加热,获取化霜传感器检测的化霜温度,当化霜温度达到第二设定温度T2时,开启第二风门12,由于在压缩机8停机后至第二风门12开启的时间段内,补偿加热丝13已经开启运行,蒸发器9表面化霜温度较高,当第二风门12开启后,能够对第二间室4的加热进行补偿,以加快对第二间室4的恒温调节。
步骤S27:在第二间室满足加热温度时,关闭第二加热丝。
对于蒸发风机10的控制,当化霜温度达到第一设定温度T1时,也即步骤S25中关闭第一风门11时,控制蒸发风机10停机,此时补偿加热丝13已开启,对蒸发器9实施辅助化霜,以尽快提高化霜温度;当化霜温度达到第二设定温度T2时,也即步骤S26第二风门开启后,再次启动蒸发风机10运行,通过蒸发风机10的作用,更快速的对第二间室4的加热进行补偿,进一步加快对第二间室4的恒温调节,直至第二间室满足加热温度后关闭。
此后,若两个间室在恒温控制过程中,反复需要制冷或加热时,结合上述步骤给出的控制方案,两个间室通过同时制冷、同时加热、一个制冷一个加热的方式,均可单独实施恒温调节,与现有能够实现恒温控制的双蒸发器+双蒸发风机+两个加热丝+电磁阀的方式相比,由于本发明方案基于单循环制冷系统实现,结构设计和工艺均更加简化,以简化的结构和工艺设计实现了单风冷系统双温区风冷设备的恒温控制,更适于产业化应用。
上述步骤S26之后,在压缩机8再次启动时,需立即关闭第二风门12,也即,只要压缩机8运行,需立刻关闭当前正在加热的间室的风门,以避免冷风对加热的影响。
上述第一加热丝5和第二加热丝6启动后,均按照加热档位要求的通电率运行,对于补偿加热丝13则在开启后,按照100%通电率运行。
基于上述提出的风冷设备的控制方法,如图3所示,本发明提出的风冷设备还包括全风冷控制模块31、全加热控制模块32和单室风冷/加热控制模块33;全风冷控制模块31用于控制压缩机8和蒸发风机10运行,以及打开第一风门22和第二风门12;全加热控制模块32,用于控制压缩机8停机,打开第一风门11和第二风门12,并控制蒸发风机10运行;以及,启动第一加热丝5、第二加热丝6和补偿加热丝13运行;单室风冷/加热控制模块33,用于控制压缩机8和蒸发风机10运行,打开第一风门11并关闭第二风门12,以及启动第二加热丝6;在第一间室3达到设定制冷温度时,控制压缩机8停机,并延迟至化霜温度达到第一设定温度T1时关闭第一风门11;在第二间室4满足加热温度时,关闭第二加热丝12;以及在第一风门11关闭后延迟至化霜温度达到第二设定温度T2时打开第二风门12。
单室风冷/加热控制模块33包括蒸发风机控制单元331,用于在化霜温度达到第一设定温度T1时控制蒸发风机10停机;以及,在化霜温度达到第二设定温度T2时,控制蒸发风机10运行直至第二间室4满足加热温度。
本发明提出的风冷设备还包括补偿加热控制模块34,用于在压缩机8停机后启动补偿加热丝13,具体的,按照100%通电率启动补偿加热丝。
具体风冷设备实现恒温控制的控制方法已经在上述详述,此处不予赘述。
应该指出的是,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 风冷设备的控制方法,所述风冷设备包括:
    箱体;
    内胆,安装于所述箱体中,其内腔被分隔为第一间室和第二间室;
    第一加热丝,安装于第一间室内;
    第二加热丝,安装于第二间室内;
    单循环制冷系统,包括循环风道、压缩机和蒸发器;所述蒸发器上安装有用于检测化霜温度的化霜传感器;
    蒸发风机,安装于内胆外侧;
    第一风门,开设于所述第一间室,连接所述循环风道;
    第二风门,开设于所述第二间室,连接所述循环风道;
    其特征在于,所述控制方法包括:
    控制压缩机和蒸发风机运行,打开第一风门并关闭第二风门,以及启动第二加热丝;
    在第一间室达到设定制冷温度时,控制压缩机停机,并延迟至化霜温度达到第一设定温度时关闭第一风门;
    在第二间室满足加热温度时,关闭第二加热丝;以及在第一风门关闭后延迟至化霜温度达到第二设定温度时打开第二风门。
  2. 根据权利要求1所述的风冷设备的控制方法,其特征在于,所述控制方法还包括:
    在化霜温度达到所述第一设定温度时控制蒸发风机停机;以及,
    在化霜温度达到所述第二设定温度时,控制蒸发风机运行直至第二间室满足加热温度。
  3. 根据权利要求1所述的风冷设备的控制方法,其特征在于,所述风冷设备还包括:
    补偿加热丝,设置于所述蒸发器后部;
    所述控制方法还包括:
    在压缩机停机后启动所述补偿加热丝。
  4. 根据权利要求3所述的风冷设备的控制方法,其特征在于,启动所述补偿加热丝,具体为:
    按照100%通电率启动所述补偿加热丝。
  5. 根据权利要求1所述的风冷设备的控制方法,其特征在于, 所述控制方法还包括:
    打开第一风门和第二风门,并控制蒸发风机运行;
    启动第一加热丝、第二加热丝和补偿加热丝。
  6. 一种风冷设备,包括:
    箱体;
    内胆,安装于所述箱体中,其内腔被分隔为第一间室和第二间室;
    第一加热丝,安装于第一间室内;
    第二加热丝,安装于第二间室内;
    单循环制冷系统,包括循环风道、压缩机和蒸发器;所述蒸发器上安装有用于检测化霜温度的化霜传感器;
    蒸发风机,安装于内胆外侧;
    其特征在于,还包括:
    第一风门,开设于所述第一间室,连接所述循环风道;
    第二风门,开设于所述第二间室,连接所述循环风道;
    单室风冷/加热控制模块,用于:控制压缩机和蒸发风机运行,打开第一风门并关闭第二风门,以及启动第二加热丝;在第一间室达到设定制冷温度时,控制压缩机停机,并延迟至化霜温度达到第一设定温度时关闭第一风门;在第二间室满足加热温度时,关闭第二加热丝;以及在第一风门关闭后延迟至化霜温度达到第二设定温度时打开第二风门。
  7. 根据权利要求6所述的风冷设备,其特征在于,所述单室风冷/加热控制模块包括:
    蒸发风机控制单元,用于:在化霜温度达到所述第一设定温度时控制蒸发风机停机;以及,在化霜温度达到所述第二设定温度时,控制蒸发风机运行直至第二间室满足加热温度。
  8. 8. 根据权利要求6所述的风冷设备,其特征在于,所述风冷设备还包括:
    补偿加热丝,设置于所述蒸发器后部;
    补偿加热控制模块,用于在压缩机停机后启动所述补偿加热丝。
  9. 根据权利要求8所述的风冷设备,其特征在于,所述补偿加热控制模块,具体用于:
    按照100%通电率启动所述补偿加热丝。
  10. 根据权利要求6所述的风冷设备,其特征在于,所述风冷设备还包括:
    全加热控制模块,用于:打开第一风门和第二风门,并控制蒸发风机运行;以及,启动第一加热丝、第二加热丝和补偿加热丝。
PCT/CN2020/095499 2019-11-26 2020-06-11 风冷设备的控制方法及风冷设备 WO2021103483A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20893899.3A EP4067795A4 (en) 2019-11-26 2020-06-11 METHOD FOR CONTROLLING AIR COOLING DEVICE AND ASSOCIATED AIR COOLING DEVICE
US17/778,385 US20220397331A1 (en) 2019-11-26 2020-06-11 Method of controlling air-cooling device and air-cooling device
JP2022530735A JP7348400B2 (ja) 2019-11-26 2020-06-11 空冷設備の制御方法及び空冷設備
KR1020227016432A KR20220079678A (ko) 2019-11-26 2020-06-11 공랭식 설비의 제어 방법 및 공랭식 설비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911174842.8 2019-11-26
CN201911174842.8A CN112944771B (zh) 2019-11-26 2019-11-26 风冷设备的控制方法及风冷设备

Publications (1)

Publication Number Publication Date
WO2021103483A1 true WO2021103483A1 (zh) 2021-06-03

Family

ID=76129123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095499 WO2021103483A1 (zh) 2019-11-26 2020-06-11 风冷设备的控制方法及风冷设备

Country Status (6)

Country Link
US (1) US20220397331A1 (zh)
EP (1) EP4067795A4 (zh)
JP (1) JP7348400B2 (zh)
KR (1) KR20220079678A (zh)
CN (1) CN112944771B (zh)
WO (1) WO2021103483A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115682569A (zh) * 2022-10-17 2023-02-03 珠海格力电器股份有限公司 风机延迟启动控制方法、控制装置及冷风机机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352262A (zh) * 2015-11-30 2016-02-24 青岛海尔股份有限公司 风冷冰箱及其冷冻保护控制方法
CN105486023A (zh) * 2014-09-16 2016-04-13 苏州益而益电器制造有限公司 一种具有连续调温功能的冰箱
CN106839568A (zh) * 2017-01-09 2017-06-13 青岛海尔股份有限公司 冰箱门、具有其的冰箱、以及该冰箱的控制方法
CN109751807A (zh) * 2017-11-01 2019-05-14 青岛海尔特种电冰柜有限公司 具有腰带储物功能的制冷设备
CN109990567A (zh) * 2019-03-22 2019-07-09 青岛海尔特种电冰柜有限公司 一种双温区风冷酒柜
CN209470416U (zh) * 2018-12-21 2019-10-08 青岛海尔特种电冰柜有限公司 一种防凝露均温酒柜

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169485U (ja) * 1982-05-08 1983-11-11 松下冷機株式会社 冷・温切替式の貯蔵庫
JPH07305936A (ja) * 1994-05-11 1995-11-21 Matsushita Refrig Co Ltd 冷蔵庫
KR20030015050A (ko) * 2001-08-14 2003-02-20 주식회사 엘지이아이 냉장 시스템 및 그 제어방법
EP1811251A2 (en) 2006-01-18 2007-07-25 Samsung Electronics Co., Ltd. Refrigerator with temperature control and operating method therefor
JP2009008281A (ja) 2007-06-26 2009-01-15 Toshiba Corp 冷蔵庫
JP5107112B2 (ja) * 2008-03-28 2012-12-26 シャープ株式会社 冷蔵庫
JP2011038715A (ja) 2009-08-12 2011-02-24 Hitachi Appliances Inc 冷蔵庫
JP2012063026A (ja) 2010-09-14 2012-03-29 Hitachi Appliances Inc 冷蔵庫
KR20120116207A (ko) 2011-04-12 2012-10-22 엘지전자 주식회사 디스플레이 장치 및 이를 구비하는 냉장고
JP5854937B2 (ja) 2012-06-29 2016-02-09 株式会社東芝 冷蔵庫
CN106016964B (zh) * 2016-07-15 2019-02-15 长虹美菱股份有限公司 一种多风门风冷冰箱的控制系统、控制方法及冰箱
CN106288612A (zh) * 2016-08-25 2017-01-04 合肥美菱股份有限公司 一种风冷冰箱的化霜节能控制方法
KR102434984B1 (ko) * 2018-05-03 2022-08-22 엘지전자 주식회사 냉장고
CN110375495A (zh) * 2019-06-27 2019-10-25 广东奥马冰箱有限公司 一种层架式风冷冰箱的制冷结构及冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486023A (zh) * 2014-09-16 2016-04-13 苏州益而益电器制造有限公司 一种具有连续调温功能的冰箱
CN105352262A (zh) * 2015-11-30 2016-02-24 青岛海尔股份有限公司 风冷冰箱及其冷冻保护控制方法
CN106839568A (zh) * 2017-01-09 2017-06-13 青岛海尔股份有限公司 冰箱门、具有其的冰箱、以及该冰箱的控制方法
CN109751807A (zh) * 2017-11-01 2019-05-14 青岛海尔特种电冰柜有限公司 具有腰带储物功能的制冷设备
CN209470416U (zh) * 2018-12-21 2019-10-08 青岛海尔特种电冰柜有限公司 一种防凝露均温酒柜
CN109990567A (zh) * 2019-03-22 2019-07-09 青岛海尔特种电冰柜有限公司 一种双温区风冷酒柜

Also Published As

Publication number Publication date
CN112944771B (zh) 2023-09-29
EP4067795A1 (en) 2022-10-05
CN112944771A (zh) 2021-06-11
US20220397331A1 (en) 2022-12-15
JP7348400B2 (ja) 2023-09-20
KR20220079678A (ko) 2022-06-13
EP4067795A4 (en) 2022-12-28
JP2023503166A (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2018121592A1 (zh) 恒温冰箱及其控制方法
KR0182759B1 (ko) 고효율 독립냉각 싸이클을 가지는 냉장고의 제어방법
WO2018040442A1 (zh) 冰箱
WO2018040441A1 (zh) 冰箱
KR20130037354A (ko) 냉장고 및 그 제어방법
CN106016964B (zh) 一种多风门风冷冰箱的控制系统、控制方法及冰箱
WO2015133173A1 (ja) 冷蔵庫
CN113266978B (zh) 一种冰箱及其控制方法
WO2021103483A1 (zh) 风冷设备的控制方法及风冷设备
JP6803217B2 (ja) 冷蔵庫
WO2018145619A1 (zh) 冰箱的控制方法及冰箱
WO2019085844A1 (zh) 具有一拖二风门的冰箱的控制方法及控制系统
CN100552340C (zh) 电冰箱的除霜装置及其控制方法
CN115247938A (zh) 制冷装置的控制方法
CN115371330B (zh) 一种制冷设备的控制方法
JP2002206840A (ja) 冷蔵庫
CN111306883A (zh) 一种冰箱的风门节能控制方法
CN109883104A (zh) 冰箱及其控制方法
KR20050038293A (ko) 냉장고의 밸브제어방법
KR100390437B1 (ko) 2개의 증발기가 설치된 냉장고의 운전 제어 방법
JPH0989435A (ja) 冷凍冷蔵庫
JP2014043960A (ja) 冷蔵庫
JP2003287331A (ja) 冷蔵庫
JP2012251680A (ja) 冷蔵庫
KR20070114426A (ko) 냉장고 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227016432

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022530735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020893899

Country of ref document: EP

Effective date: 20220627